БИОЛОГИЯ
ЧЕРНОГО МОРЯ У БЕРЕГОВ
ЮГО-ВОСТОЧНОГО КРЫМА
Монография

Симферополь • ИТ «АРИАЛ» • 2018
T. I. VYAZEMSKY KARADAG SCIENTIFIC STATION – NATURE RESERVE OF RAS

THE BIOLOGY OF THE BLACK SEA OFFSHORE AREA at the SOUTH-EASTERN CRIMEA

Simferopol
PP «ARIAL»
2018
Федеральное государственное бюджетное учреждение науки
«КАРАДАГСКАЯ НАУЧНАЯ СТАНЦИЯ
им. Т. И. ВЯЗЕМСКОГО – ПРИРОДНЫЙ ЗАПОВЕДНИК РАН»

БИОЛОГИЯ

ЧЕРНОГО МОРЯ У БЕРЕГОВ
ЮГО-ВОСТОЧНОГО КРЫМА

Симферополь
ИТ «АРИАЛ»
2018
УДК 574.5(262.5)(477.75)
ББК 28.082(922.8)(2Рос-6Кры)
Б 63
Утверждено к печати Учёным советом
ФГБУН «Карадагская научная станция им. Т. И. Вяземского – природный заповедник РАН»
(протокол № 8 от 30 ноября 2017 г.)

Рецензенты:
С. Б. Гулин, доктор биол. наук, профессор
В. И. Мальцев, канд. биол. наук

Коллектив авторов: Агафонов А. В., Белоусова Ю. В., Бескаравайный М. М., Болтачева Н. А., Бондаренко Л. В., Гетьман Т. П., Горбунов Р. В., Горбунова Т. Ю., Гринцов В. А., Дмитриева Е. В., Евстигнеева И. К., Загородняя Ю. А., Заика В. Е., Ковалева М. А., Ковригина Н. П., Колесникова Е. А., Копий В. Г., Корнийчук Ю. М., Костенко Н. С., Кулиш А. В., Лебедовская М. В., Лисицкая Е. В., Логоминова И. В., Лозовский В. Л., Мазлумян С. А., Макаров М. В., Морякова В. К., Пасынков А. А., Плаксина М. П., Повчун А. С., Полякова Т. А., Поспелова Н. В., Пронькина Н. В., Родионова Н. Ю., Сеничева М. И., Субботин А. А., Танковская И. Н., Тимофеев В. А., Троценко О. А., Ушаков В. В., Юрахно В. М.

Монография содержит результаты многолетних комплексных исследований прибрежной зоны Юго-Восточного Крыма. Изучены геолого-геоморфологическое строение, климат, гидрологические и гидрохимические характеристики региона. Рассмотрены гидробиологические особенности и таксономический состав фитопланктона, фитобентоса, зоопланктона и зообентоса шельфовой зоны. Приведены сведения о фаунистическом комплексе, включающем паразитов гидробионтов, позвоночных животных (рыбы, птицы, млекопитающие). На основе комплексных исследований Судакско-Карадагского шельфа накоплены уникальные данные по составу донных сообществ.

Издание предназначено для ученых, специализирующихся в области экологии, гидробиологии, зоологии, преподавателей и студентов высших учебных заведений соответствующих специальностей, а также специалистов в области рационального природопользования.

УДК 574.5(262.5)(477.75)
ББК 28.082(922.8)(2Рос-6Кры)

The monograph deals with the results of long-term integrated studies in the South-Eastern Crimea coastal zone. Geological and geomorphologic structure, climate, hydrological and hydro-chemical characteristics have been studied. Hydrobiological features and taxonomic composition of the offshore area (phytoplankton, phytobenthos, zooplankton and benthos) are considered. Data on the faunal assemblages covering parasites of sea hydrobionts, vertebrates (fish, birds, mammals) are depicted. Results of comprehensive studies of bottom communities at Sudak-Karadag shelf are compiled as a set of unique data.

The publication is intended for science experts in ecology, hydrobiology, zoology, professors and students of the corresponding specialties, as well as specialists in the field of conservancy.

УДК 574.5(262.5)(477.75)
ББК 28.082(922.8)(2Рос-6Кры)

ISBN 978-5-907032-04-0

© Коллектив авторов, 2018
© ИТ «АРИАЛ», 2018
СОДЕРЖАНИЕ

Предисловие (Н. С. Костенко) .. 5

Глава 1. История гидробиологических исследований у берегов Юго-Восточного Крыма (Н. С. Костенко) ... 8

Глава 2. Абиотические факторы и условия обитания гидробионтов прибрежной зоны Юго-Восточного Крыма ... 39
 2.1. Геолого-геоморфологическое строение (А. А. Пасынков) .. 39
 2.2. Климатические особенности (Р. В. Горбунов, Т. Ю. Горбунова) ... 44
 2.3. Гидрологические особенности (О. А. Троценко, А. А. Субботин) .. 46
 2.4. Гидрохимические особенности (Н. П. Ковригина, Н. Ю. Родионова) .. 59

Глава 3. Фаунистический комплекс ... 77
 3.1. Донные беспозвоночные .. 77
 3.1.1. Таксономический состав макрообентоса (Л. В. Бондаренко, Н. А. Болтacheva, В. А. Гринцов) .. 77
 3.1.2. Ракообразные. Отряд Десятиногие (А. В. Кулиш) .. 83
 3.1.3. Моллюски Chamelea gallina и Mytilus galloprovincialis верхней сублиторали: многолетние изменения (Н. А. Болтачева, В. Е. Заика) ... 87
 3.1.4. Паразиты морских гидробионтов (Е. В. Дмитриева, Т. А. Полякова, Ю. М. Корничук, Н. В. Пронькина, М. П. Плаксина, В. М. Юрахно, М. В. Лебедовская, В. Л. Лозовский, Ю. В. Белоусова) ... 96
 3.2. Позвоночные животные ... 130
 3.2.1. Рыбы (В. В. Шаганов) .. 130
 3.2.2. Птицы (М. М. Бескаравайный) ... 143
 3.2.3. Млекопитающие. Отряд Китообразные: визуальные и этолого-акустические наблюдения (И. В. Логоминова, А. В. Агафонов) .. 157

Глава 4. Гидробиологические особенности шельфовой зоны Черного моря у юго-восточных берегов Крыма ... 164
 4.1. Фитопланктон (Н. В. Поспелова, М. И. Сеничева) .. 164
 4.2. Фитобентос (Н. С. Костенко, И. К. Евстигнеева, И. Н. Танковская) ... 172
 4.3. Голооблактант .. 234
 4.3.1. Мезооблактант (Е. В. Лисицкая) .. 234
 4.3.2. Голопланктон (Ю. А. Загородняя, В. К. Морякова)... 244
 4.4. Зообентос .. 252
 4.4.1. Макрообентос псевдодолиторали (В. Г. Копий) .. 252
 4.4.2. Макрообентос сублиторали .. 255
 4.4.2.1. Макрообентос глинистых субстратов (М. А. Ковалева) ... 255
 4.4.2.2. Макрообентос твердых естественных и искусственных субстратов (В. А. Гриниц) ... 262
 4.4.2.3. Макрообентос песчаных субстратов верхней зоны сублиторали (С. А. Мазлумян, Н. А. Болтачева) .. 272
 4.4.2.4. Макрообентос рыхлых субстратов нижней зоны сублиторали (С. А. Мазлумян) .. 292
 4.5. Комплексные исследования бентоса ... 313
 4.5.1. Особенности доминирования в сообществах бентоса в зональных биотопах Судакско-Карадагского шельфа (С. А. Мазлумян, А. А. Субботин, А. С. Повчун) .. 313
 4.5.2. Биономия верхней сублиторали прибрежья Карадага (Н. А. Болтачева, С. А. Мазлумян, Е. А. Колесников, Л. В. Бондаренко, М. В. Макаров, В. А. Тимофеев, Т. П. Гетьман, М. А. Ковалева) .. 318

Заключение (Н. С. Костенко) .. 326
Список литературы ... 327
ПОСВЯЩАЕТСЯ СВЕТЛОЙ ПАМЯТИ
Константина Александровича Виноградова – известного гидробиолога и организатора науки, профессора, доктора биологических наук, директора Карадагской биологической станции и Сергея Борисовича Гулина – профессора, доктора биологических наук, директора Института морских биологических исследований им. А.О. Ковалевского РАН, начинавшего свой путь в науку на Карадаге.

ПРЕДИСЛОВИЕ

Изучение ведущих компонентов прибрежной экосистемы Черного моря у юго-восточного побережья Крыма имеет давнюю историю и проводилось в основном учеными двух биологических станций – Карадагской и Севастопольской (позже – Карадагским отделением Института биологии южных морей АН УССР, Карадагским природным заповедником НАНУ, ФГБУН «Карадагская научная станция им. Т. И. Вяземского – природный заповедник РАН» и Институтом биологии южных морей им. А. О. Ковалевского АН УССР, в настоящее время ФГБУН «Институт морских биологических исследований РАН»).

В связи с организацией Карадагского государственного заповедника в 1979 г. в системе АН УССР была начата инвентаризация морской флоры и фауны региона. В эти работы активно включились учёные Института биологии южных морей – бывший директор института член-корреспондент НАН Украины В. Е. Заика (изучение бентоса), доктор биологических наук профессор В. В. Мурина (изучение зоопланктонна), доктор биологических наук А. А. Калугина-Гутник, кандидат биологических наук И. К. Евстигнеева (изучение фитобентоса), кандидат биологических наук Ю. В. Загородняя (изучение зоопланктона), кандидат биологических наук Л. Г. Сеничкина и научный сотруд...
ник М. И. Сеничева (изучение фитопланктона). Большой вклад в изучение зообентоса региона внесла доктор биологических наук М. И. Киселева. В настоящей монографии представлены ее первичные данные по Судакскому взморью, относящиеся к 1957 г. Позже у берегов Юго-Восточного Крыма работала Т. В. Михайлова, ее данные по бентосу также приводятся в настоящей работе.

Учитывая большую протяженность акваторий у берегов Юго-Восточного Крыма, при проведении исследований Судакско-Карадагского взморья были задействованы научно-исследовательские суда, в частности, «Профессор Водняницкий», представляющий флот Института биологии южных морей НАН Украины. Морские работы на ряде участков шельфа, в том числе и на заповедной акватории Карадага, проводились также с применением легководолазной техники и использованием промышленных акваторий природного заповедника и охватывали побережье от Нового Света до м. Кинк-Атлама. Это позволило сотрудникам заповедника (кандидат биологических наук Н. С. Костенко) изучить фитобентос самой прибрежной зоны, осуществить картографический мониторинг донной растительности с промежутком времени почти в 20 лет, выявить закономерности смены фитоценозов во времени, а также механизмы формирования сообществ после воздействия катастрофических разрушительных штормов 1992 и 2007 гг., наиболее активно проявившихся силу своего воздействия у берегов Карадага. Выявлены особенности смены фитоценозов во времени на скалистых подстах акватории заповедника на примере ск. Золотые Ворота Карадага. Часть этих работ была выполнена с привлечением легководолазов – студентов и аспирантов Национального университета «Киево-Могилянская академия».

Совместными исследованиями ученых Карадага (Н. С. Костенко, Т. В. Багнюкова) и Института биологии южных морей (кандидат биологических наук Л. П. Салехова, доктор биологических наук Л. С. Овен) была изучена ихтиофауна региона, составлены аннотированные списки.

В результате проведенных работ был накоплен большой массив гидробиологических данных, собранных с разной периодичностью на акваториях юго-восточного побережья Крыма, часть из которых в настоящее время являются ООПТ Республики Крым. Это значительно повышает ценность предложенного в монографии материала, так как дает возможность оценить изменения, которые происходят в прибрежной зоне Юго-Восточного Крыма, учитывая, что в регионе наряду с природоохранными объектами сосредоточены и зоны развитой рекреации. Для сохранения прибрежной экосистемы региона и принятия соответствующих решений необходимо владеть информацией о состоянии основных составляющих этой экосистемы – от представителей фитопланктона-фитобентоса-зообентоса до рыб и морских млекопитающих.

Следует отметить, что не все аспекты изучения прибрежной экосистемы Юго-Восточного Крыма отражены в отдельных разделах настоящего издания. Эта информация в виде обзора проводятся в главе 1 – история научных исследований. Это касается таких групп как обитатели зарослей прибрежных водорослей-макрофитов, мейобентоса и бентоса до рыб и морских млекопитающих.

Особое значение в данной работе имеют данные об абиотических параметрах морской...
среды (глава 2) – гидрологических и гидрохимических особенностях Судакско-Карадагского шельфа. При их характеристике использованы как архивные данные, так и результаты современных исследований. С 2004 г. по настоящее время в акватории Карадага сотрудниками Института биологии южных морей (ныне Институт морских биологических исследований РАН) проводится регулярный гидролого-гидрохимический мониторинг состояния прибрежных вод (канд. хим. наук Н. П. Ковригина, канд. геогр. наук О. А. Трошenko, канд. геогр. наук А. А. Субботин и др.). Эти данные отражены в настоящем издании.

Таким образом, монография является попыткой представить единую информацию о состоянии прибрежной экосистемы юго-восточного побережья Крыма.

Наряду с исследованиями, имеющими длительный ряд наблюдений, в отдельные разделы включены фаунистические данные, полученные в последнее время, касающиеся изучения рачообразных зоны верхней сублиторали (А. В. Кулиш, Керченский морской технологический университет), современного состояния ихтиофауны (В. В. Шаганов, Керченский морской технологический университет), а также результаты учета китообразных у юго-восточных берегов Крыма (Карадагская научная станция им. Т.И. Вяземского – природный заповедник РАН).

Особенность данного издания заключается в том, что проведена современная ревизия всех представленных списков и названия морской флоры и фауны даны по системе WORMS.

Данное издание может быть использовано как справочное руководство по изучению прибрежной экосистемы юго-восточного побережья Крыма, в нем представлен большой список литературных источников, отражающих различные аспекты изучения региона. Следует подчеркнуть, что в связи с использованием Республики Крым в целях развития дальнейшей рекреации, часть из приведенных в настоящем издании данных в любой момент может быть востребована для решения региональных проблем, их актуальность достаточно высока.

Авторы приносят искреннюю благодарность Л. В. Знаменской, главному специалисту ФГБУН «Карадагская научная станция им. Т. И. Вяземского – природный заповедник РАН», за доиздательскую подготовку данного издания. Особая благодарность авторам монографии канд. биол. наук Н. А. Болтачевой и канд. биол. наук С. А. Мазлумян за критический просмотр рукописи и существенные замечания.

Н. С. Костенко
Глава 1.
ИСТОРИЯ ГИДРОБИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ
У БЕРЕГОВ ЮГО-ВОСТОЧНОГО КРЫМА

В Юго-Восточном Крыму расположен редчайший и удивительный по красоте уголок мира — Карадагский древневулканический массив, который впервые привлек внимание ученых еще в XVII–XVIII вв. О нем писали в своих трудах известные исследователи Крыма П. С. Паллас и К. И. Гabilité. История изучения морской флоры и фауны юго-восточного побережья Крыма насчитывает 160 лет. В 1858 г. К. Кесслер посетил Судак и Новый Свет, где изучал видовой состав рыб. Свои наблюдения он описал в книге «Путешествие с зоологической целью к северному берегу Черного моря и в Крым в 1858 году» (Кесслер, 1860). В Новом Свете существовал рыбный завод, принадлежавший колонисту Гафиеру. Новосветский рыбный завод был предназначен, главным образом, для ловли кефали и скумбрии. Как отмечает К. Кесслер, табуны скумбрии бывают иногда чрезвычайно велики.

порядка на прилегающем участке Черного моря в качестве природной лаборатории и устройства в районе Карадага в ближайшие годы заповедного морского участка (Виноградов, 1947). Прошло более полувека с момента, когда профессор А. А. Остроумов в 1916 г., отметил уникальность и красоту природы Карадага и необходимость их сохранения, подчеркивая возможность создания здесь морского заповедника, до практического осуществления этой идеи в 1979 г., когда 9 августа вышло Постановление Совета Министров УССР о создании Карадагского государственного заповедника (Костенко, 1990 г, 2001 а).

Более века назад на Карадаге проведены рекогносцировочные исследования по фауне Черного моря профессором А. А. Остроумовым – бывшим директором Севастопольской биологической станции и В. Н. Вучетичем – помощником заведующего Карадагской научной станции им. Т. И. Вяземского, их результаты нашли отражение в I выпуске «Трудов Карадагской научной станции им. Т. И. Вяземского» (1917 г.), столетний юбилей со дня выхода в свет которых отмечался в 2017 году (Костенко, 2017 в).

Черноморская альгофлора у берегов Юго-Восточного Крыма имеет большое природоохранное значение. Так, установлено, что из 178 видов водорослей-макрофитов (Костенко и др., 2004), зарегистрированных у Карадага, 12 внесены в Красную книгу Республики Крым, что составляет 66,7 % краснокнижной флоры черноморских водорослей (18 видов) (Костенко, 2016) (табл. 1).

<table>
<thead>
<tr>
<th>№</th>
<th>Виды</th>
<th>КК РК</th>
<th>КК РФ</th>
<th>Эндемик</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Briopsis adriatica – Bryopsis cupressiana var. adriatica (J. Agardh) M.J.Wynne</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Codium vermilara – Codium vermilara (Olivi) Delle Chiaie</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cladophora siwasheschens C. Meyer – Cladophora siwasheschens C. Meyer</td>
<td>+</td>
<td>Ач</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Stilophora tenella – Stilophora tenella (Esper) P.C. Silva</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Cystoseira barbata – Cystoseira barbata (Stackh.) C. Agardh</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Cystoseira crinita – Cystoseira crinita Duby</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Nereia filiformis – Nereia filiformis (J. Agardh) Zanard.</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Laurencia coronopus – Laurencia coronopus J. Agardh</td>
<td>+</td>
<td>Сч</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Osmundea hybrida – Osmundea hybrida (D.C.) K.W. Nam</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Osmundea pinnastrata – Osmundea pinnastrata (Huds.) Stackh</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Phyllophora crispa – Phyllophora crispa (Huds.) P. S. Dixon</td>
<td>+</td>
<td>+</td>
<td>Сч</td>
</tr>
<tr>
<td>12</td>
<td>Lomentaria compressa – Lomentaria compressa (Kutz.) Kylin</td>
<td>+</td>
<td>+</td>
<td>Сч</td>
</tr>
</tbody>
</table>

ФИТОПЛАНКТОН

Наибольшим видовым разнообразием представлены диатомовые (45 % общего количества видов) и пиррофитовые (38 %) водоросли, вклад остальных групп невелик.

Исследования последних десятилетий значительно дополнили итоговый список новыми видами: для этого района выявлено 95 новых видов, 20 из которых оказались новыми для Черного моря. Увеличилось количество видов (с 5 до 26) золотистых водорослей, преимущенно, за счет кокколитофорид. Список диатомовых планктона и бентоса акватории Карадагского заповедника объединил 209 видов и ввт (Сеничкина и др., 2004 а). В результате инвентаризации опубликованных и архивных данных за более чем 60-летний период, список диатомовых, обнаруженных в планктоне шельфовой зоны Черного моря у Карадага, насчитывает 121 вид и ввт, 64 из которых встречены только в планктоне и 57 – как в планктоне, так и в бентосе (Сеничкина и др., 2004 а; Неврова, 2015).

В составе фитопланктона района Карадага количество видов возросло от 298 (Сеничева,
(Сеничева, Поспелова, 2015), что составляет 45 % от общего количества видов, известных в Черном море — 700 видов и ввт (Стельмах, Мансурова, 2012 а).

Предварительный список микроводорослей района Карадага насчитывал 90 таксонов, из них Bacillariophyta — 86, Dinophyta — 3, Chlorophyta — 1 (Рябушко и др., 2011). Поскольку многие виды, встречающиеся в фитопланктоне, обнаружены также и в бентосе, представляется интересным суммарное сопоставление общего количества микроводорослей, известных в Черном море (Рябушко и др., 2006) и на Карадаге. По данным разных авторов зарегистрировано 516 видов и ввт микроводорослей (Рябушко и др., 2012), это количество возросло в основном за счет фитопланктона, в котором ранее упомянуто более 290 видов (Сеничева, 2008) до 526 микроводорослей (Карадаг. Гидробиологические исследования, 2004; Неврова, 2015; Сеничева, Поспелова, 2015) с учетом последних литературных данных (табл. 2).

Таблица 2.

<table>
<thead>
<tr>
<th>Отдел</th>
<th>Карадаг</th>
<th>Черное море</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Фитопланктон</td>
<td>Микроводоросли</td>
</tr>
<tr>
<td>Dinophyta</td>
<td>38</td>
<td>144</td>
</tr>
<tr>
<td>Cryptophyta</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Chrysophyta</td>
<td>14</td>
<td>40</td>
</tr>
<tr>
<td>Haptophyta</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>Bacillariophyta</td>
<td>52</td>
<td>307</td>
</tr>
<tr>
<td>Chlorophyta</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Euglenophyta</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cyanoprokaryota</td>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>Xanthophyta</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Protozoa Incertae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Всего</td>
<td>97</td>
<td>526</td>
</tr>
</tbody>
</table>

ФИТОБЕНТОС

Суммируя полученные данные, можно констатировать, что в акватории Карадагского природного заповедника за все годы исследований зарегистрирована богатая флора диатомовых бентоса, состоящая из 299 видов и ввт, среди них отмечены представители 3 родов и 45 видов из числа новых для диатомовой флоры Черного моря, а также 4 новых для науки вида, описанных ранее, в то время как в акватории б. Двуякорной впервые были обследованы в 2008 г. В результате установлено, что здесь представлено высокое видовое богатство диатомовых, состоящее из 299 видов и ввт, среди них отмечены 67 видов из числа новых для диатомовой флоры Черного моря и 2 вида, описанные ранее как новые для науки (Неврова, 2015 а).

Донные диатомовые в антропогенно малонарушенной б. Двуякорной впервые были обследованы в 2008 г. В результате установлено, что здесь представлено высокое видовое богатство диатомовых – 304 вида и ввт, относящиеся к 299 видам, из них 67 видов и ввт из числа новых для Черного моря и 4 вида и 1 таксономическая комбинация, описанные ранее как новые для науки (Мильчакова, 2003) и 32 вида новых для диатомовой флоры Черного моря, и 2 вида, описанные ранее как новые для науки (Неврова, 2015 а). Олигосапробные виды в районе Карадага составляют 58,8 %, мезосапробные – 31,3 %, полисапробные – 9,8 %. Флористический коэффициент Чени по данным разных авторов равен 2,93 (Мильчакова, 2003) и 3,1 (Костенко, 1990 в), что свидетельствует о том, что район заповедника является относительно чистым участком моря.

Район Карадага является одним из наиболее богатых по видовому разнообразию водорослей (Мильчакова, 2003). Наиболее высокие значе-
ния коэффициента общности между альгофлюрой южного берега Крыма и Карадага – 43,4 % (Мильчакова, 2003), что подчеркивает сходство альгофлоры Карадага с другими районами Крымского побережья.

Получены количественные характеристики распределения видов лауренции в районе Карадага, которые лучше всего развиты у открытых и чистых берегов при отсутствии прямых источников загрязнения (Евстигнеева, 1989). Масштабное картирование морской донной растительности Крымского побережья.

На современном этапе в районе Карадага на глубине 0,5–5 м (иногда до 7 м) выявлено 6 растительных ассоциаций, среди которых домини-
руют цистозиевую и цистозиево-филлофаровую. Обнаружено еще 3 новых сообщества: цистозиево-филлофарово-ульвовое (Cystoseira crinita + Phyllophora crispa + Ulva rigida), филлофарово-ульвовое (Phyllophora crispa – Ulva rigida), стилофарро-кладофоровое (Stilophora rhizodes – Cladophora albida).

В течение нескольких лет в процесс восстановительной сукцессии происходит формирование фитоценозов положительных ветвей. Эти тонкие механизмы восстановлением морских сообществ, происходящие в акватории, ежегодно отслеживаются и служат материалом для Летописи природы. Исследования показали, что пояс зарослей средообразующих макрофитов – видов цистозиры – за последние годы сместился на меньшие глубины. Происходит исчезновение многолетних зарослей ци-
стозиры — биоиндикаторов олигосапробной зоны, приуроченных к твердым грунтам и замена их на зеленые водоросли.

Основной вклад в изменение биомассы водорослей по глубинам вносят виды цистозир. Так, изучение многолетних изменений донных фитоценозов района Карадага подтвердило представление о том, что для побережья Крыма основной тенденцией является антропогенная деградация коренных цистозировых фитоценозов, прежде всего уменьшение биомассы цистозиры (Костенко и др., 2005).

В 1995 г. изучали фитобентос б. Коктебель и б. Провато (Костенко, 1997). Было показано, что распределение донной растительности в бухте крайне неравномерно: фитоценозы бурых водорослей произрастают на глубине 0,5–2 м, где имеются выходы твердых грунтов, а на мягких песчаных грунтах произрастают морские травы.

В 2006 г. проведены повторные исследования фитобентоса б. Коктебель и б. Провато (Костенко и др., 2007). Было показано, что общий характер пространственного распределения донной растительности в б. Коктебель не претерпел существенных изменений. В то же время уменьшилась биомassa цистозиры на глубине 5–10 м, заросли зостеры, произраставшие в 1995 г. на глубине 10 м. Сделан вывод о том, что макрофитобентос исследуемых акваторий подвержен процессам аллогенной деградационной сукцессии (Костенко и др., 2007).

Известно, что наилучшей социологической значимостью характеризуется прибрежная экосистема Юго-Восточного Крыма, где сосредоточено значительное количество охраняемых объектов разного статуса, категории и площади (Мильчакова, 2015; Мильчакова и др., 2015).

Изучение охраняемых акваторий Юго-Восточного Крыма показало, что наплывом сохранности донной растительности характеризуется район полуострова Меганом, а сообщества Карадага подвержены трансформации в средней степени. Среди морских трав за последние десятилетия произошли значительные изменения: площади, занятые зостерой, произрастающей у Карадага, уменьшились вдвое, а биомасса — втрое. Подтверждается ранее высказанное предположение о том, что активизация антропогенного воздействия в прибрежной части Черного моря в районе Юго-Восточного Крыма может привести к постепенному исчезновению коренных цистозировых фитоценозов, которые являются основными компонентами экосистемы моря (Костенко, 1990 а).

В 2009 г. проводили исследования макрофитобентоса в зоне заплеска на скалах Карадагского природного заповедника. Установлено, что в целом сообщества обрастания верхнего биологического литоконтура моря в районе Карадага подвержены трансформации в средней степени. Среди морских трав за последние десятилетия произошли значительные изменения: площади, занятые зостерой, произрастающей у Карадага, уменьшились вдвое, а биомасса — втрое. Подтверждается ранее высказанное предположение о том, что активизация антропогенного воздействия в прибрежной части Черного моря в районе Юго-Восточного Крыма может привести к постепенному исчезновению коренных цистозировых фитоценозов, которые являются основными компонентами экосистемы моря (Костенко, 1990 а).

В 2009 г. проводили исследования макрофитобентоса в зоне заплеска на скалах Карадагского природного заповедника. Установлено, что в целом сообщества обрастания верхнего биологического литоконтура моря в районе Карадага во многом соответствуют фитобентосу других участков черноморского прибрежья (Евстигнеева, Танковская, 2016 а).

Среди акваторий Юго-Восточного Крыма у памятника природы регионального значения «Полуостров Меганом» была отмечена наибольшая степень сохранности донных фитоценозов и значительная ширина фитали, что вероятно связано с низким уровнем антропогенного воздействия и рекреационной нагрузки. Нижняя граница произрастания фитоценозов у Меганома находится на глубине 15 м, что почти в 2 раза больше, чем в акватории Карадагского природного заповедника и ландшафтно-рекреационного парка регионального значения «Тихая бухта», где она не превышает 7–10 м. При этом на участке от м. Меганом до м. Толстый выявлены типичные филлофоровые фитоценозы, которые отсутствуют в других заповедных акваториях региона (Мильчакова, 2015).

По итогам экспедиционных исследований 2011 г. у берегов Юго-Восточного Крыма определены запасы донной растительности. Показано, что наибольший запас фитомассы цистозира в диапазоне глубин 0,5–10 м сосредоточен на участке от м. Толстый до м. Меганом, где донная растительность встречается до глубины 15–20 м, тогда как граница нижней фитали на Карадаге проходит на глубине около 10 м (Мильчакова, 2015).

ФАУНИСТИЧЕСКИЕ ИССЛЕДОВАНИЯ

Список морских животных, населяющих воды у юго-восточных берегов Крыма, в част-

Таблица 3.
Список видов морских животных, занесенных в Красную книгу Республики Крым, Красную книгу Российской Федерации и эндемиков, обитающих в акватории Карадагского природного заповедника

<table>
<thead>
<tr>
<th>№</th>
<th>Вид</th>
<th>КК РК</th>
<th>КК РФ</th>
<th>Эндемики</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Устрица европейская – Ostrea edulis Linnaeus, 1758</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Гребешок черноморский – Flexopecten glaber ponticus Bucquoy, Dautzenberg et Dollfus, 1889</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Гастрана хрупкая – Gastrana fragilis (Linnaeus, 1758)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Донацилла роговая – Donacilla cornea (Poli, 1791)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Морское блюдечко – Patella ulyssiponensis Gmelin, 1791</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Краб каменный – Eriphipha verrucosa Forscal, 1775</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Краб мраморный – Pachygrapsus marmoratus Fabricius, 1787</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Лимозетта коричневая – Lysmata seticaudata (Risso, 1816)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Аномалозеро Патерсона – Anomalocera patersoni Templeton, 1837</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Лабидокоэра бурая – Labidocera brunescens (Czerniavski, 1868)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Понтелла средиземноморская – Pontella mediterranea (Claus, 1863)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ланцетнк европейский – Branchiostoma lanceolatum (Palls, 1774)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Осетр русский – Acipencer gueldenstaedtii Brandt et Ratzeburg, 1833</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Шип – Acipencer nudiventris Lovetzky, 1828</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Севрюга – Acipencer stellatus Pallas, 1771</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Белуга – Huso huso (Linnaeus, 1758)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Кумжа – Salmo labrax Pallas, 1814</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Морской конек – Hippocampus hippocampus (Linnaeus, 1758)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Морская игла длиннорылая – Syngnathus typhle Linnaeus, 1758</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Морская игла толсторылая – Syngnathus variegatus Pallas, 1814</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Морской петух желтый – Chelidonichthys lucerna Linnaeus, 1758</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Устрица европейская – Ostrea edulis Linnaeus, 1758</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Зеленый губан – Labrus viridis Linnaeus, 1758</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Дельфин-белобочка – Delphinus delphis Linnaeus, 1758</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Афалина – Tursiops truncatus (Montagu, 1821)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Морская свинья – Phocoena phocoena (Linnaeus, 1758)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Примечание: Эч - эндемик Черного моря

ПЛАНКТОН

Бактериопланктон. Изучение бактерио-
планктона у юго-восточных берегов Крыма проводили в 1987–1990 гг. на участке между
м. Меганом и м. Киик-Атлама (Шумакова,
2001). Высокие величины ОЧБ были отмечены
у м. Киик-Атлама (более 1,4 млн кл./мл) и чис-
ленность (больше 1,5 млн кл./мл) на прибреж-
ной станции у Карадага. Исследуемый район по
плотности бактериального населения может
быть отнесен к мезотрофным водам (Шумакова,
2001).

В 2010 г. во время 64 рейса НИС «Професс-
сор Водяницкий» проведено исследование бак-
териопланктона прибрежной зоны Крымского полуострова у побережья Карадага (Серегин,
Попова, 2012). По средней плотности бактери-
ального населения воды в районе Карадага
можно охарактеризовать как олиготрофные.
Для вертикального распределения характерно
увеличение общей численности планктонных бактерий (ОЧБ) от поверхности в глуоб. Установлено, что самые «бедные» бактериопланктоны воды — в районе Карадага: обилие бактериопланктона в поверхностном слое — 270 тыс. кл./мл по численности и 5,4 мг С/м³ по биомассе, в слое «термоклина» — соответственно 413 тыс. кл./мл и 8,3 мг С/м³ (Серегин, Попова, 2012).

Зоопланктон. Зоопланктон юго-восточного побережья Крыма изучали сотрудники Карадагской биологической станции. Большой вклад в установление видового состава и описание новых для Черного моря видов копепод был внесен М. А. Долгопольской (1940), которую следует считать пионером качественного изучения зоопланктона, ею опубликованы результаты обработки многолетних сборов 1929–1932 гг. по зоопланктону Черного моря района Карадагской биологической станции и включавшие беспозвоночных этого района. В 1938–1942 гг. сотрудник станции В. К. Ключарев (1952) увеличил количество форм зоопланктона до 138 названий (Виноградов, 1948). Планктон района Карадага может быть охарактеризован, как морской, типичный для открытых частей Черного моря, а прибрежность изученного района сказывается только в обилии личинок бентических форм весной и летом (Виноградов, 1949).

Состав зоопланктона Карадагского заповедника представлен в табл. 4.

Таблица 4.

<table>
<thead>
<tr>
<th>Состав зоопланктона района Карадага</th>
</tr>
</thead>
<tbody>
<tr>
<td>Таксономические группы</td>
</tr>
<tr>
<td>Простейшие</td>
</tr>
<tr>
<td>Кишечнополостные</td>
</tr>
<tr>
<td>Гребневики</td>
</tr>
<tr>
<td>Коловратки</td>
</tr>
<tr>
<td>Щетинокрупные</td>
</tr>
<tr>
<td>Форониды</td>
</tr>
<tr>
<td>Ракообразные</td>
</tr>
<tr>
<td>Апеннисулии</td>
</tr>
<tr>
<td>Многозетинковые черви</td>
</tr>
<tr>
<td>Моллюски (личинки)</td>
</tr>
<tr>
<td>Прочие</td>
</tr>
<tr>
<td>Всего</td>
</tr>
</tbody>
</table>

При обработке проб летнего зоопланктона из бухт вблизи Карадагской биологической станции, А. А. Шмелевой было определено 35 видов, по крайне мере 7 из которых ранее не отмечались в других районах (Шмелева и др., 2009). Вселение гребневика мнемиопсиса привело к катастрофическому уменьшению численности практически всех видов зоопланктона.
Обычными стали недавние вселенцы в Черное море – копепода акарция *Acartia tonza*, появившаяся в начале 1990-х гг. у Карадага (Загородняя, Шадрин, 1999) и два вида гребневиков *Mnemiopsis leidyi* и *Beroe ovata*. В 2005 г. в пробах ночного нейстона был обнаружен единичный экземпляр веслоногого рачка *Cymbasoma longispinosum* (Загородняя, 2007), ранее не отмеченный на Карадаге. Таким образом, аннотированный список веслоногих рачков (копепод), насчитывающий ранее 18 видов (Загородняя и др., 2004 г) пополнился еще 1 новым видом. В прибрежье Карадагского заповедника насчитывается 51 вид копепод из 289, встреченных в зоопланктоне Черного моря (Шмелева и др., 2009).

Микроzooplankton. В 2010–2016 гг. в 64, 70, 75 и 84 рейсах НИС «Профessor Водяницкий» изучали микроzooplankton у берегов Карадага (Серегин, Попова, 2012, 2016). Установлено, что район Карадага оказался бедным в отношении микроzooplanktona: в верхнем кислородном слое его численность в среднем была около 10 тыс. экз/м³, рачковый микроzooplankton составлял в среднем 74 % от общей численности и доминировал как на поверхности, так и в слое «термоклина», а в видовом отношении он был представлен копеподами рода *Acartia* и *Paracalanus parvus* – населяющими и копеподитными стадиями (Серегин, Попова, 2012).

СОСТАВ МОРСКОЙ ФАУНЫ У БЕРЕГОВ ЮГО-ВОСТОЧНОГО КРЫМА

Более чем 100-летняя история гидробиологических исследований в Юго-Восточном Крыму способствовала детальному фаунистическому изучению этого региона.

Изучением фауны ракушковых рачков (остракод) в 1931 г. занимался В. Н. Дубовский (1939), который обнаружил 19 видов, встречающихся в основном среди зарослей водорослей. Усоногих раков на Карадаге изучала Е. А. Шалаева в 1996–2000 гг., обнаружено 5 видов (Шалаева, Гринцов, 2004).

Класс морские пауки у Карадага представлен 3 видами (Гринцов, 2004 г; Синегуб, 2004; Ковалева, 2012 а, б; Киселева, 2015). Отметим, что в списке Л. А. Прокудиной (1952) указан всего 1 вид.

Фауна песчано-галечного прибрежья распадается на два биоценоза, один из которых занимает пляжный, другой – супралиторальный. В пляжном биоценозе основными организмами являются: Gammarus marinus, ланцетник европейский и др. В супралиторальном биоценозе ведущую роль играет Saccocirrus papillocercus (655 экз./м²; 1,88 г/м²) (Копий, Бондаренко, 2013). На песчано-галечном грунте у побережья Юго-Восточного Крыма (Прибрежное, Карадаг, Орджоникидзе) зарегистрировано сообщество Saccocirrus papillocercus (Копий и др., 2014). На Карадаге наибольшее количество (70 %) общей численности макрозообентоса (гидробионтов) отмечено ниже уреза воды (Копий, 2017). В 2009 г. в районе Карадагского природного заповедника проведено изучение видового со-
става беспозвоночных сообщества обрастания заплеска, в результате чего было идентифицировано 54 вида беспозвоночных (Гринцов, 2011; Гринцов, Лисицкая, 2016).

Изучение бентоса района Карадага проводилось в 64 и 68 рейсах НИС «Профессор Водяницкий» в 2010 г. на глубинах 22–98 м. Установлено, что на фоне абсолютного минимума средней биомассы зообентоса отмечен абсолютный (среди всех районов) максимум развития анцелид (13 т/м²), среди которых основная доля принадлежит T. stroemi (Ревков и др., 2015).

У берегов Крыма анадара впервые была обнаружена во время экспедиции НИС «Профессор Водяницкий» в 1999 г. в районе Карадага и Алушты (Ревков, 2011). Этот моллюск большие тяготеет к сообществу P. rudis, представленному в районе Карадага и Феодосийского залива (Ревков и др., 2015). На шельфе Юго-Восточного Крыма моллюск стал ценозообразующим, а в последние годы даже домinantным (Ревков, 2009), заменив мидию в рационе рапаны. Несмотря на то, что анадара вселилась в Черное море более 40 лет назад, в целом можно говорить о слабом освоении данным видом акватории шельфовой зоны Крыма, в сравнении с другими акваториями черноморского бассейна (Ревков и др., 2015).

В 2008 г. изучали размерно-возрастной состав мидий Карадага (Караванцева, 2009), выявлены две модальные группы особей: в б. Сердоликовой – от 3 до 6 см (60 %) и до 1 см – 34 %, у Кузьминцева камня доминирующая группа имела длину створки от 4 до 7 см (65 %) и до 1 см – 23 %. В 2013 г. в ходе макробентосных работ 72 рейса НИС «Профessor Водянницкий» при оценке современного состояния поселений мидий Крымского полуострова было выявлено очень низкое или полное отсутствие ежегодного пополнения молодью в течение последних 2–3 лет. Эти поселения следует рассматривать как деградирующие (Шурова, 2014). В 2011–2015 гг. отмечено восстановление скаловых митилід, особенно мидий до глубин 3–5 м от поверхности (Смирнова, Смирнов, 2016).

В б. Капсель преобладает молодая генерация рапан в возрасте до 3-х лет, что свидетельствует о неблагоприятной для рапаны экологической ситуации и, в первую очередь, о недостаточной обеспеченности пищей зрелых крупных особей (Бондарев, 2011).

В 2008 г. комплексной экспедицией отдела экологии бентоса Института биологии южных морей проводили изучение мейобентоса биотопа песка в акватории Карадагского природного заповедника. В его составе обнаружено 17 крупных таксонов (класс, отряд), из них 6 групп эумейобентоса (Сергеева, Колесникова, 2009). Отмеченные высокие показатели численности сообщества мейобентоса, а также доминирование гарпактикоидонематодного комплекса приводит к выводу о благоприятных условиях для развития мейобентоса в биотопе песка прибрежной зоны Карадага (Сергеева, Колесникова, 2009).

У крымского побережья известно 574 вида макрообобентоса (Ревков, 2011, 2015). В составе донной фауны Крымского сектора Черного моря, которая имеет средиземноморско-атлантическое происхождение, многочисленны Mollusca (159 видов), Crustacea (149), Polychaeta (146). Менее представлены у берегов Крыма

| Таблица 5. Соотношение (в %) основных групп макрозообентоса у Карадага |
|-----------------------------|-----------------------------|-----------------------------|
| Rakообразные | 28 | 27,4 | 22 | 42,5 |
| Моллюски | 27 | 22,8 | 38 | 18 |
| Полихеты | 26 | 26,2 | 33 | 31 |
| Прочие | 19 | 23,6 | 7 | 8,5 |

Исходя из вышеприведенных данных можно отметить стабильность видового состава макрозообентоса, однако за период 1948–2015 гг. у Карадага возросло количественное участие основных его групп — ракообразных и полихет и в 2,8 раза снизился процент прочих видов (табл. 5). Происходившая в течение последних 70 лет трансформация сообщества макрозообентоса скал акватории Карадага сопровождалась перестройкой видовой и трофической структуры.

Изучению зарослевых сообществ цистозиры акватории Карадагского природного заповедника посвящен ряд работ (Макаров, 2007, 2009, 2013). До 2009 г. эпифитон Судака и Нового Света никто не изучал. В последние годы в эпифитоне водорослей цистозиры и падины в районе Карадага, Судака и Нового Света было обнаружено 34 вида макрозообентоса, среди
которых по числу видов доминируют ракообразные. Трофическая структура представлена почти всеми пищевыми группировками, доминируют фито- и полифаги (Макаров и др., 2011).

В прибрежной ассоциации зарослей цистозиры с 2001 по 2012 гг. у Карадага выявлено 99 видов и форм беспозвоночных (Киселева, 2015), в 2008 г. – 88 (Колова и др., 2011). Среди компонентов фотофильного зооценоза выявлено 105 видов беспозвоночных, относящихся к 7 типам и 11 классам (Киселева и др., 2010). Однако изменение состава фауны за последние 20 лет и количественная представленность отдельных видов свидетельствует об изменении экологических условий в районе: увеличивается доля эврибионтных видов, способных существовать в условиях низкого содержания кислорода и высокой концентрации растворенных и взвешенных органических веществ (Киселева и др., 2010; Колова и др., 2011).

Анализ трофической структуры макрозообентоса показал, что в прибрежной полосе Карадага доминируют фитофаги, представленные гастроподами и ракообразными (Киселева, Гаголкина и др., 2006), что может указывать на принадлежность этих сообществ к устойчивым ненарушенным, характерным для олигосапробных вод. Установлено, что заповедный режим благоприятно влияет на морские донные биоценозы и заметного упрощения их трофической структуры не отмечено (Киселева и др., 2009).

В 2013 г. изучали макрозообентос зарослей водорослей в районе памятника природы регионального значения «Прибрежный аквальный комплекс между пгт Новый Свет и г. Судаком», где произрастают коренные цистозировые и филлофоровые сообщества. В составе макрозообентоса и эпифитона зарегистрировано 47 видов – представители практически всех групп, обычных для зарослевых сообществ Черного моря. В весенних пробах у м. Кик-Атлама отмечена высокая концентрация оседающей молоди митиллид, в том числе достаточно редкого за последние годы вида Mytilus galloprovincialis (Киселева и др., 2012).

В 2014 г. макрозообентос зарослей макрофитов изучали в районе б. Двуякорной (Макаров, 2014). Установлены численность и биомасса макрозообентоса и эпифитона.
ИХТИОФАУНА

В водах черноморского побережья Юго-Восточного Крыма согласно современным дан-

ИХТИОПЛАНКТОН

Ихтиопланктонные исследования на карадагском побережье в 1989–1992 гг. выявили значительное снижение интенсивности и эффективности нереста пелагофильных видов рыб. В шельфовых водах района Крымского полуострова видовой состав ихтиопланктона сократился втрое, а средняя численность икры и личинок упала соответственно в 6 и 10 раз (Климова и др., 2006). Причины уменьшения численности ихтиопланктона, большого отхода икры — загрязнение прибрежных вод, ухудшение физиологического состояния производителей (что проявляется в замедлении темпа роста, аномалиях гонадо- и гаметогенеза), массовое развитие гребневика мнемиопсиса. Выявленные изменения репродуктивных процессов рыб свидетельствуют о неблагоприятной экологической обстановке в районе Карадага (Багнюкова, 1996).

ПАРАЗИТОЛОГИЧЕСКИЕ ИССЛЕДОВАНИЯ

Паразитологические исследования черноморских гидробионтов насчитывают почти полтора века, их результат — регистрация более двух сотен видов паразитов (Определитель..., 1975). Анализ списков паразитов разного систематического положения показал, что у крымского побережья Черного моря зарегистрировано 316 видов паразитических организмов (Гаевская, Корнийчук, 2005). Крупный фаунистический комплекс паразитов приурочен к
участку побережья от юго-западной оконечности Крыма до Карадага и Судака. У юго-восточного побережья Крыма зарегистрировано 133 вида паразитических организмов (Гаевская, Корнийчук, 2005).

Паразитологические исследования гидробионтов на Карадаге проводились специалистами Института биологии южных морей на протяжении более чем 60 лет, что позволяет оценить характер долговременных изменений гельминтофауны этого региона.

ПРЕСМЫКАЮЩИЕСЯ

Из пресмыкающихся к морским обитателям можно отнести водяного ужа, который экологически тесно связан с морем. Для морского побережья Карадага отмечен И. И. Пузановым (Щербак, 1989). Водяной уж встречается на Карадаге, б. Поссидима, б. Двуякорная и б. Лисья (Кукушкин, 2004).
ПТИЦЫ

МЛЕКОПИТАЮЩИЕ

МНОГОЛЕТНИЕ ИЗМЕНЕНИЯ БИОРАЗНООБРАЗИЯ МОРСКОЙ ФАУНЫ

Результаты фаунистических исследований Карадагской биологической станции на Черном море и Карадагского природного заповедника, показывают, что как и 70 лет назад район Черного моря, прилегающий к Карадагу, принадлежит к числу наиболее изученных в фаунистическом отношении акваториям, о чем свидетельствуют данные о составе морской фауны и о высокой концентрации видов на очень небольших по площади участках Черного моря (Виноградов, 1948).

Учитывая, что в конце 40-х гг. прошлого века в Черном море было известно 1246 видов фауны, а у Карадага – 569 видов, что составляло 45,6 % от общего количества видов, то к 2014 г. фауна Карадага насчитывала 1050 видов – 47,2% фауны Черного моря (2221 вид, см. табл. 6). Таким образом, за истекшие 70 лет количество видов животных, известных для Карадага, возросло в 1,8 раза, а общая их представленность в фауне Черного моря увеличилась всего на 1,6 %.

Таблица 6.

| Систематический состав морской фауны у Карадага и в Черном море |
|--------------------------|----------------|-----------------|-----------------|
| Основные группы фауны | В Черном море | У берегов Карадага (Виноградов, 1948) | У берегов Карадага (Карадаг. Гидробиологические исследования, 2014) |
| Простейшие | 362 | 42 | 63 |
| Кишечнополосные | 35 | 20 | 21 |
| Кольчатые черви | 192 | 92 | 102 |
| Моллюски | 210 | 81 | 118 |
| Ракообразные | 591 | 140 | 394 |
| Асцидии | 8 | 9 | 8 |
| Рыбы | 224 | 93 | 114 |
| Млекопитающие | 3 | 3 | 3 |
| Прочие | 597 | 92 | 234 |
| Всего | 2221 | 569 | 1050 |
ЭКОЛОГИЧЕСКИЕ АСПЕКТЫ И ПРОБЛЕМЫ СОХРАНЕНИЯ ГИДРОБИОНТОВ

За последние 40 лет «...в связи с усиливающимся антропогенным воздействием, приведшим к эвтрофированию водных масс, состояние донных фитоценозов в Черном море резко ухудшилось» (цит. по: Калугина-Гутник, 1987, с. 9).

В последние годы юго-восточное побережье Крыма претерпевает сильнейшее антропогенное воздействие, негативно влияющее на биологическое разнообразие морской биоты (Шаганов, 2009). Одним из неблагоприятных экологических факторов в прибрежной зоне Карадага является возрастание мутности воды (Оскольская, Торская, 2001), что приводит к ухудшению состояния зарослей цистозиры.

К факторам, существенно изменяющим облик прибрежной зоны моря, можно отнести размещение в ней искусственных рифов разной конструкции. На них формируются сообщества обрастания, которые отражают совокупность видов донных беспозвоночных и макраводорослей (Евстигнеева и др., 2009). Обрастание бетонного волнореза в пгт Курортном изучали в 2002 г. В. В. Мурина и В. А. Гринцов (2004), в результате чего впервые определен видовой состав многощетинковых червей, насчитывающий 28 видов, что составляет почти одну треть всех видов полихет, известных для района Карадага. В результате анализа сообщества обрастания бетонного рифа (волнонера) идентифицировано 86 видов флоры и фауны (Гринцов и др., 2004). Фитоценозы сообщества обрастания бетонного рифа (волнонера) насчитывают 54 вида, среди которых доминируют красные макроводоросли (Евстигнеева и др., 2009).

Интенсивное развитие рекреационной деятельности в традиционных курортных местах (пгт Коктебель, г. Судак, пгт Новый Свет), загрязнение прибрежной зоны фекально-бытовыми и промышленными стоками, проведение экологически необоснованных берегоукрепительных работ и другие факторы антропогенной нагрузки оказывают воздействие не только на собственно ихтиофауну региона, но и на среду обитания рыб (Шаганов, 2009). Особо охраняемые акватории Юго-Восточного Крыма несмотря на различный охранный статус, играют важную роль в сохранении прибрежной биоты и способствуют обогащению флоры и фауны прилегающих участков черноморского побережья. К ним относятся ООПТ как федерального (государственный природный заповедник «Карадагский»), так и регионального уровня:

1 – Ландшафтно-рекреационный парк «Лисья бухта – Эчкидаг».
2 – Ландшафтно-рекреационный парк «Тихая бухта».
3 – Памятник природы регионального значения «Полуостров Меганом».
4 – Памятник природы регионального значения «Прибрежный аквальный комплекс у горного массива «Карадаг-Оба».
5 – Памятник природы регионального значения «Прибрежный аквальный комплекс между пгт Новый Свет и г. Судак».

О ЗАГРЯЗНЕНИИ ПРИБРЕЖНОЙ ЗОНЫ

За период наблюдений 1987–1991 гг., проведенных на Судакско-Карадагском взморье, выявлено, что формирование гидрохимической структуры вод данного района обусловлено поступлением азовомосских вод, антропогенным воздействием и динамическим фактором (Куфтаркова и др., 2004), в том числе у пгт Курортного и пгт Коктебель были отмечены повышенные органический фон (окисляемость,
БПК₅, органический фосфор и азот) и концентрации биогенных веществ (минеральный фосфор, нитратный и аммонийный азот), что свидетельствует о существовании локальных сбросов сточных вод. Таким образом, в 2001–2003 гг. изучали морфофизиологические характеристики мидий из этих районов в зависимости от глубины и уровня антропогенной нагрузки. Определены биохимические характеристики мидий из различных по экологическим условиям районов акватории Карадага (Оскольская и др., 2004 б). Установлено, что фактор загрязнения, как и фактор глубины, ведет к снижению физиологической активности моллюсков. Подтверждением этого являются минимальные (относительно других местообитаний) показатели таких важнейших биохимических веществ как Сл (концентрация липидов) и Сб (концентрация белков) в жаберной ткани мидий из наиболее загрязненной акватории пгт Курортное и на глубине 15 м (мидийная плантация). Установлено влияние хозбытовых стоков пгт Курортное на распределение гидрохимических полей и состояние меропланктона прибрежной зоны Карадага, выявлена связь численности и жизнеспособности меропланктона с негативными изменениями условий его обитания (Ковригина и др., 2007). В 2016 г. отмечено снижение видового состава и общей численности меропланктона в районе Биостанции, что может свидетельствовать о негативном влиянии хозяйственно-бытовых стоков на жизнедеятельность гидробионтов. Остальные районы относительно стабильны по гидрохимическим характеристикам и в меньшей степени подвержены антропогенному воздействию, что сказывается и на состоянии меропланктона — видовое разнообразие и количество пелагических личинок беспозвоночных в этих районах несколько выше (Ковригина и др., 2017).

За период наблюдений с 2005 по 2014 гг. установлено, что с точки зрения гидрологии акватория пгт Курортное является однородной, а в б. Коктебель формируется свой тип циркуляции вод с циклоническими и антициклоническими круговоротами. Анализ гидрохимических данных показал относительно высокое содержание в воде растворенного кислорода, низкие величины БПК₅ и типичные для «чистых» вод концентрации биогенных веществ. В то же время отмечено локальное влияние хозяйственных стоков в районах б. Коктебель, Биостанции и пгт Курортное по высоким значениям БПК₅ и окисляемости. По величинам БПК₅ зафиксировано превышение ПДК от 1,5 до 3,7 раз, по величинам окисляемости от 1,1 до 3,8 раз. Величина коэффициента загрязнения K₃ менее 1, поэтому по санитарно-химическим показателям исследуемую акваторию можно считать незагрязненной, несмотря на высокие значения окисляемости. По величинам индекса эвтрофикации, полученные в летний период 2009 г., прибрежные воды Карадагского природного заповедника и б. Коктебель можно классифицировать как воды низкого уровня трофности.

При проведении комплексной оценки экологического состояния акватории Черного моря в районе Карадага показано, что водная экосистема испытывает антропогенное загрязнение токсическими веществами, что выражалось в повышенной гибелью тест-организмов от 40 до 100 % в зависимости от места забора проб морской воды. По результатам биотестирования можно утверждать, что морская вода в акватории заповедника оказывает токсическое влияние на биоту. Токсичность воды колебалась от токсической до острой. Содержание общего органического углерода в морской воде в 4,2 раза выше уровня, который требуют нормативные документы. Таким образом, комплексная оценка экологического состояния акватории Карадагского природного заповедника показала загрязнение морской воды в связи с антропогенным влиянием. Результаты аэрозольных измерений, биотестирования и химического анализа указывают на токсическое влияние, которое оказывается на морскую экосистему в данной акватории (Гончарук и др., 2013).

Вблизи заповедной акватории Карадага выявлены три источника загрязнения (Ломакин и др., 2009, 2011): адвекция загрязненных вод в системе Основного черноморского течения из промышленных районов восточного Крыма; сточные воды пгт Коктебель; коллектор сточных вод, расположенный вблизи б. Активнотермической (пгт Курортное). Одной из особенностей распределения загрязняющих веществ в районе Карадагского природного заповедника является тот факт, что у дна и в промежуточном слое наблюдается объемные линзы крайне мутных вод с характерными хлопьями белого и серого цвета, что в конечном итоге может способствовать формированию вторичных источников загрязнения.

Донные осадки береговой зоны больше других испытывают воздействие антропогенного фактора (Кирюхина, 1979), что проявляется в увеличении содержания хлороформэкстрагируемых веществ и аммония и снижении количества видов и биомассы макрозообентоса (Милovidова, Кирюхина, 1979). Делается вывод о том, что донные осадки района Карадага практически не загрязнены.

В 2016 г. на НИС «Профессор Водяницкий» в пробах донных осадков определяли численность гетеротрофных и нефтеокисляющих бактерий. Установлено, что нефтеокисляющие бактерии, являющиеся показателями нефтяного загрязнения и агентами самоочищения, практически отсутствуют в донных отложениях заповедной акватории Карадага (Дорошенко, Бурдина, 2016).

Изучение загрязненности донных отложений Карадагского заповедника токсичными металлами показало, что от р. Отузка до Кузьминцева камня содержание марганца, кобальта, хрома изменяется слабо. Отмечено высокое содержание кадмия в данных точках, где его почти вдвое больше, чем во всех остальных (Бердова, Харизоменов, 1988). В 2016 г. изучали донные отложения в рамках 83 рейса НИС «Профессор Водяницкий». Свинец зафиксирован...
ван в донных отложениях района Карадага, минимальное содержание мышьяка – в заповедной акватории Карадага (Тихонова и др., 2016; Тихонова, Котельянцев, Соловьева, 2017).

Изучение иловых выносов горных массивов Карадага и Эчкидага показало, что они состоят из высокодисперсных алюмосиликатов, кварца и кальцита с незначительным содержанием органических веществ в виде гуминовых кислот. В прибрежных илах содержание некоторых тяжелых металлов достаточно высокое и в ряде случаев превышает ПДК (Кадошников и др., 2007). В 2009–2013 гг. отбирали пробы грунтов вблизи побережья горного массива Карадагского природного заповедника (Кадошников и др., 2015). Установлено, что содержание нефтяных углеводородов (НУ) в образцах у Карадага не превышает 0,25 % от массы сухого образца, а гумуса составляет до 3 % соответственно.

Содержание нефтепродуктов в гидробионтах района Карадага показало, что ароматические углеводороды – арены обладают наибольшей токсичностью. Наибольшее их содержание отмечено в мидиях, султанке, ставриде (Миронов и др., 1991). У берегов Феодосии в морской воде отмечено высокое содержание бенз(а)pireна, что свидетельствует о наличии нефтяного загрязнения в данном районе (Щекатурина и др., 2002). В 2015 г. определяли содержание нефтепродуктов в водной толще Черного моря. По траверзу м. Меганом превышение ПДК по нефтепродуктам составило 1,2–1,6 раза, а для Феодосийского залива – 1,2–5,2 раза (Севостьянова и др., 2016).

В 2012 г. определяли содержание микроэлементов в цистозире. Были отмечены высокие концентрации Al, Sc, V, Cs, Fe в цистозире из Карадагского природного заповедника (Кравцов, 2014, 2016), что объясняется видоспецифичностью их накопления, особенностями химического состава пород побережья или повышенным загрязнением вод. Максимальные концентрации Ni, Co и U определены в цистозире из
Карадагского заповедника (для СО). Максимальные концентрации Ag обнаружены в водоемах из Карадагского заповедника. В целом максимальное содержание большинства микроэлементов определено в видах цистозиры, отобранной в акватории Карадагского природного заповедника (Кравцова, 2016). Для макроэлементов (Na, Mg, Cl, K, Ca) содержащихся в видах цистозиры, характерна низкая пространственная изменчивость у побережья Карадага (Казанкова, 2016).

В 2015 г. исследовали загрязнение водной толщи тяжелыми металлами. Максимальное превышение ПДК железа – в 8 раз обнаружено осенью на глубине 49 м (придонный горизонт) по траверзу м. Меганом. Наиболее высокие концентрации марганца, превысившие ПДК в 3 раза, обнаружены в сероводородном слое на глубине 200 м по траверзу м. Меганом. В пробах воды, отобранных по траверзу м. Меганом, обнаружено превышение ПДК ртути в 5,8 раз, а в Феодосийском заливе – в 10–21 раз – аномально высокие величины (Севостьянова и др., 2016).

ЭКЗОГЕОДИНАМИЧЕСКИЕ ПРОЦЕССЫ

В третьей четверти XX века в результате дефицита наносов волнового поля произошло сокращение пляжей у пгт Курортное, Коктебель и Орджоникидзе – важнейшего курортно-рекреационного ресурса. Необходимо сохранение средообразующих природных комплексов, к которым относятся территории полуострова Меганом с прилегающей акваторией моря, хребтов Чалка и Эчкидаг с б. Чалка, Карадага с береговой зоной моря, хребтов Биюк- и Кучук-Янышар с б. Мертвая, Тихая и Провато, м. Киик-Атлама с соседней акваторией Черного моря (Клюкин, 2007).

В б. Коктебель к 1966 г. в результате бесконтрольного вывоза пляжевого материала на хозяйственные и строительные нужды (объем которого составил около 1,5 млн. т) длившегося более 10 лет, на побережье бухты сократилось аварийное положение, пляжи резко сократились. Для их сохранения было завезено и отсыпано в приурезовую зону 150 тыс. куб. м прибрежного материала, содержащего гальку и песок (Горячкин, 2010). Не исключено, что экологическая катастрофа Коктебеля сказывается на современном экологическом состоянии не только акватории Карадагского природного заповедника, но и б. Лисьей, на шельфе которой многие годы проводили отбор грунта.

Необходимо использовать для защиты берега безбунную отсыпку пляжа, другие современные эффективные методы и технологии, не нарушающие ландшафтного облика территории и экологического состояния прибрежных вод (Клюкин, 2007).
Глава 2.
АБИОТИЧЕСКИЕ ФАКТОРЫ И УСЛОВИЯ ОБИТАНИЯ ГИДРОБИОНТОВ ПРИБРЕЖНОЙ ЗОНЫ ЮГО-ВОСТОЧНОГО КРЫМА

2.1. ГЕОЛОГО-ГЕОМОРФОЛОГИЧЕСКОЕ СТРОЕНИЕ

В строении Крымско-Южнобережной области шельфа нашли свое отражение разнорядковые морфоструктуры, обусловленные динамичным развитием основных тектонических элементов меганантиклинали Горного Крыма, генетически связанные с новейшей активизацией разновозрастных складчатых сооружений, образующие его гетерогенное многоэтажное доальпийское основание (Пасынков и др., 1992).

В составе Крымско-Южнобережной морфоструктурной области шельфа выделяется ряд морфоструктурных районов: Юго-Западный, Южно-Крымский, Юго-Восточный и Прикерченский, разделенные «близмеридиональными разломами» и отличающиеся мощностями верхнего среднеюрско-голоценового комплекса. Рельеф крови таврического флиша в значительной мере отражает сеть субширотных и субмеридиональных дизъюнктивов, наиболее значительным из которых является Симферопольско-Алуштинский разлом, разделяющий Юго-Западный и Южно-Крымский морфоструктурные районы с Юго-Восточным и Прикерченским морфоструктурными районами (рис. 1).

Юго-восточная морфоструктура Главной гряды построена сложно, что обусловлено периодически возобновляющимся воздействием не только байкальских структур, но и древних северо-восточных, периодически возобновляющимся воздействием байкальских структур, но и древних северо-восточных.
стемой радially расходящихся эрозионных врезов, заложенных по ослабленным зонам тектонических нарушений. Сочетание тектонических (эндоэгенных) и внешних (экзоэгенных) воздействий, а также литологический фактор сформировали здесь уникальные морфоскультуры, в том числе эрозионно-тектонический мегацирк урочища Хапхал. На Юго-Восточную морфоструктуру решающее влияние оказали два фактора: общее воздымание герцинского складчатого строения, вызванного подъемом этой части Крымских гор, и активизация зон разрывных нарушений карельского, байкальского и киммерийского заложения, расчленявшим первично созданную горную цепь. Снижение горной цепи к востоку вызвано замыканием погребенных герцинских сооружений, контролирующих положение восточной оконечности горного массива.

Рис. 1. Схема отражения активизированных тектонических структур в рельефе Крыма (Пасынков и др., 1992). Границы структурно-формационных комплексов:
1 – Байкальского; 2 – Герцинского; 3 – Киммерийского; 4 – основные активизированные разломы; 5 – южная граница шельфа Крымского п-ова; 6 – морфоизоэзизопсы

Южные склоны Главной гряды представляют собой краевую часть ядра Крымской мегантиклинории, вскрытую в результате совместного воздействия экзоэгенного и эндоэгенного факторов в течение плиоцен-четвертичного времени. Эта узкая южнобережная полоса расположена в переходной зоне сопряжения двух разнородных блоков литосферы (с байкальско-герцинским основанием Горного Крыма и карельским фундаментом Черноморской котловины) и взаимодействия противоположно направленных вертикальных новейших движений: сводового воздымания Горного Крыма и опускания Черноморской впадины.

Воздействие дифференцированных разновременных новейших движений обусловило расколы карбонатного «панцыря» яйлинских известняков в зоне Южнобережного глубинного разлома и смещение вниз по склону крупных карбонатных массивов, а также обнажение существенно глинистой толщи таврического флиша. Специфическими Крымскими формами рельефа являются смешанные массивы известняков верхней юры (генетических аналогов пермокаменно-олистостромов, приуроченных к Предгорной морфоструктуре), а также отпрепарированные денудацией останцы палеовулканических центров Крыма. К зонам многочисленных разрывных нарушений приурочены эрозионно-тектонические амфитеатры и сложные оползневые деформации, расположению которых способствует вещественный состав пород и обводненность тектонических нарушений.
Юго-Восточный Крымский морфоструктурный район шельфа. Морфоструктурный район принадлежит подводному продолжению структур Юго-Восточного синклинария Горного Крыма, где ощущается наибольший суммарный эффект воздействия древних разновозрастных периодически обновляющихся северо-западных и северо-восточных тектонических структур, особенно в районе сочленения горных массивов: Демерджи и Кара-би-яйла. На суше и на подводном продолжении соединения массивов заложен эрозионно-tektonический мегацирк, приуроченный к межблоковым дислокациям и продолжающийся в границы континентального склона (рис. 2) (Карта, 2012; Пасынков, 2013).

Рис. 2. Карта рельефа морского дна морфоструктурной области южного продолжения структур Горного Крыма (Карта, 2012). Каньоны континентального склона Черного моря: 8 – Ялтинский, 9 – Хапхальский, 10 – Меганомский

В центральной и восточной частях Крымского южного побережья, где ранненовоксинская терраса приближается к берегу, наблюдается приподнятый блок, западнее проходит плавное, а затем очень резкое понижение, которое контролирует, по-видимому, глубинное нарушение или флексурный перегиб.

Внешний край террасы в пределах морфоструктурного района совпадает с бровкой континентального склона, который контролируется уступом высотой 10–15 м. Терраса сложена мелкозернистыми песками, нередко с небольшим количеством раковин, алевритовыми кварцевыми илами, глинами. Эти отложения перекрыты алевритовыми и пелитовыми илами. В свою очередь выделяются осадки типа материковой отмели, где преобладают алевритовые, однородные по составу осадки прибрежной зоны – пестрые по составу и цвету (Гожик, Шелкопляс, 2003).

В прибрежной зоне шельфа до изобаты 10 м почти на всем протяжении береговой линии дно неровное, каменистое, со средним уклоном выражается уступ; подножье его на всем протяжении обозначается изобатами 36–37 м.

К зоне южного продолжения Алуштинско-Симферопольского глубинного разлома на шельфе и в области континентального склона приурочены узкие узкослоистые каньоны с развитием абразионно-обвальных накоплений.

Восточнее зона шельфа представлена несколькими поверхностями выравнивания до глубин 70–80 м, уступами и глубоко врезанными каньонами. В районе выступа м. Меганом
область шельфа расширяется, достигая максимума в Феодосийском заливе. Эта область связана с общим снижением горной цепи Крыма, вызванного замыканием погребенных герцинских сооружений, контролирующих положение восточного края горного массива. Здесь вновь сказывается закономерное увеличение площади прилегающего шельфа в связи со снижением абсолютных отметок поверхности суши и наблюдается исчезновение подводноэрозионных долин. Склон шельфа очень пологий, уровенные поверхности представлены ступенями на отметках 50–60 и 80–95 м, сужающимися до м. Меганом. В районе Феодосии и Феодосийского залива шельф расширяется до 40–45 км. Здесь четко прослеживаются уровенные поверхности, развитые на отметках 20–25 м, 30–35 м и 50–60 м. Наиболее расширенная площадь поверхности до глубин 50–60 м и сужена до 1,5 км на уровне отметок 80–90 м.

Каньоны у берегов Крыма достаточно многочисленны, хотя и невелики по протяженности – первые десятки километров. Каньоны расположены на продолжении структур Горного Крыма и имеют некоторые общие особенности. Они четко связаны с долинами палеорек, в верхнем течении выполнены, в основной средней части поперечный профиль носит Vобразный характер.

Каньоны Юго-Восточного Крыма чаще всего расположены в наиболее крутой грядово-ступенчатой прибрежной части склона и сливающихся вместе на участке его перегиба, фиксирующегося изменением уклона поверхности склона от 11 до 5°. Большую роль в рельефообразовании здесь играют процессы седиментации, обвально-оползневые, аккумулятивные и эрозионные процессы, связанные с деятельностью мутьевых суспензионных потоков (рис. 3). Наиболее обширные конуса выносов облицевают подводное продолжение далеко выступающих к югу подводных хребтов.

Рис. 3. Геологические разрезы по профилям шельф – континентальный склон (Юго-Восточный Крым). mIII-IV – морские отложения нововизанский-черноморский горизонты; mII – древневизанский горизонт; mI – чаудинский горизонт; mэ – морские отложения эоплейстоцена; T+N – коренные породы триас – неогенового возраста; mэ–IV – морские отложения эоплейстоцен – ниженчетвертичного возраста

Каньоны этого сектора сравнительно протяженные, обладающие V-образным профилем, крутыми бортами и четко выраженной врезой. Преобладающие уклоны тальвегов составляют 15–20°, иногда увеличиваются до 60–70°. Продольные профили долин осложнены поперечными уступами, образованными мелком плитутыми сбросами. В местах сочленения разнорасположенных тектонических нарушений наблюдается резко увеличение глубин заложе
ния и крутизны стенок каньонов. Срезание и денудация первичных форм рельефа, как плоскостная, так и линейно-боковая эрозия, осуществляется за счет абрадирующего действия мутьевых потоков.

Для района характерна тесная связь геоморфологического и тектонического строения, а интенсивное проявление эрозионных, абразионно-оползневых и селевых экзогенных геологических процессов обусловлено современной активизацией тектонических нарушений. Их простирание имеет общее диагональное или субмеридиональное простирание, что согласуется с простиранием гидрографической сети суши и каньонной сети в море.

Наиболее крупные блоки пород суши, шельфа и континентального склона приурочены к зонам долгоживущих сейсмоактивных разломов. Как на суше, так и в пределах шельфа и континентального склона активно действуют процессы эрозии, денудации и оползневого образования.

Урочище Хапхал, расположенное между горными массивами Терке и Демерджи с запада и Караби с востока, представляет собой огромный эрозионно-денудационный мегацирк с активно развивающимися экзогенными геологическими процессами. Интенсивная дислокированность пород в районе урочища Хапхал продолжается в область шельфа и континентального склона, что отражено в развитии аналогичного подводно-эрозионно-денудационного мегацирка с присущими ему подводными эрозионными, денудационными и оползневыми процессами. Шельф и континентальный склон активно действуют как на территории суши, так и на дне Черного моря, вызваны оживленной тектоническими нарушениями. Каньоны этого сектора сравнительно протяженные, обладающие V-образным профилем, крутой крутизны стенок каньонов. Срезание и денудация первичных форм рельефа, как плоскостная, так и линейно-боковая, осуществляется за счет абрадирующего действия мутьевых потоков. Протяженность каньонов до 45 км, достигает изобаты 2000 м.

Кутлакская система объединяет два прямоолинейных каньона протяженностью до 37–40 км. Западнее и восточнее этой системы преобладают выдвинутые языки турбидитов, каньоны же Кутлакской системы хотя также завершаются на изобате 2000 м, но, в соответствии с контурами береговой линии расположены ближе к берегу. Уклоны поверхности каньонов составляют 3,5° на всем своем протяжении.

Судакская система охватывает 7 небольших каньонов, берущих свое начало у бровки склона и сливающихся вместе в единое протяженное русло в средней части склона. Уклоны поверхности на бровке склона составляют 9°, а в средней части склон выполняется до уклона в 3,5°. Протяженность головной долины каньона составляет 50 км.

Коктебельская система состоит из протяженной головной долины, достигающей длины 90 км и занимающих в верхней части склона три ветвящихся притока. Уклоны поверхности склона составляют 8° в верхней части и 1° в нижней.
Ильинская система приурочена к траверзу м. Ильи и на большой глубине в районе 1700-й изобаты смыкается с Феодосийской системой каньонов. Уклоны поверхности склона составляют 8° в верхней части склона, 4,5° в средней части склона и 0,8° – в нижней.

2.2. КЛИМАТИЧЕСКИЕ ОСОБЕННОСТИ

Климат акватории Черного моря в районе Юго-Восточного Крыма определяется географическим положением, условиями атмосферной циркуляции над побережьем и прилегающей сушей, а также орографической сложностью его берегов.

Юго-восточное побережье Крыма располагается в пределах 45 º с. ш., что обуславливает большой приток солнечной радиации. Радиационный баланс на поверхности акватории составляет 3250–3350 МДж·м²/год (Тимофеев и др., 2009). С января по май темпы нарастания солнечной радиации происходят быстрее, чем прогревание морской воды и воздуха, а темпы снижения с июля по декабрь значительно интенсивнее, чем охлаждение воздуха и воды, что подтверждается рис. 1.

Тепловой баланс акватории в среднем за год положительный (на морскую поверхность поступает около 100 ккал/см² (4187 МДж/м²) тепла в год (Справочник по климату…, 1974), что означает, что акватория Черного моря в этом районе получает в год больше тепла, чем отдает в атмосферу. Суммарный поток тепла на поверхности моря у юго-восточного побережья Крыма составляет осенью 90–120 Вт/м², зимой 70–100 Вт/м² (Ефимов и др., 2014).

Циркуляция атмосферы является одним из ведущих факторов, формирующих климатические особенности акватории и ее волновой режим. По преобладающему направлению ветра над акваторией Черного моря и градациям скоростей ветра выделяют 9 типов синоптических процессов (Справочник по климату…. 1974): семь основных типов – северо-восточный, восточный, юго-восточный, юго-западный вместе с южным, западный, северо-западный и северный; восьмой – циклонический – обуславливает преобладание восточного ветра на севере моря и постепенный переход к западному ветру на юге; девятый тип синоптических процессов ха-
рактеризуется неустойчивыми направлениями ветровых потоков, малоградиентными барическими полями и слабыми ветрами над всей акваторией.

Условия циркуляции атмосферы над Черным морем имеют ярко выраженный сезонный характер. Сезонные изменения волнового режима на Черном море объясняются его нахождением в зоне взаимодействия различных воздушных потоков (Пешков, 2008). Зимой адвекция попеременно находится под воздействием отрога сибирского антициклона либо смещающихся восточного циклона. При антициклональной циркуляции над акваторией у берегов Юго-Восточного Крыма наблюдаются устойчивые и сильные восточные и северо-восточные ветры, обуславливающие проледание сравнительно холодной и сухой погоды. Развитие циклонов над водной поверхностью приводит к усилению южных ветров, увлажнению температуры и выпадению осадков.

Весной начинается перестройка атмосферных процессов. Уменьшается влияние холодных воздушных масс и увеличивается поступление теплого средиземноморского воздуха.

Летом над Черным морем господствует отрог азорского антициклона и наблюдаются длительные периоды маловетреной спокойной умеренно жаркой и жаркой погоды. Изменение температуры воздуха во времени и пространстве в летние месяцы значительно меньше чем зимой. Летом дуют слабые ветры и море обычно сухое. Вероятность выпадения осадков в теплый период года резко снижается.

Большое влияние на климатические условия акватории Черного моря в районе юго-восточной части Крыма оказывает орография берегов. Горные хребты, близко подходящие к морю, оказывают влияние на увеличение осадков. Наличие горных долин, прорезающих горные хребты, создает благоприятные условия для устойчивых по направлению местных ветров. Этими причинами, в частности, обусловлено преобладание северных ветров в Судаке.

Различие в суточном ходе температуры воздуха над побережьем и открытым морем обуславливает возникновение в прибрежных районах ветров с суточной периодичностью - бризов. Днем при интенсивном прогреве суши ветры имеют направление с моря на сушу, а ночью, при более быстром остывании суши, направление меняется на обратное - с суши на море. Однако их повторяемость и интенсивность зависят от орографии и подстилающей поверхности суши. Сфера влияния таких ветров составляет от 2 до 40 км, а изменение диапазона температур достигает 3 °С (Марикультура мидий…, 2007).

Климат Черного моря в различных районах неоднороден, особенно эти различия наиболее ярко прослеживаются в холодное время года. В. М. Земляков предложил схему районирования моря, основанную на различиях ветрового режима, степени волнения, а также температуры воды и воздуха над открытым участком моря. Он было выделено пять районов: северо-западный с южно-крымским подрайоном, северо-восточный, юго-западный, центральный и юго-восточный (Справочник по климату..., 1974). Морская акватория у берегов Юго-Восточного Крыма относится к южно-крымскому подрайону.

Над поверхностью Черного моря у берегов Юго-Восточного Крыма можно выделить следующие показатели (Океанографический атлас…, 2009): среднегодовая температура воздуха составляет +12,0...+12,4 °С. Температура воздуха с сентября по март изменяется в широтном направлении, увеличиваясь с севера на юг, а с апреля по август градиент температур имеет меридиональное направление и увеличивается на восток. Средние значения температур воздуха по месяцам составляют: январь, февраль – (+1,5...+3,0 °С), март – (+4,5...+5,1 °С), апрель – (+9,2...+9,7 °С), май – (+14,9...+15,3 °С), июнь – (+19,7...+20,0 °С), июль, август – (+23,2...+23,3 °С), сентябрь – (+19,0...+19,3 °С), октябрь – (+13,5...+14,1 °С), ноябрь – (+8,1...+8,8 °С), декабрь – (+4,5...+5,3 °С).

Максимальная скорость ветра над акваторией Черного моря наблюдается в январе – феврале и достигает 8–9 м/с, минимальная – с июня по август и составляет 4–5 м/с. Среднегодовая скорость ветра над акваторией находится в пределах 4–4,5 м/с (Гидрометеорология и …, 1991). Атмосферное давление изменяется в диапазоне от 1011,5 гПа в июле до 1018,5 гПа в январе.

В годы максимальной штормовой нагрузки в Крыму наблюдается отрицательная аномалия атмосферных осадков, и наоборот: с циклонической активностью обычно связывается и штормовая активность на Черном море. Известно, что процессы штормовой активности и аномально сильные осадки Крыма сменяют друг друга примерно каждые 10–11 лет. Преобладание сильных штормов в холодный период года приводит к активизации волновой переработки рельефа зоны соjunction суши и моря (Иванов и др., 2007).

В качестве примера сезонного цикла воздействия волновой нагрузки на берег является другой разрушительный шторм 11 ноября 2007 г. Он начался над Черным морем в 3 ч. 55 мин. Прохождение холодных фронтов циклонов сопряжено с высокими скоростями ветра, разгоняющего штормовую волну. В районе Карадага, представляющего открытый берег моря, по свидетельствам очевидцев, максимальное волнение моря и сила ветра были отмечены в 5 ч. утра, к 16 ч. скорость ветра и волнение значительно уменьшились (Костенко, Знаменская, 2009). На Карадаге скорость ветра, по данным КНИГО, в 6 ч. утра составляла 24 м/с. Дальнейшие наблюдения за скоростью ветра не проводились из-за отсутствия электричества. Гигантские волны и ураганный ветер срывали суда с якорей. Так, в бухту Капсель шторм был выброшен теплоход с грузом сельхозтехники.

Среднемноголетняя величина испарения с поверхности Черного моря у берегов Юго-Восточного Крыма достигает 1100–1200 мм (Горячкин и др., 2006). Среднемноголетний максимум испарения отмечается в августе. Наибольшие величины испарения наблюдаются в летнеосенний период с июля по ноябрь, что связано с увеличением поступающей солнечной радиации, а также с увеличением скорости ветра в осенний период. Наименьшая величина испарения характерна для зимне-весеннего периода с абсолютным минимумом в апреле.

Среднемноголетняя величина испарения с поверхности Черного моря у берегов Юго-Восточного Крыма достигает 1100–1200 мм (Горячкин и др., 2006). Среднемноголетний максимум испарения отмечается в августе. Наибольшие величины испарения наблюдаются в летнеосенний период с июля по ноябрь, что связано с увеличением поступающей солнечной радиации, а также с увеличением скорости ветра в осенний период. Наименьшая величина испарения характерна для зимне-весеннего периода с абсолютным минимумом в апреле.

Таким образом, климатические особенности прибрежья акватории Черного моря у берегов Юго-Восточного Крыма определяют обусловленные сформированные под их влиянием гидрологические, гидрохимические и гидробиологические характеристики изучаемого района.

2.3. ГИДРОЛОГИЧЕСКИЕ ОСОБЕННОСТИ

Район Судакско-Карадагского взморья географически относится к прибрежной зоне Юго-Восточного Крыма, однако ряд особенностей позволяет разделить его на два подрайона: подрайон б. Судакской от м. Пещерный до м. Меганом и Карадагский подрайон от м. Меганом до м. Кинк-Атлама, включающий прибрежную акваторию Карадагского горного массива и б. Коктебель. Подрайоны отличаются шириной шельфа, уклонами дна, высотой гор с севера и различным взаимодействием строения Основного Черноморского течения (ОЧТ). Кроме того, в теплый период года (май – сентябрь) влияние прибережных аввеллингов (ПА) на Судакском взморье проявляется более значительно, чем на Карадагском, как по их количеству, так и по интенсивности. По этим причинам авторы (Михайлова и др., 2009) относят эти подрайоны к разным структурным зонам. Для Судакского взморья преобладающим является проявление эпиконусов типа ПА, а для Карадагского – стенные и смешанные типы ПА. Помимо перечисленных выше факторов, в районе Судака влияние азовоморских вод на формирование гидрологического режима сказывается в меньшей степени, чем на Карадагском взморье, где происходит основная их трансформация до внедрения на шельф Южного берега Крыма (ЮБК) (Ильин и др., 2012). Так же подрайоны заметно отличаются степенью изученности: если Карадагское взморье изучено относительно хорошо, то последние комплексные исследования в районе Судака проводились в конце 80-х гг. прошлого столетия. Поэтому рассматривать гидрологическую структуру
этих подрайонов мы будем отдельно, параллельно проводя некоторые сравнения.

Судакское взморье. Для изучения внутригодовой изменчивости термохалинных характеристик поверхностных вод на Судакском взморье использовались материалы из банка многолетних данных СоГОИН с 1930 по 1980 гг., а для анализа сезонной и синоптической изменчивости гидрофизических процессов – данные экспедиционных наблюдений ИнБИОН АН УССР за период с 1987 по 1990 гг. Съемки, выполненные на Судакско-Карадагском взморье с 1987 по 1990 гг. соответствовали, в основном, весенне-летнему периоду и в полной мере характеризовали проявление основных процессов, формирующих гидрологический режим обоих подрайонов. В ряде случаев гидрологические съёмки акватории осуществлялись в 2–4-х повторах с минимальным сдвигом по времени. Для определения положения отдельных съемок на фоне внутригодовой изменчивости температурного фона поверхностных вод в прибрежной зоне ЮБК проводилось сравнение полученных данных по изменчивости поверхностной температуры (T_0) с данными наблюдений за T_0 на океанографической платформе МГИ АН УССР у пгт Кацивели (Карнаушенко и др., 2003).

Для Судакского взморья количество наблюдений, которое можно привлечь для оценки среднемноголетнего гидрологического режима прибрежных вод за период с 1930 по 1980 гг., оказалось в несколько раз меньше, чем для района Карадага (Субботин, 1989). В ряде случаев океанографические съёмки на Судакском взморье являлись частью более обширных экспедиционных исследований на акватории щельфа от м. Ки-ик-Атлама до м. Пещерный. При этом станции, выполненные на разрезе от м. Меганом, являлись связующими между Карадагским и Судакским районами и характеризовали непрерывность гидрологических процессов на всей акватории в разные сезоны года и при различных синоптических ситуациях.

Сравнение многолетних данных по изменчивости T_0 и поверхностной солёности (S_0), как наиболее ярких характеристик гидрологического режима обоих районов, показало соответствие гидрологических сезонов с минимальными и максимальными временными градиентами T_0 и S_0 (Чекменёва, Субботин, 2009). Однако, в холодный период года значения поверхностной температуры для района Судака оказались несколько выше, чем на Карадагском взморье, и не опускались ниже 6 °C (табл. 1). Принципиально могут являться как менее интенсивное выхолаживание поверхностности моря, так и более активное влияние относительно прогретых вод ЧТ. В переходный весенний период прогрев поверхностных вод на Судакском взморье начинается несколько раньше и проходит интенсивнее, хотя к июю значения T_0 выравниваются по всей акватории. Июль – сентябрь характеризуются как месяцы с максимальными значениями T_0, однако абсолютные минимальные значения T_0 более характерны для Судакского взморья вследствие более частых и интенсивных ПА и выхода на поверхность холодных промежуточных вод. Интенсивность выхолаживания поверхностных вод для обоих районов в осенний переходный период примерно одинакова. Ноябрь в районе Судака отличается более низкими значениями T_0 вследствие активного прогрева вод на мелководном Карадагском взморье в августе – сентябре.

Таблица 1.

<table>
<thead>
<tr>
<th>Месяц</th>
<th>T_0, °C</th>
<th>S_0, ‰</th>
</tr>
</thead>
<tbody>
<tr>
<td>Январь</td>
<td>11,95</td>
<td>–</td>
</tr>
<tr>
<td>Февраль</td>
<td>8,14</td>
<td>10,40</td>
</tr>
<tr>
<td>Март</td>
<td>6,85</td>
<td>7,10</td>
</tr>
<tr>
<td>Апрель</td>
<td>9,74</td>
<td>10,10</td>
</tr>
<tr>
<td>Май</td>
<td>13,44</td>
<td>14,82</td>
</tr>
<tr>
<td>Июнь</td>
<td>20,14</td>
<td>22,82</td>
</tr>
<tr>
<td>Июль</td>
<td>22,66</td>
<td>–</td>
</tr>
<tr>
<td>Август</td>
<td>22,92</td>
<td>25,00</td>
</tr>
<tr>
<td>Сентябрь</td>
<td>20,29</td>
<td>21,00</td>
</tr>
<tr>
<td>Октябрь</td>
<td>17,79</td>
<td>–</td>
</tr>
<tr>
<td>Ноябрь</td>
<td>13,99</td>
<td>16,20</td>
</tr>
<tr>
<td>Декабрь</td>
<td>10,85</td>
<td>11,57</td>
</tr>
</tbody>
</table>
Анализ внутригодового среднемноголетнего распределения S_0 для района Судака показывает более высокие значения солёности поверхностных вод по сравнению с Карадагским взморьем фактически в течение всего года. Незначительные отличия в отдельные месяцы, вероятно, связаны с небольшим количеством наблюдений. В целом, данные таблицы 1 соответствуют диапазону изменчивости S_0, приведённому в (Горячкин и др., 2005). В январе—феврале значения поверхностной солёности для района Судака были выше 18.00 ‰, а в марте и апреле находились в диапазоне 17.80–17.85 ‰. В мае—июне на Судакско-Карадагском взморье наблюдается наиболее контрастное поле S_0, связанное с активным притоком азовоморских вод. В результате, в Судакском районе диапазон изменчивости поверхностной солёности составляет 17.60–17.70 ‰, а на Карадагском взморье – 17.40–17.60 ‰. В это же время меняется и характер трансформации азовоморских вод от Керченского пролива вдоль побережья Крыма: адvection и интенсивное вертикальное перемещение, то прогрев поверхностных вод в весенне-летний период и образование сезонного термоклина (CT) в конце мая–начале июня приводит к ослаблению вертикального перемещения и к интенсификации горизонтальной турбулентной диффузии. Как следствие, расширение зоны распространения азовоморских вод от участка м. Киик-Атлама до границы прибрежной зоны S_0 на Судакском шельфе превышает 18 ‰, что можно объяснить более частыми и интенсивными ПА.

Уже через сутки во время 2-й съёмки 19–20 апреля при прежних значениях температуры перелёт вод с солёностью менее 17.80 ‰ расширился в сторону свала глубин, минимальные значения солёности у м. Киик-Атлама уменьшились до 17.19 ‰, а в б. Коктебель и в районе пгт Курортное – до 17.34 ‰ (рис. 1 б). Таким образом, воды с солёностью менее 17.50 ‰, являющиеся индикатором азовоморских вод на шельфе Южного Крыма, уже внедрились в прибрежную зону от м. Киик-Атлама до Карадага. На траверзе м. Меганом солёность фактически не изменилась.

Данные 3-й съёмки (24–26 апреля) свидетельствуют о незначительном (до 11.38–12.76 °С) прогреве поверхностных вод, а азовоморские воды заняли почти всю исследуемую акваторию до границы шельфа. «Ядро» вод с минимальной солёностью (16.60–16.70 ‰) распространилось до м. Киик-Атлама, а в районе пгт Курортное – до 17.34 ‰ (рис. 1 б). Таким образом, воды с солёностью менее 17.50 ‰, являющиеся индикатором азовоморских вод на шельфе Южного Крыма, уже внедрились в прибрежную зону от м. Киик-Атлама до Карадага. На траверзе м. Меганом солёность фактически не изменялась.

Данные 4-й съёмки (28–30 апреля) свидетельствуют о незначительном (до 11.38–12.76 °С) прогреве поверхностных вод, а азовоморские воды заняли почти всю исследуемую акваторию до границы шельфа. «Ядро» вод с минимальной солёностью (16.60–16.70 ‰) распространилось до м. Киик-Атлама, а в районе пгт Курортное – до 17.34 ‰ (рис. 1 б). Таким образом, воды с солёностью менее 17.50 ‰, являющиеся индикатором азовоморских вод на шельфе Южного Крыма, уже внедрились в прибрежную зону от м. Киик-Атлама до Карадага. На траверзе м. Меганом солёность фактически не изменилась.
Во время последней съёмки 28 априла 1990 г. незначительно (~ на 0,5–0,7 °С) прогрелись лишь прибрежные воды у м. Меганом. На остальной акватории температура фактически не изменилась. Азовоморские воды по-прежнему занимали всю шельфовую зону от м. Кинк-Атлама до м. Меганом, где солёность понизилась до 16,83–16,96 ‰. «Струя» вод с пониженной солёностью (16,60–16,70 ‰) также была ориентирована от м. Кинк-Атлама до м. Меганом вдоль изобата 50 м (рис. 1 г).

Таким образом, в течение 10 дней с начала внедрения азовоморских вод на Карадагское взморье они заняли всю шельфовую зону и распространились на акваторию Судакского взморья. При этом, значения солёности на траверзе м. Меганом понизились более, чем на 1 ‰ (с 17,81–17,94 до 16,83–16,96 ‰), а сохранение «дна» вод с пониженной солёностью (до 16,62 ‰) в районе м. Кинк-Атлама свидетельствует о продолжающемся активном поступлении азовоморских вод на Карадагский шельф.

Данные по изменчивости температуры за весь период показали незначительный прогрев поверхности моря на Судакском взморье от 10,9–11,4 °С 30 апреля до 11,8–13,4 °С 8–10 мая. Распределение солёности, связанное с поступлением азовоморских вод, имело отличную от съемок апреля 1990 г. картину. Если 30 апреля воды ППВМ занимали акваторию от б. Коктебель до траверза м. Рыбачий с внешней границей по изобата 50 м, а значения поверхностной солёности изменялись в интервале 17,80–17,97 ‰, то азовоморские воды с солёностью менее 17,50 ‰ прослеживались лишь в самой узкой прибрежной зоне.

Материалы съёмки, выполненной в период с 4 по 6 мая 1988 г., свидетельствуют о расши-
рении зоны распространения ППВМ на всю акваторию Судакско-Карадагского взморья. При этом, в б. Судакской значения солёности понизились до 17,51–17,70 ‰, а азовоморские воды с минимальной солёностью 17,20–17,40 ‰ расширили ареал распространения до 50-метровой изобаты и в районе м. Рыбачий – м. Меганом отклонились в сторону открытого моря, не застекая в б. Судакскую (рис. 2 б).

Последняя съёмка 8–10 мая 1988 г. подтвердила смену прибрежной циркуляции, формирование в б. Судакской антициклонической завихренности с затоком вод ЧПВМ с юго-запада с солёностью 17,83–18,12 ‰, изоляцией вод ППВМ в центральной части бухты с дальнейшим смещением «языка» азовоморских вод на юго-восток.

Съёмка, выполненная в б. Судакской 26 мая 1987 г., показала анормальные для конца мая значения температуры и солёности. Поверхностная температура составляла всего 10,2–12,8 °С с минимальными значениями в кутовой части б. Судакской и у м. Меганом вблизи резкого свала глубин и с максимальными – на морских станциях (рис. 2 в). В то же время минимальным значениям температуры соответствовали максимальные значения солёности – 18,00–18,10 % (рис. 2 г). Такое пространственное распределение гидрологических параметров характерно для проявления прибрежного апвеллинга, который в отсутствие СТ даже при невысокой интенсивности за счет сгуща прибрежных поверхностных вод в открытое море способен полностью перестроить термохалинную структуру, усилить процессы, наблюдаемые в начале мая 1988 г., и оттеснить распреснённые азовоморские воды в сторону открытого моря. Действительно, анализ изменчивости температуры в мае 1987 г. на океанографической платформе у пгт Кацивели на фоне активного прогрева поверхности моря во второй половине мая обнаружил резкое падение температуры с 14–15 °С до 8–10 °С и последующее её быстрое повышение с начала до конца июня от 10 °С до 20 °С (Карнаушенко и др., 2003).
Таким образом, общепринятая схема распространения азовоморских вод со стороны м. Кин-Атлама вдоль побережья Судакско-Карадакского района при определенных синоптических ситуациях может быть нарушена, а их активная трансформация в пределах восточной модификации ППВМ (Ошеверов, 1986) – осуществляться по границе шельфа.

Июньские наблюдения за термохалинными характеристиками в Судакском районе отсутствуют, однако определенное представление о структуре прибрежных вод на Судакско-Карадагском взморье дают материалы съёмки, выполненной 14–17 июня 1989 г. на акватории от м. Меганом до б. Коктебель. В этот период почти на всех станциях отмечались значения температуры на 4–6 °С ниже среднемноголетних (Субботин, 1989) и лишь у свала глубин были близки к ним (19,0–21,4 °С). Поле повышенной солёности также характеризовалось существенной пространственной неоднородностью. Воды с S0 > 17,80 ‰ занимали большую часть прибрежной зоны до 70-метровой изобаты. Только над глубинами в районе границы шельфа была отмечена область с солёностью 17,45–17,76 ‰. Такое распределение характерно для проявления активного прибрежного апвеллинга, что подтверждают данные наблюдений на океанографической платформе у пгт Кавказ (Карнаушенко и др., 2003). Здесь, начиная с середины мая до конца июня, отмечено несколько сгонно-нагонных явлений, когда перепад температур достигал 7–8 °С (c 17–18 до 10 °C). Вероятно, прибрежный апвеллинг носил характер экмановского и затронул всю прибрежную зону ЮОК и Юго-Восточного Крыма. Как следствие, процесс поступления азовоморских вод на Судакско-Карадагское взморье неоднократно прерывался, а рассредоточенные прибрежные воды оттеснялись к границе шельфа.

Гидрологическая съёмка Судакско-Карадагского шельфа, выполненная с 18 по 21 июля 1988 г., соответствовала периоду максимального прогрева поверхности моря после кратковременного, но интенсивного апвеллинга в первой половине июля, когда температура резко упала с 25 до 10 °C (Карнаушенко и др., 2003). Восстановление первоначальных значений температуры произошло столь же быстро, и к 18–21 июля вследствие нагона на большей части акватории поверхностная температура достигла 25,5–26,0 °C. Лишь на прибрежных станциях в районе Карадага и в кутовой части б. Судакской она была ниже 25 °C (рис. 3 а).
Солёность поверхностных вод изменялась в пределах 17,08–17,37 ‰ с повышением значений с запада на восток и положением изохалин, свидетельствующим о нагонном характере поступления слабосолёных вод в прибрежную зону со стороны открытого моря (рис. 3 б). Столь низкие значения поверхностной солёности для июля в данном районе соответствовали концу апреля – первой половине мая и, вероятно, являлись следствием второго максимума поступления азовоморских вод в Прикерченский район (Ильин и др., 2009) и одновременного поступления распреснённых вод от Северо-Кавказского шельфа (Ильин и др., 2012).

Съёмка второго этапа характеризовалась однородностью поверхностного распределения температуры в пределах 24,08–24,78 °С и солёности в диапазоне 17,56–17,76 ‰, что свидетельствует о постоянстве поступления азовоморских вод на Судакско-Карадагское взморье в весенне-летний период и согласуется с многолетними данными. Толщина ВКС по всей исследуемой акватории изменялась от 17–20 м в районе свала глубин до 25–31 м в центральной части полигона и на прибрежных станциях. СТ был растянут по вертикали на 9–27 м, а его толщина увеличивалась от берега к свалу глубин. Максимальные вертикальные градиенты температуры в СТ достигали 1,3–3,2 °С/м и располагались преимущественно в центральной части СТ.

Отличия в пространственном и вертикальном распределении термохалинных характеристик для обоих этапов съёмки, предположительно, можно объяснить ветровыми условиями во время их проведения. Первый этап выполнялся при преобладании восточных и северо-восточных ветров со скоростями от 6 до 13 м/с при волнении от 2 до 4 баллов, а второй – при нестабильном ветре со скоростями от 0 до 3 м/с и волнении от штиля до 1–2 баллов. В первом...
случае ветровая ситуация могла способствовать усилиению ветроволнового перемешивания и, как следствие, выравниванию значений температуры в пределах ВКС, увеличению его толщины и уменьшению значений солёности за счет турбулентного перемешивания. Во втором случае произошла релаксация вертикальной структуры, и она приобрела «типичный» для августа вид.

На фоне внутригодовой изменчивости среднемноголетних значений поверхностной температуры и солёности на Судакском взморье анализ материалов экспедиционных исследований на Судакско-Карадагском шельфе в весенне-летний период с 1987 по 1990 гг. позволил изучить роль основных факторов, влияющих на формирование гидрологического режима прибрежных вод района, оценить характер и диапазоны пространственной и временной изменчивости термохалинных характеристик на различных этапах проявления определенных синоптических и гидрологических процессов.

Интенсивность весенне-летнего прогрева поверхностных вод, время и характер поступления азовоморских вод на Судакский шельф, прибрежные аввелинги являются основными факторами, определяющими термохалинную структуру прибрежных вод. Типичная толщина ВКС к августу составляет 10–20 м, однако при усилении ветроволнового перемешивания может увеличиваться до 25–30 м. Азовоморские воды на Судакском взморье отмечаются в течение всего весенне-летнего периода с различной степенью их трансформации. Наиболее распространённые азовоморские воды с солёностью менее 17,0 ‰ внедряются на Карадагский шельф к концу марта – началу апреля. Распространение области вод с пониженной солёностью в б. Судакскую происходит при благоприятных климатических условиях в течение 3–5 суток. Активный весенний прогрев поверхностных вод и формирование СТ способствует расширению ареала азовоморских вод на Судакско-Карадагском шельфе за счёт ослабления вертикального перемешивания и усиления горизонтальной турбулентной диффузии. Процесс распространения азовоморских вод нарушается прибрежными аввелингами. В результате стогонного процесса распределившиеся прибрежные воды оттекают в сторону открытого моря, а в прибрежной зоне заменяются более холодными и солёными водами. Восстановление первоначальных значений термохалинных характеристик прибрежных вод после действия аввелинга происходит в течение одних или нескольких суток.

Изучение термохалинной структуры проводилось с помощью различных CTD-зондов («КАТРАН-04» и MINI STD/CTD model SD204), имеющих сертификат поверки на момент проведения гидрологических работ. С помощью зондов измерялось давление (глубина), температура и электропроводность (пересчитываемая в солёность). Все измерения проводились в рамках непрерывного зондирования от поверхности до dna. Обработка и анализ данных выполнялись согласно общепринятым методикам (Руководство по гидрологическим…, 1977).

Анализ вертикальной термохалинной структуры вод по многолетним среднемесячным величинам показал, что наиболее внутригодовой изменчивостью обладают значения Т0 и S0. Сезонный ход Т0 определяется двумя основными физическими процессами: весенне-летним прогревом и осенне-зимним выхолаживанием. При этом в среднегодовом ходе Т0 чётко выделяются два основных физических процессами: весеннелетним прогревом и осенне-зимним выхолаживанием. При этом в среднегодовом ходе Т0 чётко выделяются 4 гидрологических сезона: два с минимальными временными градиентами – теплый (июль – сентябрь) и холодный (январь – март), и два с максимальными – весенний (апрель – июнь) и осенний (октябрь – декабрь).

Холодный период характеризуется наиболее низкими значениями T0, как правило, ниже 11 °С. В среднем за сезон T0 довольно однородна и колеблется в диапазоне 8,0–9,0 °С, хотя измеренные минимальные значения могут опускаться до 5,4–5,7 °С. Последнее характерно для февраля – марта и связано с преобладанием в
эти месяцы над восточным Крымом холодных северных и северо-восточных ветров на южном гребне Сибирского антициклона, а также поступлением в Карадагско-Феодосийский район холодных азовоморских вод через Керченский пролив.

Рис. 4. Схема гидрологических станций

В весенний переходный период отмечается равномерно быстрый рост T_0 с 9,0–9,6 °C в апреле до 14,0–15,0 °C в мае и 18,0–19,0 °C в июне, хотя в отдельные годы диапазон изменчивости экстремальных значений может превышать 10,0 °C.

Найболее высокие значения температуры поверхностных вод отмечаются в июле-сентябре за счёт активного прогрева верхних слоёв моря и снижения штормовой активности. Средние значения T_0 в этот период составляют 21,0–24,0 °C. Максимальные значения T_0 в отдельные годы могут достигать 26,0–26,5 °C. В случаях проявления прибрежных апвеллингов T_0 может понижаться на 10,0–15,0 °C.

В октябре – декабре температура поверхностных вод резко уменьшается. В ноябре она становится близкой к майским значениям, а в декабре не опускается ниже 11,0–12,0 °C.

Солёность вод Чёрного моря по сравнению с температурой является более консервативной характеристикой среды. Однако для прибрежных районов, особенно расположенных в зоне влияния источников распреснения, солёность является основным индикатором водных масс. Карадагское взморье относится к прибрежным районам Крыма с максимальной пространственной неоднородностью S_0 (Ильин и др., 2012). Она формируется под влиянием трёх основных факторов: опреснения поверхностных слоёв за счёт поступления азовоморских вод, адвекции распреснённых вод с Кавказского взморья, баланса местных осадков и испарения.

Анализ внутригодового хода среднемноголетних величин S_0 показал, что характер её сезонной изменчивости менее выражен, чем годовой ход температуры. Максимальные значения $S_0 > 18,0$ ‰ отмечаются в осенне-зимний период с ноября по апрель, а минимальные значения наблюдаются с мая по август. Абсолютный минимум как среднемесячных, так и экстремальных значений S_0 приходится на июнь и составляет, соответственно, 17,47 ‰ и 16,44 ‰. В тёплый период года классический внутригодовой ход S_0 нарушается прибрежными апвеллингами, сопровождающимися подъёмом в верхние слои моря более солёных вод из СТ или из холодного промежуточного слоя (ХПС).

Максимум S_0 в зимний период связан с интенсификацией вертикального конвективного перемешивания при выхолаживании шельфовых вод, деформацией ХПС и подъёмом солёных промежуточных вод в верхние слои моря. Другой причиной осолонения поверхностных вод Карадагского взморья может являться вторжение вод открытого моря с солёностью более 18,0 ‰ на шельф вследствие активизации ОЧТ.

Минимальные значения S_0 на Карадагском взморье соответствуют периоду наиболее ак-
тивного поступления азовоморских вод в прибрежную зону южного Крыма. По данным (Горячкин и др., 2005) ещё в январе – феврале в районе Феодосийского залива формируется «пятно» распреде́нённых азовоморских вод, но именно в июне он счёт активного прогрева поверхностных вод, формирования СТ и ослабления вертикального перемешивания интенсифицируются процессы горизонтальной турбулентной диффузии. На этом фоне «прорыв» распреде́нённых вод из Феодосийского залива, начавшийся ещё в апреле, в июне приводит к формированию на Карадагском взморье наиболее контрастированное пространственное поле поверхностной солёности и максимальному перепаду измеренных значений S0.

Второй минимум среднемноголетних значений в районе Карадага наблюдается в августе и составляет 17,71 ‰. Экстремальные значения понижаются до 17,47 ‰. Причиной его, по-видимому, является внедрение на шельф Крыма распреде́нённых поверхностных вод с Кавказского побережья по северо-западной периферии восточного циклонического круговорота. Считается (Ильин и др., 2012), что данный процесс поддерживается распреде́нением прибрежных вод в данном районе в течение всего лета за счёт таяния горных ледников.

Важными характеристиками внутригодовой изменчивости гидрологического режима воды на Карадагском взморье являются параметры вертикальной термической структуры: ВКС и СТ. Образование и трансформация обоих слоёв, прежде всего, является следствием весенне-летнего прогрева поверхности моря, а также адvectionи поверхностных вод из прилегающих акваторий и сгонно-нагонных процессов. Анализ данных вертикального распределения температуры по среднемноголетним значениям и материалам экспедиционных исследований ИнБЮМ НАНУ в период с 1987 по 1992 гг. показал, что образование СТ на Карадагском взморье происходит в течение одного месяца – с апреля по май. Ещё в мае СТ прымывает к поверхности, растянут по вертикали и имеет низкие значения вертикальных градиентов температуры (0,04–0,05 °С/м в апреле и 0,20 °С/м в мае). В июне интенсивный прогрев верхнего слоя моря приводит к формированию ВКС летнего типа и заглублению верхней границы СТ. К концу июня толщина ВКС, как правило, составляет 5–10 м. В июле – сентябре летний ВКС охватывает верхний слой моря до 20–30 м. СТ заглубляется и обостряется. При этом средние вертикальные градиенты температуры в нём увеличиваются до 0,19–0,56 °С/м, а экстремальные могут достигать нескольких градусов на метр. В октябре – ноябре при смене знака теплопотдачи через поверхность моря и усиления ветро-волнового перемешивания ВКС заглубляется ещё на 10–20 м до глубин 40–50 м (Чекменева, Субботин, 2009).

Процесс термической конвекции начинается в ноябре, но максимальное ускорение приобретает в декабре. С декабря по январь толщина слоя гомотермии увеличивается до 70–100 м. Одновременно происходит быстрое выхолаживание всей толщи воды и в феврале – марте температура воды от поверхности до дна не превышает 8,0–9,0 °С. Таким образом, в холодный период года в толще воды на Карадагском взморье образуется ВКС другого типа – зимний.

На фоне относительной стабильности параметров гидрологического режима Карадагского взморья за период с 1930 по 1992 гг., данные об изменчивости температуры и солёности по результатам прибрежных съёмок 2004–2015 гг. свидетельствуют о существенном изменении термохалинных характеристик. Это касается как среднемесячных, так и экстремальных значений Т0 и S0 в различные годы. Отмечается повышение среднемесячных значений Т0 в период интенсивного прогрева поверхности моря (май – сентябрь) на 1,0–2,0 °С, и их понижение на 1,0–1,5 °С с октября по апрель. Экстремальные значения Т0 в отдельные годы, особенно в тёплый период, могут отличаться от среднемноголетних на ещё большие величины (до 2,0–3,0 °С). Одновременно с наблюдаемыми тенденциями изменения температуры в период 2004–2015 гг. отмечается общее понижение солёности в течение всего года на 0,5–1,0 ‰.

Такие тенденции обнаруживаются для всех прибрежных районов Крыма, начиная с конца 90-х – начала 2000-х годов (Ильин и др., 2012; Горячкин и др., 2005). Обычно их объясняют «глобальным потеплением» и, как следствие, изменением параметров атмосферной циркуляции. Для бассейна Чёрного моря оно проявляется в смене субширотного переноса атмосферных процессов в субмеридиональное, в сокращении повторяемости циклонических форм атмосферных процессов в тёплый период года и увеличении в осенне-зимний, а также в изменении траектории циклонов, выходящих на Чёрное море. В результате повышения температуры воздуха в летний период и увеличения количества атмосферных осадков, выпадающих в юго-восточной части Чёрного моря и над Северо-Кавказским регионом, повышается температура поверхностного слоя моря, увеличивается речной сток в Азовское море и восточную часть Чёрного моря.
усиливается таяние ледников в горах Кавказа, снижается активность сгонно-нагонных процессов.

Рассматривая пространственную изменчивость термохалинных характеристик в прибрежной части Карадагского взморья, можно выделить 4 типичные ситуации:

1. Первая характеризуется полной однородностью гидрологических характеристик, когда и температура, и солёность на всём пространстве исследуемого района примерно одинаковы. Такая ситуация характерна для осенне-зимнего периода, но иногда наблюдается в летний период, как, например, в июле 2006 г. (Ковригина и др., 2008);
2. Вторая отличается тем, что в б. Коктебель формируется свой тип гидрологической ситуации, как правило, связанный с циклоническими или антициклоническими круговоротами, формирующимися непосредственно в бухте. В районе м. Мальчин образуется фронтальная зона (рис. 5 а, б). На остальной акватории заповедника распределение величин Т0 и S0 относительно однородно. Исключая осенне-зимний период с минимальным количеством наблюдений, такие ситуации имеют более 50 % повторяемости;
3. Третья характеризуется значительной неоднородностью гидрологических характеристик, когда на всём пространстве исследуемого района существуют значительные различия температуры и солёности. Такая ситуация характерна для весенного периода, когда на акватории образуется значительная фронтальная зона (рис. 5 в, г), а также в июле 2006 г. (Ковригина и др., 2008);
4. Четвёртая характеризуется значительным изменением гидрологических характеристик по пространству, когда на акватории образуется значительная фронтальная зона (рис. 5 д, е), а также в июле 2006 г. (Ковригина и др., 2008).

Рис. 5. Поверхностное распределение температуры (а, в, д) и солёности (б, г, е):
— третий тип распределения термохалинных характеристик характеризуется направлением изотерм и изохалин параллельно береговой линии (рис. 5 в, г). При этом горизонтальные градиенты обеих характеристик, как правило, небольшие;
— четвёртый тип связан с развитием прибрежных апвеллингов. Орография береговой линии и топография дна таковы, что апвеллинг начинает формироваться в районе от ск. Золотые Ворота (возможно от ск. Иван-Разбоник) до м. Мальчин. Такая ситуация была зафиксирована 15 мая 2012 г., когда в акватории между ск. Золотые Ворота и м. Мальчин наблюдалась пониженная температура и повышенная солёность (рис. 5 е). Диапазон пространственной изменчивости Т₀ во время съёмки составлял 0,5–0,6 °С. Однако, на следующий день температура воды вдоль побережья понизилась на несколько градусов.

Данные по изменчивости термохалинных характеристик поверхностного слоя воды в районе Карадага

<table>
<thead>
<tr>
<th>Месяц</th>
<th>Температура, °C</th>
<th>Солёность, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>сред.*</td>
<td>max*</td>
</tr>
<tr>
<td>Январь</td>
<td>10,49</td>
<td>12,13</td>
</tr>
<tr>
<td>Февраль</td>
<td>7,76</td>
<td>9,10</td>
</tr>
<tr>
<td>Март</td>
<td>10,93</td>
<td>12,00</td>
</tr>
<tr>
<td>Апрель</td>
<td>14,88</td>
<td>12,02</td>
</tr>
<tr>
<td>Май</td>
<td>18,84</td>
<td>22,36</td>
</tr>
<tr>
<td>Июнь</td>
<td>21,16</td>
<td>22,10</td>
</tr>
<tr>
<td>Июль</td>
<td>23,74</td>
<td>26,73</td>
</tr>
<tr>
<td>Август</td>
<td>23,03</td>
<td>26,17</td>
</tr>
<tr>
<td>Сентябрь</td>
<td>19,11</td>
<td>21,45</td>
</tr>
<tr>
<td>Октябрь</td>
<td>15,01</td>
<td>19,15</td>
</tr>
<tr>
<td>Ноябрь</td>
<td>12,60</td>
<td>13,30</td>
</tr>
</tbody>
</table>

Примечание: * Среднемноголетние и экстремальные значения температуры и солености для каждого месяца взяты из (Субботин, 1989); ** экстремальные значения температуры и солености по результатам прибрежных съёмок взяты из (Трощенко и др., 2015).

Анализ изменчивости вертикальной термохалинной структуры в прибрежной зоне по данным съёмок 2004–2015 гг. показывает, что в отличие от среднемноголетних данных в начале апреля у восточных берегов Крыма ещё продолжается зимний гидрологический сезон. Поэтому съёмка, выполненная 6 апреля 2005 г., характеризует гомогенную термохалинную структуру со значениями температуры около 7,0 °С от поверхности до дна (рис. 6) и относительно небольшими пространственными отличиями – 0,4 °С по температуре и 0,17 ‰ по солёности. При этом температура была примерно на 2,0 °С, а солёность на 0,6 ‰ ниже средних для этого времени значений.

Весной (мае) в районе Карадага наблюдается формирование СТ. В это время СТ, как правило, ещё слабо выражен, а вертикальные градиенты температуры в нём незначительные (Чекменева, Субботин, 2004). Средняя температура на поверхности моря в исследуемый период составила ~15,0 °С, что близко к среднемноголетней. Исключением являлся май 2007 г., когда температура на поверхности была аномально высокой – более 20,0 °С, т. е. близка к летним значениям.

ВКС в мае обычно только начинает формироваться, и температура плавно понижается от поверхности до дна (рис 6, профиль 2 а). В отдельные годы (2007 и 2011 гг.) этот слой уже сформировался, а его мощность составляла от 3 до 8 м (рис. 6, профиль 2 б).

В этот же период отмечались самые низкие значения солёности (16,28 ‰), связанные с максимальным притоком распредённых азовоморских вод. В мае наблюдаются самые большие как межгодовые, так и пространственные колебания температуры и солёности. Это связано, с одной стороны, с условиями прогрева вод в разные годы, с другой – с межгодовыми колебаниями водообмена между Азовским и Чёрными морями.

В летний гидрологический сезон (июль – сентябрь) окончательно формируется ВКС, а его толщина может превышать 10 м. В отдельные годы (июль 2005 г.) ВКС занимает
всю изучаемую толщу вод до глубин 25–30 м при средней температуре 23,0–24,0 °С. СТ также обретает наиболее законченную форму с вертикальными градиентами температуры, достигающими несколько градусов на метр.

В целом, в летний период поверхностная температура превышала среднемноголетние значения на 1,0–2,0 °С. Пространственная изменчивость была ниже, чем в весенний период и не превышала 1,0–2,0 °С (см. табл. 2).

В летний период для района Карадагского взморья временная и пространственная изменчивость S0 определяется, прежде всего, сезонной изменчивостью притока распресненных азовоморских вод (так же, как в весенний период) и влиянием прибрежного апвеллинга. В первом случае, значения солености поверхностного слоя могут понижаться по отношению к среднемноголетним за счет усиления притока распресненных вод (до 16,82 ‰ – июль 2005 г.), во втором – повышаются (до 18,12 ‰ – сентябрь 2008 г.) за счет подъема более соленых промежуточных вод при проявлении прибрежного апвеллинга. Приведённые значения, однако, не нарушают общей тенденции понижения солености поверхностных вод за последние 11 лет на 0,2–0,3 ‰ по отношению к среднемноголетним величинам.

Осенью (октябрь – ноябрь), в связи с охлаждением поверхности моря, начинаются процессы конвективного перемешивания. Поэтому от поверхности до 25 м может составлять всего 0,1 °С, а солёности – в пределах ошибки измерения. Также уменьшаются и пространственные отличия. Измеренные значения температуры превышали среднемноголетние значения, а солёность была близка к ним.

Интересным фактом является периодическое обнаружение (как правило, в весенний период) субмаринной разгрузки пресных вод в районах м. Мальчин и б. Сердоликовой. Натурные наблюдения показали, что субмаринные воды отличаются от окружающих морских вод пониженной соленостью и pH, пониженным содержанием кислорода, повышенным – кремнекислоты и фосфатов, повышенными или чаще пониженными значениями температуры, а также другими гидрохимическими и гидрооптическими параметрами. Проявления такой разгрузки были обнаружены в мае 2005–2007 гг. и в мае 2009 г., а также в июле 2004 и 2014 гг. Наиболее отчетливо она прослеживалась в мае 2007 г., когда соленость у дна (12 м) была ниже поверхностной на 0,5 ‰.

В результате длительного воздействия такие воды могут вносить существенные изменения в биоразнообразие, морфологический и морфометрический состав и другие характеристики морских экосистем, расположенных в зоне влияния субмаринных вод, вплоть до образования специфических сообществ. В то же время нужно отметить, что распресненные воды могут существенно уменьшать биомассу за счет вытеснения из ареала своего влияния традиционных видов.
онно живущих там морских организмов. Хотя субмаринная разгрузка проявляется не каждый год, обнаружение в прибрежной зоне видов, обитающих в распеснённых или солоноватых водах, говорит об их квазистационарности (Троценко и др., 2005).

В районе Карадагского взморья за период с 2004 г. по 2015 г. отмечается тенденция повышения поверхностной температуры в летний гидрологический сезон на 2,0–3,0 °С по отношению к среднемноголетним значениям. Одновременно в течение всего года отмечается понижение поверхностной солёности на 0,5–1,0 ‰. Наиболее вероятной причиной в изменении гидрологического режима прибрежных вод следует считать процессы, связанные с «глобальным потеплением».

2.4. ГИДРОХИМИЧЕСКИЕ ОСОБЕННОСТИ

Морские воды в районе Судакско-Карадагского взморья расположены в открытой прибрежной юго-восточной части Крыма. Формирование гидрохимического режима взморья происходит под влиянием сезонных изменений, вод Азовского моря, динамических факторов и антропогенного воздействия.

Наиболее ранние сведения о гидрохимическом режиме вод района Карадага получены А. И. Смирновой в период 1957–1958 гг. (Смирнова, 1960). Исследования проводились на четырех рейдовых станциях, находящихся на расстоянии 0,25, 2, 6 и 15 миль от берега с глубинами от 13 до 100 м. Автором сделан вывод, что по концентрации кислорода, кремния, окисляемости и активной реакции воды (РОН), а также по их изменению во времени и пространстве район Карадага практически не отличается от других частей центральной и восточной зон Черного моря.

В работе Е. А. Куфтарковой и соавторов (Куфтаркова и др., 2004) обобщены гидрохимические материалы, собранные в прибрежной зоне с удалением от берега до 10 миль на четырех разрезах Карадагского взморья в период 1987–1991 гг. Выявлены характерные изменения гидрохимических параметров в весенний, летний и зимний сезоны.

Обобщая результаты гидрохимических исследований, проведенных в течение пяти лет на Судакско-Карадагском взморье, авторы отметили следующее.

Формирование гидрохимической структуры вод данного района обусловлено поступлением азовоморских вод, антропогенным воздействием и динамическими факторами. Взаимодействие двух водных масс – прибрежной черноморской и распресненной азовоморской – кроме солености регистрировалось такими гидрохимическими показателями как содержание кремнекислоты, величина РН, соотношение Рмин/Рорг. В зависимости от гидрометеоусловий поля трансформированных азовоморских вод обнаруживались в восточной части Карадагского взморья, наиболее близко расположенной к Керченскому проливу, в узкой прибрежной зоне и на мористых станциях.

Повышенный органический фон: окисляемость, биохимическое потребление кислорода на пятые сутки (БПК5), органический фосфор и азот, а также высокие концентрации минерального фосфора и азота были отмечены на прибрежных станциях у пгт Курортное и пгт Коктебель, что свидетельствует о существовании локальных сбросов сточных вод. В целом, исследованный район моря охарактеризован как незагрязненный (Куфтаркова и др., 2004).

Отличная от всего района гидрохимическая структура вод наблюдалась у м. Меганом и была обусловлена повышенной динамической активностью вод (за счет увеличения вихреобразования у мысов), что способствовало подъему глубинных вод с повышенным содержанием органических и биогенных веществ.

Выявлены особенности гидрохимической структуры вод на акватории Судакско-
Карадагского взморья, а также оценено антропогенное влияние на ее узкую прибрежную зону.

Воды Судакского взморья. Экспедиционные гидрохимические исследования на Судакском взморье проводились в весенний (апрель, май 1988 г.), летний (июнь 1988 г.) и зимний периоды (декабрь 1987 г., январь 1988 г.) Было выполнено 3 поверхностных съемки и 5 вертикальных разрезов, охватывающих прибрежную акваторию от м. Пещерный до м. Меганом. Пробы отбирались в прибрежной зоне и с удалением от берега до 10 миль. Схема станций приведена на рисунке 1. В пробах определяли растворенный кислород, соленость, БПК5, величину рН, минеральные и органические формы азота и фосфора (Методы гидрохимических..., 1988). В таблице 1 представлены виды работ, время, количество станций, горизонты и гидрохимические показатели, выполненные во время исследований.

В современный период в районе Судакского взморья исследования были продолжены, но они имели эпизодический характер. В районе Нового Света 4 сентября и 15 октября 2008 г. с берега были отобраны пробы на определение солености и биогенных элементов. Кроме того, 12 июня 2016 г. на акватории Судакского взморья во время 86-го рейса НИС «Профессор Водянник» были взяты пробы с 5 горизонтов на одной станции (ст. 17, рис. 1).

Таблица 1.

<table>
<thead>
<tr>
<th>Дата</th>
<th>Судно</th>
<th>Виды работ, количество станций, горизонтов</th>
<th>Гидрохимические показатели</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 августа 1987</td>
<td>НИС «Академик Ковалевский» 106 рейс</td>
<td>Поверхностная съемка, 16,</td>
<td>S, O2, БПК5, pH, NO2, NO3, NH4, NO3, PO4, Pорг</td>
</tr>
<tr>
<td>10 августа 1987</td>
<td>НИС «Академик Ковалевский», 106 рейс</td>
<td>Вертикальные разрезы, 16,</td>
<td>S, O2, pH, NO2, NO3, NH4, Nорг, PO4, Pорг</td>
</tr>
<tr>
<td>16–18 августа 1987</td>
<td>НИС «Академик Ковалевский», 106 рейс</td>
<td>Вертикальные разрезы, 16,</td>
<td>S, O2, БПК5, pH, NO2, NO3, NH4, Nорг, PO4, Pорг</td>
</tr>
<tr>
<td>25 декабря 1987</td>
<td>НИС «Профессор Водянник», 25 рейс</td>
<td>Поверхностная съемка, 12,</td>
<td>S, O2, PO4,</td>
</tr>
<tr>
<td>18 января 1988</td>
<td>НИС «Профессор Водянник», 25 рейс</td>
<td>Вертикальные разрезы, 11,</td>
<td>S, O2, PO4,</td>
</tr>
<tr>
<td>30 апреля 1988</td>
<td>НИС «Феодосия»</td>
<td>Поверхностная съемка, 16,</td>
<td>S, O2, БПК5, pH, NO2, NO3, NH4, Nорг, PO4, Pорг</td>
</tr>
<tr>
<td>2–5 мая 1988</td>
<td>НИС «Феодосия»</td>
<td>Вертикальные разрезы, 16,</td>
<td>S, O2, pH, NO2, NO3, NH4, PO4</td>
</tr>
<tr>
<td>8–10 мая 1988</td>
<td>НИС «Феодосия»</td>
<td>Вертикальные разрезы, 12,</td>
<td>S, O2, pH, NO2, NH4, PO4</td>
</tr>
<tr>
<td>20–21 июля 1988</td>
<td>НИС «Профессор Водянник», 27 рейс</td>
<td>Вертикальные разрезы, 16,</td>
<td>S, O2, NO2, NO3, NH4, PO4</td>
</tr>
</tbody>
</table>
Весь собранный нами гидрохимический материал можно разделить по сезонам: весенний, летний и зимний. Далее остановимся на характерных сезонных изменениях.

В весенний период формирование гидрохимической структуры происходило под влиянием трех основных составляющих: образование термоклина во время весеннего прогрева вод, максимальные величины фотосинтеза в вегетационный период и усиление водообмена с Азовским морем.

В связи с тем, что мелководное Азовское море весной прогревается быстрее и трансформированные азовоморские воды распространяются по поверхности более холодных и плотных черноморских вод изучаемого района, большое внимание во время исследований было уделено поверхностным съемкам. В качестве примера рассмотрим распределение гидрохимических параметров по поверхности б. Судакской во время съемки 30 апреля 1988 г. (табл. 2).

Распределение гидрохимических показателей на поверхности Судакского взморья 30 апреля 1988 г.

<table>
<thead>
<tr>
<th>№ ст.</th>
<th>H, м</th>
<th>T, °C</th>
<th>S, ‰</th>
<th>O₂, мг/л</th>
<th>pH</th>
<th>БПК₅, мг/л</th>
<th>NO₂</th>
<th>NO₃</th>
<th>NH₄</th>
<th>PO₄</th>
<th>P орг</th>
<th>N орг</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>11,10</td>
<td>17,76</td>
<td>7,50</td>
<td>108,9</td>
<td>8,12</td>
<td>2,0</td>
<td>8,0</td>
<td>9,0</td>
<td>5,0</td>
<td>3,0</td>
<td>1145</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>10,90</td>
<td>17,79</td>
<td>7,56</td>
<td>109,3</td>
<td>8,15</td>
<td>1,0</td>
<td>15,0</td>
<td>8,0</td>
<td>5,0</td>
<td>1,0</td>
<td>1320</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>10,90</td>
<td>17,94</td>
<td>7,63</td>
<td>110,5</td>
<td>8,11</td>
<td>2,0</td>
<td>12,0</td>
<td>10,0</td>
<td>6,0</td>
<td>4,0</td>
<td>1530</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>10,90</td>
<td>17,94</td>
<td>7,45</td>
<td>107,9</td>
<td>8,10</td>
<td>1,0</td>
<td>12,0</td>
<td>10,0</td>
<td>2,0</td>
<td>4,0</td>
<td>1410</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>10,70</td>
<td>17,97</td>
<td>7,47</td>
<td>107,7</td>
<td>8,12</td>
<td>1,0</td>
<td>19,0</td>
<td>11,0</td>
<td>3,0</td>
<td>1,0</td>
<td>1525</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>11,10</td>
<td>17,97</td>
<td>7,50</td>
<td>109,1</td>
<td>8,15</td>
<td>0,93</td>
<td>1,0</td>
<td>13,0</td>
<td>9,0</td>
<td>1,0</td>
<td>1530</td>
</tr>
<tr>
<td>7</td>
<td>75</td>
<td>11,10</td>
<td>17,96</td>
<td>7,52</td>
<td>109,4</td>
<td>8,16</td>
<td>1,13</td>
<td>1,0</td>
<td>17,0</td>
<td>10,0</td>
<td>0,0</td>
<td>2,0</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>10,80</td>
<td>17,85</td>
<td>7,51</td>
<td>108,4</td>
<td>8,15</td>
<td>0,72</td>
<td>1,0</td>
<td>16,0</td>
<td>10,0</td>
<td>0,0</td>
<td>8,0</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>11,00</td>
<td>17,90</td>
<td>7,54</td>
<td>109,4</td>
<td>8,11</td>
<td>1,0</td>
<td>16,0</td>
<td>10,0</td>
<td>0,0</td>
<td>4,0</td>
<td>1570</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>10,90</td>
<td>7,54</td>
<td>97,5</td>
<td>95,7</td>
<td>8,11</td>
<td>1,26</td>
<td>2,0</td>
<td>5,0</td>
<td>9,0</td>
<td>2,0</td>
<td>4,0</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>11,00</td>
<td>17,81</td>
<td>7,51</td>
<td>108,9</td>
<td>8,35</td>
<td>0,00</td>
<td>1,0</td>
<td>24,0</td>
<td>9,0</td>
<td>5,0</td>
<td>2,0</td>
</tr>
<tr>
<td>13</td>
<td>50</td>
<td>11,20</td>
<td>17,58</td>
<td>7,44</td>
<td>108,2</td>
<td>8,50</td>
<td>3,0</td>
<td>7,0</td>
<td>8,0</td>
<td>3,0</td>
<td>1,0</td>
<td>1230</td>
</tr>
<tr>
<td>14</td>
<td>75</td>
<td>11,00</td>
<td>17,90</td>
<td>7,44</td>
<td>107,9</td>
<td>8,43</td>
<td>1,9</td>
<td>1,0</td>
<td>6,0</td>
<td>8,0</td>
<td>2,0</td>
<td>7,0</td>
</tr>
<tr>
<td>25</td>
<td>40</td>
<td>10,90</td>
<td>7,41</td>
<td>95,8</td>
<td>107,9</td>
<td>8,36</td>
<td>0,00</td>
<td>1,0</td>
<td>24,0</td>
<td>9,0</td>
<td>5,0</td>
<td>2,0</td>
</tr>
<tr>
<td>15</td>
<td>75</td>
<td>11,00</td>
<td>17,90</td>
<td>7,44</td>
<td>107,9</td>
<td>8,43</td>
<td>2,0</td>
<td>10,0</td>
<td>10,0</td>
<td>4,0</td>
<td>4,0</td>
<td>1490</td>
</tr>
<tr>
<td>16</td>
<td>50</td>
<td>11,20</td>
<td>17,59</td>
<td>7,43</td>
<td>108,1</td>
<td>8,40</td>
<td>1,0</td>
<td>10,0</td>
<td>9,0</td>
<td>2,0</td>
<td>2,0</td>
<td>930</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>11,40</td>
<td>17,78</td>
<td>7,37</td>
<td>107,8</td>
<td>8,59</td>
<td>2,0</td>
<td>7,0</td>
<td>8,0</td>
<td>7,0</td>
<td>2,0</td>
<td>1060</td>
</tr>
</tbody>
</table>

В весенне время вертикальное распределение кислорода характеризовало формирование на большинстве станций слоя кислородного максимума на глубине 15–20 м, где содержание кислорода, в среднем, было на 0,14 мг/л выше, чем на поверхности. Величины абсолютного содержания кислорода изменялись в пределах от 3,81 мг/л до 8,56 мг/л, величины относительного содержания – от 50,9 до 112,6 %. Колебания в содержании кислорода в верхнем слое моря на отдельных станциях обусловлены, по всей вероятности, различной интенсивностью развития фитопланктона. Величины относительного содержания кислорода равномерно уменьшались с глубиной (до 75 м) практически на всех станциях. На рис. 2, как типичный пример, представлено вертикальное распределение некоторых гидрохимических показателей в б. Судакской 2–5 мая 1988 г.

Величины рН изменились от 8,10 до 8,59, а средняя величина составила 8,24. На поверхности прибрежных станций 10 и 1 отмечены низкие величины рН (8,11 и 8,12). Максимальной величиной
Величины рН в водной толще изменялись от 7,85 (ст. 5, 100 м) до 8,56 (ст. 6, 10 м). Сравнивая вертикальные профили величин рН на различных станциях в весенний период, можно отметить тенденцию увеличения рН с глубиной в узкой прибрежной зоне и уменьшения в открытой части моря. Особенностю вертикального распределения величин рН является наличие линз повышенных значений рН на глубине 20–30 м (рис. 2).

Рис. 2. Вертикальное распределение гидрохимических показателей:
а) кислород, %; б) величина рН; в) азот нитритный, мкг/л;
г) фосфаты, мкг/л на разрезах по станциям 1–5 и 10–6 в мае 1988 г.
Биогенные вещества. Содержание биогенных веществ в весенний период характеризовалось довольно низкими величинами и равномерным по поверхности распределением. Концентрация фосфатов изменялась от нулевых значений до 7 мкг/л. Максимальная величина фосфатов (7,0 мкг/л) была зарегистрирована на прибрежной станции 11. Там же отмечено минимальное содержание растворенного кислорода (7,37 мл/л). Азот нитритный находился в пределах от 1 до 2 мкг/л, аммонийный – от 8 до 10 мкг/л и нитратный – от 5 до 24 мкг/л.

Особый низкий уровень концентраций биогенных веществ характерен для весеннего периода и связан с интенсивными процессами их потребления. Содержание аммонийного и нитратного азота было близким по величинам к значениям, лимитирующим развитие фитопланктона. Величины фосфора органического (Рорг) изменялись в пределах 1,0–8,0 мкг/л, азота органического (Nорг) – от 0,93 до 1,59 мг/л. Распределение концентраций минеральных и органических форм по поверхности было неравномерным, что является характерной особенностью для прибрежной зоны моря.

Биогенные вещества в толще вод изменялись в следующих пределах: фосфаты – от 0 до 21 мкг/л, нитраты – от 2 до 50 мкг/л, нитриты – от 0 до 6 мкг/л; концентрации аммиака изменялись в пределах: 7–26 мкг/л. С глубиной происходило повышение содержания фосфатов. Высокие величины фосфатов отмечались на придонных горизонтах и могли быть связаны с поступлением их из придонных слоев за счет усиления вертикальной циркуляции вод (рис. 2).

Вертикальные разрезы, выполненные 2–5 мая 1988 г., дают представление о практически равномерном распределении в слое 0–75 м минеральных и органических форм азота и фосфора по глубине. Высокие концентрации нитратного азота отмечались только на глубине 100 м.

Величину БПК₅ определяли выборочно. Материалы поверхностной съемки, выполненной 30 апреля 1988 г., свидетельствуют о низких значениях БПК₅. Предель колебаний этого показателя составляли 0,72–1,26 мг/л, что свидетельствует о незначительном содержании нестойкого органического вещества и чистоте района с санитарной точки зрения.

Летний период. Характерные особенности распределения по поверхности гидрохимических показателей в летнее время выявлены во время съемки, проведенной 9 августа 1987 г. (табл. 3). Величины солености имели пределы колебаний от 17,69 до 17,87 %, средняя составляла 17,79. По пониженным значениям солености четко прослеживались азовоморские воды, влияние которых менее выражено по сравнению с весенним периодом. Воды с соленостью меньше средней величины были обнаружены по разрезу от м. Пещерный и на мористой станции разреза от м. Меганом.

<table>
<thead>
<tr>
<th>№ ст.</th>
<th>H, м</th>
<th>T, °C</th>
<th>S, ‰</th>
<th>O₂, %</th>
<th>pH</th>
<th>БПК₅, мг/л</th>
<th>NO₂</th>
<th>NO₃</th>
<th>NH₄</th>
<th>PO₄</th>
<th>Рорг, мг/л</th>
<th>Nорг, мг/л</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>23,40</td>
<td>17,72</td>
<td>5,66</td>
<td>105,3</td>
<td>8,36</td>
<td>0,53</td>
<td>1,0</td>
<td>8,0</td>
<td>4,0</td>
<td>3,0</td>
<td>47,0</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>23,70</td>
<td>17,72</td>
<td>5,60</td>
<td>104,8</td>
<td>8,39</td>
<td>1,0</td>
<td>6,0</td>
<td>3,0</td>
<td>24,0</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>23,40</td>
<td>17,72</td>
<td>5,68</td>
<td>105,7</td>
<td>8,37</td>
<td>0,47</td>
<td>1,0</td>
<td>6,0</td>
<td>0,0</td>
<td>1,0</td>
<td>29,0</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>23,20</td>
<td>17,81</td>
<td>5,71</td>
<td>105,9</td>
<td>8,39</td>
<td>0,46</td>
<td>1,0</td>
<td>5,0</td>
<td>21,0</td>
<td>9,0</td>
<td>19,0</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>23,60</td>
<td>17,72</td>
<td>5,62</td>
<td>105,0</td>
<td>8,39</td>
<td>0,69</td>
<td>1,0</td>
<td>4,0</td>
<td>35,0</td>
<td>4,0</td>
<td>17,0</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>23,20</td>
<td>17,81</td>
<td>5,67</td>
<td>105,2</td>
<td>8,37</td>
<td>0,46</td>
<td>1,0</td>
<td>4,0</td>
<td>8,0</td>
<td>6,0</td>
<td>17,0</td>
</tr>
<tr>
<td>7</td>
<td>75</td>
<td>23,40</td>
<td>17,85</td>
<td>5,66</td>
<td>105,4</td>
<td>8,38</td>
<td>0,37</td>
<td>1,0</td>
<td>6,0</td>
<td>9,0</td>
<td>2,0</td>
<td>21,0</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>23,50</td>
<td>17,85</td>
<td>5,70</td>
<td>106,4</td>
<td>8,40</td>
<td>0,51</td>
<td>1,0</td>
<td>4,0</td>
<td>14,0</td>
<td>3,0</td>
<td>23,0</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>23,40</td>
<td>17,83</td>
<td>5,59</td>
<td>104,1</td>
<td>8,40</td>
<td>0,37</td>
<td>1,0</td>
<td>4,0</td>
<td>8,0</td>
<td>3,0</td>
<td>22,0</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>22,90</td>
<td>17,87</td>
<td>5,69</td>
<td>105,0</td>
<td>8,39</td>
<td>0,63</td>
<td>1,0</td>
<td>5,0</td>
<td>6,0</td>
<td>24,0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>40</td>
<td>23,70</td>
<td>17,85</td>
<td>5,65</td>
<td>105,8</td>
<td>8,38</td>
<td>0,44</td>
<td>2,0</td>
<td>4,0</td>
<td>2,0</td>
<td>22,0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>40</td>
<td>23,60</td>
<td>17,81</td>
<td>5,66</td>
<td>105,8</td>
<td>8,39</td>
<td>0,37</td>
<td>1,0</td>
<td>6,0</td>
<td>0,0</td>
<td>3,0</td>
<td>26,0</td>
</tr>
<tr>
<td>14</td>
<td>75</td>
<td>23,20</td>
<td>17,69</td>
<td>5,55</td>
<td>102,9</td>
<td>8,39</td>
<td>0,40</td>
<td>1,0</td>
<td>6,0</td>
<td>16,0</td>
<td>4,0</td>
<td>22,0</td>
</tr>
<tr>
<td>13</td>
<td>50</td>
<td>23,80</td>
<td>17,81</td>
<td>5,55</td>
<td>104,1</td>
<td>8,36</td>
<td>0,30</td>
<td>1,0</td>
<td>6,0</td>
<td>22,0</td>
<td>6,0</td>
<td>21,0</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
<td>23,70</td>
<td>17,81</td>
<td>5,83</td>
<td>109,2</td>
<td>8,37</td>
<td>0,76</td>
<td>1,0</td>
<td>5,0</td>
<td>9,0</td>
<td>13,0</td>
<td>12,0</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>23,50</td>
<td>17,81</td>
<td>5,69</td>
<td>106,1</td>
<td>8,38</td>
<td>0,41</td>
<td>1,0</td>
<td>4,0</td>
<td>5,0</td>
<td>9,0</td>
<td>19,0</td>
</tr>
</tbody>
</table>
Влияние азовоморских вод хорошо прослеживается также по распределению величин соотношения доли минерального фосфора к водному. Низкие значения этого соотношения (до 30 %) характерны для распресненных азовоморских вод, высокие значения (до 70 %) – для черноморских вод. Во время съемки 9 августа 1987 г. величины соотношения Рмин:Рвал имели пределы колебаний от 3 до 52. Причем значения до 30 % отмечены на 13 станциях из 16, что свидетельствует о сильном влиянии азовоморских вод. Черноморские воды преобладали на поверхности только трех станций.

Величины растворенного кислорода колебались в пределах 5,55–5,83 мл/л (102,9 – 109,2 %). Максимальное содержание кислорода зафиксировано на мористой ст. 14 этого же разреза. Там же наблюдали минимальную соленость, низкую величину (15) соотношения Рмин:Рвл, характеризующую преобладание в этом районе черноморских вод. Минимальное содержание кислорода кислородного максимума, до глубины 35 м, с концентрацией 7,0–8,1 мл/л. И еще ниже – придонный слой с содержанием кислорода от 7,0 до 5,08 мл/л. При этом относительное содержание кислорода в этих слоях было 103–110 %, 110–120 % и 100–67 % соответственно. По данным Г. П. Берсеневой, слой кислородного максимума соответствовал глубине максимального содержания хлорофилла «а» (Берсенева, 1999).

Величины БПК₅ на поверхности имели значения, от 0,30 до 0,76, что было значительно ниже предельно-допустимой концентрации, равной 2,0 мг/л по санитарно-бытовым нормативам, что говорит о чистоте района. Вертикальное распределение величин БПК₅ проводилось только в летний период. Отмечено характерное для летнего периода повышение значений БПК₅ более чем в 2 раза в слое скачка температуры, который способствует накоплению органического вещества на его верхней границе.

Биогенные вещества. Распределение азота нитратного и азота нитритного было достаточно однородным и отличалось низкими величинами. Повышенные значения азота аммонийного на обширной акватории мористой части б. Судакской на ст. 5, 8, 13 и 14. При среднем и достаточно равномерном распределении по площади аммонийного азота, равном 12 мг/л, на указанных станциях обнаружены концентрации от 16 до 35 мг/л. Известно, что причин повышенных концентраций аммонийного азота может быть несколько – это и подъем глубинных вод, и минерализация азотсодержащего органического вещества. Кроме того, по данным А. П. Цуриковой и Е. Ф. Шульгиной, воды Азовского моря обогащены аммонийным азотом, что вероятнее всего и явилось основной причиной его повышенных значений на мористых станциях исследуемого района (Цурикова, Шульгина, 1964). В весенний период подобное явление не было обнаружено.

В вертикальном распределении биогенных элементов летом в б. Судакской отмечалась следующая закономерность: низкие и достаточно однородные значения в верхнем квазидонном слое, а затем резкое повышение концентраций ко дну. Исключение составил нитрификационный азот, присутствие которого от 2 до 4 мг/л, было отмечено только у м. Меганом, что может свидетельствовать о происходящем процессе нитрификации на стыке двух водных масс.
Новые результаты были получены на станции 17 (рис. 1), выполненной 12 июня 2016 г. в 86-м рейсе НИС «Профессор Водяницкий» на Судакском взморье. Вертикальное распределение гидрохимических параметров имело следующие особенности. Газовый режим характеризовался подповерхностным минимумом на глубине 15 м в начале слоя термоклина (табл. 4, рис. 4). Пониженным значениям кислорода (6,20 мл/л и 107,5 % насыщения) соответствовало повышение величины рН до 8,43. Там же наблюдали и минимум кремния – 69,3 мкг/л. На глубине 25 м располагался промежуточный максимум содержания кислорода и фосфатов – 6,75 мл/л (111 %) и 3,5 мкг/л соответственно. Ниже слоя термоклина было отмечено характерное для Черного моря распределение гидрохимических показателей: снижение содержания кислорода, уменьшение значений рН, и повышение концентрации биогенных веществ. Максимальное насыщение кислородом в поверхностном слое (118,5 %), может быть вызвано интенсификацией процессов фотосинтеза и вертикальной миграцией различных видов планктона.

Рис. 3. Вертикальное распределение гидрохимических показателей:
а) кислород, %; б) азот нитратный, мкг/л; в) азот аммонийный, мкг/л;
г) фосфаты, мкг/л на разрезах по станциям 1–5, 10–6 и 11–14 в июле 1988 г.
Таблица 4.
Распределение гидрохимических показателей на Судакском взморье в 2016 г. и в прибрежной зоне пгт Новый Свет в 2008 г.

<table>
<thead>
<tr>
<th>Дата</th>
<th>H, м</th>
<th>T, °C</th>
<th>O², мл/л</th>
<th>%</th>
<th>pH</th>
<th>NO², мкг/л</th>
<th>NO³, мкг/л</th>
<th>NH⁴, мкг/л</th>
<th>PO⁴, мкг/л</th>
<th>Si, мкг/л</th>
<th>Porg, мкг/л</th>
<th>Norg, мкг/л</th>
</tr>
</thead>
<tbody>
<tr>
<td>Судакское взморье</td>
<td></td>
</tr>
<tr>
<td>12 июня 2016 г.</td>
<td>0</td>
<td>20,46</td>
<td>6,70</td>
<td>118,5</td>
<td>8,40</td>
<td>0,2</td>
<td>2,0</td>
<td>3,2</td>
<td>110,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>19,47</td>
<td>6,20</td>
<td>107,5</td>
<td>8,43</td>
<td>0,2</td>
<td>1,5</td>
<td>3,2</td>
<td>69,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>16,83</td>
<td>6,75</td>
<td>111,0</td>
<td>8,43</td>
<td>0,4</td>
<td>1,6</td>
<td>3,5</td>
<td>102,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>10,74</td>
<td>6,74</td>
<td>97,4</td>
<td>8,44</td>
<td>1,2</td>
<td>3,2</td>
<td>2,5</td>
<td>175,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>9,79</td>
<td>6,65</td>
<td>94,1</td>
<td>8,40</td>
<td>2,3</td>
<td>5,4</td>
<td>4,9</td>
<td>219,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Новый Свет</td>
<td></td>
</tr>
<tr>
<td>4 сент 2008 г.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15 окт</td>
<td>0</td>
<td>18,20</td>
<td></td>
<td></td>
<td>1,4</td>
<td>0,9</td>
<td>10,0</td>
<td>0,8</td>
<td>10,5</td>
<td>20,3</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>2008 г.</td>
<td>0</td>
<td>18,20</td>
<td></td>
<td></td>
<td>0,6</td>
<td>1,1</td>
<td>6,7</td>
<td>6,0</td>
<td>30,3</td>
<td>9,9</td>
<td>279</td>
<td></td>
</tr>
</tbody>
</table>

Рис. 4. Вертикальное распределение на Судакском взморье 12 июня 2016 г.:
а) температуры, °C; б) величины рН; в) кислорода, мл/л; г) кислорода, %;
д) биогенных веществ, мкг/л; е) кремния, мкг/л
Пробы, отобранные в узкой прибрежной зоне у Нового Света в 2008 г., показали невысокое содержание биогенных веществ, несмотря на интенсивную рекреационную нагрузку в данный период (табл. 4). По сравнению с данными, полученными нами ранее в прибрежной зоне Восточного Крыма, концентрации нитратов (0,6–1,1 мкг/л) и кремния (10,5–30,3 мкг/л) были на порядок ниже. Такие же низкие величины наблюдали и в районе пгт Пещерный, где, судя по низкой солености (12,12 ‰), существуют подземные пресные воды. Низкие концентрации нитратов и кремния можно объяснить предпочтительным потреблением их фитопланктоном, несмотря на то, что концентрации органических форм азота и фосфора (276–314 и 7,1–20,3 мкг/л соответственно) были достаточно высоки и приближались к средним значениям для данного района.

Зимний период. Во время поверхностной съемки, выполненной 25 декабря 1987 г., из гидрохимических показателей определяли только кислород и фосфаты. Концентрация растворенного кислорода изменялась в пределах от 7,05 до 7,15 мл/л и была близка к полному насыщению: 99–100,3 %, а величины фосфатов имели следовые значения: 0,8–1,5 мкг/л. Пределы колебаний солености в поверхностном слое составляли: 18,30–18,34 ‰ на прибрежных и 18,05–18,16 ‰ на мористых станциях. Такое распределение солености, по всей вероятности, было обусловлено влиянием трансформированных вод Азовского моря.

Представление о вертикальной гидрохимической структуре вод было получено при выполнении гидролого-гидрохимических разрезов, направленных нормально к береговой линии до глубин 100 м.

В зимний период в вертикальном распределении солености отмечена следующая закономерность: в восточной части б. Судакской на двух разрезах (ст. 11–14 и ст. 6–10) на горизонтах 20–30 м зафиксированы линзы распресненных на 0,6–0,8 ‰ вод. На этих же глубинах содержание кислорода было пониженным на 3–8 %, что также подтверждает влияние азовоморских вод.

Обобщая результаты гидрохимических исследований, можно отметить следующее. Обеспеченность вод растворенным кислородом была достаточно высокой: среднее значение в поверхностном слое составляло 106 % при экстремальных величинах 96–111 %. Вертикальное перемешивание прибрежных вод и биологические процессы способствовали обогащению кислородом всей толщи вод. Минимальное относительное содержание кислорода (64 %) было зарегистрировано в придонном слое в мористой части на глубине 100 м.

Полученные в исследованный период величины БПК₅ характеризуют район как «чистый», т. к. величины не приближались и тем более не превышали ПДК. На прибрежных станциях вследствие влияния локальных выпусков бытовых сточных вод и высокой рекреационной нагрузки величины БПК₅ были выше, чем на остальной акватории. Диапазон средних концентраций основных биогенных элементов остается невысоким и типичным для прибрежных районов моря. В целом же по гидрохимическим показателям исследуемый район моря можно было охарактеризовать как «незагрязненный».

На формирование гидрохимической структуры вод также оказывают влияние активно протекающие биохимические процессы, существование которых обнаруживается по соотношению гидрохимических показателей и по связи их с содержанием хлорофилла «а».

Воды Карадагского природного заповедника и б. Коктебель. Гидрохимические исследования в районе Карадага на современном этапе (2004–2015 гг.) были вызваны необходимостью выяснения современного состояния прибрежной зоны, которая с давних пор считалась «чистой», т. е. в наименьшей степени подверженной антропогенному воздействию. Материалы исследований явились составной частью Летописи природы Карадагского природного заповедника. Сброс хозяйственно-бытовых сточных вод от пгт Курортное, а также пгт Коктебель, сток р. Оттузки, ливневые и дренажные воды, поступающие в узкую прибрежную зону, изменяют ее гидрохимическую структуру. Существенную роль в этом играют опресненные воды, поступающие из Азовского моря, а также пресные воды подземного происхождения.

С 2004 г. и по настоящее время ежегодно в районе Карадага нами исследовалась акватория от пгт Коктебель до б. Лисьей. Сброс хозяйственных сточных вод от пгт Курортное, а также пгт Коктебель, сток р. Оттузки, ливневые и дренажные воды, поступающие в узкую прибрежную зону, изменяют ее гидрохимическую структуру. Существенную роль в этом играют опресненные воды, поступающие из Азовского моря, а также пресные воды подземного происхождения.

Кроме того, в 2004 г. были проведены 3 поверхностные съемки в узкой прибрежной зоне от б. Лисьей до м. Мальчин на расстоянии 100 м от берега. Пробы на гидрохимические анализы отбирали на поверхности 10 станций, средняя глубина которых составляла 13 м, минимальная – 9 м – соответствовала району очистных сооружений пгт Курортное, макси-

В пробах определяли тот же комплекс гидрохимических показателей, что и в водах Судакского взморья: соленость, величину рН, растворенный кислород, БПК₅, перманганатную окисляемость в щелочной среде, кремний, минеральные и органические формы азота и фосфора. Оценка трофности вод проводилась по индексу эвтрофикации E-TRIX (Vollenweider et al., 1998). С использованием средних величин гидрохимических показателей, полученных в летний период 2009 г.

Гидрохимические исследования в узкой прибрежной зоне Карадага (Юго-Восточный Крым), проводились в летне-осенний период 2004 г. (Ковригина и др., 2007). Исследования проводили при различной рекреационной нагрузке, зависящей от объема стоков и интенсивности использования пляжных зон. Максимальная рекреационная нагрузка отмечена в июле, повышенная – в сентябре и минимальная – в ноябре.

Основное внимание обращено на изменчивость величин солености и окисляемости (Ковригина и др., 2007). Поступление в район исследования пресных вод различного происхождения способствует значительному колебанию величин солености – от 17,51 до 18,03 ‰. Локальное распреснение вод отмечено в трех районах: у ск. Иван-Разбойник с понижением солености (17,51 ‰) в сентябре, у ск. Кузьмичев Камень и у м. Мальчин (17,72 ‰ на глубине 9 м и 17,74 ‰ на глубине 14 м соответственно). Одной из причин возникновения районов локального распреснения можно считать проникновение вдоль шельфа относительно пресных вод из Азовского моря, другой – поступление подземных вод, один из источников которых находится (по сведениям водолазов) на глубине 9 м у ск. Иван-Разбойник.

Районы, находящиеся под постоянным влиянием хозяйственно-бытовых сточных вод от пгт Курортное и Коктебель, также имели пониженные величины солености относительно средних. К ним относятся акватории очистных сооружений, пгт Коктебель (17,63 ‰), Биостанции (17,63 ‰), б. Сердоликовой (17,72 ‰) и м. Мальчин (17,70 ‰). В этих районах понижение солености сопровождалось уменьшением содержания кислорода, а также резким повышением величин перманганатной окисляемости (табл. 5).

В июле отмечались пониженные величины абсолютного содержания кислорода 5,83 мл/л при средних значениях, равных 5,93 мл/л, насыщение было однородным – 102–106 %. Концентрации биогенных веществ были незначительными: нитриты – около 1 мкг/л, нитраты – от 0,4 до 7,8 мкг/л, фосфаты – от 0 до 12,6 мкг/л.

В сентябре содержание кислорода распределялось равномерно (5,49–6,07 мл/л и 98,6–
Нитриты и нитраты имели низкие значения – от 0,6 до 1,0 мкг/л и от 1,7 до 6,6 мкг/л соответственно, фосфаты – несколько ниже, от 3,9 до 21,6 мкг/л, кремний – от 102 до 217 мкг/л. Повышение концентраций минерального фосфора, а также величин окисляемости произошло, по-видимому, в результате шторма, который явился причиной вторичного загрязнения поверхностных вод органическим веществом из придонного слоя. Это подтверждается и относительно высоким содержанием фосфора органического (81,9 мкг/л при его среднем значении 50,8 мкг/л) в районе б. Лисей. Небольшое повышение содержания кремния при сильных ветрах восточных направлений можно объяснить влиянием азовоморских вод, содержащих более высокие, по сравнению с черноморскими, концентрации силикатов.

<table>
<thead>
<tr>
<th>Станция</th>
<th>T, °C</th>
<th>S, ‰</th>
<th>O2, мг/л</th>
<th>БПК5, %</th>
<th>pH</th>
<th>Окис., мгО/л</th>
<th>NO2</th>
<th>NO3</th>
<th>PO4</th>
<th>Si</th>
<th>Pорг</th>
<th>Nвал</th>
</tr>
</thead>
<tbody>
<tr>
<td>б. Лисья</td>
<td>20,0</td>
<td>17,58</td>
<td>6,06</td>
<td>106</td>
<td>0,76</td>
<td>3,45</td>
<td>< 1</td>
<td>0,8</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>пгт Курортное</td>
<td>21,0</td>
<td>17,52</td>
<td>5,93</td>
<td>106</td>
<td>0,50</td>
<td>4,08</td>
<td>< 1</td>
<td>1,2</td>
<td>1,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Очистные сооружения</td>
<td>21,0</td>
<td>17,63</td>
<td>5,85</td>
<td>104</td>
<td>0,69</td>
<td>6,69</td>
<td>< 1</td>
<td>7,8</td>
<td>3,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td>21,0</td>
<td>17,63</td>
<td>5,85</td>
<td>104</td>
<td>0,80</td>
<td>6,65</td>
<td>< 1</td>
<td>3,9</td>
<td>2,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ск. Кузьмичев Камень</td>
<td>20,0</td>
<td>17,67</td>
<td>5,93</td>
<td>104</td>
<td>1,20</td>
<td>4,20</td>
<td>< 1</td>
<td>0,8</td>
<td>3,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ск. Иван- Разбойник</td>
<td>20,0</td>
<td>17,67</td>
<td>5,92</td>
<td>104</td>
<td>0,53</td>
<td>4,07</td>
<td>< 1</td>
<td>5,2</td>
<td>3,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>б. Львиная</td>
<td>20,0</td>
<td>17,63</td>
<td>6,05</td>
<td>106</td>
<td>0,51</td>
<td>3,94</td>
<td>< 1</td>
<td>0,4</td>
<td>3,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Стена Лагорио</td>
<td>21,1</td>
<td>17,98</td>
<td>5,87</td>
<td>105</td>
<td>0,29</td>
<td>3,12</td>
<td>< 1</td>
<td>1,0</td>
<td>12,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>б. Сердоликовая</td>
<td>19,6</td>
<td>18,03</td>
<td>5,97</td>
<td>104</td>
<td>0,44</td>
<td>2,61</td>
<td>< 1</td>
<td>2,8</td>
<td>3,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>м. Мальчин</td>
<td>19,5</td>
<td>17,67</td>
<td>5,90</td>
<td>102</td>
<td>0,46</td>
<td>2,70</td>
<td>< 1</td>
<td>3,9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 сентября 2004 г.</td>
<td></td>
</tr>
<tr>
<td>б. Лисья</td>
<td>17,67</td>
<td>5,90</td>
<td>107</td>
<td>–</td>
<td>0,6</td>
<td>3,1</td>
<td>3,9</td>
<td>102</td>
<td>81,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>пгт Курортное</td>
<td>17,65</td>
<td>5,78</td>
<td>105</td>
<td>–</td>
<td>0,6</td>
<td>1,7</td>
<td>9,8</td>
<td>135</td>
<td>37,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Очистные сооружения</td>
<td>17,74</td>
<td>5,80</td>
<td>105</td>
<td></td>
<td>4,16</td>
<td>0,6</td>
<td>2,2</td>
<td>7,8</td>
<td>173</td>
<td>59,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td>17,76</td>
<td>5,61</td>
<td>100</td>
<td></td>
<td>4,80</td>
<td>1,0</td>
<td>5,2</td>
<td>3,9</td>
<td>190</td>
<td>58,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ск. Кузьмичев Камень</td>
<td>17,58</td>
<td>5,61</td>
<td>100</td>
<td></td>
<td>5,12</td>
<td>1,0</td>
<td>6,6</td>
<td>21,6</td>
<td>184</td>
<td>25,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ск. Иван- Разбойник</td>
<td>17,51</td>
<td>6,07</td>
<td>109</td>
<td></td>
<td>5,12</td>
<td>0,6</td>
<td>2,8</td>
<td>7,8</td>
<td>157</td>
<td>48,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>б. Львиная</td>
<td>17,56</td>
<td>5,49</td>
<td>99</td>
<td></td>
<td>4,80</td>
<td>0,6</td>
<td>3,6</td>
<td>3,9</td>
<td>173</td>
<td>43,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Стена Лагорио</td>
<td>17,63</td>
<td>5,85</td>
<td>105</td>
<td></td>
<td>4,80</td>
<td>0,6</td>
<td>2,2</td>
<td>5,9</td>
<td>190</td>
<td>40,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>б. Сердоликовая</td>
<td>17,54</td>
<td>5,81</td>
<td>104</td>
<td></td>
<td>4,16</td>
<td>1,0</td>
<td>1,9</td>
<td>5,9</td>
<td>217</td>
<td>62,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>м. Мальчин</td>
<td>17,70</td>
<td>5,80</td>
<td>104</td>
<td></td>
<td>4,48</td>
<td>0,6</td>
<td>2,5</td>
<td>5,9</td>
<td>173</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 ноября 2004 г.</td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td>13,7</td>
<td>17,67</td>
<td>6,23</td>
<td>96</td>
<td>8,15</td>
<td>4,16</td>
<td>1,1</td>
<td>6,8</td>
<td>4,7</td>
<td>88</td>
<td>18</td>
<td>123</td>
</tr>
<tr>
<td>ск. Кузьмичев Камень</td>
<td>13,7</td>
<td>17,79</td>
<td>6,31</td>
<td>97</td>
<td>8,17</td>
<td>4,16</td>
<td>0,8</td>
<td>6,4</td>
<td>4,3</td>
<td>91</td>
<td>9</td>
<td>111</td>
</tr>
<tr>
<td>ск. Иван- Разбойник</td>
<td>13,8</td>
<td>17,94</td>
<td>6,65</td>
<td>103</td>
<td>8,18</td>
<td>3,84</td>
<td>0,4</td>
<td>12,4</td>
<td>2,4</td>
<td>93</td>
<td>12</td>
<td>108</td>
</tr>
<tr>
<td>б. Львиная</td>
<td>13,8</td>
<td>17,60</td>
<td>6,02</td>
<td>93</td>
<td>8,15</td>
<td>3,84</td>
<td>0,7</td>
<td>8,8</td>
<td>7,5</td>
<td>124</td>
<td>9,9</td>
<td>117</td>
</tr>
<tr>
<td>Стена Лагорио</td>
<td>13,8</td>
<td>17,58</td>
<td>6,86</td>
<td>106</td>
<td>8,14</td>
<td>4,16</td>
<td>0,8</td>
<td>10,4</td>
<td>9,8</td>
<td>113</td>
<td>9,1</td>
<td>108</td>
</tr>
<tr>
<td>б. Сердоликовая</td>
<td>13,6</td>
<td>17,60</td>
<td>6,53</td>
<td>100</td>
<td>8,15</td>
<td>3,52</td>
<td>0,8</td>
<td>0,9</td>
<td>8,2</td>
<td>110</td>
<td>15</td>
<td>96</td>
</tr>
<tr>
<td>м. Мальчин</td>
<td>13,6</td>
<td>17,74</td>
<td>6,29</td>
<td>96</td>
<td>8,15</td>
<td>3,20</td>
<td>0,8</td>
<td>0,5</td>
<td>9,0</td>
<td>115</td>
<td>14</td>
<td>89</td>
</tr>
</tbody>
</table>
Ноябрьская съемка, выполненная в период минимальной рекреационной нагрузки, показала влияние хозяйственно-бытовых стоков по повышенным значениям окисляемости (4,16 мкг/л) в районе Биостанции, ск. Кузьминичев Камень и Стены Лагорио. К тому же было зафиксировано понижение величин рН в районе Стены Лагорио и кислорода в б. Львиной и на Биостанции.

Среднегодовая величина окисляемости в 2004 г. при ежемесячном отборе проб на акватории от очистных сооружений до м. Мальчин составляла 4,43 мгО/л. По сравнению с ее среднегодовыми значениями за 2003 г., равным 3,62 мгО/л, она выросла на 22 % и превысила предельно допустимую концентрацию (ПДК) на 10 % (Ковригина и др., 2005 б). Сопоставление величин окисляемости, полученных на акватории Карадага в 1960 г. (0,4–0,97 мгО/л) (Смирнова, 1960), со среднегодовыми значениями за 2004 г. (4,03–4,76 мгО/л) показало повышение последних более, чем в 4 раза.

Величина перманганатной окисляемости дает представление о количестве кислорода, идущего на частичное окисление органического вещества (ОВ), а сам метод позволяет быстро получить ориентировочную оценку содержания в воде ОВ. Принято считать, что ОВ природных вод на 50±5 % состоит из органического углерода, азота – на порядок, а фосфора – на два порядка меньше, чем углерода. По данным Б. А. Скопинцева, среднее содержание углерода в 0–50-метровом слое Черного моря равно 1,22 мг/л. Отсюда, величина отношения кислорода окисляемости к углероду в среднем составляет 0,34 (Скопинцев, 1975). Используя величины, полученные нами перманганатной окисляемости и коэффициент 0,34, рассчитано содержание органического углерода (СРОВ) в узкой прибрежной зоне Карадагского заповедника и близлежащих районах (табл. 6).

<table>
<thead>
<tr>
<th>Район\Дата</th>
<th>19 июля</th>
<th>8 сентября</th>
<th>17 ноября</th>
</tr>
</thead>
<tbody>
<tr>
<td>м. Мальчин</td>
<td>11,76</td>
<td>13,18</td>
<td>9,4</td>
</tr>
<tr>
<td>б. Сердоликовая</td>
<td>11,35</td>
<td>12,24</td>
<td>10,35</td>
</tr>
<tr>
<td>Стена Лагорио</td>
<td>13,58</td>
<td>14,12</td>
<td>12,24</td>
</tr>
<tr>
<td>б. Львиная</td>
<td>11,59</td>
<td>14,12</td>
<td>11,29</td>
</tr>
<tr>
<td>ск. Иван-Разбойник</td>
<td>11,97</td>
<td>15,06</td>
<td>11,29</td>
</tr>
<tr>
<td>ск. Кузьминичев Камень</td>
<td>12,35</td>
<td>15,06</td>
<td>12,24</td>
</tr>
<tr>
<td>Биостанция</td>
<td>19,56</td>
<td>14,12</td>
<td>12,24</td>
</tr>
<tr>
<td>Очистные сооружения</td>
<td>19,67</td>
<td>12,24</td>
<td></td>
</tr>
<tr>
<td>Предел колебаний</td>
<td>11,76–19,76</td>
<td>12,24–15,06</td>
<td>9,04–12,24</td>
</tr>
</tbody>
</table>

Среднее значение по всей акватории 13,97

Величины перманганатной окисляемости в поверхностном слое Черного моря в 50–60 гг. прошлого столетия имели пределы колебаний от 2,0 до 4,0 мгС/л (Скопинцев, 1975). Величины содержания СРОВ, полученные нами в 2004 г., выше в 3–5 раз, их пределы колебаний составляют 5,57–19,67 мгС/л, что позволяет сделать вывод о существенном повышении содержания растворенного органического вещества.

Данные о величине БПК5 как показателя запаса легкоусвояемого (нестойкого к биохимическому окислению) органического вещества для прибрежных вод Крыма были получены М. А. Добржанской в 1972 г. Средние величины БПК5 составляли 2,0 мгО/л (Добржанская, 1972). В нашем случае предела их колебаний в период максимальной рекреационной нагрузки (в июле 2004 г.) составляли от 0,24 до 2,1 мгО/л, т. е. с 70-х годов прошлого столетия практические не изменились. К сожалению, БПК5 определялись в одной съемке, поэтому только по этой съемке мы можем оценить влияние хозяйственно-бытовых стоков на состояние прибрежной акватории. Для этого мы привели коэффициент загрязнения (К3), принятый Б. А. Скопинцевым как отношение значения БПК5 к величине окисляемости. Если значения превышают 1, это свидетельствуют о неблагополучном санитарном состоянии акватории моря (Скопинцев, 1975). В нашем случае К3 < 1 (максимальное значение 0,78 отмечено в б. Сердоликовой), поэтому мы считаем, что исследуемая акватория в июле 2004 г. была незагрязненной.

Сравнение величин гидрохимических показателей в разных районах исследования дало возможность разделять их на две группы. В первую следует отнести Карадагский природный заповедник от ск. Кузьминичев Камень до б. Сердоликовой. Они относительно стабильны по гидрохимическим характеристикам и в...
меньшей степени подвержены антропогенному воздействию. В летне-осенний период 2004 г. они практически не отличались от незагрязненных прибрежных вод.

Районы, находящиеся под влиянием хозяйственно-бытовых сточных вод, составляют вторую группу. К ним относятся пгт Курортное, очистные сооружения и Биостанция. В этих районах отмечено превышение ПДК по величинам окисляемости, значительное накопление органического вещества. Здесь же наблюдалось понижение содержания кислорода, величин рН и солености и увеличение концентраций органического вещества и биогенных элементов.

Особенности пространственного распределения гидрохимических показателей в 5-ти мильной прибрежной зоне Карадага и в б. Коктебель рассмотрены нами по результатам одной из последних съемок 2 июля 2014 г. Съемка была проведена на четырех разрезах по нормали к береговой линии – от причала б. Коктебель, от м. Мальчин, от б. Сердоликовой и от Биостанции, пробы отбирали на 14 станциях согласно схеме отбора проб (рис. 5).

Колебания содержания растворённого кислорода на поверхности составляли 5,49–6,23 мл/л (99,5–112 % насыщения). Минимальное значение наблюдали в устье р. Отузка (ст. 21), а максимальное – у м. Мальчин (ст. 1). Относительное содержание кислорода меньше 100 % насыщения отмечено на мористых станциях 11, 6, 20 и 19 и сопровождалось резким повышением концентрации кремния до 224 мкг/л на ст. 6 (рис. 6). На остальных станциях в придонном слое процентное содержание кислорода почти не отличалось от значений на поверхности (табл. 7).

Распределение гидролого-гидрохимических показателей на акватории Карадагского природного заповедника и б. Коктебель 2 июля 2014 г.

<table>
<thead>
<tr>
<th>№ ст</th>
<th>H, м</th>
<th>T, °C</th>
<th>S, ‰</th>
<th>O₂</th>
<th>БПК₅</th>
<th>NO₂</th>
<th>NO₃</th>
<th>NH₄</th>
<th>PO₄</th>
<th>Si</th>
<th>P_орг</th>
<th>N_орг</th>
<th>Окис., мгО/л</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0</td>
<td>21,75</td>
<td>17,46</td>
<td>5,93</td>
<td>107,0</td>
<td>2,98</td>
<td>0,2</td>
<td>1,9</td>
<td>15,3</td>
<td>3,5</td>
<td>135,2</td>
<td>17,5</td>
<td>434</td>
</tr>
<tr>
<td>13 10</td>
<td>20,79</td>
<td>17,67</td>
<td>6,04</td>
<td>107,0</td>
<td>0,7</td>
<td>17,2</td>
<td>1,8</td>
<td>113,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>21,76</td>
<td>17,45</td>
<td>5,79</td>
<td>104,5</td>
<td>1,44</td>
<td>0,5</td>
<td>1,0</td>
<td>13,6</td>
<td>1,1</td>
<td>114,1</td>
<td>14,4</td>
<td>397</td>
</tr>
<tr>
<td>12 19</td>
<td>20,17</td>
<td>17,65</td>
<td>5,98</td>
<td>104,8</td>
<td>1,7</td>
<td>1,8</td>
<td>7,0</td>
<td>130,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>21,74</td>
<td>17,45</td>
<td>5,87</td>
<td>105,9</td>
<td>1,23</td>
<td>0,2</td>
<td>0,6</td>
<td>14,8</td>
<td>2,1</td>
<td>94,3</td>
<td>15,2</td>
<td>469</td>
</tr>
<tr>
<td>11 27</td>
<td>14,40</td>
<td>17,85</td>
<td>6,34</td>
<td>99,0</td>
<td>0,9</td>
<td>0,1</td>
<td>4,6</td>
<td>156,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>21,81</td>
<td>17,48</td>
<td>5,77</td>
<td>104,1</td>
<td>1,33</td>
<td>0,2</td>
<td>1,1</td>
<td>13,6</td>
<td>5,3</td>
<td>79,2</td>
<td>11,3</td>
<td>431</td>
</tr>
<tr>
<td>2 27</td>
<td>15,24</td>
<td>17,82</td>
<td>6,39</td>
<td>101,4</td>
<td>2,4</td>
<td>0,7</td>
<td>9,8</td>
<td>182,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>21,98</td>
<td>17,51</td>
<td>5,77</td>
<td>104,6</td>
<td>1,23</td>
<td>0,7</td>
<td>1,9</td>
<td>11,8</td>
<td>2,8</td>
<td>107,5</td>
<td>18,2</td>
<td>446</td>
</tr>
<tr>
<td>3 21</td>
<td>17,63</td>
<td>17,70</td>
<td>6,01</td>
<td>100,1</td>
<td>0,5</td>
<td>0,8</td>
<td>4,2</td>
<td>189,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>21,54</td>
<td>17,58</td>
<td>6,23</td>
<td>112,0</td>
<td>2,01</td>
<td>0,2</td>
<td>2,5</td>
<td>6,5</td>
<td>2,5</td>
<td>127,3</td>
<td>18,9</td>
<td>362</td>
</tr>
<tr>
<td>1 15</td>
<td>19,58</td>
<td>17,71</td>
<td>6,08</td>
<td>105,3</td>
<td>0,2</td>
<td>0,3</td>
<td>0,7</td>
<td>151,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>21,80</td>
<td>17,56</td>
<td>5,83</td>
<td>105,3</td>
<td>1,28</td>
<td>0,2</td>
<td>2,2</td>
<td>14,8</td>
<td>2,5</td>
<td>114,8</td>
<td>19,6</td>
<td>341</td>
</tr>
<tr>
<td>4 12</td>
<td>19,93</td>
<td>17,72</td>
<td>6,06</td>
<td>105,6</td>
<td>0,5</td>
<td>3,0</td>
<td>2,5</td>
<td>120,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>21,55</td>
<td>17,63</td>
<td>5,86</td>
<td>105,4</td>
<td>1,66</td>
<td>0,4</td>
<td>1,8</td>
<td>8,9</td>
<td>3,5</td>
<td>91,0</td>
<td>16,7</td>
<td>330</td>
</tr>
<tr>
<td>19 25</td>
<td>15,74</td>
<td>17,86</td>
<td>6,16</td>
<td>98,9</td>
<td>1,4</td>
<td>10,0</td>
<td>8,8</td>
<td>173,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>21,04</td>
<td>17,67</td>
<td>5,91</td>
<td>105,3</td>
<td>1,15</td>
<td>0,4</td>
<td>1,6</td>
<td>10,6</td>
<td>1,8</td>
<td>156,4</td>
<td>23,3</td>
<td>325</td>
</tr>
<tr>
<td>20 29</td>
<td>13,67</td>
<td>17,95</td>
<td>6,39</td>
<td>98,3</td>
<td>0,6</td>
<td>1,7</td>
<td>2,5</td>
<td>139,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>21,14</td>
<td>17,58</td>
<td>5,86</td>
<td>104,5</td>
<td>1,71</td>
<td>0,4</td>
<td>1,2</td>
<td>5,9</td>
<td>1,1</td>
<td>112,8</td>
<td>14,4</td>
<td>393</td>
</tr>
<tr>
<td>6 29</td>
<td>14,71</td>
<td>17,88</td>
<td>6,33</td>
<td>99,5</td>
<td>0,9</td>
<td>4,1</td>
<td>7,0</td>
<td>224,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>21,53</td>
<td>17,63</td>
<td>6,08</td>
<td>109,2</td>
<td>2,17</td>
<td>0,5</td>
<td>1,4</td>
<td>8,3</td>
<td>3,5</td>
<td>104,2</td>
<td>23,4</td>
<td>417</td>
</tr>
<tr>
<td>5 20</td>
<td>18,24</td>
<td>17,76</td>
<td>6,02</td>
<td>101,6</td>
<td>0,6</td>
<td>0,4</td>
<td>2,8</td>
<td>145,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>21,75</td>
<td>17,68</td>
<td>5,93</td>
<td>107,0</td>
<td>1,92</td>
<td>0,7</td>
<td>1,4</td>
<td>6,5</td>
<td>3,5</td>
<td>112,2</td>
<td>14,2</td>
<td>457</td>
</tr>
<tr>
<td>7 9</td>
<td>20,69</td>
<td>17,69</td>
<td>5,89</td>
<td>104,1</td>
<td>1,7</td>
<td>0,2</td>
<td>7,0</td>
<td>194,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>21,98</td>
<td>17,62</td>
<td>5,49</td>
<td>99,5</td>
<td>1,49</td>
<td>1,7</td>
<td>1,5</td>
<td>17,7</td>
<td>2,8</td>
<td>123,4</td>
<td>19,3</td>
<td>435</td>
</tr>
<tr>
<td>21 3</td>
<td>21,11</td>
<td>17,55</td>
<td>5,78</td>
<td>103,0</td>
<td>1,5</td>
<td>0,4</td>
<td>5,3</td>
<td>139,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>21,80</td>
<td>17,65</td>
<td>5,64</td>
<td>101,8</td>
<td>2,96</td>
<td>0,9</td>
<td>2,2</td>
<td>13,6</td>
<td>2,8</td>
<td>92,4</td>
<td>14,5</td>
<td>405</td>
</tr>
<tr>
<td>22 4</td>
<td>21,09</td>
<td>17,67</td>
<td>5,84</td>
<td>104,1</td>
<td>1,2</td>
<td>0,2</td>
<td>2,8</td>
<td>127,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Распределение нитритов и нитратов имело следующую картину: низкие величины (0,2–1,7 и 0,6–2,5 мкг/л) на поверхности и 0,2–2,4 и 0,2–17,2 мкг/л в придонном слое соответственно. В пространственном распределении повышенные значения нитритов наблюдали на станциях у пгт Курортное, а нитратов – в районе м. Мальчи и в б. Коктебель (рис. 6). Причем, на станциях 13 и 12 в придонном слое содержание нитратов было в несколько раз выше, чем в среднем по акватории.

Средние концентрации аммонийного и органического азота на поверхности составляли 12 и 403 мкг/л. Повышенное содержание азота аммонийного наблюдалось в б. Коктебель (ст. 13 и 12) и у пгт Курортное (ст. 21 и 22), что можно объяснить интенсивной рекреационной нагрузкой на эти участки акватории. В пространственном распределении органического азота пониженные концентрации отмечались в центре исследуемой акватории и повышенные – на мористой станции 2 разреза от м. Мальчи и прибрежной станции 7 у Биостанции (рис. 6).

Концентрация фосфатов были незначительны – от 1 до 5 мкг/л на поверхности и от 1 до 10 мкг/л у дна. Повышенные значения наблюдались на мористых станциях в придонном слое. Максимальное значение (9,8 мкг/л) зафиксировано на станции 2 разреза от м. Мальчи, несколько ниже (8,8 мкг/л) – на станции 19 разреза от б. Сердоликовой (табл. 7). На поверхности максимум фосфатов также наблюдался на станции 2 (рис. 7).

Процентное отношение минерального фосфора к общему (Рмин:Робщ) изменялось от 7 до 32 %. Значения ниже 30 % характерны для азовоморских вод, и, следовательно, мы наблюдали их присутствие на всей исследуемой акватории. Величина отношения выше 30 % зафиксирована только на станции 2, где сказывалось влияние открытой части Черного моря. Это подтверждается также пониженными концентрациями кремния (рис. 7).

Величины БПК₅ на поверхности имели пределы колебаний от 1,15 до 2,98 мг/л, и только на 4 станциях из 14 они превышали ПДК, равную 2,0 мг/л. Максимальные значения были отмечены на прибрежных станциях у пгт Курортное и у пгт Коктебель и превысили ПДК в 1,4 раза, что свидетельствует о повышенной рекреационной нагрузке в этих районах (рис. 8).
Величины окисляемости изменялись в пределах от 1,04 до 5,75 мгО/л. Их среднее значение (4,18 мгО/л), а также величины, полученные на поверхности 8 станций из 14, превышали ПДК, равную 4,0 мгО/л. Максимальное превышение было отмечено в районе выпуска сточных вод в б. Коктебель (ст. 13), а также у птт Курортное (ст. 22) (рис. 8). Кроме того, здесь отмечена максимальная (18 мкг/л) концентрация азота аммонийного, подтверждающая загрязнение хозяйственно-бытовым стоком (табл. 5, рис. 6).

Кроме влияния сточных вод на исследуемую акваторию выявлено аномальное распределение кислорода и биогенных веществ в районе м. Мальчин в связи с присутствием источника подземных пресных вод, обогащающих флору и фауну заповедника (Ковригина и др., 2005 б; Троценко и др., 2005). Впервые такое распределение обнаружено нами во время

Рис. 7. Распределение минеральной (а) и органической (б) форм фосфора в мкг/л, их соотношения в % (в), и минерального кремния (г) в мкг/л на поверхности акватории Карадагского заповедника 2 июля 2014 г.

Рис. 8. Распределение БПК₅ (а) в мг/л и окисляемости (б) в мгО/л на поверхности акватории Карадагского заповедника 2 июля 2014 г.
съемки 17 ноября 2004 г. В придонном слое северо-восточной части акватории на станции 1.

На разрезе от м. Мальчин (ст. 1) в придонном слое 17 мая 2006 г. так же, как и 17 ноября 2004 г., было отмечено аномальное распределение гидрохимических показателей, обусловленное присутствием источников подземных пресных вод: уменьшение с глубиной содержания кислорода, сопровождающееся повышением концентраций фосфатов и кремнекислоты.

В районе м. Мальчин (ст. 1) субмаринная разгрузка по аномальному распределению гидрохимических показателей отмечена в июле 2007 г. Пятно распресненных вод (при отсутствии берегового стока) в 2008 г. говорит о том, что субмаринная разгрузка имела место накануне съемки. 20 мая 2009 г. субмаринная разгрузка была обнаружена также по пониженным величинам насыщения кислородом и высоким концентрациям кремния.

Влияние азовоморских вод в поверхностном слое прибрежной зоны Карадага и в б. Коктебель прослеживалось по повышению содержания кремния, фосфатов и нитратов и понижению солености. Более четко это влияние наблюдалось по величинам процентного отношения Рмин:Рвал, значения которого были ниже 30%. Так, например, в летний период 2008 г. влияние азовоморских вод отмечено на всех станциях, в осенний – на 6 из 10: в б. Коктебель (ст. 13 и 12), на прибрежных станциях разреза от м. Мальчин (ст. 1 и 3) и от Биостанции (ст. 5 и 6).

Оценка трофности вод Карадагского природного заповедника была сделана нами по индексу эвтрофикации (E-TRIX) (Vollenweider et al., 1998). Для оценки уровня трофности исследованной акватории использованы средние значения гидрохимических показателей, полученных в летний период 2009 г., и по величинам хлорофилла «а», полученным Г. П. Берсеневой (Berseneva, Senicheva, 1995). Среднее значение хлорофилла «а» составляло 0,3 мг/м³. Величину индекса эвтрофикации E-TRIX рассчитывали по формуле:

\[E-TRIX = \lg([\text{Chl}] \cdot [D\%O_2] \cdot [PT] \cdot [DIN]) \cdot 1,5/1,2, \]

где Chl – хлорофилл «а», мкг/л; D %O_2 – отклонение в абсолютных значениях относительного содержания кислорода от 100% насыщения, %; PT – общий фосфор, мкг/л; DN – сумма растворенного минерального азота, мкг/л.

Величина индекса эвтрофикации, полученная для акватории Карадагского природного заповедника, равна 2,0, что позволяет отнести воды этого района к низкому трофическому уровню (табл. 8).

Таблица 8.

| Качество морских вод в зависимости от E-TRIX |
|-----------------|----------------|
| Величина E-TRIX | Трофические категории |
| < 4 | Низкий трофический уровень |
| 4–5 | Средний трофический уровень |
| 5–6 | Высокий трофический уровень |
| 6–10 | Очень высокий трофический уровень |

Остановимся на анализе гидрохимического материала, полученного нами за весь период исследований на близбереговых станциях как наиболее чувствительных к антропогенному загрязнению. Всего рассмотрено 6 прибрежных станций, 4 из которых расположены по 10-метровой изобате в 500 м от берега (ст. 13, 1, 4 и 7), а еще две – в 100 м от берега в районе пт Курортное и устья р. Отузки (ст. 21, 22) (рис. 5). Средние и экстремальные величины гидрохимических показателей за период 2004–2015 гг. на поверхности вышеуказанных станций, представлены в таблице 9.
Средние и экстремальные значения гидрохимических показателей на поверхности Карадагского взморья за период 2004–2015 гг.

<table>
<thead>
<tr>
<th>№ ст.</th>
<th>Обозначение</th>
<th>Минимум</th>
<th>Максимум</th>
<th>Среднее</th>
<th>Экстремум</th>
<th>RP</th>
<th>Окислость</th>
<th>БПК 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 n=17</td>
<td>О2</td>
<td>7,37-5,46</td>
<td>129,8-97,4</td>
<td>2,2-0,0</td>
<td>139,9-5,0</td>
<td>30,8-0,0</td>
<td>250-5</td>
<td>7,48-0,10</td>
</tr>
<tr>
<td>6,14</td>
<td>NO2</td>
<td>106,0</td>
<td>8,0</td>
<td>3,8</td>
<td>27,9</td>
<td>9,0</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>1 n=23</td>
<td>NO3</td>
<td>7,75-4,91</td>
<td>134,8-91,0</td>
<td>1,7-0,0</td>
<td>47,1-0,7</td>
<td>113,6-3,1</td>
<td>9,0</td>
<td>30,9-0,0</td>
</tr>
<tr>
<td>6,20</td>
<td>NH4</td>
<td>105,7</td>
<td>0,6</td>
<td>5,8</td>
<td>25,2</td>
<td>5,8</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>4 n=24</td>
<td>PO4</td>
<td>7,94-5,23</td>
<td>129,2-95,4</td>
<td>16,0-0,0</td>
<td>52,8-0,0</td>
<td>54,7-0,0</td>
<td>17,7-0,0</td>
<td>256-7</td>
</tr>
<tr>
<td>6,12</td>
<td>Si</td>
<td>104,8</td>
<td>1,2</td>
<td>5,3</td>
<td>20,8</td>
<td>5,5</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>7 n=25</td>
<td>БПК 5</td>
<td>7,14-5,23</td>
<td>132,0-96,5</td>
<td>2,4-0,0</td>
<td>16,5-0,0</td>
<td>46,0-2,4</td>
<td>37,3-0,4</td>
<td>239-10</td>
</tr>
<tr>
<td>6,04</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 n=3</td>
<td>Окисл., мгО/л</td>
<td>105,7</td>
<td>0,6</td>
<td>5,8</td>
<td>25,2</td>
<td>5,8</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>21 n=7</td>
<td>БПК 5</td>
<td>6,82-5,29</td>
<td>117,6-99,1</td>
<td>1,7-0,2</td>
<td>6,3-0,8</td>
<td>30,3-7,9</td>
<td>21,7-2,1</td>
<td>123-20</td>
</tr>
<tr>
<td>5,98</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 n=6</td>
<td>Окисл., мгО/л</td>
<td>110,8-101,3</td>
<td>1,7-0,4</td>
<td>4,5-1,0</td>
<td>72,2-10,6</td>
<td>14,4-2,8</td>
<td>92-15</td>
<td></td>
</tr>
<tr>
<td>5,99</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Анализ гидрохимических данных показал относительно высокое содержание кислорода. Его средние величины имели 105–106 % насыщения, что подтверждает высокую обеспеченность поверхностного слоя кислородом.

В то же время отмечено локальное влияние хозяйственно-бытовых сточных вод в районах б. Коктебель, Биостанции и пт Курортное по величинам БПК5 и окисляемости. Значения БПК5 изменились в пределах от 0 до 7,48 мг/л. Максимальные значения, отмеченные в Б. Коктебель (ст. 13) и в районе Биостанции (ст. 7) превышали ПДК в 2,9–3,7 раза. В интервале от 0 до 1,5 мг/л отмечен наиболее высокий (47–86) процент повторяемости. Превышение ПДК по величинам БПК5 в б. Коктебель наблюдался в 35 % случаев.

По значениям окисляемости наиболее высокий (30–50 %) процент повторяемости отмечен в интервале 2–4 мгО/л (ст. 1 и 4). Несмотря на высокую окисляемость, величины отношения БПК5 к окисляемости не доходят до 1, поэтому по санитарно-химическим показателям мы можем считать исследуемую акваторию незагрязненной. Содержание растворенного органического вещества, рассчитанное по окисляемости, колебалось от 8,3 до 15,6 мгС/л и не отличалось от диапазона колебаний в 2004 г. (5,6–19,9 мгС/л).

Максимум повторяемости концентрации фосфатов в поверхностном слое (от 76 % в районе Биостанции до 91 % в районе м. Мальчики) приходится на диапазон 0–10 мкг/л, характерный для незагрязненных прибрежных вод.

Диапазон колебаний концентраций кремния очень широк, от 5 до 311 мкг/л. Максимальная повторяемость его значений (до 90 % случаев) приходится на диапазон 0–150 мкг/л, что видно на гистограмме повторяемости. С увеличением содержания кремния от 150 до 400 мкг/л повторяемость его значений снижается от 12 % случаев в районе Биостанции до 4 % – в б. Сердоликовой. Повышение концентрации кремния отмечено весной и обусловлено поступлением речных и склоновых вод в период обильных дождей и таяния снега. Отрицательный коэффициент корреляции (–0,76) между соленостью и кремнием подтверждает влияние пресных вод различного происхождения в прибрежной зоне Карадагского природного заповедника и в б. Коктебель.

Концентрация азота нитритного имела низкие значения – от 0 до 16 мкг/л (табл. 9). Это наиболее неустойчивая форма минерального азота, которая обнаруживается в большом количестве только в случае загрязнения вод и является индикатором активно протекающих процессов деструкции органического вещества. Максимальная повторяемость (от 82 до 96 %
случаев) находится в пределах 0–1,5 мкг/л, с повышением концентрации повторяемость нитритов резко снижается: до 80 % в б. Коктебель, до 12 % в районе Биостанции и до 4 % случаев в б. Сердоликовой и на м. Мальчин. Случаев превышения ПДК (20 мкг/л) не отмечалось.

Высокая повторяемость концентраций азота нитратного (76 % случаев) была отмечена в интервале 0–3 мкг/л и в 18 % случаев – в диапазоне 3–20 мкг/л. Основное распределение концентрации нитратов приходится на интервал 0–20 мкг/л, характерный для незагрязненных прибрежных вод.

Диапазон изменений средних концентраций азота аммонийного составлял 15–28 мкг/л. Максимальная его величина (140 мкг/л) отмечена в б. Коктебель, в районе м. Мальчин она достигала 114 мкг/л. Минимальные значения аммония в 80 % случаев отмечены в интервале 0–30 мкг/л. И только в 20 % случаев – в интервале 30–150 мкг/л, что обусловлено повышением концентрации аммония за счет увеличения антропогенной составляющей.

Исследования, выполненные летом и осенью 2004 г. в узкой прибрежной зоне Карадага от б. Лисьей до м. Мальчин, позволили на основе гидрохимических данных оценить экологическое состояние данной акватории. Показано, что по содержанию кислорода и биогенных веществ эти районы не отличались от прибрежных вод Крыма. Отмечено накопление органического вещества в зоне Карадага, концентрации которого в 2004 г. была в 3–5 раз выше уровня 50–60 гт. прошлого столетия. В среднем по акватории в период максимальной рекреационной нагрузки в июле 2004 г. величины БПК₅ находились практически на уровне 70-х годов прошлого века.

На основании исследований 5-мильной акватории Карадагского природного заповедника и в б. Коктебель были выявлены особенности пространственного распределения гидрохимических показателей. Анализ данных показал относительно высокое содержание растворенного кислорода, низкие величины БПК₅ и типичные для «чистых» вод концентрации биогенных веществ. Отмечено локальное влияние хозяйственно-бытовых сточных вод пгт Коктебель и пгт Курортное, не отражающееся на общей картине благополучного санитарного состояния прибрежной зоны моря. Присутствие субмаринной разгрузки в районе м. Мальчин и на соседних к нему станциях отмечено в придонных горизонтах по высокой концентрации кремния и пониженному содержанию кислорода. Влияние азовоморских вод на поверхности прослеживалось по снижению средних концентраций кремния и минерального фосфора с востока на запад. Оно подтверждается низкими (<30) значениями процентного отношения Rₘнм:Rₕал практически на всей исследуемой акватории.

Содержание растворенного органического вещества, рассчитанное за настоящего времени, не отличалось от его содержания, полученного в 2004 г., т. е. за последние 12 лет накопления органического вещества в прибрежной зоне Карадага не обнаружено. По величинам индекса эвтрофикации, полученным в летний период 2009 г., прибрежные воды Карадагского природного заповедника и б. Коктебель можно классифицировать как воды низкого уровня трофности.
Глава 3.

ФАУНИСТИЧЕСКИЙ КОМПЛЕКС

3.1. ДОННЫЕ БЕСПОЗВОНОЧНЫЕ

3.1.1. ТАКСОНОМИЧЕСКИЙ СОСТАВ МАКРОЗООБЕНТОСА

С целью изучения разнообразия макрозообеноса акватории Карадагского природного заповедника в период 2001–2012 гг. сотрудниками Института морских биологических исследований (ранее Институт биологии южных морей) и Крымского федерального университета (ранее Таврический национальный университет) проведены многочисленные экспедиционные исследования. Этими исследованиями охвачены все морские биотопы от уреза воды до глубины 100 м (табл. 1). Полученные результаты опубликованы в ряде работ (Болтачева и др., 2010, 2015; Гринцов и др., 2006; Киселёва, 2015; Мурина и др., 2007; Прокудина, 1952; Ревков и др., 2015).

По этим материалам зарегистрированы 291 вид макрозообентоса, относящиеся к 14 крупным таксонам. Основное ядро составляют представители Annelida (81 вид), Mollusca (71) и Crustacea (91). Также обнаружены 13 видов Cnidaria, 3 – Porifera, 4 – Pantopoda, 8 – Bryozoa, 3 – Echinodermata, 8 – Chordata, 1 – Phoronida, 2 – Platyhelminthes. Nemertea, Oligochaeta, Acari до вида не идентифицированы.

Таблица 1.

Список видов донных беспозвоночных акватории Карадагского природного заповедника (по материалам экспедиционных исследований 2001–2012 гг.)

<table>
<thead>
<tr>
<th>Таксон</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porifera</td>
<td>Halichondria (Halichondria) panicea (Pallas, 1766)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porifera g. sp.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Sycon ciliatum (Fabricius, 1780)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Cnidaria</td>
<td>Aglaophenia pluma (Linnaeus, 1758)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Actinia equina (L., 1758)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calvadosia campanulata Lamourix, 1815</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Edwardsia claparedii (Panceri, 1869)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hydrozoa g. sp.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obelia longissima (Pallas, 1766)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obelia sp.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Opercularella lacerata (Johnston, 1847)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pachycerianthus solitarius (Rapp, 1829)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Podocoryna carnea M. Sars, 1846</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sagartia elegans (Dalyell, 1848)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sagartiogenet undatus (Müller, 1778)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sertularella polyzonias (Linnaeus, 1758)</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Platyhelminthes</td>
<td>Stylochus (Stylochus) tauricus Jacobowa, 1909</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turbellaria gen. sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Annelida</td>
<td>Oligochaeta gen. sp.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Polychaeta</td>
<td>Alitta succinea (Frey et Leucart, 1847)</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aricidea (Strelzovia) claudiae Laubier, 1967</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amphitriteides gracilis (Grube, 1860)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aonides paucibranchiata Southern, 1914</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>Capitella capitata (Fabricius, 1780)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cirrophorus harpagoneus (Storch, 1967)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dipolydora quadrilobata (Jacobi, 1883)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Dorvillea rubrovittata (Grube, 1855)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eulalia viridis (L., 1767)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eumida sanguinea (Orsted, 1843)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Eunereis longissima (Johnston, 1840)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Eunice viitata (Delle Chiaje, 1828)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogone naidina Orsted, 1845</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Fabricia stellaris (Muller, 1774)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ficopomatus enigmaticus (Fauvel, 1923)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genyellis tuberculata (Bobretzky, 1868)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Goniadella bobrezkii (Annenkova, 1929)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haplosyllis spongicola (Grube, 1855)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmothoe imbricata (Linnaeus, 1767)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Harmothoe reticulata (Claparede, 1870)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hediste diversicolor (Muller, 1776)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heteromastus filiformis (Claparède, 1864)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hesionidae gen. sp.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lagis koreni Malmgren, 1866</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Lysidice ninetta Aud et M.Edw, 1833</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malaniidae g. sp</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melisna palmata Grube, 1870</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Micronephys stammeri (Augener, 1932)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microphthalmus sp.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Microphthalmus fragilis Bobretzky, 1870</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microspio mecznikowianus (Claparède, 1869)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mysta picta Quatrefages, 1865</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Namanereis pontica (Bobretzky, 1872)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nephtys cirrosa Ehlers, 1868</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Nephtys hombergii Savigny, 1818</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nereidinae gen. sp.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nereis zonata Malmgren, 1867</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notomastus profundus (Eisig, 1887)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Nudissyllis pulligera (Krohn, 1852)</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ophelia limacina (Rathke, 1843)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oriopsis armandi (Claparède, 1864)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pectinaria (Pectinaria) belgica (Pallas, 1766)</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Perinereis cultrifera (Grube, 1840)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pisanella remotigrina (Southern, 1914)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platynereis dumetii (Aud et M.Edw, 1834)</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pholoe inornata Johnson, 1839</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Phyllodoce lineata (Claparède, 1870)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyllodoce maculata (Linnaeus, 1767)</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Phyllodoce mucosa Örsted, 1843</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Phyllodocidae gen. sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polycirrus sp.</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polycirrus jubatus Bobretzky, 1869</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polygordius neapolitanus Fraipont, 1887</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Polyophthalmus pictus (Dujardin, 1839)</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Prionospio cirrifera Wiren, 1883</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Protodorvillea kefersteini (McIntosh, 1869)</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Protodrylalus flavicapitatus (Uljanin, 1877)</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

78
Pseudomystides limbata (Saint-Joseph, 1888)	+
Pterocirrus macroceros (Grube, 1860)	+
Sabellaria taurica (Rathke, 1837)	+
Saccocirrus papillo cercus Bobretzky, 1872	+
Salvatoria clavata (Claparède, 1863)	+ + +
Salvatoria limbata (Claparède, 1868)	+
Schistomeringos rudolphi (Delle Chiave, 1828)	+
Sigambra tentaculata (Treadwell, 1941)	+ +
Sphaerosyllis bulbosa Southern, 1914	+
Spio filicornis (Müller, 1776)	+ +
Spirobranchus triquetus (L., 1758)	+ +
Spirorbidae gen. sp.	+
Syllis gracilis Grube, 1840	+
Syllis hyalina Grube, 1863	+ +
Syllis prolifera (Krohn, 1852)	+
Syllis variegata Grube, 1860	+
Spirobis pusilla (Rathke, 1799)	+
Spirobis corrugatus Montagu, 1803	+
Terebellides stroemii Sars, 1835	+ +
Trypanosyllis zebra (Grube, 1860)	+
Vermiliopsis infundibulum (Philippi, 1844)	+

| **Nemertea** | + + + + |

| **Arthropoda** |
| **Acarina gen. sp.** | + |
| **Acarina gen. sp.** | + |

| **Pantopoda** |
Achelia echinata Hodge, 1864	+
Callipallene brevirostris (Johnston, 1837)	+
Endeis spinosa (Montagu, 1808)	+
Tanystylum controstre (Dohrn, 1881)	+

| **Crustacea** |
| **Ostracoda gen. sp.** | + |
| **Cirripedia** |
| **Amphibalanus improvisus** (Darwin, 1854) | + + + |
| **Cumacea** |
Bodotria arenosa mediterranea (Steuer, 1938)	+ +
Eudorella truncatula (Bate, 1856)	+ +
Iphinoe sp.	+
Iphinoe eliae Băcescu, 1950	+ +
Iphinoe tenella Sars, 1878	+
Nannastacus euxinicicus Bacescu, 1951	+
Cumella (Cumella) limicola Sars, 1879	+ + +

<p>| Decapoda |
| Alpheus dentipes Guérin, 1832 | + |
| Athanas nitescens (Leach, 1813 [in Leach, 1813–1814]) | + + |
| Brachy notus sexdentatus (Risso, 1827) | + |
| Clibanarius erythropus (Latreille, 1818) | + |
| Diogenes pugilator (Roux, 1829) | + + + |
| Eriphia verrucosa (Forskål, 1775) | + + |
| Liocarcinus depurator (L., 1758) | + |
| Liocarcinus holsatus (Fabricius, 1798) | + |
| Liocarcinus navigator (Herbst, 1794) | + + |
| Macropodia longirostris (Fabricius, 1775) | + |
| Pachygrapsus marmoratus ([Fabricius, 1787]) | + |</p>
<table>
<thead>
<tr>
<th>Taxonomic Group</th>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palaemon adspersus</td>
<td>Rathke, 1837</td>
<td>+</td>
</tr>
<tr>
<td>Pilumnus hirtellus</td>
<td>(L., 1758)</td>
<td>+</td>
</tr>
<tr>
<td>Pisidia longimana</td>
<td>(Risso, 1816)</td>
<td>+</td>
</tr>
<tr>
<td>Upogebia pusilla</td>
<td>(Petagna, 1792)</td>
<td>+ +</td>
</tr>
<tr>
<td>Xantho poressa</td>
<td>(Olivi, 1792)</td>
<td>+ +</td>
</tr>
<tr>
<td>Tanais dulongii</td>
<td>(Audouin, 1826)</td>
<td>+</td>
</tr>
<tr>
<td>Apsudopsis ostroumovi</td>
<td>Baccescu & Carausu, 1947</td>
<td>+ + +</td>
</tr>
<tr>
<td>Chondrochelica savignyi</td>
<td>(Kroyer, 1842)</td>
<td>+ +</td>
</tr>
<tr>
<td>Tanais dulongii</td>
<td>(Audouin, 1826)</td>
<td>+</td>
</tr>
<tr>
<td>Tanaidacea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apseudopsis ostroumovi</td>
<td>Bacescu & Carausu, 1947</td>
<td>+ + +</td>
</tr>
<tr>
<td>Chambrelia bidentata</td>
<td>(Adams, 1800)</td>
<td>+</td>
</tr>
<tr>
<td>Eurydice dollfusi</td>
<td>Monod, 1930</td>
<td>+</td>
</tr>
<tr>
<td>Gnathia oxyuracea</td>
<td>(Lilljeborg, 1855)</td>
<td>+</td>
</tr>
<tr>
<td>Idotea baltica</td>
<td>(Pallas, 1772)</td>
<td>+</td>
</tr>
<tr>
<td>Idotea ostroumovi</td>
<td>Sowinsky, 1895</td>
<td>+</td>
</tr>
<tr>
<td>Lekanesphaera hookeri</td>
<td>(Leach, 1814)</td>
<td>+ +</td>
</tr>
<tr>
<td>Stenosoma capito</td>
<td>Rathke, 1837</td>
<td>+ + +</td>
</tr>
<tr>
<td>Isopoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mysidacea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mysidacea</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Gastroscuer sanctus</td>
<td>(Van Beneden, 1861)</td>
<td>+ +</td>
</tr>
<tr>
<td>Paramysis (Serrapalpisis) lacustris tanaiteca</td>
<td>Martinov, 1924</td>
<td>+</td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampelisca</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Ampelisca diadema</td>
<td>(Costa, 1853)</td>
<td>+ +</td>
</tr>
<tr>
<td>Ampelisca sevastopolienis</td>
<td>Grintsov, 2010</td>
<td>+ +</td>
</tr>
<tr>
<td>Ampithoe helleri</td>
<td>Karaman, 1975</td>
<td>+</td>
</tr>
<tr>
<td>Ampithoe ramondi</td>
<td>Audouin, 1826</td>
<td>+</td>
</tr>
<tr>
<td>Amphipoda gen. sp.</td>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td>Apherusa bispinosa</td>
<td>(Spence Bate, 1857)</td>
<td>+</td>
</tr>
<tr>
<td>Apherusa chiereghini</td>
<td>Giordani-Soika, 1949</td>
<td>+</td>
</tr>
<tr>
<td>Apohyale prevostii</td>
<td>(H. Milne Edwards, 1830)</td>
<td>+ +</td>
</tr>
<tr>
<td>Bathyporeia guilliamsoniana</td>
<td>(Spence Bate, 1857)</td>
<td>+</td>
</tr>
<tr>
<td>Biancolina algicola</td>
<td>Della Valle, 1893</td>
<td>+</td>
</tr>
<tr>
<td>Caprella acantifera</td>
<td>Leach, 1814</td>
<td>+ +</td>
</tr>
<tr>
<td>Caprella danilevskii</td>
<td>Czerniavski, 1868</td>
<td>+</td>
</tr>
<tr>
<td>Caprella liparotensis</td>
<td>Heller, 1879</td>
<td>+</td>
</tr>
<tr>
<td>Caprella mitis</td>
<td>Mayer, 1890</td>
<td>+</td>
</tr>
<tr>
<td>Caprella sp.</td>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td>Cymadusa crassicornis</td>
<td>(Costa, 1853)</td>
<td>+</td>
</tr>
<tr>
<td>Dexamine spina</td>
<td>(Montagu, 1813)</td>
<td>+</td>
</tr>
<tr>
<td>Echinogammarus foxi</td>
<td>(Schellenberg, 1928)</td>
<td>+ +</td>
</tr>
<tr>
<td>Echinogammarus olivii</td>
<td>(H. Milne Edwards, 1830)</td>
<td>+ +</td>
</tr>
<tr>
<td>Echinogammarus sp.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Ericthonius diffimis</td>
<td>H. Milne Edwards, 1830</td>
<td>+ +</td>
</tr>
<tr>
<td>Gammarellus carinatus</td>
<td>Rathke, 1843</td>
<td>+</td>
</tr>
<tr>
<td>Gammarus insensibilis</td>
<td>Stock, 1966</td>
<td>+ +</td>
</tr>
<tr>
<td>Gammarus sp.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Hyale crassipes</td>
<td>(Heller, 1866)</td>
<td>+</td>
</tr>
<tr>
<td>Hyale perieri</td>
<td>(Lucas, 1849)</td>
<td>+ +</td>
</tr>
<tr>
<td>Hyale pontica</td>
<td>Rathke, 1847</td>
<td>+</td>
</tr>
<tr>
<td>Hyale schmidti</td>
<td>(Heller, 1866)</td>
<td>+</td>
</tr>
<tr>
<td>Hyale sp.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Jassa marmorata</td>
<td>Holmes, 1905</td>
<td>+</td>
</tr>
<tr>
<td>Jassa ocia</td>
<td>(Spence Bate, 1862)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Medicorophium runcicorne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Della Valle, 1893)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melita palmata</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(Montagu, 1804)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microdeutopus anomalus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(Rathke, 1843)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microdeutopus gryllotalpa</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Costa, 1853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microdeutopus sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Microdeutopus versicillatus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(Spence Bate, 1857)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocorophium insidiosum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>(Crawford, 1937)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nannonyx goesii reductus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Greze, 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nototropis guttatus Costa</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Costa, 1853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nototropis massiliensis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Bellan-Santini, 1975</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orchestia gammarellus</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>(Pallas, 1766)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orchomene humilis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Costa, 1853</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parhyale taurica Grintsov</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periculodes longimanus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>longimanus (Spence Bate &</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westwood, 1868)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phtisica marina Slabber,</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>1769</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudoprotella phasma</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>(Montagu, 1804)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenothoe monocoloides</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(Montagu, 1815)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchalidium maculatum</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Stebbing, 1906</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchalidium sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Siphonoecetes (Centralocectes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dellavallei Stebbing, 1899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritaeta gibbosa</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>(Spence Bate, 1862)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Chironomidae lar. gen. sp.</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Clunio marinus Haliday,</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>1855</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insecta lar. gen. sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyclaplacophora</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Acanthochitona fascicularis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>(L., 1767)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidochitona cinerea</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(L., 1767)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalvia</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Bivalvia g. sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Abra alba (W. Wood, 1802)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Abra nitida milachewichii</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Nevesskaja, 1963</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abra sp. (juven.)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Anadara kagoshimensis</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>(Tokunaga, 1906)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anadara inaequivalvis</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(Bruguière, 1789)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthocardia paucicostata</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(G. B. Sowerby II, 1834)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiidae gen. sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Chamelea gallina</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(L., 1758)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donax trunculus Linnaeus,</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>1758</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gibbomodiola adriatica (Lamarck, 1819)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Gouldia minima ((Montagu, 1803)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Irus irus (Linnaeus, 1758)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Fabulina fabula (Gmelin, 1791)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucinella divaricata</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(Linnaeus, 1758)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macomangulus tenuis (da Costa, 1778)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Modiolula phaseolina</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(Philippi, 1844)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moerella donacina</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(Linnaeus, 1758)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moerella sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mytilaster lineatus</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(Gmelin, 1791)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mytilus galloprovincialis</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lamarck, 1819</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papillicardium papillosum</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(Poli, 1791)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parvicardium exiguum</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(Gmelin, 1791)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Presence</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Parvicardium simile (Milaschewitsch, 1909)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Petricola lithophaga (Retzius, 1788)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pitar rudis (Poli, 1795)</td>
<td>+ + + +</td>
<td></td>
</tr>
<tr>
<td>Polititapes aureus (Gmelin, 1791)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Spisula subtruncata (da Costa, 1778)</td>
<td>+ + +</td>
<td></td>
</tr>
<tr>
<td>Tellina sp. (juv.)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Thracia phaseolina (Lamarck, 1818)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tellina sp. (juv.)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Auristomia erjaveciana (Brusina, 1869)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Bittium reticulatum (Da Costa, 1778)</td>
<td>+ + +</td>
<td></td>
</tr>
<tr>
<td>Bittium submamillatum (de Rayneval & Ponzi, 1854)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Brachystoma eulimoideas (Hanley, 1844)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Caecum trachea (Montagu, 1803)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Caecum armoricum de Folin, 1869</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Calyptraea chinesis (Linnaeus, 1758)</td>
<td>+ + +</td>
<td></td>
</tr>
<tr>
<td>Cerithiopsis minima (Brusina, 1865)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cerithiopsis tubcularis (Montagu, 1803)</td>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>Ebala pointeli (de Folin, 1868)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Gibbula adriatica (Philippi, 1844)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Gibbula divaricata (L., 1758)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Hydrobia acuta (Draparnaud, 1805)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Iravadi quadrasi (O. Boettger, 1893)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Mangelia costata (Pennant, 1777)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Monoporus perversus (Linnaeus, 1758)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Omalogyra atomus (Philippi, 1841)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Parthenina indistincta (Montagu, 1808)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Parthenina interstincta (J. Adams, 1797)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rapana venosa (Valenciennes, 1846)</td>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>Retusa umbilicata (Montagu, 1803)</td>
<td>+ + +</td>
<td></td>
</tr>
<tr>
<td>Retusa truncatula (Bruguère, 1792)</td>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>Rissoa splendidida Eichwald, 1830</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rissoa membranacea (J. Adams, 1800)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rissoa parva (Da Costa, 1778)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Rissoa venusta Philippi, 1844</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Setia turriculata Monterosato, 1884</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Setia valvatoides (Milaschewitsch, 1909)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Spiralinella incerta (Milaschewitsch, 1916)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Tricolia pullus (L., 1758)</td>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>Tritia neritea (L., 1758)</td>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>Tritia pellucida (Risso, 1826)</td>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>Tritia reticulata (L., 1758)</td>
<td>+ + +</td>
<td></td>
</tr>
<tr>
<td>Tritia sp.</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Trophonopsis breviata (Jeffreys, 1882)</td>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>Bryozoa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amathia gracilis (Leidy, 1855)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Conopeum reticum (Linnaeus, 1767)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Conopeum seurati (Canu, 1928)</td>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>Cradoscrupecellaria bertholletii (Audouin, 1826)</td>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>Cryptosula pallasianna (Moll, 1803)</td>
<td>+ + +</td>
<td></td>
</tr>
<tr>
<td>Einhornia arctica (Borg, 1931)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Schizomavella (Schizomavella) auriculata (Hassall, 1842)</td>
<td>+ +</td>
<td></td>
</tr>
<tr>
<td>Schizomavella (Schizomavella) linearis (Hassall, 1841)</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Echinodermata</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphiura stepanovt Djakonov, 1954</td>
<td>+ +</td>
<td></td>
</tr>
</tbody>
</table>
Известно, что к началу 50-х годов XX века в районе Карадага было зафиксировано 354 вида гидробионтов, относящихся к макрозообентосу, список которых опубликован в Каталоге фауны и флоры Черного моря района Карадагской биологической станции (Прокудина, 1952). Сравнительный анализ наших данных со списком видов из этого каталога не выявил отличий в соотношении количества видов разных таксономических групп (рис. 1).

Таким образом, видовое богатство и разнообразие дононой фауны района Карадага остается на высоком уровне, во многом, вероятно, благодаря заповедному статусу акватории, существующему с 1979 г.

3.1.2. РАКООБРАЗНЫЕ. ОТРЯД ДЕСЯТИНОГИЕ

Изучение фауны Черного моря было начато экспедицией под руководством К.И. Габлица в 1784 г. (Ульянин, 1872), имеет более чем двухсотлетнюю историю. В начале XIX века Мартин Ратке проводил изучение фауны в водах южного прибережья Крымского полуострова, в частности в районе Феодосии и Партенита (Rathke, 1837). В конце XIX — начале XX века В. И. Чернявский (1884) и В. К. Совинский (1893, 1904) описывали уже 48 видов десятиногих ракообразных южнобережья Крыма, в том числе ряд новых для данного региона. Работы М.А. Долгопольской (1940, 1969) посвящены изучению декапод (за исключением крабов) на разных стадиях онтогенеза. Публикации С.М. Ляхова (1940), И.В. Шаронова (1952) и З.А. Виноградовой (1951) посвящены систематике, биологии и экологии взрослых десятиногих и их личинок, а также Л.А. Прокудиной (1952), составившей общий список крабов аква-

Фауна десятиногих ракообразных Черного моря включает 43 вида, из которых 28 являются только морскими и 15 видов – эвригаланиными (Аносов et al., 2012). Восемь видов от общего количества декапод являются вселенцами, проникшими в Черное море на протяжении XX – начала XXI столетия. Десятиногие ракообразные заповедника составляют 60,5 % фауны Черного моря, причем только лишь один вид Rhithropanopeus harrisi является для данного участка аллохтонным. Три вида декапод (Lysmata seticaudata, Pachygrapsus marmoratus, Eriphia verrucosa), обитающие в акватории Карадагского природного заповедника занесены в Красную книгу Республики Крым (2015).

Материал собирали с апреля по декабрь 2016 г. в зоне верхней сублиторали, охватывающей прибрежную акваторию Юго-Восточного Крыма от м. Кик-Атлама до м. Крабий (рис. 1). Каждый из указанных участков обследовался не менее трех раз – летом, осенью и в первую половину зимы на глубинах от 0 до 2 м.

При идентификации видов использованы работы коллективов авторов под руководством Ng Peter K. L. по таксономии высших крабов (Ng, P.K.L. et al., 2008), а также S. De Grave для всех декапод в целом (Sammy De Grave, et al., 2009; Sammy De Grave, et al., 2011).

Отлов десятиногих раков проводился с помощью гидробиологического сачка (вход 60х40 см, ячей 1 мм), а также вручную. Определение количественных показателей осуществлялось методом прямого учета на площадках площадью от 0,5 м² (для мелких видов) до 2,0 м² (для крупных) в нескольких точках с последующим пересчетом полученных данных на 1 м². При достаточной прозрачности воды проводился визуальный осмотр прибрежных участков с применением легководолазного снаряжения на наличие крупных форм декапод.
Мелкие формы фиксировали в 4 % растворе формалина, их обработка проводилась в последующем в лабораторных условиях. Крупные виды идентифицировались на месте отбора, после чего выпускались в море в живом виде. При необходимости проведения дополнительных исследований по идентификации крупных видов отдельные особи также фиксировались в 4 % формалине и доставлялись в лабораторию.

В мелководных прибрежных акваториях от м. Крабий до м. Кики-Атлама (западная часть б. Двуякорной) нами отмечено присутствие 15 видов десятиногих ракообразных, принадлежащих к 10 семействам. В 2016 г. наибольшее разнообразие Decapoda отмечено на участках верхней сублиторали в б. Львиная (Карадагский природный заповедник) и в б. Провато (пгт Орджоникидзе), составляя 10 и 13 видов соответственно (табл. 1).

Таблица 1.

Распределение Decapoda по участникам по данным исследований 2016 г.

<table>
<thead>
<tr>
<th>Вид Decapoda</th>
<th>Участок*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>Palaemon elegans Rathke, 1837</td>
<td>X X X X X X X</td>
</tr>
<tr>
<td>Palaemon adspersus Rathke, 1837</td>
<td>X X</td>
</tr>
<tr>
<td>Palaemon serratus (Pennant, 1777)</td>
<td>X</td>
</tr>
<tr>
<td>Alpheus dentipes Guérin, 1832</td>
<td>X X X X X</td>
</tr>
<tr>
<td>Hippolyte leptocerous (Heller, 1863a) – Syn. H. longirostris (Czerniavsky, 1868)</td>
<td>X X X X X</td>
</tr>
<tr>
<td>Hippolyte sapphica d’Udekem d’Acoz, 1993</td>
<td>X X X</td>
</tr>
<tr>
<td>Lysmata seticaudata (Risso, 1816)</td>
<td>X</td>
</tr>
<tr>
<td>Pisidia longimana (Risso, 1816)</td>
<td>X X X</td>
</tr>
<tr>
<td>Clibanarius erythrops Latreille, 1818</td>
<td>X X</td>
</tr>
<tr>
<td>Diogenes pugilator Roux, 1828</td>
<td>X</td>
</tr>
<tr>
<td>Eriphia verrucosa Forskal, 1775</td>
<td>X X</td>
</tr>
<tr>
<td>Macropodia longirostris (Fabricius, 1775)</td>
<td>X</td>
</tr>
<tr>
<td>Pilumnus hirtellus (Linnaeus, 1761)</td>
<td>X X</td>
</tr>
<tr>
<td>Xantho poressa (Olivi, 1792)</td>
<td>X X X</td>
</tr>
<tr>
<td>Pachygrapsus marmoratus (Fabricius, 1793)</td>
<td>X X X</td>
</tr>
</tbody>
</table>

Всего: 3 2 5 10 2 13 9

Семейство Palaemonidae Samouelle, 1819.
1. *Palaemon elegans* Rathke, 1837. Широко распространенный массовый вид. Обитает повсеместно в пределах всего обследованного прибрежья каменистых биотопах. Встречается на стенках гидротехнических сооружений — буя, волноломов, затопленной части бетонных набережных. Предпочитает открытое твердые участки, избегая плотные заросли бурых водорослей (*Cystoseira* и др.). Плотность каменной креветки значительно изменялась по участкам, а также в зависимости от времени года, погоды и температуры воды — от 10–20 до 50–70 экз./м². Наибольшие скопления данной креветки зафиксированы в сентябре 2016 г., при температуре воды 25 °C в акватории Карадага (Кузьмичев камень), на глубинах 0,2–1 м, где её плотность достигала 560 экз./м².
2. *Palaemon adspersus* Rathke, 1837. Обычный вид. Встречается совместно с *P. elegans*. Отмечен в сентябре-октябре 2016 г. в б. Провато, а также в пределах акватории Карадага у Кузьмичева камня. Обитает в биотопах *Zostera* и *Enteromorpha*, значительно реже встречается среди других водорослей-макрофитов. В зарослях *Cystoseira* креветки данного вида не обнаружены. Плотность травяной креветки на глубине 0,5–1,5 м составляла 3–5 экз./м². Однако, в сентябре 2016 г. у ск. Кузьмичев Камень нами отмечены её скопления до 50–70 экз./м².
3. *Palaemon serratus* (Pennant, 1777). Редкий и малочисленный вид. Встречается в биотопах *Zostera* и *Enteromorpha*, значительно реже встречается среди других водорослей-макрофитов. В зарослях *Cystoseira* креветки данного вида не обнаружены. Плотность травяной креветки на глубине 0,5–1,5 м составляла 3–5 экз./м². Однако, в сентябре 2016 г. у ск. Кузьмичев Камень нами отмечены её скопления до 50–70 экз./м².
4. *Alpheus dentipes* Guérin, 1832. Редкий
вид. Взрослые особи впервые увдана для побе-
режья Юго-Восточного Крыма. Одна особь от-
ловлена 04.12.2016 г. у м. Кинк-Атлама в запад-
ной части б. Двухякорной на каменисто-
валунном пляже на глубине 0,7 м, при темпе-
ратуре воды 8,5 °C. Плотность A. dentipes не пре-
вышала 1 экз./м². Креветки отмечались под
большими камнями, лежащими на песке.
Семейство Hippolytidae Bate, 1888.
5. Hippolyte leptocerus (Heller, 1863a) – Syn. H. longirostris (Czerniavsky, 1868). Обычный
вид. Зафиксирован на всех станциях на протя-
жении сезона 2016 г., обычно в зарослях мак-
рофитов, реже в растительности на вертикаль-
ных стенках валунов. Численность на глубинах
0,5–2,0 м не велика.
6. Hippolyte sapphica d’Udekem d’Acoz, 1993. Обычный обитатель зарослей макрофи-
тов. Впервые приводится для данного района.
Заметно уступает по численности H. leptocerus. В
общей структуре откребных на станции осо-
бей рода H. sapphica обычно составляла не бо-
ле 25 %. В осенне-зимних пробах его было
больше, но данный факт требует дополнитель-
ного подтверждения. Населяет те же биотопы,
что и H. leptocerus. Однако отмечено, что веро-
ятность находки H. sapphica в зарослях Cystoseira
реже, чем H. leptocerus. Чаше отме-
чался в обрастаниях растительности на верти-
кальных стенках валунов, нежели на их гори-
зонтальных участках.
7. Lysmata seticaudata (Risso, 1816). Редкий
вид. Ведет скрытный, либо ночной образ жизни. Подтвер-
дено обитание L. seticaudata в аквато-
рии Карадагского природного заповедника. В светлое время суток (в полдень) 26.07.2016 г.
в западной части б. Львиная отмечена одна
крупная особь, находившаяся в вертикальной
трещине каменной монолитной стенки шири-
ной 1,5–2,5 см (на друе из нескольких живых
особей Mytilis galloprovincialis) на глубине
0,6 м.
Семейство Porcellanidae Haworth, 1825.
8. Pisidia longimana (Risso, 1816). Обыч-
ный, местами массовый вид. Фиксировался
наблюдениями и сборами с июля по декабрь
2016 г. Численность данного вида у берегов на
малководных значительно изменилась. В июле
при температуре воды 26 °C отмечались еди-
ничные особи, а с понижением температуры в
октябре (16 °C) зафиксирована максимальная
плотность 50–130 экз./м², а в декабре при тем-
пературе 8,5 °C она снова снизилась до 10–20
экз./м². Встречается повсеместно от б. Львино-
й до м. Кинк-Атлама и б. Двухякорной. Обитает
на вертикальных стенках и нишах скал, валунов,
оконечность б. Провато на глубине 0,5 м, при температуре воды 16 °C. Обе особи находились на боковых поверхностях камня размером 30x30 см, обросшего макрофитами. Вероятно, выходит на мелководья при понижении температуры, так как обычным местообитанием данного краба являются более глубокие участки каменистой сублиторали.

Семейство Pilumnidae Samouelle, 1819.

13. Pilumnus hirtellus (Linnaeus, 1761). Обычный вид. У берега обитает в тех же биотопах, что и E. verrucosa. Предпочитает каменистые участки с многочисленными валунами, образующими множество укрытий. Обитает у берега на протяжении всего года. Обнаружен в б. Львиная Карадагского природного заповедника (26.07.2016 г., t – 26 °C); у каменистого мыса, образующего восточную оконечность б. Провато (16.10.2016 г., t – 16 °C) и в б. Двуякорная (04.12.2016 г., t – 8,5 °C), на глубинах от 0,7 до 1,5 м. Плотность данного вида – до 1 экз./м², но на отдельных участках – 2 экз./м². При понижении температуры зимой часть особей остается у берега, локализуясь под крупными валунами.

Семейство Xanthidae MacLaeay, 1838.

14. Xanthopoeura (Olivi, 1792). Широко распространен. Массовый вид. Обитает в различных биотопах: на глубинах 0,2–2,0 м на песчаных (пляж у набережной пгт Орджоникидзе, 28.05.2016 г., t – 21 °C, 2–4 экз./м²), на галечниково-валунных (б. Львиная, Карадагский природный заповедник, 26.07.2016 г., t – 26 °C, единично; у каменистого мыса, образующего восточную оконечность б. Провато, 16.10.2016 г., t – 16 °C) и в б. Двуякорная (04.12.2016 г., t – 8,5 °C), на горизонтальных затопленных бетонных конструкциях (набережная пгт Орджоникидзе, 28.05.2016 г., t – 21 °C, 1–2 экз./м²). Часть особей остается зимой на небольших глубинах (0,5–1,0 м) под камнями (восточная сторона основания м. Киик-Атлама со стороны б. Двуякорной, 04.12.2016 г., t – 8,5 °C, до 2 экз./м²).

Семейство Grapsidae MacLeay, 1838.

15. Pachygrapsus marmoratus (Fabricius, 1793). Широко распространенный вид. Обитает повсеместно на участках с каменистыми биотопами: галечниково-валунных пляжах, отдельно лежащих на дне и выступающих на поверхность валунов и др. Фиксировался практически на всех станциях от м. Крабий и до западной части б. Двуякорная, с мая по октябрь 2016 г. Плотность P. marmoratus составляла в среднем 1–2 экз./м². Отмечено, что в пределах прибрежной акватории Карадагского природного заповедника численность данного краба несколько ниже, чем на соседних с ним участках (м. Крабий, м. Киик-Атлама), где его плотность на отдельных станциях достигала 3–5 экз./м².

В пределах Карадагского природного заповедника и его окрестностей не установлено обитание взрослых крабов Rhithropanopeus harrisii (Panopeidae), несмотря на обнаружение его личиночных форм (Гринцов и др., 2004; Мурина и др., 2010).

3.1.3. МОЛЛЮСКИ CHAMELEA GALLINA И MYTILUS GALLOPROVINCIALIS ВЕРХНЕЙ СУБЛИТОРАЛИ: МНОГОЛЕТНИЕ ИЗМЕНЕНИЯ

Хамелея Chamelea (Venus) gallina (Linne, 1758) – представитель двустворчатых моллюсков отряда Veneridae. Ареал вида включает Черное и Средиземное моря, Атлантический океан от Норвегии до Марокко, (в т. ч. Англию) (Скарлато, Старобогатов, 1972; Backeljau et al., 1994). Часть исследователей различают два подвида, один из них указывается для Средиземного моря (C. g. gallina), второ́й – для прибрежных вод Атлантики (C. g. striatula) (Backeljau et al., 1994). В Средиземном море хамелея является промысловым моллюском, недавно ее промысел в Черном море начался Турция. Сведения по биологии черноморской хамелеи систематизированы (Киселева, 1981). В Черном море этот вид достигает размера...
30 мм (в Средиземном 34 мм (Romanelli et al., 2009)), в состав пищи входят микроводоросли (дiatomовые и жгутиковые), фораминиферы. Кишечник содержит также массу частиц детрита и ила. Приведено много данных о росте и размерном составе поселений (Kisleva, 1981).

Исследования последних лет вскрыли значительные и быстрые изменения в численности и биомассе, а также в пространственном распределении ведущих видов двустворчатых моллюсков, таких как мидия, фазеолина, хамелея, доминирующих в соответствующих сообществах. Это ведет к изменению границ донных сообществ. Изменения обилия отмечаются и у других видов в экосистемах Черного моря. Расшифровка действия отдельных факторов затруднена тем, что некоторые сдвиги кажутся взаимно связанными, могут быть вызваны влиянием третьего, более мощного фактора, влияющего на оба показателя.

Ниже приведены данные по межгодовой динамике обилия двух видов-доминантов – хамелеи и скаловой мидии – в мелководной зоне прибрежья Юго-Восточного Крыма (акватория Карадага и б. Лисьей). Понять и объяснить причины этих изменений помогут предлагаемые следом материалы по местообитаниям хамелеи, по ее реакции на изменение содержания органической взвеси. Важны также сведения о скорости роста и продолжительности жизни хамелеи и мидии, о соотношении обилия моллюсков-доминантов (хамелеи, скаловой мидии) и других видов в сообществе. Эти данные также облегчают оценку имеющихся заключений по предполагаемым причинам тех или иных изменений обилия хамелеи и мидии в разных участках черноморской прибрежной зоны.
Межгодовая динамика обилия _Chamelea gallina_. После появления книги М.И. Киселевой (1981), обобщившей собраные одним методом обширные материалы бентосных съемок у берегов Крыма и Кавказа с 1957 по 1970 гг., а также данные предшествующих исследований, стали известны глубины, занимаемые в Черном море каждым поясным сообществом, основные черты внутренней структуры сообществ макробентоса. Фундаментальное описание сообществ представлялось незыблемой основой, вроде сведений о распределении наземных биомов. Поэтому, казалось, что знание о строении сообществ теперь можно только углублять, уточняя детали и контролируя реакцию макрофауны на антропогенные воздействия.

Все перечисленные данные сведены на один рис. 2, который показывает, во-первых, неуклонный рост биомассы вплоть до конца прошлого века, во-вторых, очень высокое значение биомассы, достигнутое в 1998 г. Ее значение сопоставимо с рекордной биомассой вида, зарегистрированной близ выпуска сточной трубы. Наконец, представляет интерес резкое падение биомассы хамелеи в 2008 г., отмеченное в том же районе Карадага, где десятилетие назад была в 80 раз более высокая биомасса.
Рис. 1. Биомасса *Chamelea gallina* и других двустворчатых моллюсков в прибрежье Карадага в разные годы: А – в б. Лисья; В – в акватории Карадагского заповедника

Рис. 2. Изменения биомассы *Chamelea gallina* в прибрежной акватории Карадага, на глубинах до 2–20 м (* – по (Бекман, 1952), ** – по (Ревков, 2009))
Возникает вопрос о характере изменений обилия хамелеи в Адриатическом море, где существует промысловая статистика уловов. Но именно большей промысел там является серьезным фактором, который следует учитывать в первую очередь. С середины 1980-х гг. вылов хамелеи на итальянских берегах Адриатики неуклонно снижается, несмотря на принимаемые меры (уменьшение разрешенных квот, частичное сокращение флота и т.д.) и в последние годы упал до одной шестой величины, который был 25 лет назад. Причиной снижения уловов считается сам промысел (Romanelli et al., 2009). Плотность хамелеи (другого подвида) снизилась и в восточной части Северного моря, у датских и германских берегов. В Германском заливе снижение обилия хамелеи связано с донными тралениями (Eggleton et al., 2007). Таким образом, данные по Западной Европе не помогают объяснить возможные причины изменений обилия хамелеи в Черном море. Их обсуждению полезно предпослать имеющиеся сведения о распределении хамелеи по местообитаниям.

На Черном море детальное обследование макробентоса в связи с распределением грунтов разного состава выполнено вблизи Керченского пролива. На обследованной акватории с глубинами от 10 до 100 м, в зависимости от пропорций песка, ила и ракушки, было выделено 8 типов рыхлых грунтов. Проведенный дисперсионный анализ показал, что изменение обилия видов на 60 % определяется типом грунта и только на 20 % собственно глубиной (Терентьев, 1998). Поясним, что с глубиной характер грунта закономерно меняется и речь идет о варьировании типов грунта в пределах пояса глубин. Это наглядно показано в цитируемой работе (Терентьев, 1998). Но изменение глубины сопровождается также непременной сменой характера многих экологически важных переменных, из которых для популяций макробентоса важно упомянуть температуру и режим поступления пищи. Обычно указывают, что хамелея встречается на песках и илистых песках (Киселева, 1981). При более дробном делении грунтов (на 8 типов), присутствие хамелеи указано для 5 типов (песка, песчаной ракушки, ракушки, иллюсто-песчаного ила) (Терентьев, 1998).

Исследования в бухтах г. Севастополя (б. Казачья и б. Камышовая) с глубинами до 25 м показали, что хамелеи образуют скопления (с биомассой 24 г/м²) в юго-восточной части б. Казачья (на ракушечнике, глубина более 15 м) и на входе в б. Камышовую (на иле с крупнозернистым песком, глубина 10–15 м) (Шаловенков, Рябцев, 2003). Съемка была выполнена в 2001 г., судя по результатам анализа размерно-возрастной структуры поселений, поселения образованы моллюсками, осевшими в 1999–2001 гг. Высокая численность и биомасса хамелеи регистрируются при низких значениях вертикальных компонент скорости течений, т. е. на периферии зон подъема и опускания вод. По мнению авторов, именно в зонах со слабым течением в придонном слое планктонных личинок, в частности, хамелеи имеют возможность образовывать придонные скопления и оседать на грунт, пополняя уже существующие поселения.

Изложенные данные по черноморской хамелеи можно дополнить материалами, полученными в Дании, где этот вид встречается вдоль всего побережья. В южной части шельфа турбулентность выше и плотность хамелеи низка, но вид обилен к северу от 30-м изобаты. На песках длина раковин 9,5–33 мм, средняя варьирует от 21,3 до 23,5 мм. Сравнение показало, что рост идет быстрее при обитании в крупном песке с малым содержанием ила (Withaar et al., 2001).

При наших исследованиях установлено, что данные по местообитаниям хамелеи вблизи выпусков сточных вод имеют особое значение. Они не только характеризуют реакцию вида на загрязнение, но и косвенно свидетельствуют о
зависимости хамелеи от источников поступления пищи. По этой причине описание соответствующих материалов выделено в самостоятельный раздел.

Поселения хамелеи вблизи точечных выпусков сточных вод. Исследования распределения хамелеи в районе точечных выпусков сточных вод позволяет оценить реакцию этого вида на загрязнения. В зависимости от частоты расположения станций удается более или менее уверенно судить об изменениях плотности поселений с удалением от источника.

Второе исследование в районе выпуска сточных вод выполнено у западного побережья Крыма (близ пгт Любимовка) (Ревков и др., 1999). Выпуск содержал очищенные хозяйственно-бытовые сточные воды, но в состав которых входили: взвесь в концентрации 6,1–8,0 мг/л, органические вещества – 2 мг/л, а также фосфаты, аммонийный азот и т.д. При этом в непосредственной близости от выпуска наблюдалась максимальная биомassa хамелеи, которая почти в 7 раз выше, чем средние величины для моря; она составляла 94,5 % общей биомассы сообщества. Общее число видов макробентоса здесь было понижео, но биомасса хамелеи на расстоянии 15 м от оголовка выпуска достигала 2293 г/м². Глубина на этой станции составляла 10 м. Выяска была здесь и численность Capitella capitata, она составляла 625 экз./м². Доминирование хамелеи снижалось по мере удаления от оголовка выпуска сточных вод с 97 до 62 %. Эти данные авторы интерпретировали как реакцию хамелеи на повышенное загрязнение в воде, окружающей факел сточных вод, органических соединений, что повлияло на весь исследованный участок. Значительное увеличение плотности поселения домирующего вида и его биомассы по направлению к источнику сброса стоков и очень высокая биомасса в точке максимума, расположенной вблизи выпуска, доказывают это однозначно. По-видимому, то же объяснение имеет и смещение на меньшие глубины ядра сообщества хамелеи.

Почему же исследование распределения хамелеи у двух выпусков сточных вод привело к противоположным заключениям? Выпуск сточных вод содержит немного органических соединений, которые используются микроорганизмами. Поэтому вокруг выпуска существует облако микробиальной пищи и микропланктона, которыми хамелея питается, что способствует росту ее поселения. Известно, что на увеличение содержания органического углерода в среде до определенного уровня зообентос реагирует увеличением обилия, а после его превышения – снижением обилия (Hyland et al., 2005). Поэтому, в зависимости от мощности выпуска и условий распространения факела зависит характер распределения органических частиц и соединений. Поэтому вблизи оголовка выпуска могут складываться совершенно разные условия в отношении органического обогащения воды и грунта. Кроме того, многое зависит от соотношения разных компонентов стоков, один из которых может оказывать, как организующее действие на зообентос, а другие вызывают только отрицательную реакцию.

Возможные причины наблюдаемой динамики хамелеи и реакция на нее других
мolluskos в сообществе. Сопоставление материалов отдельных съемок zoobентоса, проведенных в определенные периоды времени, вызывают естественное стремление связать изменения в обилии мидии и хамелеи с происходящими одновременно в экосистеме событиями, будь то появление вблизи видов-вселенцев (рапана, мнемиопсис, анадара, берое и т.д.) (Бондарев, 2011; Chikina, Kucheruk, 2005). Поскольку названные вселенцы оказали на экосистему Черного моря действительно сильное и разностороннее воздействие, такие воздействия кажутся вероятными, но остаются недоказанными.

Проложенные нами изменения в обилии хамелеи в разных местах крымской прибрежной зоны, начиная с 1939 г. и кончая 2008 г. (рис. 2), вызывают желание искать возможные причины изменений в иных, более общих воздействиях, охватывающих не отдельные звенья, а всю экосистему целиком. Естественно, вспоминается часто обсуждаемая и длительная по действию эвтрофикация. Конечно, возможность воздействия этого фактора легче упомянуть, чем доказать, но ряд приведенных данных не противоречит гипотезе о ее вероятной роли. Анализ последовательности событий во времени усложнен большой продолжительностью жизни хамелеи, поскольку у подобных видов животных любое случайное изменение условий оседания личинок может привести к перемене места поселения и искажению динамики обилия, которые затем может зарегистрироваться еще много лет. Однако наблюдающееся в последнее десятилетие резкое снижение обилия хамелеи соответствует тому, что недавно фаза эвтрофикации сменилась следующим этапом де-эвтрофикации (Зана, 2011 б).

Таким образом, распространенное в последнее время мнение (Ревков, 2009; Бондарев, 2013) о наличии пика количественного развития двустворчатых моллюсков-сестонофагов рыбных грунтов на мальг глубин у берегов Крыма, приходящееся на 1990-е годы, которое объясняют высоким уровнем эвтрофирования прибрежных вод, правильно лишь для вида-доминанта — Ch. gallina. Для других видов мелких двустворчатых моллюсков-сестонофагов, обитающих в сообществе хамелеи, такой вывод неправомочен. Более того, в районе Карадага в период наиболее высокого количественного развития популяции хамелеи G. minima и L. divaricata обнаруживали наиболее низкие показатели обилия.
Рис. 3. Изменения биомассы Ch. gallina, других двустворчатых моллюсков в прибрежной акватории Карадага, на глубинах 2–20 м

Межгодовая динамика обилия M. galloprovincialis. Первые известные количественные данные о распределении скаловой мидии были получены И. В. Шароновым в 1938–1940 гг. (Шаронов, 1952). Он указывает, что M. galloprovincialis «встречается в небольших количествах и сосредоточен в щелях скал или в густых зарослях Cystoseira, избегая открытых мест». Средняя биомасса мидии на глубине 0–2 м была незначительна и составляла, в среднем, 136 г/м². Исследования, проведенные в 1976–1978 гг. с целью повторить съемку Шаронова показали, что биомасса мидий увеличилась в десять раз, составляя, в среднем 9050 г/м², а максимальная достигала – 15835,6 г/м² (Синегуб, 2004). Исследования поселения мидий на скалах Маяк и Золотые ворота, проведенные в 1998 г. Н.С. Костенко, показали, что после экстремального шторма 1992 г. популяция мидий восстановилась и средняя биомасса моллюсков на глубине 0–2 м составляла 31780 г/м² (Ковалёва и др., 2012). Таким образом, при анализе изменений в развитии поселений мидий на скалах Карадага, в первую очередь видно заметное уменьшение биомассы мидий в нынешнее время по сравнению с 80–90-ми годами прошлого столетия. Некоторые авторы причиной этого считают выведение мидий хищным моллюском Rapaon venosa Valenciennes, 1846, который в настоящее время размножился в огромных количествах на мелководьях Крымского побережья (Гудимов, 2008; Морозова, Смирнова, 2005). Первое появление рапаны в Чёрном море датируется 1947 г. В настоящее время результаты ландшафтных съёмок свидетельствуют о наличии огромного количества этого хищника (до 27 экз./м²) в пределах глубин 2–12 м (Болтажева и др., 2010; Марченко, 2006). Рапана хорошо ползает по вертикальным поверхностям, препятствием для этого является лишь прибойность на открытых участках берега (Костенко, 1986). Поэтому есть возможность предположить, что наименьшему прессу хищников подвержены мидии, находящиеся у уреза воды, с увеличением глубины этот пресс возрастает. Действительно, было показано, что численность и биомassa мидий наибольше у уреза воды и резко уменьшаются с увеличением глубины (Ковалёва и др., 2012). Таким образом, предположение о влиянии рапаны на деградацию поселений скаловой мидии представляется вполне оправданным. Однако в первый период исследований на Карадаге рапаны не было, а тем не менее, мидия присутствовала в очень малых количествах, следовательно, гипоте-
зу о том, что причиной резкого сокращения численности мидий на скалах в последние годы (по сравнению с 80–90 гг. XX века) является единственно выедание их рапанами, нельзя считать правомочной. Рассматривая весь исследуемый диапазон времени, следует признать, что в 80–90 гг. прошлого столетия на скалах Карадага наблюдалась необыкновенная вспышка развития скаловой мидии. И этот процесс был аналогичен происходившим изменениям в обилии хамелеи в этом же районе.

Рис. 4. Средняя биомасса (г/м²) *M. galloprovincialis* в обрастаниях скал Карадага на глубине 0–3 м в разные периоды исследований (* – по (Шаронов, 1952), ** – по (Синегуб, 2004))

Рис. 5. Средняя биомасса (г/м²) *M. galloprovincialis* и *M. lineatus* в обрастаниях скал Карадага в разные периоды исследований (* – по (Шаронов, 1952), ** – по (Синегуб, 2004))
Как указывалось ранее, по сравнению с мидией, митилястер – гораздо более мелкий (до 24 мм), с маленькой продолжительностью жизни (до 4 лет) и медленно растущий моллюск.

Ранее было высказано предположение о том, что вспышка количественного развития скаловой мидии, отмеченная в конце 1970-х–1990 гг., была вызвана увеличением эвтрофикации и, соответственно, увеличением кормовой базы этого вида – фильтратора (Ковалева и др., 2012; Болтачева и др., 2015). Однако на биомассе митилястера в эти годы повышение эвтрофирования не отразилось. Соотношение динамики обилия мидии и митилястера в анализируемый период с 1939 по 2012 гг. весьма сходно с таковым у Ch. gallina и мелких двустворчатых моллюсков-сестонофагов из района Карадага. Такое сходство вызывает желание искать возможные причины наблюдаемых изменений в каких-то более общих воздействиях, охватывающих не отдельные звенья, а всю экосистему целиком.

Можно предположить, что на изменения общего уровня эвтрофирования (и возможно других, связанных с ним факторов) сообщества макроzoобентоса реагируют, как целостная система, изменением, прежде всего, количественного развития наиболее крупного быстрорастущего и долгоживущего вида фильтратор-сестонофага. Таким видом на скалистом субстрате является мидия, а на рыхлых грунтах в мелководной зоне – хамелея. При этом более мелкие и короткоживущие виды моллюсков-фильтраторов в этих сообществах либо незначительно изменили показатели количественного развития популяций, либо при максимальном развитии вида-доминанта их биомасса уменьшалась.

Анализ межгодовой динамики развития Ch. gallina и скаловой мидии M. galloprovincialis в районе Карадага в течение последних 70 лет показал наличие значительных колебаний этих показателей, а также то, что в 1980–1990 гг. наблюдалась вспышка количественного развития данных видов. Предполагаемая причина последнего – увеличение общего уровня эвтрофирования вод в этот период. При этом изменение обилия более мелких видов моллюсков содоминантов или субдоминантов, также являющихся фильтраторами-сестонофагами, носило скорее противоположный характер. В периоды 1938–1940 гг. и в 2008–2012 гг. эти виды давали относительно высокую биомассу и могли даже занимать лидирующие положения в сообществах (M. lineatus в биотопе скал и G. minima в биотопе рыхлых грунтов). Однако в период наибольшего уровня эвтрофирования вод ответной реакцией экосистемы видимо являлось резкое увеличение количественного развития крупных долгоноживущих видов – M. galloprovincialis и Ch. gallina, а также снижение развития более мелких видов с коротким жизненным циклом. Можно предположить, что именно такова была стратегия реагирования сообществ на изменения среды, происходившие в мелководной зоне у Крымского побережья в прошедшие годы.

3.1.4. ПАРАЗИТЫ МОРСКИХ ГИДРОБИОНТОВ

Паразитические организмы, относящиеся к различным систематическим группам беспозвоночных, составляют значительную часть видового разнообразия любой экосистемы. По оценкам различных авторов, около 15–25 % всех видов относятся к паразитическим (Dobson et al., 2008; Dougherty et al., 2015). Недавние исследования паразитофауны в трех эстуариях тихоокеанского побережья Калифорнии (Kuris et al., 2008) показали, что видовое разнообразие паразитов в них сравнимо с разнообразием свободноживущих групп, а биомасса паразитических организмов в отдельные сезоны равнялась биомассе птиц. Кроме того, паразиты являются регулятором численности свободноживущих организмов, существенно влияя на показатели биоразнообразия экосистем.

Паразитические организмы, как существенная составляющая видового биоразнообразия экосистем, должны обязательно учитываться при изучении биоразнообразия сообществ. Кроме того, популяционные характеристики паразитических видов могут служить биомаркером состояния биоразнообразия свободноживущих видов.

Приведены обобщенные материалы оригинальных исследований паразитофауны морских гидробионтов, обитающих в акватории Черного моря у берегов Юго-Восточного Крыма, а также проанализированы опубликованные ранее данные по паразитам данного региона с учетом современных таксономических ревизий.

<table>
<thead>
<tr>
<th>Таблица 1.</th>
<th>Видовой и количественный состав паразитов гидробионтов акватории Карадага и прилегающих районов моря (собственные данные 1988–2013 гг.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вид гидробионта</td>
<td>Район</td>
</tr>
<tr>
<td>Mytilus galloprovincialis</td>
<td>б. Сердоликовая</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>б. Пограничная</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 – ооцист грегарин / мм² S жабр·особь или инфузорий / мм² S жабр·особь
2 – % пораженной поверхности раковины

97
<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>19 / 3,6–5</th>
<th>N. legeri</th>
<th>100 %</th>
<th>0,04–6 / 1,3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>P. vastifica</td>
<td>10,5 %</td>
<td>20–60 / 50²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N. legeri</td>
<td>18 %</td>
<td>0,05¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P. vastifica</td>
<td>74 %</td>
<td>10–100 / 47²</td>
</tr>
<tr>
<td>б. Пуццолановая</td>
<td>2012</td>
<td>201 / 4–7,8</td>
<td>N. legeri</td>
<td>38 %</td>
<td>0,02–5 / 1,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P. vastifica</td>
<td>100 %</td>
<td>5–100 / 36²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Mytili</td>
<td>33 %</td>
<td>0,01–0,03¹</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>319 / 3–7,5</td>
<td>N. legeri</td>
<td>48 %</td>
<td>1,6–19 / 6,7¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P. vastifica</td>
<td>56 %</td>
<td>10–100 / 44²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pen. Mytili</td>
<td>6 %</td>
<td>1–4 / 1,5</td>
</tr>
<tr>
<td>ск. Кузьмичев камень</td>
<td>2009</td>
<td>10 / 4,6–5,3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>26 / 3,2–5,2</td>
<td>N. legeri</td>
<td>4 %</td>
<td>13¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A. Mytili</td>
<td>11 %</td>
<td>0,01–0,02¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N. legeri</td>
<td>34 %</td>
<td>3–34,2 / 36¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P. vastifica</td>
<td>9 %</td>
<td>10–20 / 16²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pen. mytili</td>
<td>2 %</td>
<td>1–2</td>
</tr>
<tr>
<td>м. Крабий</td>
<td>2012</td>
<td>30 / 2,6–3,4</td>
<td>N. legeri</td>
<td>3 %</td>
<td>0,02¹</td>
</tr>
</tbody>
</table>

Gibbula divaricata

	2012	139 / 0,7–1,7	—	—	—
	2012	102 / 2,5–3	—	—	—
Биостанция	2010	72 / 0,4–1,5	—	—	—
	2012	86 / 1–2,3	Opecoelidae gen. sp. cercaria	2 %	1–10 / 5,5

Rissoa splendid

| Биостанция | 2012 | 121 / 0,8–1,6 | Cercaria rissoae | 5 % | 1–12 / 6,2 |

Palaemon elegans

	2012	27 / 2,5–5	Terebropinia lenticularis	59 %	10–70 / 17²
			Helicometra fasciata mtc.	4 %	1 / 1
б. Сердоликовая	2005	53 / 3–5	H. fasciata mtc.	14 %	1–4 / 2,6
	2006	130 / 2,5–6	T. lenticularis	21 %	1–60 / 1,1
	2012	10 / 3–6	H. fasciata mtc.	33 %	2–5 / 4²
ск. Кузьмичев камень	2005	54 / 3,3–5	H. fasciata mtc.	54 %	1–18 / 2,7
	2006	72 / 2,6–5,5	H. fasciata mtc.	60 %	1–20 / 2,1
Биостанция	2005	39 / 3–5	H. fasciata mtc.	26 %	1–6 / 2,8
	2006	103 / 2–5	H. fasciata mtc.	56 %	1–37 / 2,2
	2012	15 / 2,5–5	T. lenticularis	60 %	2–80 / 17²
			H. fasciata mtc.	13 %	1 / 1
б. Лисья	2005	57 / 2,5–5	H. fasciata mtc.	5,3 %	1
	2006	127 / 2,4–5	H. fasciata mtc.	30 %	1–13 / 1,1

Xantho poressa

| | 2009 | 2 / 14–16 | H. fasciata mtc. | 1 | 1 |
| | 2012 | 3 / 30–34 | H. fasciata mtc. | 3 | 1–7 |

Pachygrapsus marmoratus

<p>| | 1994 | 15 / 20–35 | Cephaloidophora conformis | 53,5 % | 10–30 / 18,4 |
| | 2009 | 12 / 22–31 | Ceph. conformis | 8 % | 13 |
| б. Сердоликовая | 2012 | 11 / 17–30 | — | — | — |</p>
<table>
<thead>
<tr>
<th>Биостанция</th>
<th>Год</th>
<th>Объем</th>
<th>Открытое море</th>
<th>1988</th>
<th>Длина, ширина, мм</th>
<th>Chloromyxum ovatum</th>
<th>Открытое море</th>
<th>1988</th>
<th>Длина, ширина, мм</th>
<th>нет данных</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squalus acanthias</td>
<td></td>
<td></td>
<td></td>
<td>2012</td>
<td>8 / 23–42</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>п. Орджоникидзе</td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>4 / 35–42</td>
<td>Dollfusiella aculeata</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>6 / 60–1,23</td>
<td>Cairaeanthus healyae</td>
<td>2</td>
<td>1–3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>6 / 60–1,23</td>
<td>Anthocephaliidae gen. sp. 2</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>6 / 60–1,23</td>
<td>Rhinebothrium walga</td>
<td>1</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>6 / 60–1,23</td>
<td>Rhabdotobothrium sp.</td>
<td>3</td>
<td>3–12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>6 / 60–1,23</td>
<td>Acanthobothrium sp. 5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>6 / 60–1,23</td>
<td>Caulobothrium sp</td>
<td>3</td>
<td>438–1508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>б. Коктебель</td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 38,5</td>
<td>Prochristianella papillifer</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 38,5</td>
<td>Progrillotia dasyatidis</td>
<td>1</td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 38,5</td>
<td>Parachristianella trygonis</td>
<td>1</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 38,5</td>
<td>Dollfusiella aculeata</td>
<td>1</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 38,5</td>
<td>Hysterothyacium aduncum</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 38,5</td>
<td>Hys. aduncum l.</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2006</td>
<td>2 / 41–51</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>4 / 32–52</td>
<td>Progrillotia dasyatidis</td>
<td>1</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>4 / 32–52</td>
<td>Dollfusiella aculeata</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>4 / 32–52</td>
<td>Parachristianella trygonis</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>4 / 32–52</td>
<td>Cairaeanthus ruhnkei</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>4 / 32–52</td>
<td>Cairaeanthus healyae</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>4 / 32–52</td>
<td>Rhinebothrium walga</td>
<td>1</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>4 / 32–52</td>
<td>Rhinebothrium sp.</td>
<td>3</td>
<td>1–72</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>4 / 32–52</td>
<td>Anthocephaliidae gen. sp. 2</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>4 / 32–52</td>
<td>Acanthobothrium crassicolle</td>
<td>2</td>
<td>2–5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ск. Кузьмичев камень</td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>1 / 35</td>
<td>Acanthobothrium sp. 5</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>1 / 35</td>
<td>Rhabdotobothrium sp.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>1 / 35</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Raja clavata</td>
<td></td>
<td></td>
<td></td>
<td>1988</td>
<td>1 / 62</td>
<td>Chloromyxum psetti</td>
<td>1</td>
<td>10³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>м. Меганом</td>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td>4 / 40–61</td>
<td>Progrillotia sp.</td>
<td>2</td>
<td>3–5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td>4 / 40–61</td>
<td>Grillotia erinaceus</td>
<td>4</td>
<td>1–13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td>4 / 40–61</td>
<td>Echeneibothrium variabile</td>
<td>3</td>
<td>1–11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td>4 / 40–61</td>
<td>Acanthobothrium sp. 1</td>
<td>3</td>
<td>2–8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td>4 / 40–61</td>
<td>Acanthobothrium sp. 2</td>
<td>3</td>
<td>3–16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2003</td>
<td>4 / 40–61</td>
<td>Acanthobothrium sp. 4</td>
<td>3</td>
<td>1–4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 26</td>
<td>Progrillotia sp.</td>
<td>1</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 26</td>
<td>Grillotia erinaceus</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 26</td>
<td>Echeneibothrium variabile</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 26</td>
<td>Acanthobothrium sp. 1</td>
<td>1</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 26</td>
<td>Acanthobothrium sp. 2</td>
<td>1</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>м. Толстый</td>
<td></td>
<td></td>
<td></td>
<td>2007</td>
<td>2 / 45–56</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2007</td>
<td>2 / 45–56</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Alosa immaculata</td>
<td></td>
<td></td>
<td></td>
<td>2006</td>
<td>1 / 20,5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>б. Коктебель</td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>2 / 12,7–12,8</td>
<td>Hys. aduncum l.</td>
<td>2</td>
<td>1–3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>2 / 12,7–12,8</td>
<td>Cosmocephalus obvelatus</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>2 / 12,7–12,8</td>
<td>Hys. aduncum</td>
<td>1</td>
<td>> 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2006</td>
<td>1 / 20,5</td>
<td>Pronoprymna ventricosa</td>
<td>1</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2006</td>
<td>1 / 20,5</td>
<td>Lecithaster confusus</td>
<td>1</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

³ Количество спор миксоспоридий в мазке под покровным стеклом 18×18 мм: ед. – единицы, дес. – десятки, сот. – сотни, тыс. – тысячи.
<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
<th>Date</th>
<th>Observed Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sardina pilchardus</td>
<td>Биостанция</td>
<td>2006</td>
<td>1 / 14,5</td>
</tr>
<tr>
<td>Engraulis encrasicolus</td>
<td>Б. Коктебель</td>
<td>2005</td>
<td>8 / 9,5–13,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2006</td>
<td>16 / 8–12,5</td>
</tr>
<tr>
<td>Merlangius merlangius</td>
<td>Открытое море</td>
<td>1988</td>
<td>26 / 7,6–22,4</td>
</tr>
<tr>
<td></td>
<td>Биостанция</td>
<td>1992</td>
<td>25 / 12–18</td>
</tr>
<tr>
<td>Atherina boyeri</td>
<td>Б. Коктебель</td>
<td>2005</td>
<td>71 / 3–15,6</td>
</tr>
<tr>
<td></td>
<td>Б. Пущаноланова</td>
<td>2009</td>
<td>7 / 18–24</td>
</tr>
<tr>
<td></td>
<td>Биостанция</td>
<td>2009</td>
<td>17 / 11–15</td>
</tr>
<tr>
<td></td>
<td>Биостанция</td>
<td>2012</td>
<td>2 / 6–8</td>
</tr>
<tr>
<td>Trachurus mediterraneus</td>
<td>пгт Орджоникидзе</td>
<td>2010</td>
<td>17 / 12–20,5</td>
</tr>
<tr>
<td></td>
<td>Б. Коктебель</td>
<td>2005</td>
<td>72 / 8,5–14</td>
</tr>
<tr>
<td></td>
<td>Б. Коктебель</td>
<td>2006</td>
<td>67 / 9–17,3</td>
</tr>
<tr>
<td></td>
<td>Биостанция</td>
<td>2009</td>
<td>27 /14,6–17</td>
</tr>
<tr>
<td></td>
<td>Биостанция</td>
<td>1988</td>
<td>24 / 11–16,5</td>
</tr>
<tr>
<td></td>
<td>Биостанция</td>
<td>2013</td>
<td>30 / 11,5–16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mothocya taurica</td>
<td>1</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>1</td>
</tr>
<tr>
<td>Bacciger bacciger</td>
<td>13 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>100 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>90 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>63 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>4 %</td>
</tr>
<tr>
<td>Ceratomyxa merlangi</td>
<td>35 %</td>
</tr>
<tr>
<td>Myxidium gadi</td>
<td>54 %</td>
</tr>
<tr>
<td>Bac. bacciger</td>
<td>10 %</td>
</tr>
<tr>
<td>Cos. obvelatus l.</td>
<td>1,4 %</td>
</tr>
<tr>
<td>Contracoecum microcephalum l.</td>
<td>1,4 %</td>
</tr>
<tr>
<td>Telosentis exiguis</td>
<td>93 %</td>
</tr>
<tr>
<td>Prog. dasyatidis l.</td>
<td>18 %</td>
</tr>
<tr>
<td>Con. microcephalum l.</td>
<td>18 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>6 %</td>
</tr>
<tr>
<td>Cos. obvelatus</td>
<td>6 %</td>
</tr>
<tr>
<td>T. exiguis</td>
<td>94 %</td>
</tr>
<tr>
<td>Spinectectis tamari</td>
<td>14 %</td>
</tr>
<tr>
<td>Cucullanus micropapillatus</td>
<td>1</td>
</tr>
<tr>
<td>T. exiguis</td>
<td>71 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>12 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>41 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>55 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>30 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>17 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>1</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>1</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>1,5 %</td>
</tr>
<tr>
<td>Prog. dasyatidis l.</td>
<td>1,5 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>51 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>22 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>89 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>19 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>55 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>25 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>20 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>55 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>41 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>55 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>19 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>55 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>25 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>20 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>55 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>25 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>20 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>55 %</td>
</tr>
<tr>
<td>Prog. dasyatidis l.</td>
<td>1,5 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>30 %</td>
</tr>
<tr>
<td>Prog. dasyatidis l.</td>
<td>1,5 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>30 %</td>
</tr>
<tr>
<td>Alataspora solomoni</td>
<td>22 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>4 %</td>
</tr>
<tr>
<td>Ala. solomoni</td>
<td>13 %</td>
</tr>
<tr>
<td>Lepocreadium floridanum</td>
<td>27 %</td>
</tr>
<tr>
<td>Prod. polonii</td>
<td>30 %</td>
</tr>
<tr>
<td>Prod. polonii</td>
<td>30 %</td>
</tr>
<tr>
<td>Stephanostomum</td>
<td>17 %</td>
</tr>
</tbody>
</table>

100
<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2006</th>
<th>2009</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aidablennius sphynx</td>
<td></td>
<td>9/3.5–5</td>
<td></td>
<td>8/3.2–6</td>
<td>14/2.5–6</td>
</tr>
<tr>
<td>б. Пущолановая</td>
<td>4 / 3,5–4,3</td>
<td>15 / 3,5–5,5</td>
<td>11 / 3–6</td>
<td>8 / 3,2–6,3</td>
<td>14 / 2,5–6</td>
</tr>
<tr>
<td>Bucephalus marinus mtc.</td>
<td>2 %</td>
<td>40 %</td>
<td>Myx. parvum</td>
<td>13 %</td>
<td>53 %</td>
</tr>
<tr>
<td>T. exiguis</td>
<td>1 %</td>
<td></td>
<td>Gyrodactylus sphynx</td>
<td>9 %</td>
<td>7 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td></td>
<td></td>
<td>Cos. obvelatus</td>
<td>9 %</td>
<td>ед. – дес.³</td>
</tr>
<tr>
<td>Buc. marinus mtc.</td>
<td></td>
<td></td>
<td>Myx. parvum</td>
<td>13 %</td>
<td>33 %</td>
</tr>
<tr>
<td>Metadenia pauli mtc.</td>
<td></td>
<td></td>
<td>Myx. parvum</td>
<td>13 %</td>
<td>25 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td></td>
<td></td>
<td>Myx. parvum</td>
<td>53 %</td>
<td>ед. – дес.³</td>
</tr>
<tr>
<td>Галактосомум лактеум mtc.</td>
<td></td>
<td></td>
<td>Myx. parvum</td>
<td>55 %</td>
<td>ед. – дес.³</td>
</tr>
<tr>
<td>Met. pauli mtc.</td>
<td></td>
<td></td>
<td>Myx. parvum</td>
<td>79 %</td>
<td>12 %</td>
</tr>
<tr>
<td>Con. microcephalum l.</td>
<td></td>
<td></td>
<td>Myx. parvum</td>
<td>79 %</td>
<td>7 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td></td>
<td></td>
<td>Myx. parvum</td>
<td>7 %</td>
<td>ед. – дес.³</td>
</tr>
<tr>
<td>Гир. сфингс</td>
<td></td>
<td>16 %</td>
<td>16 %</td>
<td>Гир. сфингс</td>
<td>16 %</td>
</tr>
<tr>
<td>Buc. marinus mtc.</td>
<td></td>
<td>32 %</td>
<td>32 %</td>
<td>Гир. сфингс</td>
<td>36 %</td>
</tr>
<tr>
<td>Gyr. sphinx</td>
<td>1 %</td>
<td>9 %</td>
<td>Sco. pleuronectis</td>
<td>2 %</td>
<td>16 %</td>
</tr>
<tr>
<td>Buc. marinus mtc.</td>
<td>2 %</td>
<td>5 %</td>
<td>Бук. маринус</td>
<td>36 %</td>
<td>36 %</td>
</tr>
<tr>
<td>Galactosomum lacteum mtc.</td>
<td>11 %</td>
<td>11 %</td>
<td>Галактосомум лактеум</td>
<td>5 %</td>
<td>11 %</td>
</tr>
<tr>
<td>Met. pauli mtc.</td>
<td>79 %</td>
<td>79 %</td>
<td>Галактосомум лактеум</td>
<td>5 %</td>
<td>79 %</td>
</tr>
<tr>
<td>Con. microcephalum l.</td>
<td>7 %</td>
<td>7 %</td>
<td>Галактосомум лактеум</td>
<td>7 %</td>
<td>7 %</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>7 %</td>
<td>7 %</td>
<td>Галактосомум лактеум</td>
<td>7 %</td>
<td>ед. – дес.³</td>
</tr>
<tr>
<td>Гир. сфингс</td>
<td>7 %</td>
<td>16 %</td>
<td>Sco. pleuronectis</td>
<td>16 %</td>
<td>16 %</td>
</tr>
<tr>
<td>Buc. marinus mtc.</td>
<td>56 %</td>
<td>36 %</td>
<td>Гир. сфингс</td>
<td>36 %</td>
<td>36 %</td>
</tr>
<tr>
<td>Acanthocephaloides propinquus</td>
<td>36 %</td>
<td>36 %</td>
<td>Buc. marinus mtc.</td>
<td>36 %</td>
<td>36 %</td>
</tr>
<tr>
<td>T. exiguis</td>
<td>12 %</td>
<td>12 %</td>
<td>Гир. сфингс</td>
<td>29 %</td>
<td>29 %</td>
</tr>
<tr>
<td>Plagiorchiidae gen. sp. mtc.</td>
<td>4 %</td>
<td>4 %</td>
<td>Гир. сфингс</td>
<td>29 %</td>
<td>29 %</td>
</tr>
<tr>
<td>Гир. сфингс</td>
<td>1 %</td>
<td>1 %</td>
<td>Гир. сфингс</td>
<td>1 %</td>
<td>1 %</td>
</tr>
<tr>
<td>Buc. marinus mtc.</td>
<td>55 %</td>
<td>55 %</td>
<td>Гир. сфингс</td>
<td>1 %</td>
<td>1 %</td>
</tr>
<tr>
<td>Myxidium parvum</td>
<td>33 %</td>
<td>33 %</td>
<td>Гир. сфингс</td>
<td>40 %</td>
<td>40 %</td>
</tr>
<tr>
<td>Myx. parvum</td>
<td>44 %</td>
<td>44 %</td>
<td>Гир. сфингс</td>
<td>40 %</td>
<td>40 %</td>
</tr>
<tr>
<td>Buc. marinus mtc.</td>
<td>44 %</td>
<td>44 %</td>
<td>Гир. сфингс</td>
<td>40 %</td>
<td>40 %</td>
</tr>
<tr>
<td>Gyr. sphinx</td>
<td>100 %</td>
<td>100 %</td>
<td>Гир. сфингс</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Buc. marinus mtc.</td>
<td>44 %</td>
<td>44 %</td>
<td>Гир. сфингс</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Acanthocephaloides propinquus</td>
<td>36 %</td>
<td>36 %</td>
<td>Гир. сфингс</td>
<td>36 %</td>
<td>36 %</td>
</tr>
<tr>
<td>T. exiguis</td>
<td>12 %</td>
<td>12 %</td>
<td>Гир. сфингс</td>
<td>12 %</td>
<td>12 %</td>
</tr>
<tr>
<td>Hel. fasciata</td>
<td>4 %</td>
<td>4 %</td>
<td>Гир. сфингс</td>
<td>4 %</td>
<td>4 %</td>
</tr>
<tr>
<td>Plagiorchiidae gen. sp. mtc.</td>
<td>4 %</td>
<td>4 %</td>
<td>Гир. сфингс</td>
<td>4 %</td>
<td>4 %</td>
</tr>
<tr>
<td>Гир. сфингс</td>
<td>100 %</td>
<td>100 %</td>
<td>Гир. сфингс</td>
<td>100 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Buc. marinus mtc.</td>
<td>44 %</td>
<td>44 %</td>
<td>Гир. сфингс</td>
<td>44 %</td>
<td>44 %</td>
</tr>
<tr>
<td>Acanthocephaloides propinquus</td>
<td>36 %</td>
<td>36 %</td>
<td>Гир. сфингс</td>
<td>36 %</td>
<td>36 %</td>
</tr>
<tr>
<td>T. exiguis</td>
<td>12 %</td>
<td>12 %</td>
<td>Гир. сфингс</td>
<td>12 %</td>
<td>12 %</td>
</tr>
<tr>
<td>Hel. fasciata</td>
<td>4 %</td>
<td>4 %</td>
<td>Гир. сфингс</td>
<td>4 %</td>
<td>4 %</td>
</tr>
<tr>
<td>Plagiorchiidae gen. sp. mtc.</td>
<td>4 %</td>
<td>4 %</td>
<td>Гир. сфингс</td>
<td>4 %</td>
<td>4 %</td>
</tr>
<tr>
<td>Гир. сфингс</td>
<td>100 %</td>
<td>100 %</td>
<td>Гир. сфингс</td>
<td>100 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

1. Биостанция
2. Б. Сердоликовая
3. ск. Кузьмичев камень
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 / 3–5,2</td>
<td>22 / 3–7,8</td>
<td>Gyr. sphinx</td>
<td>94 %</td>
<td>Buc. marinus mtc.</td>
<td>63 %</td>
<td>Met. pauli mtc.</td>
<td>19 %</td>
<td>Hys. aduncum l.</td>
<td>13 %</td>
<td>Buc. marinus mtc.</td>
<td>5 %</td>
<td>Myx. parvum</td>
<td>80 %</td>
<td>ед. – дес.</td>
<td>3</td>
<td>Gyr. sphinx</td>
<td>35 %</td>
<td>Buc. marinus mtc.</td>
<td>30 %</td>
<td>1–6 / 3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>б. Лисья</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td>4 / 3–5,5</td>
<td>Gyr. sphinx</td>
<td>4</td>
<td>7–30 / 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2006</td>
<td>20 / 2,8–5,5</td>
<td>Gyr. sphinx</td>
<td>35 %</td>
<td>1–25 / 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Buc. marinus mtc.</td>
<td>63 %</td>
<td>Met. pauli mtc.</td>
<td>2</td>
<td>Hel. fasciata</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1994</td>
<td>2 / 2,7–5</td>
<td>Buc. marinus mtc.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salaria pavo</td>
<td></td>
<td></td>
<td>Buc. marinus mtc.</td>
<td>63 %</td>
<td>Met. pauli mtc.</td>
<td>2</td>
<td>Hel. fasciata</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 6,5</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ск. Кузьмищев камень</td>
<td></td>
<td></td>
<td>Buc. marinus mtc.</td>
<td>63 %</td>
<td>Met. pauli mtc.</td>
<td>2</td>
<td>Hel. fasciata</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>2 / 5,6–8,3</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Buc. marinus mtc.</td>
<td>63 %</td>
<td>Met. pauli mtc.</td>
<td>2</td>
<td>Hel. fasciata</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2013</td>
<td>2 / 10</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td></td>
<td></td>
<td>Prog. dasyatidis l.</td>
<td>10 %</td>
<td>Buc. marinus mtc.</td>
<td>40 %</td>
<td>1–5 / 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>10 / 6,3–11</td>
<td>Buc. marinus mtc.</td>
<td>40 %</td>
<td>1–5 / 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hel. fasciata</td>
<td>20 %</td>
<td>Paracuaria adunca l.</td>
<td>10 %</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2006</td>
<td>4 / 5–11</td>
<td>Hel. fasciata</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>J. campana-rougetae</td>
<td>17 %</td>
<td>Buc. marinus mtc.</td>
<td>8 %</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>6 / 4,7–10,6</td>
<td>J. campana-rougetae</td>
<td>17 %</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unidentified</td>
<td></td>
<td>Buc. marinus mtc.</td>
<td>8 %</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2012</td>
<td>12 / 7,5–11</td>
<td>Buc. marinus mtc.</td>
<td>8 %</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Met. pauli mtc.</td>
<td>8 %</td>
<td>Hel. fasciata</td>
<td>6 %</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2013</td>
<td>14 / 8–12</td>
<td>Hel. fasciata</td>
<td>19 %</td>
<td>1–4 / 2,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paracuaria adunca l.</td>
<td>6 %</td>
<td>Met. pauli mtc.</td>
<td>8 %</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2006</td>
<td>2 / 7,5–9,5</td>
<td>Buc. marinus mtc.</td>
<td>1 %</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hel. fasciata</td>
<td>6 %</td>
<td>Met. pauli mtc.</td>
<td>8 %</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2009</td>
<td>1 / 9,6</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hel. fasciata</td>
<td>6 %</td>
<td>Met. pauli mtc.</td>
<td>8 %</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2012</td>
<td>4 / 5–7</td>
<td>J. campana-rougetae</td>
<td>36 %</td>
<td>1–14 / 7,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cuc. micropapillatus</td>
<td>1</td>
<td>J. campana-rougetae</td>
<td>36 %</td>
<td>1–14 / 7,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 10,5</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ск. Кузьмищев камень</td>
<td></td>
<td></td>
<td>Sphaeromyxa sevastopoli</td>
<td>1 тыс.</td>
<td>Sphaeromyxa sevastopoli</td>
<td>1 тыс.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 4</td>
<td>Sphaeromyxa sevastopoli</td>
<td>1 тыс.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microlipophrys adriaticus</td>
<td></td>
<td></td>
<td>Buc. marinus mtc.</td>
<td>14 %</td>
<td>Hel. fasciata</td>
<td>18 %</td>
<td>3–10 / 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1994</td>
<td>11 / 6,5–18</td>
<td>Hel. fasciata</td>
<td>18 %</td>
<td>3–10 / 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parablennius sanguinolentus</td>
<td></td>
<td></td>
<td>Buc. marinus mtc.</td>
<td>100 %</td>
<td>46–6200 / 2218</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2012</td>
<td>4 / 5–7</td>
<td>Hys. aduncum l.</td>
<td>18 %</td>
<td>1–3 / 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ск. Кузьмищев камень</td>
<td></td>
<td></td>
<td>Gal. lacteum mtc.</td>
<td>73 %</td>
<td>Gal. lacteum mtc.</td>
<td>73 %</td>
<td>1–42 / 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2005</td>
<td>1 / 4</td>
<td>Sphaeromyxa sevastopoli</td>
<td>1 тыс.</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plagioceros spp.</td>
<td>27 %</td>
<td>Plagioceros spp.</td>
<td>27 %</td>
<td>3–6 / 4,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2006</td>
<td>1 / 10,5</td>
<td>Buc. marinus mtc.</td>
<td>1</td>
<td>136</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Opecoelidae gen. sp.</td>
<td>55 %</td>
<td>Opecoelidae gen. sp.</td>
<td>55 %</td>
<td>3–10 / 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2012</td>
<td>2 / 17</td>
<td>Sph. sevastopoli</td>
<td>57 %</td>
<td>ед. – дес.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

102
2013	25 / 2–16	2	500–5265 / 288
1994	2 /11,5–12,5	1	1 / 2 / 1,5
2005	5 / 4–17	–	–

Биостанция

2012	13 / 9–18,5	1	100–700/486
2013	15 / 3–15	Sph. sevastopoli	25 % тыс.³
2012	24 / 6,5–17	Sph. sevastopoli	5 % дес.³
2013	31 / 3,5–13	Ort. divergens	1 ед.³

б. Лисья

| 2006 | 1 / 14,8 | Buc. marinus mtc. | 1 ед.³ |
| 2009 | 4 / 10,4–15,6 | Sph. sevastopoli | 1 ед.³ |

б. Сердоликовая

| 2012 | 10 / 12–16 | J. campana-rougetae | 30 % 1–2 / 1,7 |
| 2013 | 23 / 3–14,5 | Sph. sevastopoli | 50 % ед. – дес.³ |

б. Пуццолановая

1994	3 / 4–12	Buc. marinus mtc.	3 21–860/305
2013	15 / 3–15	Gal. lacteum mtc.	15 % 1
1994	2 /11,5–12,5	Opecoelidae gen. sp.	1 2
2013	15 / 3–15	Met. pauli mtc.	77 % 2–7 / 5
2012	13 / 9–18,5	J. campana-rougetae	23 % 1–13 / 5,3
2013	15 / 3–15	Buc. marinus mtc.	7 % 5

Parablennius tentacularis

1994	3 / 4–12	Buc. marinus mtc.	21–860/305
2013	23 / 3–14,5	Hel. fasciata	4,3 % 1
2013	23 / 3–14,5	Ort. divergens	1 ед.³
2012	10 / 12–16	Sph. sevastopoli	1 ед.³
2012	10 / 12–16	Parablennius tentacularis	3 21–860/305
2013	23 / 3–14,5	Contraecacum filiforme l.	4 % 1

2013	25 / 2–16	Buc. marinus mtc.	2	500–5265 / 288
1994	2 /11,5–12,5	Met. pauli mtc.	1 21–860/305	
1994	2 /11,5–12,5	Met. pauli mtc.	1	5

Plagiorchiidae gen. sp. mtc. | 1 2 |

Opecoelidae gen. sp. | 1 2 |
<table>
<thead>
<tr>
<th>Организм</th>
<th>Год</th>
<th>Место</th>
<th>Сотрудник</th>
<th>Сезон</th>
<th>Длина</th>
<th>Заращение</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buc. marinus</td>
<td>2005</td>
<td>б. Пуццолановая</td>
<td>2 / 5,6–7</td>
<td>2005 2 / 5,6–7</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>Con. microcephalum l.</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. exigus</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ort. divergens</td>
<td>25%</td>
<td>ед. – дес. ^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Con. microcephalum l.</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cos. obvelatus</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Par. adunca l.</td>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coryphoblennius galerita</td>
<td>2006</td>
<td>б. Лисья</td>
<td>3 / 4,8–6,2</td>
<td>2006 3 / 4,8–6,2</td>
<td>Gyrodactylus flesi</td>
<td>2</td>
</tr>
<tr>
<td>Diplodus annularis</td>
<td>Биостанция</td>
<td>1992</td>
<td>20 / 12–21</td>
<td>Lamellodiscus elegans 100 %</td>
<td>23–73 / 47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lam. fraternus 100 %</td>
<td>7–42 / 19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>1 / 7</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>пгт Орджоникидзе</td>
<td>2009</td>
<td>1 / 18,2</td>
<td>Lam. elegans</td>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lam. fraternus</td>
<td>1</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hel. fasciata</td>
<td>7%</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td>15 / 11,5–15</td>
<td>Monorchis parvus</td>
<td>33%</td>
<td>4–7 / 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Con. microcephalum l.</td>
<td>38%</td>
<td>2–4 / 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Capillaria sp.</td>
<td>13%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Mullus barbatus</td>
<td>б. Коктебель</td>
<td>2006</td>
<td>37 / 8,8–14</td>
<td>Hys. aduncum l.</td>
<td>8%</td>
<td>1–2 / 1,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Con. microcephalum l.</td>
<td>8%</td>
<td>1–3 / 2,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prog. dasyatisid l.</td>
<td>2%</td>
<td>1–86 / 25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sco. pleuronectis</td>
<td>5%</td>
<td>1–4 / 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hel. fasciata</td>
<td>3%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td>8 / 11,6–15,4</td>
<td>Proctotrema bacilliovatum</td>
<td>22%</td>
<td>1–23 / 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Con. microcephalum l.</td>
<td>38%</td>
<td>2–4 / 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Capillaria sp.</td>
<td>13%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td>2010</td>
<td>7 / 10–17</td>
<td>Con. microcephalum l.</td>
<td>43%</td>
<td>1–4 / 2,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hys. aduncum l.</td>
<td>14%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gobius niger</td>
<td>Биостанция</td>
<td>2005</td>
<td>2 / 9, 10</td>
<td>Prog. dasyatisid l.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sco. pleuronectis</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kudoa nova</td>
<td>1</td>
<td>ед. – дес. ^3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>пгт Орджоникидзе</td>
<td>2009</td>
<td>4 / 10,3–12,4</td>
<td>Sco. pleuronectis</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prog. dasyatisid l.</td>
<td>1</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hys. aduncum l.</td>
<td>2</td>
<td>1–2 / 1,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aca. propinquus</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gobius bucchichi</td>
<td>б. Коктебель</td>
<td>2005</td>
<td>2 / 10,5–11</td>
<td>Gyrodactylus proterorhini</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sco. pleuronectis</td>
<td>2</td>
<td>24–38 / 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prog. dasyatisid l.</td>
<td>2</td>
<td>1–8 / 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sph. sevastopoli</td>
<td>1</td>
<td>ед. ^4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>1 / 10,5</td>
<td>Sco. pleuronectis</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td>2013</td>
<td>1 / 10</td>
<td>Magnibursatus skrjabini</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Gobius cobitis</td>
<td>Биостанция</td>
<td>1992</td>
<td>13 / 14–20</td>
<td>Gyr. proterorhini</td>
<td>54%</td>
<td>нет данных</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gyr. proterorhini</td>
<td>3</td>
<td>11–17 / 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hel. pulchella</td>
<td>2</td>
<td>2–14 / 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ascarophis pontica l.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hys. aduncum l.</td>
<td>1</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acan. propinquus</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ск. Кузьмычев камень</td>
<td>1994</td>
<td>3 / 13–13,5</td>
<td>Sph. sevastopoli</td>
<td>38%</td>
<td>ед. – дес. ^3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gal. lacteum mtc.</td>
<td>17%</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hel. pulchella</td>
<td>67%</td>
<td>3–11 / 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cos. obvelatus</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Con. microcephalum l.</td>
<td>17%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>б. Сердоликовая</td>
<td>2012</td>
<td>1 / 18</td>
<td>Sph. sevastopoli</td>
<td>38%</td>
<td>ед. – дес. ^3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gal. lacteum mtc.</td>
<td>17%</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hel. pulchella</td>
<td>67%</td>
<td>3–11 / 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cos. obvelatus</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Con. microcephalum l.</td>
<td>17%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Specie/Locality</td>
<td>Collection Year</td>
<td>Collection Size</td>
<td>Species/Genus</td>
<td>Count</td>
<td>Remarks</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Mesogobius batrachocephalus ск. Кузьмичев камень</td>
<td>2005</td>
<td>1 / 9,5</td>
<td>Con. filiforme l.</td>
<td>17 %</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>4 / 12–19,5</td>
<td>Gal. lacteum mtc.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Buc. marinum mtc.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>б. Пущалановская</td>
<td>2013</td>
<td>1 / 12</td>
<td>Gal. lacteum mtc.</td>
<td>2</td>
<td>8–82 / 45</td>
<td></td>
</tr>
<tr>
<td>Ponticola ratan ск. Кузьмичев камень</td>
<td>1994</td>
<td>2 / 13</td>
<td>Con. microcephalum l.</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>4 / 7–8</td>
<td>Con. filiforme l.</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td>2005</td>
<td>15 /3,5–8,3</td>
<td>Buc. marinum mtc.</td>
<td>1</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hel. fasciata</td>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cos. obvelatus</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>б. Лисья</td>
<td>2006</td>
<td>1 / 7</td>
<td>Buc. marinum mtc.</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hel. fasciata</td>
<td>1</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Ponticola eurycephalus ск. Кузьмичев камень</td>
<td>2012</td>
<td>1 / 5,5</td>
<td>Gal. lacteum mtc.</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>4 / 6,5–14</td>
<td>Con. microcephalum l.</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Con. filiforme l.</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Acan. propinquus</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td>2012</td>
<td>2 / 5,5–10</td>
<td>Con. filiforme l.</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>2 / 7–13,5</td>
<td>Acan. propinquus</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>б. Пущалановская</td>
<td>2012</td>
<td>7 / 7–14</td>
<td>Gal. lacteum mtc.</td>
<td>17 %</td>
<td>сот.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sph. sevastopoli</td>
<td>29 %</td>
<td>1–4 / 2,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Met. pauli mtc.</td>
<td>71 %</td>
<td>3–20 / 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hel. fasciata</td>
<td>57 %</td>
<td>1–3 / 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Con. microcephalum l.</td>
<td>29 %</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hys. aduncum l.</td>
<td>14 %</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td>2013</td>
<td>4 / 7–16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cos. obvelatus</td>
<td>43 %</td>
<td>2–295 / 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Par. adunca l.</td>
<td>29 %</td>
<td>1–2 / 1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acan. propinquus</td>
<td>29 %</td>
<td>1–2 / 1,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gal. lacteum mtc.</td>
<td>3</td>
<td>3–22 / 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Con. microcephalum l.</td>
<td>2</td>
<td>1–10 / 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. campana-rougetae</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cos. obvelatus</td>
<td>3</td>
<td>2–14 / 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acan. propinquus</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>б. Сердоликовая</th>
<th>2012</th>
<th>15 / 6,5–15,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sco. pleuronectis</td>
<td>7 %</td>
<td>1</td>
</tr>
<tr>
<td>Gal. lacteum mtc.</td>
<td>20 %</td>
<td>1–2 / 1,3</td>
</tr>
<tr>
<td>Stephanostomum sp. mtc.</td>
<td>87 %</td>
<td>5–36 / 14</td>
</tr>
<tr>
<td>Hel. fasciata</td>
<td>67 %</td>
<td>1–6 / 3</td>
</tr>
<tr>
<td>Con. microcephalum l.</td>
<td>13 %</td>
<td>1</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>27 %</td>
<td>1</td>
</tr>
<tr>
<td>Cos. obvelatus</td>
<td>53 %</td>
<td>1–14 / 5</td>
</tr>
<tr>
<td>Par. adunca l.</td>
<td>7 %</td>
<td>1</td>
</tr>
<tr>
<td>Acan. propinquus</td>
<td>27 %</td>
<td>1–2 / 1,3</td>
</tr>
<tr>
<td>Hel. fasciata</td>
<td>63 %</td>
<td>1–3 / 1,4</td>
</tr>
<tr>
<td>Con. microcephalum l.</td>
<td>13 %</td>
<td>1</td>
</tr>
<tr>
<td>Acan. propinquus</td>
<td>13 %</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scorpaena porcus</th>
<th>1994</th>
<th>27 / 12–25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eimeria scorpaena</td>
<td>15 %</td>
<td>2 – 5 / 3,3</td>
</tr>
<tr>
<td>Hel. fasciata</td>
<td>93 %</td>
<td>1–57 / 16</td>
</tr>
<tr>
<td>Gal. lacteum mtc.</td>
<td>59 %</td>
<td>1–5 / 2,4</td>
</tr>
<tr>
<td>Plagiorchiidae gen. sp. mtc.</td>
<td>4 %</td>
<td>1</td>
</tr>
<tr>
<td>Hys. aduncum</td>
<td>5 %</td>
<td>1–5 / 3,4</td>
</tr>
<tr>
<td>Bothriocephalus «scorpii»</td>
<td>4 %</td>
<td>1</td>
</tr>
<tr>
<td>Con. microcephalum l.</td>
<td>4 %</td>
<td>1</td>
</tr>
<tr>
<td>Con. filiforme l.</td>
<td>4 %</td>
<td>1</td>
</tr>
<tr>
<td>Cucullanus sp.</td>
<td>11 %</td>
<td>1–2 / 1,3</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>56 %</td>
<td>1–44 / 7</td>
</tr>
<tr>
<td>Contracoecum collarae l.</td>
<td>7 %</td>
<td>2–5 / 4</td>
</tr>
<tr>
<td>Asc. pontica l.</td>
<td>7 %</td>
<td>1–2 / 1,5</td>
</tr>
<tr>
<td>Asc. pontica</td>
<td>44 %</td>
<td>1–55 / 12</td>
</tr>
<tr>
<td>Philometra sp.</td>
<td>4 %</td>
<td>1</td>
</tr>
<tr>
<td>Acan. propinquus</td>
<td>15 %</td>
<td>1–5 / 2,3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2009</th>
<th>1 / 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con. microcephalum l.</td>
<td>57 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2010</th>
<th>7 / 14,2–27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con. microcephalum l.</td>
<td>57 %</td>
</tr>
<tr>
<td>Ascarophis sp.</td>
<td>43 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>б. Пуццолановая</th>
<th>2012</th>
<th>2 / 10–14,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prog. dasyatidis l.</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Con. microcephalum l.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Hel. fasciata</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Hys. aduncum</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>T. exigus</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2005</th>
<th>1 / 16,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gal. lacteum mtc.</td>
<td>1</td>
</tr>
<tr>
<td>Sco. pleuronectis</td>
<td>1</td>
</tr>
<tr>
<td>Prog. dasyatidis l.</td>
<td>1</td>
</tr>
<tr>
<td>Hys. aduncum l.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2006</th>
<th>1 / 9,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prog. dasyatidis l.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>б. Коктебель</th>
<th>2012</th>
<th>1 / 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prog. dasyatidis l.</td>
<td>1</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2005</th>
<th>21 / 6,8–24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prog. dasyatidis l.</td>
<td>57 %</td>
</tr>
<tr>
<td>Bot. «scorpii»</td>
<td>5 %</td>
</tr>
<tr>
<td>Date</td>
<td>Location</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>2006 5/7–16</td>
<td>Sco. pleuronectis</td>
</tr>
<tr>
<td>2006 5/7–16</td>
<td>Hel. fasciata</td>
</tr>
<tr>
<td>2006 5/7–16</td>
<td>Gal. lacteum mtc.</td>
</tr>
<tr>
<td>2006 5/7–16</td>
<td>Hys. aduncum l.</td>
</tr>
<tr>
<td>2006 5/7–16</td>
<td>Con. microcephalum l.</td>
</tr>
<tr>
<td>2009 10/10,7–20</td>
<td>Sco. pleuronectis</td>
</tr>
<tr>
<td>2009 10/10,7–20</td>
<td>Bot. «scorpii»</td>
</tr>
<tr>
<td>2006 1/12</td>
<td>Symphodus cinereus</td>
</tr>
<tr>
<td>2006 1/12</td>
<td>Proctoeces maculatus</td>
</tr>
<tr>
<td>2013 1/13,5</td>
<td>Cuc. micropapillatus</td>
</tr>
<tr>
<td>2009 4/7,1–10,6</td>
<td>Con. microcephalum l.</td>
</tr>
<tr>
<td>2009 4/7,1–10,6</td>
<td>Hel. fasciata</td>
</tr>
<tr>
<td>2009 4/7,1–10,6</td>
<td>Con. microcephalum l.</td>
</tr>
<tr>
<td>2009 4/7,1–10,6</td>
<td>Hys. aduncum l.</td>
</tr>
<tr>
<td>2009 4/7,1–10,6</td>
<td>Cuc. micropapillatus</td>
</tr>
<tr>
<td>2009 4/7,1–10,6</td>
<td>Cucullanus sp.</td>
</tr>
<tr>
<td>1994 15/13–24</td>
<td>Gal. lacteum mtc.</td>
</tr>
<tr>
<td>1994 15/13–24</td>
<td>Plagiorchiidae gen. sp. mtc.</td>
</tr>
<tr>
<td>1994 15/13–24</td>
<td>Met. pauli mtc.</td>
</tr>
<tr>
<td>1994 15/13–24</td>
<td>Gaevskajatrema perezi</td>
</tr>
<tr>
<td>1994 15/13–24</td>
<td>Pro. maculatus</td>
</tr>
<tr>
<td>1994 15/13–24</td>
<td>Hel. fasciata</td>
</tr>
<tr>
<td>1994 15/13–24</td>
<td>Cuc. micropapillatus</td>
</tr>
<tr>
<td>1994 15/13–24</td>
<td>Hys. aduncum l.</td>
</tr>
<tr>
<td>1994 15/13–24</td>
<td>Acan. propinquus</td>
</tr>
<tr>
<td>1994 15/13–24</td>
<td>Caligus cenrodoni</td>
</tr>
<tr>
<td>1994 8/12–27,5</td>
<td>Gyrodactylus crenlabri</td>
</tr>
<tr>
<td>1994 8/12–27,5</td>
<td>Plagiorchiidae gen. sp. mtc.</td>
</tr>
<tr>
<td>1994 8/12–27,5</td>
<td>Gal. lacteum mtc.</td>
</tr>
<tr>
<td>1994 8/12–27,5</td>
<td>Met. pauli mtc.</td>
</tr>
<tr>
<td>1994 8/12–27,5</td>
<td>Gaev. perezi</td>
</tr>
<tr>
<td>1994 8/12–27,5</td>
<td>Pro. maculatus</td>
</tr>
<tr>
<td>1994 8/12–27,5</td>
<td>Con. microcephalum l.</td>
</tr>
<tr>
<td>1994 8/12–27,5</td>
<td>Hys. aduncum l.</td>
</tr>
<tr>
<td>1994 8/12–27,5</td>
<td>Con. collarae l.</td>
</tr>
<tr>
<td>1994 8/12–27,5</td>
<td>Cuc. micropapillatus</td>
</tr>
<tr>
<td>1994 8/12–27,5</td>
<td>Cal. cenrodoni</td>
</tr>
<tr>
<td>1994 8/12–27,5</td>
<td>Gyr. crenlabri</td>
</tr>
<tr>
<td>1994 8/12–27,5</td>
<td>Gal. lacteum mtc.</td>
</tr>
<tr>
<td>2012 3/19–22</td>
<td>Gae. perezi</td>
</tr>
<tr>
<td>2012 3/19–22</td>
<td>Hel. fasciata</td>
</tr>
<tr>
<td>2012 3/19–22</td>
<td>Con. microcephalum l.</td>
</tr>
<tr>
<td>2012 3/19–22</td>
<td>Con. filiforme l.</td>
</tr>
<tr>
<td>2012 3/19–22</td>
<td>Cuc. micropapillatus</td>
</tr>
<tr>
<td>2009 4/17,3–22,5</td>
<td>Gyr. crenlabri</td>
</tr>
<tr>
<td>2009 4/17,3–22,5</td>
<td>Met. pauli mtc.</td>
</tr>
<tr>
<td>2009 4/17,3–22,5</td>
<td>Hel. fasciata</td>
</tr>
<tr>
<td>2009 4/17,3–22,5</td>
<td>Pro. maculatus</td>
</tr>
<tr>
<td>2009 4/17,3–22,5</td>
<td>Con. microcephalum l.</td>
</tr>
<tr>
<td>2012 12/9–27</td>
<td>Con. filiforme l.</td>
</tr>
<tr>
<td>Семейство</td>
<td>Год</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
</tr>
<tr>
<td>Symphodus ocellatus</td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symphodus roissali

<table>
<thead>
<tr>
<th>Семейство</th>
<th>Год</th>
<th>Место</th>
<th>Диапазон размеров</th>
<th>Обозначение</th>
<th>%</th>
<th>Диапазон размеров</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gyraulus crenilabri</td>
<td>18 %</td>
<td>5–6 / 5,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plagiorchiidae gen. sp. mtc.</td>
<td>65 %</td>
<td>2–15 / 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Met. pauli mtc.</td>
<td>94 %</td>
<td>1–50 / 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hel. fasciata</td>
<td>35 %</td>
<td>10–35 / 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pro. maculatus</td>
<td>35 %</td>
<td>1–7 / 3,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gal. lacteum mtc.</td>
<td>41 %</td>
<td>1–18 / 7,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Con. microcephalum l.</td>
<td>6 %</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hys. aduncum l.</td>
<td>12 %</td>
<td>1–5 / 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cuc. micropapillatus</td>
<td>6 %</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cal. centrodonti</td>
<td>88 %</td>
<td>1–74 / 17</td>
</tr>
</tbody>
</table>

Биостанция

<table>
<thead>
<tr>
<th>Семейство</th>
<th>Год</th>
<th>Место</th>
<th>Диапазон размеров</th>
<th>Обозначение</th>
<th>%</th>
<th>Диапазон размеров</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gyraulus crenilabri</td>
<td>18 %</td>
<td>5–6 / 5,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plagiorchiidae gen. sp. mtc.</td>
<td>65 %</td>
<td>2–15 / 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Met. pauli mtc.</td>
<td>94 %</td>
<td>1–50 / 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hel. fasciata</td>
<td>35 %</td>
<td>10–35 / 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pro. maculatus</td>
<td>35 %</td>
<td>1–7 / 3,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gal. lacteum mtc.</td>
<td>41 %</td>
<td>1–18 / 7,4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Con. microcephalum l.</td>
<td>6 %</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hys. aduncum l.</td>
<td>12 %</td>
<td>1–5 / 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cuc. micropapillatus</td>
<td>6 %</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cal. centrodonti</td>
<td>88 %</td>
<td>1–74 / 17</td>
</tr>
<tr>
<td>2005</td>
<td>2 / 8,5–9,5</td>
<td>\textit{Gal. lacteum mtc.}</td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Hel. fasciata}</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Con. microcapillatus}</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Gyr. crenilabri}</td>
<td>100 %</td>
<td>2–134 / 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Gal. lacteum mtc.}</td>
<td>11 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Met. pauli mtc.}</td>
<td>32 %</td>
<td>2–13 / 7,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Gae. perezi}</td>
<td>26 %</td>
<td>1–3 / 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Pro. maculatus}</td>
<td>16 %</td>
<td>1–14 / 2,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Con. microcapillatum}</td>
<td>11 %</td>
<td>1–2 / 1,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Con. filiforme l.}</td>
<td>11 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{J. campana-rougetae}</td>
<td>5 %</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Hys. aduncum l.}</td>
<td>21 %</td>
<td>1–2 / 1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Cuc. microcapillatus}</td>
<td>47 %</td>
<td>1–8 / 3,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Cal. centrodonti}</td>
<td>37 %</td>
<td>1–11 / 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Gyr. crenilabri}</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plagiorchiidae gen. sp. mtc.</td>
<td>2</td>
<td>2–6 / 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Gal. lacteum mtc.}</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Met. pauli mtc.}</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Gae. perezi}</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Pro. maculatus}</td>
<td>2</td>
<td>4–7 / 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Cal. centrodonti}</td>
<td>2</td>
<td>11–23 / 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Buc. marinus mtc.}</td>
<td>1</td>
<td>136</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Con. filiforme l.}</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Met. pauli mtc.}</td>
<td>2</td>
<td>1–2 / 1,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Buc. marinus mtc.}</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Con. collarae l.}</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Cainocreadium sp.}</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Gal. lacteum mtc.}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Met. pauli mtc.}</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Buc. marinus}</td>
<td>2</td>
<td>180–900</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Gal. lacteum mtc.}</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Met. pauli mtc.}</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Proc. maculatus}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Con. filiforme l.}</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Sph. sevastopoli}</td>
<td>75 %</td>
<td>ед. – дес.³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Zschokkella iskovi}</td>
<td>13 %</td>
<td>ед.³</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Sco. pleuronectis}</td>
<td>10 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Hel. fasciata}</td>
<td>25 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Spininctis tamari}</td>
<td>25 %</td>
<td>1–3 / 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{T. exigius}</td>
<td>13 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Stephanostomum sp. mtc.}</td>
<td>16,3 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Gal. lacteum mtc.}</td>
<td>13 %</td>
<td>1–4 / 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Met. pauli mtc.}</td>
<td>6,3 %</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Hel. fasciata}</td>
<td>88 %</td>
<td>1–41 / 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Cainocreadium sp.}</td>
<td>19 %</td>
<td>2–5 / 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Buc. marinus mtc.}</td>
<td>68 %</td>
<td>22–921 / 341</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Spi. tamari}</td>
<td>25 %</td>
<td>1–2 / 1,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Hys. aduncum l.}</td>
<td>50 %</td>
<td>1–24 / 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Ascarophis prosper}</td>
<td>19 %</td>
<td>1–2 / 1,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Acan. propinquus}</td>
<td>13 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Gyr. alviga}</td>
<td>10 %</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\textit{Sco. pleuronectis}</td>
<td>10 %</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Name</td>
<td>Scientific Name</td>
<td>Localization</td>
<td>Total</td>
<td>Range</td>
<td></td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Prog. dasyatidis</td>
<td>l.</td>
<td>20 %</td>
<td>1–4 / 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gal. lacteum</td>
<td>mtc.</td>
<td>90 %</td>
<td>2–23 / 9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hel. fasciata</td>
<td></td>
<td>40 %</td>
<td>2–16 / 7,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cainocreadium sp.</td>
<td></td>
<td>30 %</td>
<td>1–70 / 25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buc. marinus</td>
<td>mtc.</td>
<td>30 %</td>
<td>6–21 / 11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Con. microcephalum l.</td>
<td></td>
<td>40 %</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Con. filiforme l.</td>
<td></td>
<td>40 %</td>
<td>2–3 / 2,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cos. obvelatus</td>
<td></td>
<td>40 %</td>
<td>2–10 / 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asc. pontica l.</td>
<td></td>
<td>10 %</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascaroephis sp. l.</td>
<td></td>
<td>20 %</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acuriidae gen. sp. l.</td>
<td></td>
<td>20 %</td>
<td>2–7 / 4,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>б. Пущолановская</td>
<td></td>
<td>2006</td>
<td>5 / 8,4–10,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>пгт Орджоникидзе</td>
<td></td>
<td>2009</td>
<td>1 / 25,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ophidion rochei</td>
<td></td>
<td>1988</td>
<td>2 / 18–20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ск. Кузьмичев камень</td>
<td></td>
<td>1993</td>
<td>8 / 18–24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1994</td>
<td>2 / 21,5–24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chelon auratus</td>
<td></td>
<td>1994</td>
<td>36 / 2,7–7,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ск. Кузьмичев камень</td>
<td></td>
<td>1994</td>
<td>2 / 21,5–24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2005</td>
<td>2 / 45–50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2010</td>
<td>4 / 17,5–21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2012</td>
<td>4 / 4,2–5,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planiliza haematocheilus</td>
<td>Биостанция</td>
<td>2005</td>
<td>15 / 3,3–6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td></td>
<td>2006</td>
<td>4 / 30–49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td></td>
<td>2009</td>
<td>4 / 32,5–36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td></td>
<td>2010</td>
<td>4 / 17,5–21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td></td>
<td>2012</td>
<td>4 / 4,2–5,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mugil cephalus</td>
<td>Биостанция</td>
<td>2012</td>
<td>1 / 39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td></td>
<td>2012</td>
<td>1 / 39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gymnammo-dytes cicerellus</td>
<td>Биостанция</td>
<td>2005</td>
<td>57 / 5,5–7,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td></td>
<td>1994</td>
<td>1 / 10,5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

110
<table>
<thead>
<tr>
<th>Место обитания</th>
<th>Год</th>
<th>Примечание</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ск. Кузьмичев камень</td>
<td>1994</td>
<td>2 / 14–21</td>
<td>Gal. lacteum mtc. 1 2</td>
</tr>
<tr>
<td>Ск. Кузьмичев камень</td>
<td>1994</td>
<td>2 / 22</td>
<td>Ani. gracile 1 18–100 / 59</td>
</tr>
<tr>
<td>Ск. Кузьмичев камень</td>
<td>1994</td>
<td>2 / 22</td>
<td>Ani. fallax 1 4–25 / 15</td>
</tr>
<tr>
<td>Ск. Кузьмичев камень</td>
<td>1994</td>
<td>2 / 22</td>
<td>Philometra sp. 1 1</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>5 / 1–5</td>
<td>Tetraonchoïdes paradoxus 2 1–2 / 1,5</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>2 / 15,5–18</td>
<td>Dip. similis 1 1</td>
</tr>
<tr>
<td>Ск. Кузьмичев камень</td>
<td>1994</td>
<td>2 / 22</td>
<td>Solearhynchus rhytidotes 2 1–5 / 3</td>
</tr>
<tr>
<td>Ск. Кузьмичев камень</td>
<td>1994</td>
<td>2 / 22</td>
<td>Cuculianus sp. 1 1</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>2 / 15,5–18</td>
<td>An. propinquus 1 1</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>2 / 15,5–18</td>
<td>Dip. similis 1 1</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>2 / 15,5–18</td>
<td>Dip. aculeatum 3 14–31 / 22</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>2 / 15,5–18</td>
<td>Dip. inerme 1 18</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>2 / 15,5–18</td>
<td>Cal. inermis 1 1</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>2 / 15,5–18</td>
<td>Con. filiforme l. 2 7–14 / 11</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>2 / 15,5–18</td>
<td>Con. microcephalum l. 2 7–14 / 11</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>2 / 15,5–18</td>
<td>Con. microcephalum l. 2 7–14 / 11</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>2 / 15,5–18</td>
<td>Con. microcephalum l. 2 7–14 / 11</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>2 / 15,5–18</td>
<td>Con. microcephalum l. 2 7–14 / 11</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>2 / 15,5–18</td>
<td>Con. microcephalum l. 2 7–14 / 11</td>
</tr>
<tr>
<td>ПГТ Орджоникидзе</td>
<td>2009</td>
<td>2 / 15,5–18</td>
<td>Con. microcephalum l. 2 7–14 / 11</td>
</tr>
</tbody>
</table>

Примечание:* в 1988 г. обследование рыб проводилось только на зараженность миксоспоридиями; ** в 1992 и 1993 гг. - только на зараженность монохроменами; *** показатели инвазии: экстенсивность инвазии (ЭИ) – доля зараженных рыб в %, если рыб в пробе > 5 экз., или количество зараженных рыб в экз., если рыб в пробе ≤ 5 экз., интенсивность инвазии (ИИ) – предельные значения количества паразитов, найденных на одной рыбе / среднее значение.
Таким образом, с учетом данных наших исследований (табл. 1) и опубликованных ранее сведений, у берегов Юго-Восточного Крыма представлены паразиты, относящиеся к различным систематическим группам: от простейших до ракообразных.

CHROMISTA

В результате наших исследований фауна инфузорий в этом районе пополнилась 3 видами. Один из них — Terebrosypira lenticularis Debaissieux, 1960 (Ciliophora: Oligohymenophorea: Peritrichia) обнаружен у скальной креветки Palaemon elegans у Биостанции в устье небольшого ручья. Обильно покрытые зелеными водорослями прибрежные камни свидетельствовали не только о распленении морской воды, но и о повышенном содержании в ней биогенных веществ. Вполне вероятно, что пониженная соленость воды в сочетании с повышенной трофностью вод в этом биотопе являются факторами, стимулирующими развитие паразитической инфузории T. lenticularis.

Два других вида — инфузории Peniculistoma mytili (Morgan, 1925) и Ancistrum mytili (Quennerstedt, 1867) (Ciliophora: Oligohymenophorea: Scuticociliatia). Первый вид живет в мантийной полости мидии; выступает в роли пищевого ветвистого моллюска теряют способность смыкать створки раковины и погибают (Гаевская, 2006). Эта инфузория обнаружена в мантийной жидкости, на поверхности жабр и на мантии мидий по всей акватории Карадага (Лебедовская, 2015), но численность ее невысока (табл. 1). Анциструмы, напротив, довольно многочисленны на жабрах обследованных моллюсков, но даже при большой численности заметного вреда своим хозяевам они не наносят (Rayyan, 2006).

Грегарина Nematopsis legeri является одним из самых массовых паразитов мидий в Черном море и может вызывать у моллюсков заболевания, называемое нематопсисом (Гаевская, 2006). N. legeri обнаружен у мидий во всех районах исследования, но у Карадага показатели зараженности моллюсков были значительно выше, чем в прилегающих акваториях (табл. 1).

В последние годы отмечается рост как встречаемости, так и численности грегарин. Так, до инвазированных мидий в 2013 г. была в 1,5 раза выше по сравнению с данными 2009 г., а их средняя численность, приходящаяся на 1 м² поверхности жабр обследованных моллюсков — в 400 раз. Самую низкую экстенсивность инвазии грегаринами мидий наблюдали у Кузьмины (табл. 1). Эта инфузория обнаружена в мантийной жидкости, приходящейся на 1 мм² поверхности жабр обследованных моллюсков – в 400 раз. Следует отметить, что до 2012 г. нематопсис в этом районе не обнаруживали. Показатели зараженности E. sardinae, M. galloprovincialis грегариной N. legeri в акватории Карадагского природного заповедника (в 2013 г. заражено около 50 % обследованных особей, у которых встречено в пределах 4,3 осоц/м²Sжабр·особь) находятся в обычных пределах, встречающихся у мидий из различных черноморских биоценозов и в настоящее время не предполагают угрозы для моллюсков заповедника.

Таким образом, в акватории Черного моря у берегов Карадага зарегистрирован 7 видов паразитических простейших: Cephaloidophora conformis, Nematopsis legeri, Eimeria scopaena, E. sardinae, Terebrosypira lenticularis, Peniculistoma mytili и Ancistrum mytili, а также представители рода Trichodina.
Миксоспоридии (Cnidaria: Myxozoa: Myxosporea), зарегистрированные у рыб акватории Карадага и прилегающих районов моря относятся к 29 видам (табл. 1 и 2) и найдены у 33 видов хозяев.

Таблица 2.

<table>
<thead>
<tr>
<th>Вид миксоспоридии</th>
<th>Вид рыбы</th>
<th>Район обнаружения</th>
<th>Источник данных</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kudoa quadratum (Thélohan, 1895)</td>
<td>Trachurus mediterraneus</td>
<td>Карадаг</td>
<td>Решетникова, 1954, 1955 б</td>
</tr>
<tr>
<td>Ceratomyxa agilis (Thélohan, 1892) [syn. Leptotheca agilis]</td>
<td>Dasyatis pastinaca</td>
<td>Карадаг</td>
<td>Манге, 1993; Мирошниченко, 2004 а, б</td>
</tr>
<tr>
<td>C. parva (Thélohan, 1895)</td>
<td>Scomber scomber</td>
<td>Карадаг</td>
<td>Решетникова, 1954, 1955 б</td>
</tr>
<tr>
<td>C. reticularis (Thélohan, 1895)</td>
<td>Trachinus draco</td>
<td>г. Судак</td>
<td>Погорельцева, 1964 б</td>
</tr>
<tr>
<td>S. incurvata Doflein, 1898</td>
<td>Pegusa nasuta</td>
<td>г. Судак</td>
<td>Погорельцева, 1964 б</td>
</tr>
<tr>
<td>S. sabrazesi Laveran & Mesnil, 1900</td>
<td>Syngnathus typhle</td>
<td>пгт Коктебель</td>
<td>Юрахно, 2009 а; Yurakhno, 2010, 2013</td>
</tr>
<tr>
<td>Myxobilatus plateaeni (Basikalowa, 1932)</td>
<td>Platichthys flesus</td>
<td>Открытое море, на траверзе Карадага</td>
<td>Yurakhno, 2013</td>
</tr>
<tr>
<td>Myxobolus muelleri Bütsc, 1882</td>
<td>Chelon auratus, Chel. saliens, Mugil cephalus</td>
<td>Карадаг</td>
<td>Решетникова, 1954, 1955 а, б</td>
</tr>
<tr>
<td>M. exigus Thélohan, 1895</td>
<td>Chel. auratus, M. cephalus</td>
<td>Карадаг</td>
<td>Решетникова, 1955 а; Погорельцева, 1964 б; Манге, 1993;</td>
</tr>
</tbody>
</table>
Мирошниченко, 2004 а, б
M. parvus
Schulman, 1962
M. cephalus, Planiliza haematocheilus
Карадаг
Мирошниченко, 2004 а, б
M. asymmetricus
(Parisi, 1912)
Symphodus tinca и другие Labridae
g. Судак
Погорельцева, 1964 б
Zschokkella admiranda
Yurakhno, 1993
[syn. Z. nova sensu (Погорельцева, 1964)]
Chel. aurata,
Mugilidae gen. sp.
Карадаг
Погорельцева, 1964 б; Мирошниченко, 2004 а, б
Z. iskovi
Kovaleva, Donets & Kolesnikova, 1989
Gaidropsarus mediterraneus
Карадаг
Юрахно, Попюк, 2013
Fabespora nana
Naidenova & Zaika, 1969
Ophidion rochei
Карадаг
Юрахно, 2009 а; Yurakhno, 2010, 2013
Alataspora solomoni
V. Yurakhno, 1988 [syn. Ceratomyxa peculiaria sensu (Манге, 1993)]
T. mediterraneus
Карадаг, пгт Коктебель
Chloromyxum psetti Kovaleva, Donets & Kolesnikova, 1989
Raja clavata
Карадаг
Юрахно, 2009а; Yurakhno, 2010, 2013
Ch. ovatum
Jameson, 1929
Squalus acanthias
Открытое море, на траверзе Карадага
Yurakhno, 2010, 2013

Таким образом, нами у берегов Юго-Восточного Крыма найдено 16 видов миксоспоридий: Alataspora solomoni, Fabespora nana, Chloromyxum psetti, Ch. ovatum, Kudoa stellula, K. nova, Ortholinea diversens, Sphaeromyxa sevastopoli, S. sabrazesi, Ceratomyxa merlangi, Myxidium gadi, M. parvum, M. cochleatum, Myxobilatus platessae, Sygmomyxa sphaerica и Zschokkella iskov, 11 из которых для этого района указаны впервые.

В список видов не включена Ceratomyxa peculiaria, отмечаемая А. И. Мирошниченко (2004 в) у черноморской ставриды, так как эта миксоспоридия является узкоспецифичным паразитом смариды S. flexuosa. Очевидно, имеет место ошибочное определение вида. В ставриде Черного моря, в том числе и в районе Карадага, обычным паразитом является Alataspora solomoni. Вывозит сомнения регистрация Zschokkella nova у кефалевых в этом районе, так как этот вид является представителем пресноводной фауны. Очевидно, имеет место ошибочное определение вида. В ставриде Черного моря, в том числе и в районе Карадага, обычным паразитом является Alataspora solomoni. Вывозит сомнения регистрация Zschokkella nova у кефалевых в этом районе, так как этот вид является представителем пресноводной фауны Zschokkella, а в водах Черного, Азовского и Средиземного морей встречается лишь Z. admiranda. Находки этих двух видов в районе Карадага сведены нами в синонимы (табл. 2).

Несмотря на увеличение общего списка видов миксоспоридий, обнаруженных у рыб, обитающих у Карадага и прилегающих районах моря, нами не найдены 13 видов из тех, что ранее здесь регистрировались. Это объясняется, прежде всего, недостаточной степенью изученности данной группы паразитов в этом районе. 19 видов (76 %) миксоспоридий, отмеченных для акватории Карадага, довольно широко расспространены в Черном море и встречаются, например, в регионе Севастополя. Из остальных 6 видов, найденных у рыб Карадага 45–55 лет назад (Ceratomyxa hepsetis, Ceratomyxa parva, C. reticularis, Sphaeromyxa incurvata, Myxobolus exiguis и Zschokkella admiranda), за последние годы обнаружено лишь 2 (C. agilis и Z. admiranda). 4 вида родов Ceratomyxa и Sphaeromyxa, которых можно считать достаточно редкими в Черном море, нуждаются в подтверждении их встречаемости в этом районе.

Obнаружение S. sevastopoli в морской со-бачке, бычках и средиземноморском трехусом морском налиме подтверждает первоочередное воздействие на заражённость рыб миксоспоридиями не только общности происхождения хозяев, но и принадлежности их к одной экологической группе донных животных.

Моногенеи (Platyheminthes: Monogenea), зарегистрированные у рыб Карадага и прилегающих районов моря, относятся к 32 видам (табл. 1 и 3) и найдены у 35 видов рыб.
<table>
<thead>
<tr>
<th>Вид моногенеи</th>
<th>Вид рыбы</th>
<th>Источник данных</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligophorus vanbenedeni (Par. et. Per., 1810) [syn. Ancyrocephalus vanbenedeni in part]</td>
<td>Chelon auratus</td>
<td>Решетникова, 1955 а; Быховский, 1957; Мирошниченко, 2004 б; Дмитриева и др., 2007, 2009; НД*</td>
</tr>
<tr>
<td>L. kaohsianghsieni (Gusev, 1962)</td>
<td>Planiliza haematocheilus, Chel. auratus</td>
<td>Дмитриева, 1996; Мирошниченко, 2004 б; НД</td>
</tr>
<tr>
<td>L. pilengas Sarabeev et Balbuena, 2004 [syn. L. gussevi; Ligophorus sp.1 sensu (Мирошниченко, 2004б, в)]</td>
<td>Plan. haematocheilus</td>
<td>Мирошниченко, 2004 б; Корнийчук и др., 2008; Дмитриева и др., 2009; НД</td>
</tr>
<tr>
<td>L. llewellyni Dmitrieva, Gerasev & Pron'kina, 2007</td>
<td>Plan. haematocheilus</td>
<td>Корнийчук и др., 2008; Дмитриева и др., 2009; НД</td>
</tr>
<tr>
<td>L. mediterraneus Sarabeev, Balbuena & Euzet, 2005 [syn. L. mugilinus sensu (Мирошниченко, 2004 б)]</td>
<td>M. cephalus</td>
<td>Решетникова, 1955 а; Мирошниченко, 2004 б</td>
</tr>
<tr>
<td>Diplectanum aculeatum Parona & Perugia, 1889</td>
<td>Sciaena umbra</td>
<td>Власенко, 1931; Быховский, 1957; Николаева, Солонченко, 1970; Мирошниченко, 2004 б; НД</td>
</tr>
<tr>
<td>D. similis Bychowsky, 1957</td>
<td>S. umbra</td>
<td>Быховский, 1957; Николаева, Солонченко, 1970; Мирошниченко, 2004 б; НД</td>
</tr>
<tr>
<td>Lamellodiscus elegans Bychowsky, 1957</td>
<td>Diplodus annularis</td>
<td>Быховский, 1957; Мирошниченко, 2004 б; НД</td>
</tr>
<tr>
<td>L. fraternus Bychowsky, 1957</td>
<td>Dip. annularis</td>
<td>Быховский, 1957; Мирошниченко, 2004 б; НД</td>
</tr>
<tr>
<td>Calceostomella inerme (Parona & Perugia, 1889)</td>
<td>S. umbra</td>
<td>Власенко, 1931; Быховский, 1957; Погорельцева, 1952 а; НД</td>
</tr>
<tr>
<td>Capsala pelamydis (Taschenberg, 1878)</td>
<td>Sarda sarda</td>
<td>Быховский, 1957; Решетникова, 1954, 1955 а</td>
</tr>
<tr>
<td>Bothitrema bothi (MacCallum, 1913)</td>
<td>Scophthalmus maeoticus</td>
<td>Погорельцева, 1964 а</td>
</tr>
<tr>
<td>Tetraonchoides paradoxus Bychowsky, 1951</td>
<td>Uranoscopus scaber</td>
<td>Николаева, Солонченко, 1970; НД</td>
</tr>
<tr>
<td>Gyrodactylus alviga Dmitrieva & Gerasev, 2000</td>
<td>Merlangius merlangus, Chel. auratus, Pomatomus saltatrix, Dip. annularis, Ophidion rochei, Platichthys flesus, Sco. maeoticus</td>
<td>Дмитриева и др., 2009; НД</td>
</tr>
<tr>
<td>G. atherinae Bychowsky, 1933</td>
<td>Atherina boyeri</td>
<td>Герасев, Дмитриева, 2004</td>
</tr>
<tr>
<td>G. crenilabri Zaika, 1966</td>
<td>Symphodus tinca, Sym.</td>
<td>Мачкевский, 1990; Мирошничен-</td>
</tr>
</tbody>
</table>

G. mugili Zhukov, 1970	M. cephalus	НД
G. mulli Gerasev & Dmitrieva, 2005	Mullus barbatus	Герасев, Дмитриева, 2005
G. proterorhini Ergens, 1967	Ponticola ratan, Neogobius melanostomus, Gobius cobitis, Gob. bucchi, Proterorhinus marmoratus, Mesogobius batrachocephalus	Дмитриева и др., 2007, 2009; НД
G. sphinx Dmitrieva, Gerasev, 2000	Aidablennius sphynx	Дмитриева и др., 2007, 2009; НД
Gyrodactylus sp. 1	Engraulis encrasicolus	Манге, Мирошиниченко, 1992; Манге, 1993; Мирошиниченко, 2004 б
Gyrodactylus sp. 2	Mullus barbatus	Манге, Мирошиниченко, 1992; Манге, 1993; Мирошиниченко, 2004 б
Polyclithrum ponticum Gerasev, Dmitrieva & Gaevskaia, 2002	M. cephalus	НД
Polyclithrum sp.	M. cephalus	Мирошиниченко, 2004 б;
Squalonchocotyle squali MacCallum, 1931	Squalus acanthias	Погорельцева, 1970
S. pontica Pogorelzeva, 1964	Dasyatis pastinaca	Погорельцева, 1970
Mazocraes alosae Hermann, 1782	Alosa kessleri	Погорельцева, 1952 а
Kuhnia scombri (Kuhn, 1829)	Scomber scombrus	Погорельцева, 1964 а
Plectanocotyle gurnardi (Van Beneden & Hesse, 1863)	Trigla lucerna	Погорельцева, 1964 а
Axine belones Abildgaard,1794	Belone belone	Мирошиниченко, 2004 б; НД

В результате переисследования этих сборов список паразитов, встреченных у рыб района Карадага, увеличился еще на 2 вида моногеней (Герасев, Дмитриева, 2004, 2005).

Цестоды (Platyhelminthes: Cestoda), по литературным и собственным данным, зарегистрированные у рыб акватории Карадага и прилегающих районов моря, относятся к 26 видам (табл. 1 и 4), паразитирующим у 35 видов рыб.

Таблица 4. Фауна цестод рыб у Карадага и прилегающих районов моря (по литературным и собственным данным)

<table>
<thead>
<tr>
<th>Вид цестоды</th>
<th>Вид рыбы</th>
<th>Источник данных</th>
</tr>
</thead>
<tbody>
<tr>
<td>Echinobothrium typus van Beneden, 1849⁴</td>
<td>Raja clavata</td>
<td>Погорельцева, 1952 а, 1970; Гаевская и др., 1975; Мирошниченко, 2004 в</td>
</tr>
<tr>
<td>Nybelinia lingualis (Cuvier, 1817) ¹¹</td>
<td>Sarda sarda</td>
<td>Гаевская и др., 1975; Мирошниченко, 2004 в</td>
</tr>
<tr>
<td>Hepatoxylon trichiuri (Holten, 1802) ¹¹</td>
<td>Trachinus draco</td>
<td>Решетникова, 1955 б; Погорельцева, 1960; Мирошниченко, 2004 в</td>
</tr>
<tr>
<td>Grillotia erinaceus (van Beneden, 1858)</td>
<td>R. clavata</td>
<td>Корнюшин, Солонченко, 1978</td>
</tr>
<tr>
<td>Grillotia erinaceus l.</td>
<td>Merlangus merlangus</td>
<td>НД</td>
</tr>
<tr>
<td>Parachristianella trygonis Dollfus, 1946³</td>
<td>Dasyatis Pastinaca</td>
<td>Корнюшин, Солонченко, 1978</td>
</tr>
<tr>
<td>Progrillotia dasyatidis Beveridge, Neifar & Euzet, 2004³</td>
<td></td>
<td>НД</td>
</tr>
<tr>
<td>Tetrarhynchobothrium tenunicolle Diesing, 1850⁴</td>
<td>R. clavata</td>
<td>Погорельцева, 1960; Мирошниченко, 2004 в;</td>
</tr>
<tr>
<td>Dollfusiella aculeata Beveridge, Neifar & Euzet, 2004²,³</td>
<td>Das. Pastinaca</td>
<td>НД</td>
</tr>
<tr>
<td>Dollfusiella sp. l.</td>
<td>Belone belone, Mul. barbatus, Tra. draco, Scomber scombrus, Pegusa nasuta, Chelidonichthys lucernus</td>
<td>Гаевская и др., 1975; Манге, 1993</td>
</tr>
<tr>
<td>Rhinebothrium walga (Shipley, Hornell, 1906) 2, 3</td>
<td>Das. pastinaca</td>
<td>НД</td>
</tr>
<tr>
<td>Caulobothrium sp. 2</td>
<td>Das. pastinaca</td>
<td>Погорельцева, 1970; Мирошниченко, 2004 в; Kornyushin, Polyakova, 2012; НД</td>
</tr>
<tr>
<td>Rhabdotothrium sp. 2</td>
<td>Das. pastinaca</td>
<td>НД</td>
</tr>
<tr>
<td>Cairaeanthus healyae Kornyushin & Polyakova, 2012 (syn. Phyl. gracilis Wedl, 1855 sensu Borcea, 1934; Погорельцева, 1960) 1</td>
<td>Das. pastinaca</td>
<td>Погорельцева, 1970; Мирошниченко, 2004 в; Корнийчук и др., 2008; Kornyushin, Polyakova, 2012; НД</td>
</tr>
<tr>
<td>Anthobothrium cornucopia (Rud., 1819) 4</td>
<td>Das. pastinaca</td>
<td>Погорельцева, 1960, 1970</td>
</tr>
<tr>
<td>Anthobothrium auriculatum (Rud., 1819) 4</td>
<td>Das. pastinaca</td>
<td>Погорельцева, 1970</td>
</tr>
<tr>
<td>Acanthobothrium crassicolle Wedl, 1855 3</td>
<td>Das. pastinaca</td>
<td>НД</td>
</tr>
<tr>
<td>Acanthobothrium sp. 1</td>
<td>R. clavata</td>
<td>Погорельцева, 1952 а, 1960; Гаевская и др., 1975; Манге, 1993; Мирошниченко, 2004 в; Дмитриева и др., 2007; НД</td>
</tr>
<tr>
<td>Acanthobothrium sp. 2</td>
<td>Das. pastinaca</td>
<td>Погорельцева, 1952 а, 1960; Гаевская и др., 1975; Манге, 1993; Мирошниченко, 2004 в; Дмитриева и др., 2007; НД</td>
</tr>
<tr>
<td>Acanthobothrium sp. 4</td>
<td>Das. pastinaca</td>
<td>Погорельцева, 1952 а, 1960; Гаевская и др., 1975; Манге, 1993; Мирошниченко, 2004 в; Дмитриева и др., 2007; НД</td>
</tr>
<tr>
<td>Bothriocephalus «scorpii» (Müller, 1779)</td>
<td>Scor. porcus</td>
<td>Дмитриева и др., 2007; НД</td>
</tr>
<tr>
<td>Bothriocephalus «scorpii» l.</td>
<td>Mul. barbatus, S. scombrus, Tra. mediterraneus, Gobiidae gen. spp.</td>
<td>Гаевская и др., 1975; Мирошниченко, 2004 в</td>
</tr>
</tbody>
</table>

Примечание: 1 – новые таксоны цестод; 2, 3 – рода (2) и виды (3) цестод, впервые обнаруженные у рыб акватории Карадага; 4 – виды цестод нами не найдены у рыб акватории Карадага.
Список паразитов гидробионтов района Карадага содержит упоминание о 19 видах цестод, из них половозрелых видов – 13, личинок – 4, для 3 определена только родовая принадлежность (Мирошниченко, 2004 в).

Однако в свете последних таксономических ревизий цестод хрящевых рыб (Caira, Jensen, 2014; Caira et al., 2013; Caira et al., 2014; Healy et al., 2009; Olson et al., 2010; Palm, 2004; Palm et al., 2009; Ruhnke, 2011; Ruhnke et al., 2015; Tyler, 2006; Williams, 1969) ряд видов из этого списка сведены в синонимы или переведены в другие родовые группы, а находки некоторых из них рассматриваются как сомнительные, ввиду отсутствия их специфичных окончательных хозяев в Черном море.

В указанный список не вошли цестоды, чье определение ошибочно, а находки сомнительны. К ним относятся Tentacularia sp. l., Grillotia (Christianella) minuta (van Beneden, 1849) Beveridge & Campbell, 2010 и личинки этого вида (Гаевская и др., 1975; Ковалева, 1966; Mahre, 1993; Погорельцева, 1952 а; Решетникова, 1955 б), а также Acanthobothrium coronatum (Rud., 1819) (Гаевская и др., 1975; Мирошниченко, 2004 в; Погорельцева, 1960, 1970), находки которых маловероятны не только у рыб акватории Карадага, но и Черного моря, поскольку их специфичные окончательные хозяева (океанические акулы) в данном водосборе не обитают (Полякова и др., 2017).

У рыб как в районе Карадага, так и у побережья Крыма не были обнаружены цестоды Tetrarhynchobothrium tenuicolle, Nybelinia lingualis l., Hepatoxylon trichiuris l., Anthobothrium cornucopia и A. auriculatum. В настоящее время, ввиду отсутствия возможности переисследования утерянных авторских коллекций Т. П. Погорельцевой и А. И. Мирошниченко, отмечавших эти виды цестод у рыб Черного моря, мы не можем однозначно утверждать, правильно ли они были определены и встречались ли ранее у побережья Крыма.

Таким образом, фауна цестод рыб Карадагского природного заповедника и прилегающих районов претерпела значительные изменения, в результате как таксономических ревизий, так и получения новых данных. При этом достаточно увеличился список видов, паразитирующих у ската D. pastinaca, у которого отмечено 13 видов цестод, т.е. 52 % от общей фауны этих гельминтов рыб данной акватории зарегистрировано нами впервые.

Трематоды (Platyhelminthes: Trematoda) – самая многочисленная группа гельминтов в Черном море (Гаевская, Корнийчук, 2003). В акватории Карадага зарегистрировано 73 вида, для 5 из которых найдены как половозрелые формы, так и личинки, 11 находок не были определены до вида (табл. 1 и 5). Наиболее полно фауна трематод изучена у многочисленных в этом районе рыб – представителей семейств Blenniidae, Labridae, Atherinidae, а также у ставриды, морского ерша, морского налима, барабули. В целом, не наблюдается региональной специфики трематодофауны обследованных видов рыб.
<table>
<thead>
<tr>
<th>Вид трематоды</th>
<th>Вид хозяина</th>
<th>Источник данных</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosorhynchoides arcuatus (Linton, 1900) Love & Moser, 1983</td>
<td>Pomatomus saltatrix, Sarda sarda</td>
<td>Решетникова, 1955 б; в; Найденова, Солонченко, 1989; Мирошниченко, 2004 в</td>
</tr>
<tr>
<td>P. gracilescens (Rud., 1819)</td>
<td>Lophius piscatorius</td>
<td>Решетникова, 1955 б; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 а, в</td>
</tr>
<tr>
<td>Bucephalus marinus Vlasenko, 1931</td>
<td>Gaidropsarus mediterraneus</td>
<td>Власенко, 1931; Николаева, Солонченко, 1970; Найденова и др., 2002; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 б, в; НД</td>
</tr>
<tr>
<td>B. marinus mtc.</td>
<td>Pegusa nasuta, Symphodus ocelatus, Sym. roissali, Ctenolabrus rupestris, Parablennius tentacularis, Par. sanguinolentus, Aidablennius sphynx, Salaria pavo, Microlipophrys adriaticus, Ponticola ratar, Neogobius melanostomus, Mesogobius batrachocephalus</td>
<td>Манге, Мирошниченко, 1992; Гаевская, Корнийчук, 2003; Дмитриева и др., 2007, 2009; Корнийчук и др., 2006; Мирошниченко, 2004 б, в; НД</td>
</tr>
<tr>
<td>Parahemiurus trachuri (Kurashvili, 1958) [syn. Anahemiurus trachuri]</td>
<td>Trachurus mediterraneus</td>
<td>Мирошниченко, 2004 б, в</td>
</tr>
<tr>
<td>Aphaniurus stossichii (Monticelli, 1891)</td>
<td>Tra. mediterraneus, Pon. platyrostris, Gobius cobitis, Alosa immaculata, Mugilidae spp.</td>
<td>Найденова, 1974; Найденова, Солонченко, 1989; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 б, в</td>
</tr>
<tr>
<td>Arnola microcirrus (Vlasenko, 1931)</td>
<td>Diplos annularis, Mes. batrachocephalus</td>
<td>Власенко, 1931; Погорельцева, 1952 б; Найденова, Солонченко, 1989; Манге, Мирошниченко, 1992; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 в</td>
</tr>
<tr>
<td>Derogenoides sargi Pogoreltseva, 1970</td>
<td>Dip. annularis</td>
<td>Найденова, Солонченко, 1989; Мирошниченко, 2004 а, в</td>
</tr>
<tr>
<td>Magnibursatus skrabini (Vlasenko, 1931)</td>
<td>Gai. mediterraneus, Pon. platyrostris, Gob. cobitis</td>
<td>Власенко, 1931; Найденова, 1974; Найденова, Солонченко, 2004 в</td>
</tr>
<tr>
<td>Aponurus tschugunovi Issatschikov, 1928</td>
<td>Mullus barbatus, Sco. porcus, S. umbra, M. cephalus, Scophthalmus maeticous,</td>
<td>Власенко, 1931; Погорельцева, 1952 б; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 в</td>
</tr>
<tr>
<td>Organism</td>
<td>Species Information</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>A. galeatus (Looss, 1907) [syn.: Lecithaster galeatus]</td>
<td>Chel. saliens, Chel. auratus</td>
<td></td>
</tr>
<tr>
<td>Hemiuridae gen. sp. juv.</td>
<td>Chel. auratus, Chel. saliens, M. cephalus, Mul. barbatus, Gym. cicerellus</td>
<td></td>
</tr>
<tr>
<td>Stephanostomum bicornutum (Stossich, 1883) Fuhrmann, 1928</td>
<td>S. umbra, Uranoscopus scaber, Dip. annulris</td>
<td></td>
</tr>
<tr>
<td>S. bicornutum mtc.</td>
<td>S. umbra, Gai. mediterraneus, Tra. mediterraneus, Dip. annularis, Spi. flexuosa</td>
<td></td>
</tr>
<tr>
<td>S. minutum (Looss, 1901) Manter, 1940</td>
<td>Ura. scaber</td>
<td></td>
</tr>
<tr>
<td>S. pristis (Deslongchamps, 1824) Looss, 1899</td>
<td>Mer. merlangus, Par. sanguinolentus</td>
<td></td>
</tr>
<tr>
<td>Stephanostomum cesticillum (Molin, 1858) mtc.</td>
<td>Tra. mediterraneus</td>
<td></td>
</tr>
<tr>
<td>Stephanostomum sp. mtc.</td>
<td>Tra. mediterraneus, Trach. draco, Sco. maeoticus, Eng. encrasiculus, Ura. scaber</td>
<td></td>
</tr>
<tr>
<td>Ancylocoelium typicum Nicoll, 1912</td>
<td>Tra. mediterraneus</td>
<td></td>
</tr>
<tr>
<td>Bacciger bacciger (Rud., 1819) Nicoll, 1914</td>
<td>Alo. immaculata, Atherina hepsetus, Ath. boyeri, Eng. encrasiculus</td>
<td></td>
</tr>
<tr>
<td>B. minutus Gaevskaja & Naidenova, 1996</td>
<td>Eng. encrasicholus</td>
<td></td>
</tr>
<tr>
<td>Monascus filiformis (Rud., 1819) [syn. Haplocladus typicus]</td>
<td>Tra. mediterraneus</td>
<td></td>
</tr>
<tr>
<td>Steringotrema divergens (Rud., 1809)</td>
<td>Par. sanguinolentus</td>
<td></td>
</tr>
<tr>
<td>Tergestia laticollis (Rud., 1819)</td>
<td>Tra. mediterraneus, Pom. saltatrix</td>
<td></td>
</tr>
<tr>
<td>Theledera skrjabini (Koval & Zarichkova, 1964) Gibson & Bray, 1980</td>
<td>Sym. cinereus, Sym. ocellatus, Sym. tinca</td>
<td></td>
</tr>
<tr>
<td>Pronoprymna ventricosa (Rud., 1819)</td>
<td>Alo. immaculata, Ath. boyeri, A. hepsetus, Sym. roissali</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Hosts</td>
<td>References</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Lecithaster confusus Odhner, 1905</td>
<td>Alo. immaculata, L. aurata</td>
<td>Дмитриева и др., 2007, 2009; Корнийчук и др., 2006, 2008; НД</td>
</tr>
<tr>
<td>Phyllodistomum unicum Looss, 1901</td>
<td>Serranus scriba</td>
<td>Найденова, Солонченко, 1989; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 в</td>
</tr>
<tr>
<td>P. acceptum Odhner, 1902</td>
<td>Sym. roissali</td>
<td>Мачковский, 1976; Гаевская, Корнийчук, 2003</td>
</tr>
<tr>
<td>Monorchis monorchis (Stossich, 1890)</td>
<td>Spicara maena, Sym. tinca, Par. sanguinolentus, Sci. umbra</td>
<td>Власенко, 1931; Николаева, Солонченко, 1970; Найденова, Солонченко, 1989; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 в; НД</td>
</tr>
<tr>
<td>M. parvus Looss, 1902</td>
<td>Dip. annularis</td>
<td>Власенко, 1931; Найденова, Солонченко, 1989; Манг, 1993; Манг, Мирошниченко, 1992; Мирошниченко, 2004 б, в; Корнийчук и др., 2008; НД</td>
</tr>
<tr>
<td>Proctotrema bacilliovatum Odhner, 1911</td>
<td>Mul. barbatus, Sco. porcus</td>
<td>Власенко, 1931; Манг, 1993; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 б, в; Корнийчук и др., 2008; НД</td>
</tr>
<tr>
<td>S. tensum Looss, 1902</td>
<td>Dip. annularis</td>
<td>Власенко, 1931; Найденова, Солонченко, 1989; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 а, в; Дмитриева и др., 2007, 2009; НД</td>
</tr>
<tr>
<td>Diptherostomum brusinae (Stossich, 1889)</td>
<td>Dip. annularis</td>
<td>Власенко, 1931; Найденова, Солонченко, 1989; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 а, в; Дмитриева и др., 2007, 2009; НД</td>
</tr>
<tr>
<td>Deropristis hispida (Rudolphi, 1819)</td>
<td>Acipenser stellatus</td>
<td>Власенко, 1931; Найденова, Солонченко, 1989; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 а, в; Дмитриева и др., 2007, 2009; НД</td>
</tr>
<tr>
<td>Lepocreadium floridanum Sogandares</td>
<td>Tra. mediterraneus</td>
<td>Найденова, Солонченко, 1989; Манг, Мирошниченко, 1992;</td>
</tr>
<tr>
<td>Bernal & Hutton, 1959</td>
<td></td>
<td>Манг, 1993; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 в; НД</td>
</tr>
<tr>
<td>H. pulchella (Rud., 1819) Odhner, 1902</td>
<td>Sym. ocellatus, Gob. cobitis</td>
<td>Корнийчук и др., 2006, 2008; НД</td>
</tr>
<tr>
<td>Genus</td>
<td>Species</td>
<td>Author</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Podocotyle atherinae</td>
<td>Ath. boyeri</td>
<td>Syngnathus abaster</td>
</tr>
<tr>
<td>Plagioporus dogieli</td>
<td>Dip. annularis</td>
<td>Манге, 1993; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 б, в</td>
</tr>
<tr>
<td>Caudoetesis trachuri (Pogorel'tseva, 1954)</td>
<td>Tra. maditerraneus, Sym. tinca, Sym. roissali</td>
<td>Погорельцева, 1952 а; Коваль, Царичкова, 1964; Гаевская, Корнийчук, 2003; Корнийчук и др., 2006; Мирошниченко, 2004 б, в;</td>
</tr>
<tr>
<td>Plagioporus sp. I sensu (Pogorelzeva, 1952)</td>
<td>Sym. tinca</td>
<td>Погорельцева, 1952 а; Гаевская, Корнийчук, 2003</td>
</tr>
<tr>
<td>Macvicaria alacris (Looss, 1901)</td>
<td>Sym. tinca, Sym. ocellatus, Sym. cinereus, S. roissali</td>
<td>Власенко, 1931; Погорельцева, 1952 а, б; Найденова, Солонченко, 1989; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 а, в</td>
</tr>
<tr>
<td>Caiocreadiun sp.</td>
<td>Gai. mediterraneus</td>
<td>НД</td>
</tr>
<tr>
<td>Oepocoeidae gen. sp. mtc.</td>
<td>Aid. sphynx, Par. sanguinolentus, Par. tentacularis</td>
<td>Корнийчук и др., 2006; НД</td>
</tr>
<tr>
<td>Oepocoeidae gen. sp. cercaria</td>
<td>Gibbula divaricata</td>
<td>НД</td>
</tr>
<tr>
<td>Plagiochiidae gen. sp. mtc.</td>
<td>Aid. sphynx, Par. tentacularis, Par. sanguinolentus, Sym. tinca, Sym. roissali</td>
<td>НД</td>
</tr>
<tr>
<td>G. phalacrocoracis</td>
<td>Gob. cobitis, Gob. paganellus, Pon. platyrostris, Pon. eurycephalus, Dip. annularis</td>
<td>Найденова, 1974; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 в</td>
</tr>
<tr>
<td>Galactosomum sp. mtc.</td>
<td>Neo. melanostomus, Sym. tinca</td>
<td>Гаевская, Корнийчук, 2003</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Metadena pauli (Vlasenko, 1931) Yamaguti, 1958</td>
<td>Sci. umbra, Umbrina cirrosa, Gai. mediterraneus</td>
<td>Власенко, 1931; Найденова, Солонченко, 1989; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 а-в; НД</td>
</tr>
<tr>
<td>Proctoeces maculatus (Looss, 1901)</td>
<td>Sym. tinca, Sym. ocellatus, Sym. roisssali, Sym. cinereus</td>
<td>Власенко, 1931; Мачкевский, 1990; Гаевская, Корнийчук, 2003; Дмитриева и др., 2009; Корнийчук и др., 2006, 2008; НД</td>
</tr>
<tr>
<td>Fellodistomidae gen. sp. mtc.</td>
<td>Gob. cobitis, Chel. auratus</td>
<td>Найденова, 1974; Гаевская, Корнийчук, 2003; НД</td>
</tr>
<tr>
<td>Pseudobacciger harengulae (Yamaguti, 1938)</td>
<td>Mul. barbatus</td>
<td>Мирошниченко, 2004 а, в</td>
</tr>
<tr>
<td>Cardiocephaloides longicollis (Rud., 1819) Dubois, 1982 mtc.</td>
<td>Ura. scaber, Spi. flexuosa, Gai. mediterraneus, Dip. annularis</td>
<td>Николаева, Солонченко, 1970; Найденова, Солонченко, 1989; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 а, в</td>
</tr>
<tr>
<td>Nematobothrium scombri (Taschenberg, 1879)</td>
<td>Scomber scombrus</td>
<td>Найденова, Солонченко, 1989; Мирошниченко, 2004а, в</td>
</tr>
<tr>
<td>Unitubulotestis pelamydis (Taschenberg, 1879) [syn. Didymozoon pelamydis]</td>
<td>Sarda sarda</td>
<td>Погорельцева, 1952 а; Найденова, Солонченко, 1989; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 а, в</td>
</tr>
<tr>
<td>Anisocoeleum capitellatum (Rud., 1819)</td>
<td>Ura. scaber, Sco. porcus, Trachi. draco</td>
<td>Власенко, 1931; Найденова, Солонченко, 1989; Манге, 1993; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 a-в</td>
</tr>
<tr>
<td>A. gracile (Looss, 1901) Looss, 1902</td>
<td>Ura. scaber</td>
<td>Власенко, 1931; Погорельцева, 1952б; Николаева, Солонченко, 1970; Найденова, Солонченко, 1989; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 а, в; НД</td>
</tr>
<tr>
<td>A. fallax (Rud., 1819)</td>
<td>Ura. scaber, Trachi. draco</td>
<td>Николаева, Солонченко, 1970; Найденова, Солонченко, 1989; Гаевская, Корнийчук, 2003; Мирошниченко, 2004 а-в; НД</td>
</tr>
<tr>
<td>Parvatrema duboisi (Dolfus, 1923) Bartoli, 1974 mtc.</td>
<td>Mytilus galloprovincialis</td>
<td>Гаевская, Корнийчук, 2003</td>
</tr>
<tr>
<td>Cercaria dogieli Dolgikh, 1968</td>
<td>Rissoa splendidida</td>
<td>Долгих, 1968 a, б; Мирошниченко, 2004в; Гаевская, 2015</td>
</tr>
<tr>
<td>Cercaria gynetzinskayae Dolgikh, 1965</td>
<td>Rissoa splendidida</td>
<td>Долгих, 1965 а, б; 1968 б; Мирошниченко, 2004 в; Гаевская, 2015</td>
</tr>
<tr>
<td>Cercaria laqueator Sinitzin, 1911</td>
<td></td>
<td>Долгих 1965 б; 1968 б; Мирошниченко, 2004 в; Гаевская, 2015</td>
</tr>
</tbody>
</table>
Фауна паразитов рыб Карадага по состоянию на 2002 г. (Мирошниченко, 2004 в), содержит сведения о находках у рыб 58 видов trematod (54 представлены маритами, 7 – метацеркариями) из 21 семейства. В результате наших исследований этот список пополнился 3 видами (нашим данным, сейчас она представлена только неполными. Автор аннотированного списка паразитов гидробионтов Карадага (Мирошниченко, 2004 в) включил в него виды скребней, которые были либо сведены в синонимы, либо переведены в другие роды.

Скребни (Acanthocephala), зарегистрированны у 26 видов рыб, обитающих у берегов Юго-Восточного Крыма, относятся к 5 видам (табл. 1 и 6).

Несмотря на малочисленность видов черноморских скребней их систематическое положение до недавнего времени оставалось неточным, а морфологические описания неполными. Автор аннотированного списка паразитов гидробионтов Карадага (Мирошниченко, 2004 в) включил в него виды скребней, которые были либо сведены в синонимы, либо переведены в другие роды.

От кефалей родов Mugil, Chelon и Planiliza из Атлантики, Средиземного и Черного морей, и из западных морей Тихого океана до недавнего времени отмечалось только один представитель Neoechinorhynchus – N. agilis (Yamaguti, 1935; Гаевская, 2015). Однако нами в районе Карадага этот вид обнаружен не был.

<table>
<thead>
<tr>
<th>Скребня</th>
<th>Долгих, 1965 б; Мирошниченко, 2004 в; Гаевская, 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cercaria metentera</td>
<td>Dolgikh, 1965</td>
</tr>
<tr>
<td>Sinitzin, 1911</td>
<td>НД</td>
</tr>
<tr>
<td>Cercaria rissae sensu (Dolgikh, 1965)</td>
<td>Dolgikh, 1965 б; 1966; Мирошниченко, 2004 в; Гаевская, 2015</td>
</tr>
<tr>
<td>Cercaria cotylicerca B Dollfus, 1960</td>
<td>Dolgikh, 1965 б; 1966; Мирошниченко, 2004 в; Гаевская, 2015</td>
</tr>
<tr>
<td>Cercaria ophicera Palombi, 1934</td>
<td>Dolgikh, 1965 б; Мирошниченко, 2004 в; Гаевская, 2015</td>
</tr>
</tbody>
</table>

Cercaria metentera
Sinitzin, 1911

Cercaria rissae sensu
(Dolgikh, 1965)

Cercaria caradagi
Dolgikh, 1966

Gibbula divaricata, Gib. euxinica

Dolgikh, 1965 б; 1966; Мирошниченко, 2004 в; Гаевская, 2015

Cercaria cotylicerca
B Dollfus, 1960

Gib. divaricata

Dolgikh, 1965 б; 1966; Мирошниченко, 2004 в; Гаевская, 2015

Cercaria ophicera
Palombi, 1934

Chamelea gallina

Dolgikh, 1965 б; Мирошниченко, 2004 в; Гаевская, 2015

Комментариев видам следует отнести Pseudobacciger harengulae – этот типичный паразит сельдевых рыб был отмечен (как Bacciger harengulae) у султанки (Мирошниченко, 2004 а, б, в) в районе Карадага.
Таблица 6.
Фауна скребней рыб у Карадага и прилегающих районов моря
(по литературным и собственным данным)

<table>
<thead>
<tr>
<th>Вид скребня</th>
<th>Виды рыб</th>
<th>Источник данных</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthocephaloides propinquus (Dujardin, 1845) [syn. A. incrassatus sensu (Николаева, Солонченко, 1970; Kostylew, 1926)]</td>
<td>Scorpaena porcus, Spicara flexuosa, Uranoscopus scaber, Chelidonichthys lucerna, Pegusa nasuta, Platichthys flesus, Gobius niger</td>
<td>Николаева, Солонченко, 1970; Белофастова, 2004; Мирошниченко, 2004 б, в; НД</td>
</tr>
<tr>
<td>Acanthocephala gen. sp. Mullus barbatus</td>
<td></td>
<td>Мирошниченко, 2004 б, в</td>
</tr>
<tr>
<td>Golvanacanthus blennii Paggi & Orecchia, 1972</td>
<td>Parablenius tentacularis</td>
<td>Белофастова, Мордвинова, 2002</td>
</tr>
</tbody>
</table>

Таким образом, полученные нами сведения о скребнях рыб Карадага практически не отличаются от ранее опубликованных списков (Мирошниченко, 2004 а, в) по количеству видов, однако, значительно отличаются по таксономическому составу.

Нематоды (Nematoda), зарегистрированные у рыб юго-восточного побережья Крыма, относятся к 21 видам, из них 10 на стадии личинки, для 4 из которых окончательными хозяевами являются птицы. Кроме того, для личинок пяти родов не определена видовая принадлежность (табл. 1 и 7).

Новый список нематод (табл. 7) отличается как по количеству видов, так и по таксономическому составу от прежнего (Мирошниченко, 2004 в). Так, существенной ревизии подвергся род Hysterothylacium, в который были переведены виды Thynnascaris adunca, Contracaecum fabri. Вид Cucullanellus minutus переведен в род Dychelyne (Moravec, 1994).

Таблица 7.
Фауна нематод рыб у Карадага и прилегающих районов моря
(по литературным и собственным данным)

<table>
<thead>
<tr>
<th>Вид нематоды</th>
<th>Виды рыб</th>
<th>Источник данных</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capillaria gracilis (Bellingham, 1840)</td>
<td>Gobius cobitis</td>
<td>Найденова, 1970</td>
</tr>
<tr>
<td>Capillaria sp.</td>
<td>Dasyatis pastinaca, Mullus barbatus</td>
<td>Пронькина, 2009</td>
</tr>
<tr>
<td>Paracuaria adunca (Creplin, 1846) l.</td>
<td>Salaria pavo, Ponticola ratan, Pon. euryccephalus, Parablenius tentacularis, Sciaena umbra, Umbrina cirrosa</td>
<td>Дмитриева и др., 2007, 2009; Корнийчук и др., 2008; Пронькина, 2009, 2017</td>
</tr>
<tr>
<td>Cosmocephalus obvelatus (Creplin, 1825) l.</td>
<td>L. aurata, Aloosa immaculata, Pon. ratan, Pon. euryccephalus, Mesogobius batrachocephalus, Atherina boyeri, Ath. hepsetus, Aidablennius siphnx, Parablenius</td>
<td>Дмитриева и др., 2007, 2009; Пронькина и др., 2009; Пронькина, 2017</td>
</tr>
<tr>
<td>Species</td>
<td>Nematode Species</td>
<td>Authors and Year</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Proleptus robustus (van Beneden, 1871)</td>
<td>sanguinolentus, Par. tentacularis, Gaidropsarus mediterraneus, Symphodus ocellatus</td>
<td>Найденова, Солонченко, 1989; Манге, 1993</td>
</tr>
<tr>
<td>Ascarophis sp.</td>
<td>Symphodus roissali, Sym. tinca, Sco. porcus, Gobius cobitis</td>
<td>Найденова и др., 1969; Николаева, Солонченко, 1970</td>
</tr>
<tr>
<td>Johnstonmawsonia campana-rougetae Matschkevski & Paruchin, 1979 Sal. pavo, Pon. eurycephalus, Pon. ratan, Par. sanguinolentus</td>
<td></td>
<td>Дмитриева и др., 2007, 2009; Пронькина и др., 2009; НД</td>
</tr>
<tr>
<td>Contraecaecum microcephalum (Rud., 1809) l. Dip. annularis, Spí. flexuosa, Aid. sphinx, Sco. porcus, Ath. boyeri, Ath. hepetus, Mul. barbarus, Trachi. draco, Par. tentacularis</td>
<td></td>
<td>Мирошненченко, 2004 в; Дмитриева и др., 2007, 2009; Корнийчук и др., 2008;</td>
</tr>
<tr>
<td>Genus, Species, Authority</td>
<td>Hosts</td>
<td>References</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>Contracaecum filiforme (Stossich, 1904)</td>
<td>Ura. scaber, Gai. mediterraneus, Atherina spp.</td>
<td>Пронькина, 2009; НД</td>
</tr>
<tr>
<td>C. filiforme l.</td>
<td>Tr. mediterraneus, Trachi. draco, Sym. tinca, Sym. roissali, Gai. mediterraneus, Par. sanguinolentus, Gob. cobitis, Pon. eurycephalus, Mes. batrachocephalus, Sco. porcus</td>
<td>Манге, 1993; Мирошиненко, 2004 в; Пронькина, 2009; НД</td>
</tr>
<tr>
<td>Contracaecum mulli (Wedl, 1855)</td>
<td>Mul. barbatus</td>
<td>Найденова, Солонченко, 1989; Манге, 1993; Мирошиненко, 2004 в</td>
</tr>
<tr>
<td>C. mulli l.</td>
<td></td>
<td>Манге, 1993; Мирошиненко, 2004 в</td>
</tr>
<tr>
<td>C. rudolfi Hartwich, 1964 l.</td>
<td>Bel. belone, Tra. mediterraneus</td>
<td>Решетникова, 1955 а, б</td>
</tr>
<tr>
<td>Cucullanus heterochrous Rud., 1802</td>
<td>Tr. mediterraneus</td>
<td>Манге, 1993; Мирошиненко, 2004 в</td>
</tr>
<tr>
<td>Dichelyne (Cucullanellus) minutus (Rud., 1819)</td>
<td>Tr. mediterraneus, Spi. flexuosa, Pegusa nasuta, Scoph. maeticus, P. flesus, Gobiidae spp.</td>
<td>Николаева, Солонченко, 1970; Мирошиненко, 2004 в; Пронькина, 2009</td>
</tr>
<tr>
<td>Echinocephalus spinosissimus (von Linstow, 1905)</td>
<td>D. pastinaca</td>
<td>Найденова, Солонченко, 1989</td>
</tr>
</tbody>
</table>
Находки Contracaecum spiculigerum в черноморских рыbach, определенные по (Гаевская и др., 1975), необходимо относить к C. rudolphii (Moravec, 1994). Находка и определение личинок нематод от зеленушек, ласкиря и морского каменного окуня как Contracaecum collarae является сомнительной, так как этот вид является паразитом пресноводной рыбы Gobio-morus maculatum, обитающей в северной Америке.

Второй вид C. obvelatus в 2005 г. был отмечен у Ponti-cola ratan и Atherina boyeri. В 2009 г. – уже у 4 видов, кроме бычка-ратана и атерины, у Aidablemmius sphynx и Alosa immaculata. В 2013 г. личинки C. obvelatus найдены у 12 видов (табл. 1).

Для ряда видов нематод расширены круг их хозяев в Черном море: так, для J. campanulae – это бычка P. ratan, P. eurycephalus и Atherina boyeri. Для J. campanulae найдены личинки нематод от зеленушек, ласкиря и морского каменного окуня как встречаемость, так и индекс обилия для всех районов исследования. Однако значения как встречаемости, так и индекса обилия для бухт акватории Карадага значительно различались (табл. 1). Наиболее количество пораженных губкой мидий (77 %) было отмечено в 2009 г. В б. Пушцолановой, при этом 32 % из обследованных моллюсков имели площадь поражения раковины более 50 %. В 2012 г. интенсивность поражения пионой мидий составляла 8 %, площадь поражения раковин не превышала 20 %.

FUNGI
У барбутах Mullus barbatus из акватории Карадага обнаружены паразитические грибы, относящиеся к классу Microsporea. Они были идентифицированы как Glugea anomala (Moniez, 1887) Gurley, 1893 (Найдёнова, Солонченко, 2019; Мирошниченко 2004 в). Типовыми хозяевами данного вида микроспоридий являются колюшки Gasterostes aculeatus и Pungitius pungitius. Многие виды микроспоридий от других видов рыб, ранее описанные как представители рода Glugea, переведены в род Loma. В том числе от Mullus barbatus из Черного моря описана микроспоридия Loma sp. (Овчаренко, Юрахно, 2006), которая, скорее всего, и была найдена предшествующими исследователями на этой же рыбе в районе Карадага. У рыб сем. Gobiidae в различных районах Черного моря зарегистрирована Loma acerinae (Jirovec, 1930)
В результате наших исследований (1988–2013 гг.) впервые для гидробионтов Карадагского заповедника указано 32 вида паразитов: 2 представлены личиночными формами и 7, идентифицированных до рода или семейства: 3 – простейших (Terebrospira lenticularis, Peniculistoma mytili и Ancistrum mytili), 5 – моногеней (Gyrodactylus alviga, G. crenilabri, G. flesi, G. sphinx и Polyclithrum pontica), 3 – трематод, представленных маритами (Saccocoelium obesum, Helicometra pulchella и Hemiurus ocreatus), а также метацеркaria Helicometra fasciata и Cercaria rissoae, 6 видов и еще 7 новых таксонов видового уровня цестод (Progrillotia dasyatidis, Dollfusiella aculeata, Rhinebothrium walga, Cairaeanthus rukheini, C. healyae, Acanthobothrium crassicolle, Caulobothrium sp., Rhabdota bothrium sp., Anocephalidae gen. sp. 2, Acanthothrium sp. 1, Acanthothrium sp. 2, Acanthothrium sp. 4, Acanthothrium sp. 5), 3 – нематод (Paracuaria adunca, Cosmoccephalus obvelatus и Johnstonmawsonia campanarougetae) и 1 вид ракообразного (Caligus centrodonit). В результате критического анализа литературы и с учетом данных настоящего исследования общий список видов паразитов, зарегистрированных у гидробионтов Карадага, включает 215 таксономических единиц: 193 определены до вида, 22 – до рода, отряда или класса.

Таким образом, несмотря на то, что за последние 25 лет найдено 43 новых для данного района вида паразитов, их видовое разнообразие уменьшилось по сравнению с данными исследований 1950–1980 гг. почти на треть. При этом отсутствие только нескольких узкоспецифичных видов гельминтов можно объяснить изменением состава фауны их хозяев. Например, в разряд очень редко встречаемых рыб перешли такие ранее довольно распространенные виды, как морской черт или морской окунь, совсем не регистрируются в настоящее время в районе Карадага пеламида и скумбрия. Не обнаружено почти 50 видов гельминтов, ранее регистрировавшихся у таких по-прежнему многочисленных в этом районе рыб как ставрида, барабуля, атерины, хамса, морской язык и др. Большинство ненайденных паразитов имеют сложные жизненные циклы, а их паразитарные системы включают многие виды гидробионтов, которые совершают протяженные миграции. Очевидно, уменьшение их видового разнообразия связано с изменениями в экосистеме всего Черного моря.

3.2. ПОЗВОНОЧНЫЕ ЖИВОТНЫЕ

3.2.1. РЫБЫ

Рыбы являются важнейшим элементом биологического разнообразия Черного моря в районе Восточного Южнобережья Крыма. До настоящего времени исследования ихтиофауны этого региона были приурочены преимущественно к акватории Карадага и в целом дают достаточную ясную картину о составе и биологических характеристиках обитающих здесь рыб (Виноградов, 1931, 1949; Смирнов, 1959; Салехова и др., 1987, 1989; Багнукова, 1995; Шаганов, 2004; Костенко, Шаганов, 2004; Шаганов и др., 2007). Однако в силу ограниченности акватории, результаты многолетнего ихтиологического мониторинга на Карадаге не отражают в полной мере специфику ихтиофауны всего Восточного Южнобережья. Поэтому возникает необходимость инвентаризации ихтиофауны тех участков побережья данного района, где ихтиологические исследования ранее не проводились. Актуальность таких исследований связана с необходимостью адекватной оценки состояния ихтиофауны Черного моря в районе Восточного Южнобережья для разработки мероприятий по её охране и воспроизводству.

Приведенные материалы являются дополнением к ранее опубликованным сведениям по их-
тиофауне Черного моря Юго-Восточного Крыма (Шаганов, 2009) и характеризуют ее современное состояние в пределах данного региона.

Работа основана на результатах многолетних исследований автора в период с 1998 по 2016 гг. в Феодосийском (б. Двуякорная, пгт Орджоникидзе), Карадагском (Карадаг, б. Лисья) и Судакском (Меганом, Судак, Новый Свет) регионах (рис. 1).

Рис. 1. Карта-схема района исследований

Сбор материала по составу ихтиофауны прибрежной зоны на глубинах менее 5 м осуществлялся путем облова донных биотопов сачками, крючковой снастью, донными ловушками и жаберными сетями с шагом ячеи 15–30 мм. Кроме того, использовалась информация об анализе уловов ставных неводов и жаберных сетей бригад прибрежного лова, базировавшихся в районе исследований. Визуальный учет ихтиофауны осуществлялся с использованием легководолазного снаряжения от уреза воды до глубины 13 м.

Степень обилия видов представлена по следующей классификации. Массовые – виды, регистрировавшиеся в количестве десятков или сотен экземпляров. Обычные – виды, регистрировавшиеся до нескольких десятков экземпляров. Малочисленные – виды, регистрировавшиеся единичными особями.

Таксономический состав ихтиофауны Восточного Южнобережья. У юго-восточного побережья Крыма отмечено 90 видов и подвидов рыб, принадлежащих к 65 родам, 43 семействам и 16 отрядам. Наибольший вклад по числу таксонов в данном списке принадлежит отряду Окунеобразных, представленных 52 видами, 36 родами и 21 семейством. Из семейств наиболее большим количеством таксонов характеризовались Бычковые – 11 видов из 5 родов, Собачковые – 8 видов из 5 родов, Сельдевые – 5 видов и подвидов из 4 родов и Губановые – 7 видов из 4 родов.
КЛАСС
CHONDRICTHYES – ХРЯЩЕВЫЕ РЫБЫ
ОТРЯД SQUALIFORMES – КАТРАНООБРАЗНЫЕ
СЕМЕЙСТВО SQUALIDAE – КАТРАНОВЫЕ
Род Squalus Linnaeus, 1758

ОТРЯД RAJIFORMES – СКАТООБРАЗНЫЕ
СЕМЕЙСТВО СКАТОВЫЕ – RAJIDAE
Род Raja Linnaeus, 1758

ОТРЯД MYLIOBATIFORMES – ХВОСТОКОЛООБРАЗНЫЕ
СЕМЕЙСТВО DASYATIDAE – ХВОСТОКОЛОВЫЕ
Род Dasyatis Rafinesque, 1810

ОТРЯД ACTINOPTERYGII – ЛУЧЕПЕРЫЕ РЫБЫ
ОТРЯД ACIPENSERIFORMES – ОСЕТРООБРАЗНЫЕ
СЕМЕЙСТВО ACIPENSERIDAE – ОСЕТРОВЫЕ
Род Acipenser Linnaeus, 1758

5. Acipenser stellatus Pallas, 1771 – севрюга. Проходной демерсальный вид. Мигрант. Отмечен в акватории Карадага (Салехова и др., 1987; Салехова, Костенко, 1989), где был отмечен с апреля по декабрь. Встречался очень редко; наблюдались эпизодические заходы молоди в акваторию заповедника (до 3 экземпляров в год).

ОТРЯД ANGUILLIFORMES – УГРЕОБРАЗНЫЕ
СЕМЕЙСТВО ANGUILLIDAE – УГРЕВЫЕ
Род Anguilla Schrank, 1798

ОТРЯД CLUPEIFORMES – СЕЛЬДЕОБРАЗНЫЕ
СЕМЕЙСТВО CLupeidae – СЕЛЬДЕВЫЕ
Род Alosa Linck, 1790

Род Sardina Antipa, 1904
Род Sardinella Valenciennes, 1847

Род Sprattus Girgensohn, 1846
13. Sprattus sprattus phalericus (Risso, 1827) – черноморский шпрот. Бореально-атлантический реликт. Пелагический подвид. Мигрант. Распространен в пределах всего района. Встречается постоянно. Обычный подвид, в период миграций массовый.

ОТРЯД CYPRINIFORMES – КАРПООБРАЗНЫЕ
СЕМЕЙСТВО CYPRINIDAE – КАРПОВЫЕ
Род Carassius Jarocki, 1822

Род Cyprinus Linnaeus, 1758

ОТРЯД SALMONIFORMES – ЛОСОСЕОБРАЗНЫЕ
СЕМЕЙСТВО SALMONIDAE – ЛОСОСЕВЫЕ
Род Salmo Linnaeus, 1758

ОТРЯД OPHIDIIFORMES – ОШИБНЕОБРАЗНЫЕ
СЕМЕЙСТВО OPHIDIIIDAE – ОШИБНЕВЫЕ
Род Ophidion Linnaeus, 1758

ОТРЯД MUGILIFORMES – КЕФАЛЕОБРАЗНЫЕ
СЕМЕЙСТВО MUGILIDAE – КЕФАЛЕВЫЕ
Род Liza Jordan et Swain, 1884
20. Liza aurata (Risso, 1810) – сингилил. Средиземноморский иммигрант. Пелагический вид. Мигрант. Распространен в пределах всего района. Встречается постоянно в теплое время года. Обычный вид, в период миграций массовый.

Род Mugil Linnaeus, 1758
23. Mugil cephalus Linnaeus, 1758 – лобан. Средиземноморский иммигрант. Пелагический вид. Мигрант. Распространен в пределах всего района. Встречается постоянно. Обычный вид, в период миграций массовый.
иммигрант. Пелагический вид. Мигрант. Распространена в пределах всего района. Встречается постоянно. Массовый вид.

34. *Chelidonichthys lucerna* (Linnaeus, 1758) (=*Trigla lucerna*) – желтая тригла. Средиземноморский иммигрант. Демерсальный вид. Резидент. Распространен в пределах всего района. Встречается очень редко. Малочисленный вид.

37. *Sander lucioperca* (Linnaeus, 1758) (=*Stizostedion lucioperca*) – судак. Полупроходной вид. Мигрант. В данном районе отмечен у
Карадага (Салехова и др., 1987; Салехова, Костенко, 1989). Встречался очень редко (до 3 экз. в год) в сентябре – октябре у западной границы заповедника.

СЕМЕЙСТВО POMATOMIDAE – ЛУФАРЕВЫЕ

Род *Pomatomus* Lacépède, 1802

СЕМЕЙСТВО CARANGIDAE – СТАВРИДОВЫЕ

Род *Trachurus* Rafinesque, 1810

СЕМЕЙСТВО SPARIDAE – СПАРОВЫЕ

Род *Boops* Cuvier, 1814

Род *Diplodus* Rafinesque, 1810

42. *D. puntazzo* (Cetti, 1777) (=*Puntazzo puntazzo*) – зубарик. Средиземноморский иммигрант. Демерсальный вид. Резидент. Распространен в пределах всего района. Встречается регулярно. Малочисленный вид.

Род *Spicara* Rafinesque, 1810

43. *Spicara flexuosa* Rafinesque, 1810. – спикара. Средиземноморский иммигрант. Демерсальный вид. Резидент. Распространен в пределах всего района. Встречается постоянно. Обычный вид, в период размножения массовый.

СЕМЕЙСТВО SCIÆNIDÆ – ГОРБЫЛЕВЫЕ

Род *Sciaena* Linnaeus, 1758

СЕМЕЙСТВО MULLIDÆ – СУЛТАНКОВЫЕ

Род *Mullus* Linnaeus, 1758

СЕМЕЙСТВО POMACENTRIDÆ – ПОМАЦЕНТРОВЫЕ

Род *Chromis* Cuvier, 1814

СЕМЕЙСТВО LABRIDÆ – ГУБАНОВЫЕ

Род *Crenilabrus* Oken, 1817

50. *C. tinca* (Linnaeus, 1758) – руlena. Средиземноморский иммигрант. Демерсальный вид. Резидент. Распространена в пределах всего района. Встречается постоянно. Обычный, местами массовый вид.

Род *Ctenolabrus* Valenciennes, 1839

Род *Labrus* Linnaeus, 1758

Род *Symphodus* Rafinesque, 1810

СЕМЕЙСТВО AMMODYTIDAE – ПЕСЧАНКОВЫЕ

Род *Gymnammodytes* Duncker et Mohr, 1935

55. *Gymnammodytes cicerellus* (Rafinesque, 1810) – голая песчанка. Бореально-атлантический реликт. Демерсальный вид. Резидент. Распространена в пределах всего района. Встречается постоянно. Обычный вид, временами многочисленный.

СЕМЕЙСТВО TRACHINIDAE – ДРАКОНОВЫЕ

Род *Trachinus* Linnaeus, 1758

Род *Symphodus* Rafinesque, 1810

СЕМЕЙСТВО URANOSCOPIDAE – ЗВЕЗДОЧЕТОВЫЕ

Род *Uranoscopus* Linnaeus, 1758

СЕМЕЙСТВО TRIPTYERYGIDAE – ТРОЕПЕРОВЫЕ

Род *Tripterygon* Risso, 1827

СЕМЕЙСТВО BLENNIIDAE – СОБАЧКОВЫЕ

Род *Aidablennius* Whitley, 1947

Род *Coryphoblennius* Norman, 1944

60. *Coryphoblennius galerita* (Linnaeus, 1758) – хохлатая морская собачка. Средиземноморский иммигрант. Демерсальный вид. Резидент. Распространена в пределах всего района. Встречается постоянно. Малочисленный вид.

Род *Lipophrys* Gill, 1896

Род *Parablennius* Miranda Ribeiro, 1915

Род *P. tentacularis* (Brünnich, 1768) (=*Blennius tentacularis*) – длиннощупальцевая морская собачка. Средиземноморский иммигрант. Демерсальный вид. Резидент. Распространена в прибрежных зарослях. Редкий вид.

Род *P. zvonimiri* (Kolombatović, 1892) (=*Blennius zvonimiri*) – бурая морская собачка. Средиземноморский иммигрант. Демерсальный вид. Резидент. В данном районе этот вид встречен в б. Двуякорной у Карадага. В б. Двуякорной отмечен в июле 2016 г. около...
АО ГУП «Бухта Двуякорная» (пгт Орджоникидзе) на глубине 8 м. У Карадага был отмечен Н. С. Костенко 15.08.1988 г. в количестве 3 экз. (Костенко, Шаганов, 2004). В августе 2016 г. нами был встречен в б. Львиная на вертикальной стенке хр. Хоба-Тепе и ск. Лев; по устному сообщению В. И. Мальцева, отмечен в районе ск. Кузьмичев Камень. Встречается редко. Малочисленный вид.

66. Salaria pavo (Risso, 1810) (Blennius pavo) – морская собака-павлин. Средиземноморский иммигрант. Демерсальный вид. Резидент. Распространена в пределах всего района. Встречается постоянно. Обычный вид.

68. Diplecogaster Fraser-Brunner, 1938

69. Lepadogaster cruentatus Gmelin, 1789

70. Lepadogaster candollei Risso, 1810 – толсторылая присоска. Средиземноморский иммигрант. Демерсальный вид. Резидент. Распространена в пределах всего района. Встречается редко. Малочисленный вид.

Род Mesogobius Bleeker, 1874

Род Neogobius Iljin, 1927

Род Pomatoschistus Gill, 1863

Род Ponticola Iljin, 1927

82. *Ponticola eurycephalus* (Kessler, 1874) (=*Gobius cephalarges*) – бычок-рыжик. Понтокаспийский реликт. Демерсальный вид. Резидент. Распространен в пределах всего района. Встречается постоянно. Обычный вид.

СЕМЕЙСТВО SCOMBRIIDAE – СКУМБРИЕВЫЕ

ОТРЯД PLEURONECTIFORMES – КАМБАЛООБРАЗНЫЕ

СЕМЕЙСТВО SCOPHTHALMIDAE – РОМБОВЫЕ

СЕМЕЙСТВО PLEURONECTIDAE – КАМБАЛОВЫЕ

СЕМЕЙСТВО SOLEIDAE – СОЛЕЕВЫЕ

В данный список не включены виды, икра и личинки которых встречались в ихтиопланктоне и, очевидно, заносимые в акваторию данного района течениями из других участков Черного моря. Это меч-рыба *Xiphias gladius* Linnaeus, 1758, бычок афия *Aphia minuta* (Risso, 1810) (Багнюкова, 1995). Взрослые половозрелые и молодые особи этих видов в районе Восточного Южнобережья за период исследований отмечены не были.
Также не внесены в список виды из семей-ства Gobiidae – Ponticola gymnotrachelus (Kessler, 1857) (= Neogobius gymnotrachelus) и P. syrman (Nordman, 1840) (=Neogobius syrman), указываемые для акватории Карадага (Салехова и др., 1987; Салехова, Костенко, 1989). P. gymnotrachelus является пресноводно-олигалинным видом, выдерживающий повышение солености воды до 5–7 ‰ и населяет опресненные лиманы, заливы, бухты, прибрежные озера и реки бассейнов Черного и Азовского морей (Манило, 2014). P. syrman держится в акваториях с соленостью 0,5–13,0 ‰ и обитает в опресненных участках Азовского и Черного морей, лиманах, солоноватых озерах, изредка заходит в устья рек (Манило, 2014). Таким об-разом, условия среды прибрежной зоны Во- сточного Южнобережья не соответствуют эко-логическим требованиям данных видов. Также невозможно их проникновение в данный район путем пассивного перемещения на ранних эта-пах развития в составе ихтиопланктона в связи с отсутствием в их онтогенезе пелагических стадий. За весь период наших исследований в данном регионе эти виды не встречались и, оче-видно, указание на их присутствие здесь носит ошибочный характер. Видовой состав ихтиофа-уны юго-восточного побережья Крыма пред-ставлен в таблице.

Таблица.

Видовой состав ихтиофауны юго-восточного побережья Крыма

<table>
<thead>
<tr>
<th>Виды и подвиды</th>
<th>Районы</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Феодосийский</td>
</tr>
<tr>
<td>Squalus acanthias</td>
<td>▲</td>
</tr>
<tr>
<td>Raja clavata</td>
<td>▲</td>
</tr>
<tr>
<td>Dasyatis pastinaca</td>
<td>▲</td>
</tr>
<tr>
<td>Acipenser gueldenstaedtii</td>
<td>▲</td>
</tr>
<tr>
<td>A. stellatus</td>
<td>▲</td>
</tr>
<tr>
<td>Huso huso</td>
<td>▲</td>
</tr>
<tr>
<td>Anguilla anguilla</td>
<td>▲</td>
</tr>
<tr>
<td>Engraulis encrasicolus</td>
<td>▲</td>
</tr>
<tr>
<td>Alosa caspia tanaica</td>
<td>▲</td>
</tr>
<tr>
<td>A. immaculata</td>
<td>▲</td>
</tr>
<tr>
<td>Sardinia pilchardus</td>
<td>▲</td>
</tr>
<tr>
<td>Sardinella aurita</td>
<td>▲</td>
</tr>
<tr>
<td>Sprattus sprattus phalericus</td>
<td>▲</td>
</tr>
<tr>
<td>Carassius gibelio</td>
<td>▲</td>
</tr>
<tr>
<td>Cyprinus carpio</td>
<td>▲</td>
</tr>
<tr>
<td>Salmo trutta labrax</td>
<td>▲</td>
</tr>
<tr>
<td>Merlangius merlangus euxinus</td>
<td>▲</td>
</tr>
<tr>
<td>Gaidropsarus mediterraneus</td>
<td>▲</td>
</tr>
<tr>
<td>Ophidion rochet</td>
<td>▲</td>
</tr>
<tr>
<td>Liza aurata</td>
<td>▲</td>
</tr>
<tr>
<td>L. saliens</td>
<td>▲</td>
</tr>
<tr>
<td>L. hematocheila</td>
<td>▲</td>
</tr>
<tr>
<td>Mugil cephalus</td>
<td>▲</td>
</tr>
<tr>
<td>Atherina boyeri pontica</td>
<td>▲</td>
</tr>
<tr>
<td>A. hepsetus</td>
<td>▲</td>
</tr>
<tr>
<td>Belone belone euxini</td>
<td>▲</td>
</tr>
<tr>
<td>Gasterosteus aculeatus</td>
<td>▲</td>
</tr>
<tr>
<td>Syngnathus typhle</td>
<td>▲</td>
</tr>
<tr>
<td>S. tenuirostris</td>
<td>▲</td>
</tr>
<tr>
<td>S. variegatus</td>
<td>▲</td>
</tr>
<tr>
<td>S. abaster</td>
<td>▲</td>
</tr>
<tr>
<td>Hippocampus hippocampus</td>
<td>▲</td>
</tr>
<tr>
<td>Scorpaena porcus</td>
<td>▲</td>
</tr>
<tr>
<td>Chelidonichthys lucerna</td>
<td>▲</td>
</tr>
<tr>
<td>Morone saxatilis</td>
<td>▲</td>
</tr>
<tr>
<td>Serranus scriba</td>
<td>▲</td>
</tr>
<tr>
<td>Fish Name</td>
<td>Status</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Sander lucioperca</td>
<td>▲</td>
</tr>
<tr>
<td>Pomatomus saltatrix</td>
<td>▲ ▲</td>
</tr>
<tr>
<td>Trachurus mediterraneus ponticus</td>
<td>▲</td>
</tr>
<tr>
<td>Boops boops</td>
<td>▲</td>
</tr>
<tr>
<td>Diplodus annularis</td>
<td>▲</td>
</tr>
<tr>
<td>D. puntazzo</td>
<td>▲</td>
</tr>
<tr>
<td>Spicara flexuosa</td>
<td>▲</td>
</tr>
<tr>
<td>S. maena</td>
<td>▲</td>
</tr>
<tr>
<td>Sciaena umbra</td>
<td>▲</td>
</tr>
<tr>
<td>Mullus barbatus ponticus</td>
<td>▲ ▲ ▲</td>
</tr>
<tr>
<td>Chromis chromis</td>
<td>▲</td>
</tr>
<tr>
<td>Crenilabrus cinereus</td>
<td>▲ ▲ ▲</td>
</tr>
<tr>
<td>C. roissali</td>
<td>▲</td>
</tr>
<tr>
<td>C. tinca</td>
<td>▲</td>
</tr>
<tr>
<td>C. ocellatus</td>
<td>▲</td>
</tr>
<tr>
<td>Ctenolabrus rupestris</td>
<td>▲</td>
</tr>
<tr>
<td>Labrus viridis</td>
<td>▲</td>
</tr>
<tr>
<td>Symphodus scina</td>
<td>▲</td>
</tr>
<tr>
<td>Gymnammodytes cicerellus</td>
<td>▲ ▲ ▲</td>
</tr>
<tr>
<td>Trachinus draco</td>
<td>▲</td>
</tr>
<tr>
<td>Uranoscopus scaber</td>
<td>▲</td>
</tr>
<tr>
<td>Tripterygon tripterontus</td>
<td>▲ ▲</td>
</tr>
<tr>
<td>Aidablennius sphynx</td>
<td>▲</td>
</tr>
<tr>
<td>Coryphoblennius galerita</td>
<td>▲ ▲</td>
</tr>
<tr>
<td>Lipophrys adriaticus</td>
<td>▲</td>
</tr>
<tr>
<td>Parablennius sanguinolenthus</td>
<td>▲ ▲ ▲</td>
</tr>
<tr>
<td>P. tentacularis</td>
<td>▲</td>
</tr>
<tr>
<td>P. zvonimiri</td>
<td>▲</td>
</tr>
<tr>
<td>P. incognitus</td>
<td>▲</td>
</tr>
<tr>
<td>Salaria pavo</td>
<td>▲</td>
</tr>
<tr>
<td>Apleton dentatus</td>
<td>▲</td>
</tr>
<tr>
<td>Diplecoaster dimaculata euxinica</td>
<td>▲</td>
</tr>
<tr>
<td>Lepadogaster candellevi</td>
<td>▲ ▲</td>
</tr>
<tr>
<td>L. lepadogaster</td>
<td>▲</td>
</tr>
<tr>
<td>Callionymis pustilus</td>
<td>▲</td>
</tr>
<tr>
<td>C. risso</td>
<td>▲</td>
</tr>
<tr>
<td>Gobius bucchichi</td>
<td>▲</td>
</tr>
<tr>
<td>G. cobitis</td>
<td>▲</td>
</tr>
<tr>
<td>G. cruentatus</td>
<td>▲</td>
</tr>
<tr>
<td>G. niger</td>
<td>▲</td>
</tr>
<tr>
<td>G. ophiocephalus</td>
<td>▲</td>
</tr>
<tr>
<td>G. pagonellus</td>
<td>▲</td>
</tr>
<tr>
<td>Mesogobius batrachocephalus</td>
<td>▲ ▲ ▲</td>
</tr>
<tr>
<td>Neogobius melanostomus</td>
<td>▲</td>
</tr>
<tr>
<td>Pomatoschistus marmoratus</td>
<td>▲</td>
</tr>
<tr>
<td>Ponticola eurycephalus</td>
<td>▲</td>
</tr>
<tr>
<td>P. platyrostris</td>
<td>▲</td>
</tr>
<tr>
<td>P. ratan</td>
<td>▲</td>
</tr>
<tr>
<td>Sarda sarda</td>
<td>▲</td>
</tr>
<tr>
<td>Scomber scombrus</td>
<td>▲</td>
</tr>
<tr>
<td>Scophthalmus maeotica</td>
<td>▲ ▲ ▲</td>
</tr>
<tr>
<td>Arnoglossus kessleri</td>
<td>▲</td>
</tr>
<tr>
<td>Platichthys flexus luscus</td>
<td>▲ ▲</td>
</tr>
<tr>
<td>Pegusa nasuta</td>
<td>▲</td>
</tr>
</tbody>
</table>

Как следует из таблицы, в Феодосийском районе отмечено 63 вида рыб, в Карадагском – 84 и в Судакском районе – 59 видов.

Основу ихтиофауны юго-восточного побережья Крыма формируют морские рыбы, представленные 73 видами и подвидами из 53 родов, 37 семейств и 12 отрядов и составляющие более 80 % всей ихтиофауны региона. В их составе различаются бореально-атлантические реликты и средиземноморские иммигранты.

Бореально-атлантические реликты (7 отрядов, 9 семейств, 9 родов, 9 видов и подвидов; 10 % всей ихтиофауны) представлены холодноводными рыбами, которые держатся в охлажденном внутреннем слое воды. Большинство представителей этой группы в прибрежной зоне встречаются в основном в холодное время года, а также летом в периоды понижения температуры верхних слоев воды в результате сгонов вод.

Средиземноморские иммигранты (9 отрядов, 29 семейств, 44 рода и 64 вида и подвиды; 71 % всех видов) – рыбы, период жизненной активности которых протекает в теплое время года. Они держатся в верхнем 50-метровом прогреваемом слое толщи воды или у дна на прибрежных мелководьях. Зимой они частью мигрируют в более теплые районы моря, частью остаются в местах своего обитания, находясь в состоянии пониженной жизнедеятельности.

Солоноватоводные рыбы или понтические реликты представлены 5 видами из 2 родов и являются представителями семейства Gobiidae (6 % всех видов).

Из проходных рыб было отмечено 7 видов и подвидов (8 % всей ихтиофауны) из 5 родов и 4 семейств, из полупроходных – 2 вида (2 % всех видов), относящихся к 2 родам и 2 семействам.

Из группы пресноводных рыб в регионе был отмечен лишь один вид – серебряный карась (Cyprinidae), заносимый в прибрежную зону моря паводковыми водами.

К интродуцентам относятся 2 вида – пиленгас (Mugilidae) и полосатый окунь (Moronidae).

Пространственно-временное и биотопическое распределение рыб. В соответствии с пространственно-временными особенностями распределения в составе ихтиофауны юго-восточного побережья различаются две группы: мигранты и резиденты.

Мигранты (33 вида) не являются постоянными обитателями прибрежья и их качественный и количественный состав в течение года подвержен изменениям. К этой группе прежде всего относятся рыбы, для которых свойственные сезонные миграции, совершающие ими как в пределах Черного моря, так и в Азовское и Мраморное моря. Это представители семейств Squalidae, Rajidae, Dasyatidae, Engraulidae, Clupeidae, Gadidae, Mugilidae, Atherinidae, Belonidae, Pomatomidae, Carangidae, Mullidae, Scombridae и Scophthalmidae. В эту же группу входят виды рыб, для которых не свойственны сезонные перемещения. Их присутствие в данном районе носит случайный характер, и они встречаются эпизодически, единичными особями.

Несмотря на непостоянство пребывания в прибрежной зоне Восточного Южнобережья, мигранты являются важным структурно-функциональным компонентом ихтиоценоса данного региона. Молодь и взрослые рыбы этой группы в весеннелетний период используют прибрежную зону для нагула. Кроме того, в период массового подхода к берегам, некоторые мигрирующие виды служат пищей для целого ряда прибрежных хищников (морскому ершу, морскому налиму, бычкам). Большинство мигрантов откладывают пелагическую икру, однако такие виды, как атерины и сарган нерестятся в зарослевой зоне, используя в качестве нерестового субстрата макрофиты, в частности цистозиру.

Постоянными обитателями являются резиденты (56 видов), характеризующиеся лишь локальными перемещениями в пределах прибрежной зоны. В тоже время в характере распределения и поведении рыб этой группы есть существенные различия, в соответствии с которыми в ней различаются кочевники и оседлые рыбы (Мочек, 1987).

Кочевники совершают перемещения в поисках пищи в пределах прибрежной зоны. Держатся эти рыбы как в одиночку, так и с формированием временных групп, включаю-
щих от двух до сотни и более особей. По характеру связи с дном различаются донные, придонные и придонно-пелагические кочевники. К донным и придонным кочевникам относятся виды, никогда не теряющие связи с дном. Диапазон перемещения придонно-пелагических кочевников более широк и охватывает не только придонные горизонты, но и средние и верхние слои пелагиали. При опасности они могут использовать случайные убежища, встречающиеся на их пути – расщелины камней, заросли водорослей. В состав этой группы входят представители семейств Ophidiidae, Syngnathidae, Triglidae, Serranidae, Sparidae, Centracanthidae, Sciaenidae, Pomacentridae, Labridae, Ammodytidae, Bothidae и Soleidae.

Оседлые рыбы ведут малоподвижный, исключительно донный образ жизни. Стая этих рыб не образуют и обычно держатся в одиночку. Сюда относятся семейства Lotidae, Scorpaenidae, Trachinidae, Uranoscopidae, Tripterygiidae, Blenniidae, Gobiesocidae, Callionymidae, Gobiidae.

Все представители пространственно-временных группировок характеризуются достаточно четкой биотопической разобщенностью, особенно демерсальные рыбы прибрежного комплекса. Большинство этих видов функционально связаны с одним или несколькими донными биотопами и образуют в них определенные биотопические группы. Основными факторами, оказывающими влияние на биотопическую зональность рыб, являются подвижность грунта, степень гидродинамического воздействия прибоя, наличие укрытий и нерестового субстрата и особенности кормовой базы.

Для прибрежной зоны Восточного Южно-берегья доминирующими являются биотопы, формирующиеся на участках с каменисто-скалистыми грунтами, среди которых были обследованы биотоп гальки в зоне наката и биотоп валунно-глыбового навала.

Биотоп галечных грунтов располагается в основном от уреза воды до глубины 1,5–2,0 м. Для этой зоны характерно сильное гидродинамическое воздействие прибоя, наличие укрытий и нерестового субстрата и особенности кормовой базы.

Для прибрежной зоны Восточного Южно-берегья доминирующими являются биотопы, формирующиеся на участках с каменисто-скалистыми грунтами, среди которых были обследованы биотоп гальки в зоне наката и биотоп валунно-глыбового навала.

Биотоп галечных грунтов располагается в основном от уреза воды до глубины 1,5–2,0 м. Для этой зоны характерно сильное гидродинамическое воздействие прибоя, наличие укрытий и нерестового субстрата и особенности кормовой базы.

Основу этой биотопической группировки составляют оседлые рыбы — Gaidropsarus mediterraneus (Gadidae), Gobius cobitis, G. paganellus, Neogobius eurycephalus, N. platycephalis (Gobiidae); Aidablennius sphyx, Salaria pavo, Parablennius sanguinolenthus (Blenniidae); Lepadogaster candollei, L. lepadogaster lepadogaster (Gobiesocidae). Для этих рыб характерны различные морфологические приспособления, позволяющие им существовать в условиях сильного волнообоя — присоски (у бычков), присасывающий диск (рыбы-уточки), вытянутое и сжатое с боков (собачки, морской налим) или в дорсовентральном направлении тело (рыбы-уточки). Регулярные кочевки в зону наката совершают рыбы семейств Labridae. Из мигрантов в массовом количестве здесь встречаются нагуливающиеся молодь и взрослые особи кефалей и атерин.

Найболее оптимальный комплекс условий для жизнедеятельности рыб присущ биотопу вулканического субстрата. Он образован подвижными глыбами и валунами вулканического и осадочного происхождения и простирается от уреза воды до глубины 10 м. Для этой зоны характерно наличие зарослей макрофитов. Стабильность субстрата обеспечивает наличие здесь разнообразных постоянных укрытий и нерестовых участков для рыб.

Данный биотоп характеризуется наибольшим видовым разнообразием и численностью рыб по сравнению с другими биотопическими зонами. Здесь наблюдается большое число стенотопных видов рыб, не встречающихся более нигде. Рыбы-резиденты, населяющие этот биотоп, откладывают демерсальную икру, прикрепляя ее к раковинам моллюсков или на нижнюю сторону камней. Некоторые виды строят гнезда и охраняют их. По типу питания это бентофаги и хищники-засадчики.

Рыбы-резиденты представлены семействами Lotidae (1 вид), Gobiidae (4 видов), Blenniidae (1 вид), Tripterygiidae (1 вид), Scorpaenidae (1 вид), Labridae (7 видов), Sparidae (2 вида), Gobiesocidae (1 вид), Pomacentridae (1 вид) и Sciaenidae (1 вид). Из...
мигрантов постоянно в зоне валунно-глыбового навала встречаются молодь и взрослые особи хамсы, атерин, сарганы, кефали, сарган, черноморской ставриды.

На участках песчаного дна обитает значительно меньше видов рыб. В связи с отсутствием укрытий рыбы песчаных биотопов маскируются на дне благодаря дорзовентрально сжатой форме тела, своеобразной "песчаной окраске" и способности менять цвет тела в зависимости от окружающего фона. Кроме того, для многих рыб этой биотопической зоны характерна способность зарываться в песок в случае опасности и во время охоты. Вследствие отсутствия в этой зоне нерестового субстрата, рыбы песчаных грунтов откладывают пелагическую икру.

Рыбы-резиденты представлены семействами Ophidiidae (1 вид), Trachinidae (1 вид), Uranoscopidae (1 вид), Dasyatidae (1 вид), Ammodontidae (1 вид), Gobiidae (1 вид), Bothidae (1 вид), Pleuronectidae (1 подвид) и Soleidae (1 вид). Из мигрантов здесь встречаются преимущественно кефали, атерини, сарган и султанка.

Ихтиофауна юго-восточного побережья Крыма по своим структурным характеристикам типична для морских полигалинных районов Черного моря. В её состав входят как обычные, широко распространенные виды, так и редкие, малочисленные, характеризующиеся точечным ареалом в силу их экологических особенностей. Это относится, прежде всего, к стенобионтам донного комплекса, насищающим строго определенные, локальные биотопы прибрежной зоны. Наличие в составе ихтиофауны таких видов свидетельствует о том, что в данном районе еще сохранились участки побережья с относительно невысокой степенью антропогенной трансформации. Это, прежде всего, акватория Карадагского природного заповедника, а также другие прибрежные участки юго-восточного побережья Крыма.

Благодарности. Автор выражает искреннюю благодарность директору ФГБУН «Карадагская научная станция им. Т.И.Вяземского – природный заповедник РАН» Р.В. Горбунову за предоставленную возможность проведения исследований, старшему научному сотруднику ФГБУН «Карадагская научная станция им. Т.И.Вяземского – природный заповедник РАН» Мальцеву В.И. за всестороннее содействие в период работы и ценные консультации и коллегам по кафедре «Водные биоресурсы и марикультура» КГМУ, постоянным участникам экспедиций – Кулишу А.В. и Дончику П.И., за помощь в сборе и обработке материала.

3.2.2. ПТИЦЫ

Птицы являются постоянным и многочисленным компонентом биологического разнообразия морских берегов, чем определяется актуальность орнитологических исследований береговой зоны Крымского полуострова. В настоящей главе рассматриваются видовой состав, распределение и численность птиц морских берегов и прибрежной акватории юго-восточной части Крыма в гнездовой, зимний и миграционные периоды года.

До начала 80-х гг. XX в. орнитологические исследования в данном районе Крыма проводились эпизодически. Впервые список птиц Черного моря у берегов Карадага, включающий 42 вида, был опубликован Л.А. Прокудиной (1952). Систематизирован-
нерные сведения о гнездящихся птицах этого района, в т. ч. морского берега, приводятся в дипломной работе Г. Д. Серского (1953 г.). В первые годы существования Карадагского заповедника большой вклад в изучение орнитофауны его берегов внесли А. М. Пекло и В. М. Зубаровский, работавшие в составе экспедиции Института зоологии АН УССР под руководством Н. Н. Щербака (Изучение фауны и численности..., 1984). Дальнейшие исследования существенно дополнили информацию о видовом составе, численности, характере и сроках пребывания птиц прибрежно-морских биотопов Юго-Восточного Крыма (Природа Карадага, 1989; Бескаравайный, 2004 а, 2008; Бескаравайный, Костин, 1999 и др.).

Используемое здесь понятие «берег» трактуется как полоса суши, на которой имеются формы рельефа и накопления наносов, созданные морем при современном среднемноголетнем уровне: верхней границей абрационного берега, является кромка клифа (Морская геоморфология..., 1980). К элементам биотопической структуры береговой зоны отнесены также некоторые локализованные в ее границах антропогенные объекты (разнообразные инженерные сооружения и постройки).

Использован материал, собранный в период с 1981 по 2016 гг., в продолжение которого была обследована вся береговая линия изучаемого региона. Стационарные исследования проводились в береговой зоне Карадагского заповедника и на прилегающих к ней участках – от б. Коктебель до б. Лисьей.

Численность гнездящихся птиц определялась методом прямого пересчета пар и выводков – локально (на конкретном береговом обрыве или скальном островке) и на маршрутах 1–12 км (160 учетов). Учеты хохлатого бакланна – *Phalacrocorax aristotelis* и средиземноморской чайки – *Larus michahellis* в Карадагском заповеднике велись с катера и корректировались дополнительными наблюдениями с берега.

Учеты гидрофильных птиц в зимний и миграционные сезоны проводились с береговых маршрутов на прибрежной полосе морской акватории шириной около 1 км, регулярно – на 5-километровом участке берега от Карадага до б. Лисья (всего 220 учетов). О при надлежности птиц к мигрирующим судили по таким визуально фиксируемым явлениям, как направленное перемещение их групп вдоль береговой линии и заметное возрастание численности по сравнению с зимней (весной) или гнездовой (в конце лета и осенью). Характеристика численности пролетных и кочующих видов дана в балльных оценках, что объясняется ее высокой внутрисезонной и многолетней изменчивостью. Для построения графиков внутригодовой динамики пребывания некоторых видов применялся показатель «встречаемость»: он рассчитывался как общее за время исследований количество дат регистраций вида (без учета численности), которое приходится на каждый календарный месяц.

Данные по питанию хохотуньи в гнездовое время приводятся на основе анализа 95 погадок и поедей, собранных преимущественно в береговой зоне Карадагского заповедника.

Распределение и условия обитания птиц в береговой зоне во многом определяются геоморфологическими особенностями берега и подводного берегового склона.

В пределах исследуемого района берега относятся к абрационному типу. Выпульные в плане участки береговой линии (м. Киик-Атлама, Карадагский массив, п-ов Меганом, г. Караул-Оба и др.) характеризуются обилием скальных форм рельефа и приглубыми берегами (10-метровая изобата удалена от берега на 0,1–0,6 км, 20-метровая – на 0,2–1,0 км). На бухтовых участках (бухты Двуякорная, Тихая, Коктебель, Лисья, Капсель) развиты гравийно-галечные пляжи шириной до 25 м (Современное состояние..., 2015): акватории бухт более мелководны – вышеуказанные изобаты отдаляются от берега на 0,1–0,6 км, 20-метровая – на 0,2–1,0 км). На бухтовых участках (бухты Двуякорная, Тихая, Коктебель, Лисья, Капсель) развиты гравийно-галечные пляжи шириной до 25 м (Современное состояние..., 2015): акватории бухт более мелководны – вышеуказанные изобаты отдаляются от береговой линии соответственно на 0,4–1,0 км и 1,0–2,1 км, максимально – в б. Коктебель. На изучаемом отрезке береговой линии в море впадает около 20 постоянных и временных водотоков.

Гнездовой орнитокомплекс. В границах береговой зоны Юго-Восточного Крыма птицы используют 4 типа гнездовых биотопов.

1. Скальные обрывы и островки: приурочены к участкам берегов, сложенным стойкими и очень стойкими породами. Объединяют наиболее многочисленную и морфологически разнородную группу гнездопригодных стаций (скальные полки, ниши и трещины на клифах, абразионные гроты, субгоризонтальные поверхности островков и др.) (Бескаравайный, 2008). Эти биотопы наименее динамичны и обладают высокими защитными свойствами. В качестве гнездовых стаций скальные формы рельефа используют 9 видов птиц: обычны и

144
многочисленны хохлатый баклан (рис. 1), средиземноморская чайка, белобрюхий стриж – *Apus melba*.

2. Грунтовые клифы с прилегающими пляжами. Развиты преимущественно на бухтовых участках берега, характеризуются высокой динамичностью. Для гнездования используются полости и трещины в стенах клифов, пустоты под крупными валунами: гнездится 3 вида, многочисленна каменка-плешанка – *Oenanthe pleschanka*, обычная белая трясогузка – *Motacilla alba*.

3. Участки гравийно-песчаных пляжей на берегах бухт, прилегающие к устьям водотоков и выходам пресной воды (малый зуек – *Charadrius dubius*).

4. Антропогенные объекты, к которым относятся расположенные в береговой зоне постройки, пирсы, берегоукрепительные сооружения, металлические конструкции и др. Отмечено гнездование 5 видов, обычны белая трясогузка и каменка-плешанка.

Рис. 1. Гнездовая группа хохлатых бакланов на скальном островке (Карадаг, м. Мальчин)

Современная гнездовая орнитофауна включает 18 видов, из которых только 4 являются облигатно-гидрофильными.

2. Кряква – *Anas platyrhynchos* L. У морских берегов встречается в продолжение значительной части года. В апреле и мае пары регистрировались в районе от пгт Коктебель до б. Капсель у Судака, регулярно – на акватории Карадагского заповедника. Приблизительная численность составляет 4–5 пар, из них 2–3 – в береговой зоне Карадага, где гнезда с кладками находили в апреле среди кустарниковой растительности на склонах, прилегающих к береговой зоне (Бескаравайный, 2008). Судя по отсутствию регистраций в июле и каких-либо сведений о выводках, можно предполагать, что эффективность гнездования кряквы у морских берегов крайне низкая, а возможно, нулевая.

Существенную угрозу популяции малого зуйка представляет рекреационная нагрузка на береговую зону: случаи гибели гнезд регистрировали на активно посещаемых участках берегов.

4. Средиземноморская чайка – *Larus michahellis* Pall. Оседлый вид. Гнездовые биотопы – береговые обрывы и скальные островки. Характерно разреженное гнездование небольшими группами (2–3 пары) и отдельными парами, но иногда на скалах-островках образуют плотные гнездовые поселения до 30 пар. Общая численность – около 60 пар. Кормовые биотопы разнообразны – наряду с морской акваторией и береговой зоной это степные участки, пашни, свалки, населенные пункты. При весьма широком диапазоне кормов, важное место в питании этой чайки в гнездовое время занимают морские организмы, доля которых в общем количестве пищевых объектов составляет около 21,6 %, а встречаемость в пищевых пробах – 57,9 %. Ведущее место в данной группе кормов занимает рыба (соответственно 8,3 и 35,8 %), ракообразные (11,0 и 18,9 %) – *Pachygrapsus marmoratus* (рис. 3), единично *Xantho poressa*, *Eriphia spinifrons*, *Idotea* sp. и моллюски (2,3 и 6,3 %) – *Mytilus galloprovincialis*, единично *Patella pontica*. Роль морских организмов остается существенной в послегнездовое и зимнее время (Бескаравайный, 2005).

Для 14 негидрофильных видов (табл. 1), к которым относятся представители отрядов со-колообразных (3 вида), голубеобразных (1), стрижеобразных (1) и воробьинообразных (9), гнездование в береговой зоне носит факультативный характер и зависит только от наличия гнездопригодных стаций. Гнездование синантропных птиц (деревенская ласточка – Hirundo rustica, обыкновенный скворец – Sturnus vulgaris, воробьи домовой – Passer domesticus и полевой – P. montanus, частично белая трясогузка) обусловлено присутствием в береговой зоне разнообразных объектов антропогенного происхождения.

Таблица 1.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Биотоп</th>
<th>Численность (пар)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falco cherrug</td>
<td>Скальные обрывы</td>
<td>2</td>
</tr>
<tr>
<td>Falco peregrines</td>
<td>Скальные обрывы</td>
<td>5–6</td>
</tr>
<tr>
<td>Falco tinnunculus</td>
<td>Скальные обрывы</td>
<td>4</td>
</tr>
<tr>
<td>Columba livia</td>
<td>Скальные обрывы</td>
<td>~20</td>
</tr>
<tr>
<td>Apus melba</td>
<td>Скальные обрывы</td>
<td>Десятки</td>
</tr>
<tr>
<td>Hirundo rustica</td>
<td>Береговые постройки</td>
<td>~10</td>
</tr>
<tr>
<td>Delichon urbica</td>
<td>Скальные обрывы</td>
<td>~21</td>
</tr>
<tr>
<td>Motacilla alba</td>
<td>Грунтовые обрывы, береговые постройки</td>
<td>~1 пар/км</td>
</tr>
<tr>
<td>Sturnus vulgaris</td>
<td>Антропогенные объекты</td>
<td>Единично</td>
</tr>
<tr>
<td>Corvus corax</td>
<td>Скальные обрывы</td>
<td>9</td>
</tr>
<tr>
<td>Oenanthe pleschanka</td>
<td>Грунтовые обрывы, береговые постройки</td>
<td>2,5 (до 5,2) пар/км</td>
</tr>
<tr>
<td>Oenanthe hispanica</td>
<td>Грунтовые обрывы, береговые постройки</td>
<td>3</td>
</tr>
<tr>
<td>Passer domesticus</td>
<td>Антропогенные объекты</td>
<td>Единично</td>
</tr>
<tr>
<td>Passer montanus</td>
<td>Антропогенные объекты</td>
<td>Единично</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Вид</th>
<th>Регулярность зимовки</th>
<th>Численность на 5-км участке Карадаг – б. Лисья</th>
<th>Локальные наблюдения в других районах</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gavia arctica</td>
<td>Р</td>
<td>1 120</td>
<td></td>
</tr>
<tr>
<td>Tachybaptus ruficollis</td>
<td>Н</td>
<td>1 5</td>
<td></td>
</tr>
<tr>
<td>Podiceps nigricolli</td>
<td>Р</td>
<td>9 114</td>
<td></td>
</tr>
<tr>
<td>Podiceps auritus</td>
<td>Э</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>Podiceps grisegena</td>
<td>Р</td>
<td>1 20</td>
<td></td>
</tr>
<tr>
<td>Podiceps cristatus</td>
<td>Р</td>
<td>1 ~3000</td>
<td></td>
</tr>
<tr>
<td>Puffinus puffinus</td>
<td>Э</td>
<td>(6) (30) (28)</td>
<td></td>
</tr>
<tr>
<td>Phalacrocorax carbo</td>
<td>Р</td>
<td>1 1500</td>
<td></td>
</tr>
<tr>
<td>Phalacrocorax aristotelis</td>
<td>Р</td>
<td>10 143</td>
<td></td>
</tr>
<tr>
<td>Phalacrocorax pygmaeus</td>
<td>Е</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>Botaurus stelleris</td>
<td>Э</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>Egretta alba</td>
<td>Э</td>
<td>1 5</td>
<td></td>
</tr>
<tr>
<td>Ardea cinerea</td>
<td>Э</td>
<td>1 4</td>
<td></td>
</tr>
<tr>
<td>Rufibrenta ruficollis</td>
<td>Э</td>
<td>2 2</td>
<td></td>
</tr>
<tr>
<td>Anser anser</td>
<td>Э</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>Anser albifrons</td>
<td>Э</td>
<td>1 (70)</td>
<td></td>
</tr>
<tr>
<td>Cygnus olor</td>
<td>Р</td>
<td>1 90</td>
<td></td>
</tr>
<tr>
<td>Cygnus cygnus</td>
<td>Э</td>
<td>4 12</td>
<td></td>
</tr>
<tr>
<td>Tadorna ferruginea</td>
<td>Э</td>
<td>1 5</td>
<td></td>
</tr>
<tr>
<td>Tadorna tadorna</td>
<td>Э</td>
<td>1 6 (8)</td>
<td></td>
</tr>
<tr>
<td>Anas platyrhynchos</td>
<td>Р</td>
<td>1 273</td>
<td></td>
</tr>
<tr>
<td>Anas crecca</td>
<td>Н</td>
<td>1 40</td>
<td></td>
</tr>
<tr>
<td>Anas strepera</td>
<td>Э</td>
<td>1 2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Латинское имя</th>
<th>Обозначение</th>
<th>Численность</th>
<th>Начало</th>
<th>Конец</th>
<th>Место</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anas penelope</td>
<td>Э</td>
<td>4</td>
<td>20</td>
<td>19</td>
<td>12.02.2012</td>
</tr>
<tr>
<td>Anas acuta</td>
<td>Э</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Anas clypeata</td>
<td>Э</td>
<td>1</td>
<td>2</td>
<td>1 mort.</td>
<td>28.01.1982</td>
</tr>
<tr>
<td>Netta rufina</td>
<td>Н</td>
<td>1</td>
<td>38</td>
<td>77</td>
<td>08.02.1991 11.02.2012</td>
</tr>
<tr>
<td>Aythya ferina</td>
<td>Н</td>
<td>1</td>
<td>30</td>
<td>600</td>
<td>12.02.2012 12.02.2012</td>
</tr>
<tr>
<td>Aythya nyroca</td>
<td>Э</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Bucephala clangula</td>
<td>Э</td>
<td>1</td>
<td>10</td>
<td>26</td>
<td>11.02.2012 12.02.2012</td>
</tr>
<tr>
<td>Somateria mollissima</td>
<td>Э</td>
<td>–</td>
<td>–</td>
<td>4</td>
<td>22.01.1999</td>
</tr>
<tr>
<td>Mergus merganser</td>
<td>Э</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>11.02.2012</td>
</tr>
<tr>
<td>Rallus aquaticus</td>
<td>Э</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gallinula chloropus</td>
<td>Э</td>
<td>1</td>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Fulica atra</td>
<td>Р</td>
<td>1</td>
<td>387</td>
<td>1200</td>
<td>23.01.1982 25.01.2006</td>
</tr>
<tr>
<td>Vanellus vanellus</td>
<td>Э</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>24.01.1982</td>
</tr>
<tr>
<td>Tringa ochropus</td>
<td>Э</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Calidris alpina</td>
<td>Э</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>25.01.2006</td>
</tr>
<tr>
<td>Calidris canutus</td>
<td>Э</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gallinago gallinago</td>
<td>Э</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Larus ichthyaetus</td>
<td>Н</td>
<td>1</td>
<td>5</td>
<td>17</td>
<td>12.02.2012 11.02.2012</td>
</tr>
<tr>
<td>Larus melanocephalus</td>
<td>Н</td>
<td>1</td>
<td>41</td>
<td>100</td>
<td>04.01.1991 10.12.2008</td>
</tr>
<tr>
<td>Larus minutus</td>
<td>Э</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>02.01.2005</td>
</tr>
<tr>
<td>Larus ridibundus</td>
<td>Р</td>
<td>1</td>
<td>300</td>
<td>60</td>
<td>16.01.1989 11.02.2012</td>
</tr>
<tr>
<td>Larus genei</td>
<td>Э</td>
<td>–</td>
<td>–</td>
<td>1</td>
<td>08.02.1990</td>
</tr>
<tr>
<td>Larus fuscus</td>
<td>Э</td>
<td>1</td>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Larus cachinnans</td>
<td>Р</td>
<td>5</td>
<td>300</td>
<td>900</td>
<td>11.02.2012</td>
</tr>
<tr>
<td>Larus michahellis</td>
<td>Р</td>
<td>?</td>
<td>~150</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Thalasseus sandvicensis</td>
<td>Н</td>
<td>1</td>
<td>3</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
орнитологическая ситуация у южных берегов резко меняется при экстремальных походлениях, обычно наступающих в январе—феврале (Костин, 1970; Бескаравайный, 2008, 2010). Ледовый покров у побережий Северного Причерноморья становится причиной вынужденного перемещения и концентрации птиц на незамерзающей акватории южных районов Крыма (рис. 4). В районе исследований наиболее многочисленные скопления формируются на относительно мелководных акваториях бухт — Двухкорной, Тихой, Коктебель, Лисьей, Капсель. Резко возрастает численность регулярно зимующих гусеобразных (лебеди-шипунов — Cygnus olor, кряквы, красноголовой и хохлатой чернети) и лысухи. Появляются виды, нехарактерные для южных берегов при нормальных условиях зимовки — лебедь-кликун — Cygnus cygnus, красноносый крачка — Phoenicus ochrurus (0,2–1,2 ос./км), редко (<0,2 ос./км) — горная трясогузка — Motacilla cinerea, единично — кеклик — Alectoris chukar, обыкновенный зимородок — Alcedo atthis и белая трясогузка. В отдельные сезоны при похолоданиях со снегопадами в прибойной зоне (обычно на выбросях водорослей цистозиры) кормятся хохлатый жаворонок — Galerida cristata, луговой конек — Anthus pratensis, обыкновенный скворец, зарянка — Erithacus rubecula, черный дрозд — Turdus merula, большая синица — Parus major. Над берегом и акваторией наблюдались луны полевой — Circus cyaneus и камышовый — C. aeruginosus, перепелятник — Accipiter nisus, обыкновенный канюк — Buteo buteo, орлан-белохвост — Haliaeetus albicilla, канапан — Falco peregrinus.

Орнитологическая ситуация у южных берегов резко меняется при экстремальных походлениях, обычно наступающих в январе—феврале (Костин, 1970; Бескаравайный, 2008, 2010). Ледовый покров у побережий Северного Причерноморья становится причиной вынужденного перемещения и концентрации птиц на незамерзающей акватории южных районов Крыма (рис. 4). В районе исследований наиболее многочисленные скопления формируются на относительно мелководных акваториях бухт — Двухкорной, Тихой, Коктебель, Лисьей, Капсель. Резко возрастает численность регулярно зимующих гусеобразных (лебеди-шипунов — Cygnus olor, кряквы, красноголовой и хохлатой чернеть) и лысухи. Появляются виды, нехарактерные для южных берегов при нормальных условиях зимовки — лебедь-кликун — Cygnus cygnus, красноносый крачка — Phoenicus ochrurus (0,2–1,2 ос./км), редко (<0,2 ос./км) — горная трясогузка — Motacilla cinerea, единично — кеклик — Alectoris chukar, обыкновенный зимородок — Alcedo atthis и белая трясогузка. В отдельные сезоны при похолоданиях со снегопадами в прибойной зоне (обычно на выбросях водорослей цистозиры) кормятся хохлатый жаворонок — Galerida cristata, луговой конек — Anthus pratensis, обыкновенный скворец, зарянка — Erithacus rubecula, черный дрозд — Turdus merula, большая синица — Parus major. Над берегом и акваторией наблюдались луны полевой — Circus cyaneus и камышовый — C. aeruginosus, перепелятник — Accipiter nisus, обыкновенный канюк — Buteo buteo, орлан-белохвост — Haliaeetus albicilla, канапан — Falco peregrinus.

Орнитологическая ситуация у южных берегов резко меняется при экстремальных походлениях, обычно наступающих в январе—феврале (Костин, 1970; Бескаравайный, 2008, 2010). Ледовый покров у побережий Северного Причерноморья становится причиной вынужденного перемещения и концентрации птиц на незамерзающей акватории южных районов Крыма (рис. 4). В районе исследований наиболее многочисленные скопления формируются на относительно мелководных акваториях бухт — Двухкорной, Тихой, Коктебель, Лисьей, Капсель. Резко возрастает численность регулярно зимующих гусеобразных (лебеди-шипунов — Cygnus olor, кряквы, красноголовой и хохлатой чернеть) и лысухи. Появляются виды, нехарактерные для южных берегов при нормальных условиях зимовки — лебедь-кликун — Cygnus cygnus, красноносый крачка — Phoenicus ochrurus (0,2–1,2 ос./км), редко (<0,2 ос./км) — горная трясогузка — Motacilla cinerea, единично — кеклик — Alectoris chukar, обыкновенный зимородок — Alcedo atthis и белая трясогузка. В отдельные сезоны при похолоданиях со снегопадами в прибойной зоне (обычно на выбросях водорослей цистозиры) кормятся хохлатый жаворонок — Galerida cristata, луговой конек — Anthus pratensis, обыкновенный скворец, зарянка — Erithacus rubecula, черный дрозд — Turdus merula, большая синица — Parus major. Над берегом и акваторией наблюдались луны полевой — Circus cyaneus и камышовый — C. aeruginosus, перепелятник — Accipiter nisus, обыкновенный канюк — Buteo buteo, орлан-белохвост — Haliaeetus albicilla, канапан — Falco peregrinus.
Рис. 4. Скопление зимующих птиц у морского берега во время экстремального похолодания в январе 2006 г.

Пролет. Мигрирующие птицы образуют наиболее разнообразный и многочисленный компонент орнитофауны береговой зоны (71 вид, в т. ч. 68 весеннепролетных и 35 осенне-пролетных). Основные характеристики гидрофильных видов, использующих морской берег и акваторию в качестве временного кормового биотопа и миграционного коридора, приводятся в таблице 3.

Таблица 3.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Пролет</th>
<th>Кочевки, залеты (весна, лето, осень)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Весна</td>
<td>Осень</td>
</tr>
<tr>
<td></td>
<td>Регулярность, оценка численности</td>
<td>Сроки</td>
</tr>
<tr>
<td>Gavia arctica</td>
<td>Р+++</td>
<td>II(2)-V</td>
</tr>
<tr>
<td>Tachybaptus ruficollis</td>
<td>Э++</td>
<td>III-IV(2)</td>
</tr>
<tr>
<td>Podiceps nigricollis</td>
<td>Р+++</td>
<td>III-V(2)</td>
</tr>
<tr>
<td>Podiceps auritus</td>
<td>Э+</td>
<td>III(2)-V(1)</td>
</tr>
<tr>
<td>Podiceps grisegena</td>
<td>Р++</td>
<td>II(2)-V(2)</td>
</tr>
<tr>
<td>Bird Species</td>
<td>Status</td>
<td>Habitat 1</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>Podiceps cristatus</td>
<td>P+++</td>
<td>II–V(3)</td>
</tr>
<tr>
<td>Phalacrocorax carbo</td>
<td>P+++</td>
<td>II–IV(3)</td>
</tr>
<tr>
<td>Phalacrocorax pygmaeus</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Puffinus puffinus</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ixobrychus minutus</td>
<td>Ε+</td>
<td>IV(3)–V(3)</td>
</tr>
<tr>
<td>Nycticorax nycticorax</td>
<td>H++</td>
<td>III(3)–V(2)</td>
</tr>
<tr>
<td>Ardeola ralloides</td>
<td>P++</td>
<td>IV(2)–VI?</td>
</tr>
<tr>
<td>Bubulcus ibis</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Egretta alba</td>
<td>H++</td>
<td>II–V(1)</td>
</tr>
<tr>
<td>Egretta garzetta</td>
<td>P++</td>
<td>IV(1)–VI(1)</td>
</tr>
<tr>
<td>Ardea cinerea</td>
<td>P+++</td>
<td>III(3)–V(?)</td>
</tr>
<tr>
<td>Ardea purpurea</td>
<td>H++</td>
<td>III(3)–VI(1)</td>
</tr>
<tr>
<td>Plegadis falcinellus</td>
<td>Ε++</td>
<td>III(2)–V(1)</td>
</tr>
<tr>
<td>Anser anser</td>
<td>Ε+</td>
<td>III(1)</td>
</tr>
<tr>
<td>Anser albinfra</td>
<td>Ε+++</td>
<td>III(12)</td>
</tr>
<tr>
<td>Cygnus olor</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tadorna ferruginea</td>
<td>Ε+</td>
<td>III(1)–IV(2)</td>
</tr>
<tr>
<td>Tadorna tadorna</td>
<td>Ε+</td>
<td>III(2)–IV(2)</td>
</tr>
<tr>
<td>Anas crecca</td>
<td>H+++</td>
<td>III(3)–IV(3)</td>
</tr>
<tr>
<td>Anas strepera</td>
<td>Ε+</td>
<td>III(3)?–III(3)</td>
</tr>
<tr>
<td>Anas penelope</td>
<td>Ε++</td>
<td>III(3)–IV(3)</td>
</tr>
<tr>
<td>Anas acuta</td>
<td>Ε++</td>
<td>III(1)–V(1)</td>
</tr>
<tr>
<td>Anas querquedula</td>
<td>P+++</td>
<td>III(3)–V(2)</td>
</tr>
<tr>
<td>Anas clypeata</td>
<td>Ε+</td>
<td>III(1)–IV(3)</td>
</tr>
<tr>
<td>Netta rufina</td>
<td>H+++</td>
<td>III(3)–III(3)</td>
</tr>
<tr>
<td>Aythya ferina</td>
<td>Ε++</td>
<td>III(3)–III(2)</td>
</tr>
<tr>
<td>Aythya nyroca</td>
<td>Ε+</td>
<td>III(2)</td>
</tr>
<tr>
<td>Aythya fuligula</td>
<td>Ε++</td>
<td>III–V(1)</td>
</tr>
<tr>
<td>Somateria mollissima</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mergus serrator</td>
<td>H?++</td>
<td>III–V(1)</td>
</tr>
<tr>
<td>Mergus merganser</td>
<td>Ε+</td>
<td>III–IV(2)</td>
</tr>
<tr>
<td>Grus grus</td>
<td>Ε+</td>
<td>III(3)–IV(3)</td>
</tr>
<tr>
<td>Rallus aquaticus</td>
<td>Ε+</td>
<td>III(3)–IV</td>
</tr>
<tr>
<td>Gallinula chloropus</td>
<td>Ε+</td>
<td>IV–V</td>
</tr>
<tr>
<td>Fulica atra</td>
<td>H++++</td>
<td>III–IV(3)</td>
</tr>
<tr>
<td>Burhinus oedicinemos</td>
<td>Ε+</td>
<td>IV(1)–V(3)</td>
</tr>
<tr>
<td>Pluvialis squatarola</td>
<td>Ε+</td>
<td>IV(3)–V(1)</td>
</tr>
<tr>
<td>Charadrius alexandrinus</td>
<td>Ε+</td>
<td>III(2)–V(1)</td>
</tr>
<tr>
<td>Vanellus vanellus</td>
<td>Ε++</td>
<td>III(2)–IV(3)</td>
</tr>
<tr>
<td>Vanelllochthuus leucura</td>
<td>Ε+</td>
<td>IV(3)</td>
</tr>
<tr>
<td>Arenaria interpres</td>
<td>Ε+</td>
<td>V(2,3)</td>
</tr>
<tr>
<td>Himantopus himantopus</td>
<td>Ε++</td>
<td>III(3)–V(3)</td>
</tr>
<tr>
<td>Haematopus</td>
<td>Ε+</td>
<td>III(2)–V(1)</td>
</tr>
<tr>
<td>Species</td>
<td>Abundance</td>
<td>Migration Periods</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>ostralegus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tringa ochropus</td>
<td>Э+</td>
<td>III(2)–VI(2)</td>
</tr>
<tr>
<td>Tringa glareola</td>
<td>Э+</td>
<td>IV(1)–V(3)</td>
</tr>
<tr>
<td>Tringa nebularia</td>
<td>Э+</td>
<td>IV(1–3)</td>
</tr>
<tr>
<td>Tringa totanus</td>
<td>Э++</td>
<td>III(3)</td>
</tr>
<tr>
<td>Actitis hypoleucus</td>
<td>P+++</td>
<td>III(3)-?V(3)</td>
</tr>
<tr>
<td>Phleomachus pugnax</td>
<td>Э++</td>
<td>III(1)–V(1)</td>
</tr>
<tr>
<td>Calidris minutica</td>
<td>Э+</td>
<td>V(1)</td>
</tr>
<tr>
<td>Scolopax rusticola</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numentius arquata</td>
<td>Э+</td>
<td>III(3)</td>
</tr>
<tr>
<td>Numentius phaeopus</td>
<td>Э+</td>
<td>IV(3)</td>
</tr>
<tr>
<td>Limosa limosa</td>
<td>Э++</td>
<td>III(3)–V(1)</td>
</tr>
<tr>
<td>Stercorarius parasiticus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larus ichthyaetus</td>
<td>Э+</td>
<td>III(1)</td>
</tr>
<tr>
<td>Larus melanoccephalus</td>
<td>P+++</td>
<td>II(3)–V</td>
</tr>
<tr>
<td>Larus minutus</td>
<td>Э+</td>
<td>III-IV(1)</td>
</tr>
<tr>
<td>Larus ridibundus</td>
<td>P+++</td>
<td>II(2)–V(2)</td>
</tr>
<tr>
<td>Larus genei</td>
<td>P+++</td>
<td>III(1)–V(1)</td>
</tr>
<tr>
<td>Larus fuscus</td>
<td>H+</td>
<td>III(3)–V(3)</td>
</tr>
<tr>
<td>Larus cachinnans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Larus canus</td>
<td>P+++</td>
<td>II–IV(3)</td>
</tr>
<tr>
<td>Chlidonias niger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlidonias leucopterus</td>
<td>Э++</td>
<td>IV(3)–V(1)</td>
</tr>
<tr>
<td>Gelocheledon nilotica</td>
<td>Э++</td>
<td>IV(3)–V(1)</td>
</tr>
<tr>
<td>Hydroprogne caspia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thalasseus sandvicensis</td>
<td>P+++</td>
<td>III(1)–V(3)</td>
</tr>
<tr>
<td>Sterna hirundo</td>
<td>Э+</td>
<td>IV(2)–V(3)</td>
</tr>
<tr>
<td>Sterna albifrons</td>
<td>Э+</td>
<td>V(12)</td>
</tr>
<tr>
<td>Alcedo atthis</td>
<td>P+++</td>
<td>III(3)–V</td>
</tr>
</tbody>
</table>

Общая продолжительность весенней миграции составляет около 3,5 месяцев (приблизительно с середины февраля до начала июня), осенней – около 4,5 месяцев (с конца июля до ноября, возможно начала декабря). Внутригодовая последовательность миграционного процесса, по данным анализа сроков пролета некоторых, главным образом обычных и многочисленных видов (рис. 5), выглядит следующим образом.

симума численность большой поганки, локальные скопления которой достигают 1,5 тыс., большого баклана (до 3 тыс.) (рис. 6 и 7); в некоторые годы при ухудшении погоды в массе появляется лысуха (до 3 тыс.). На середину и вторую половину месяца приходится активный пролет чирка-трескунка и серого журавля, на третью декаду – наиболее ранние регистрации кваквы — *Nycticorax nycticorax* (30.03.2007), рыжей цапли — *Ardea purpurea* (30.03.2000), ходулочка — *Himantopus himantopus* (23.03.2007), травника — *Tringa totanus* (21.03.2005), перевозчика — *Actitis hypoleucos* (30.03.1984), клуши — *Larus fuscus* (27.03.2008), обыкновенного зимородка (30.03.2004).

Рис. 5. Внутригодовая динамика встречаемости некоторых пролетных и кочующих видов

Рис. 6. Фрагмент весеннего миграционного скопления больших поганок на прибрежной акватории (март 2011 г.)

Рис. 7. Весенняя миграция большого баклана над береговой зоной. Фoto С. М. Бескаравайного
Май. Идет обеднение миграционного комплекса – к концу мая количество видов падает более чем вчетверо по сравнению с апрельским. Только на этот месяц приходятся редкие регистрации камнешарки – Arenaria interpres (крайние даты 12 и 23 мая), кулика-воробья – Calidris minutus (8–12 мая), малой крачки – Sterna albifrons (3–9 мая) и единичные – краснозобика – C. ferruginea (08.05.2011). Обычными остаются желтая и малая белая цапли, пестроносыя крачка, значительно более редкими становятся чернозобая гагара, серая цапля, перевозчик. Около половины видов заканчивают пролет: в первой декаде – большая белая цапля (самая поздняя дата – 08.05.1994), длинноносый крохаль (07.05.1996) и морской голубок (08.05.2011); во второй – поганки черношейная (19.05.1987) и серощекая – Podiceps grisegena (16.05.2006), кваква (17.05.2006), чирок-трескунок (14.05.1988), озерная чайка (11.05.1982); в третьей – большая поганка (28.05.2015), ходулочник (24.05.1984), клуша (27.05.1983).

Вторая половина июля. У морских берегов в это время существует летний орнитокомплекс, образованный гнездящимися и летующими видами. Рост численности по сравнению с первой половиной лета наблюдается у серой цапли, перевозчика, пестроносой крачки, обыкновенного зимородка и некоторых других видов.

Первая декада сентября. Пролет в основном заканчивается. На фоне уже сформированного зимнего орнитокомплекса в отдельные годы наблюдаются небольшие скопления малой поганки (7.11.2005), миграция малой чайки, единично – обыкновенного зимородка (1.11.2004).

Вторая половина сентября. В этот месяц приходятся последние наблюдения большого буревестника, сизой чайки и обыкновенного зимородка; на середину – вторую половину месяца приходятся последние наблюдения малой белой цапли (13.10.1996), серой цапли (22.10.1999) и пестроносой крачки (29.10.1987).

Ноябрь. Пролет в основном заканчивается. На фоне уже сформировавшегося зимнего орнитокомплекса в отдельные годы наблюдаются небольшие скопления малой поганки (7.11.2005), миграция малой чайки, единично – обыкновенный зимородок (1.11.2004).

Кочевки. Данную группу образуют птицы, с разной регулярностью посещающие район исследований в теплое время года (весна – лето – осень). В береговой зоне Юго-Восточного Крыма к кочующим и летящим относятся не менее 24 видов (табл. 3).

Гнездовые ареалы более половины из них (17 видов) включают Крымский полуостров. Ареалы чернозобой гагары, малого буревестника, египетской цапли – Bubulcus ibis, обыкновенной гаги – Somateria mollissima, короткохвоенного поморника – Stercorarius parasiticus, озерной чайки и клуши находятся за пределами Крыма.

Многочисленна и регулярно кочует в продолжение всего теплого периода года хохотуна, плотность которой у берегов в середине лета и начале осени достигает 66 ос./км, а интенсивность вдольбереговых кочевок – 100 и более ос./час. Нерегулярные кочевки, имеющие два пика интенсивности (рис. 5), характерны для малого буревестника, численность которого подвержена значительным колебаниям. В последние годы максимальные ее значения (до 5 тыс.) регистрировались в марте – апреле. В конце весны и летом на акватории не ежегодно наблюдаются небольшие кормовые скопления чернозобой гагары (до 18 особей), большого баклана (до 17), черноголовой чайки (до 25), пестроносой крачки (до 70); в начале августа регистрировались скопления хохотуны (до 200).
Заключение. Береговая зона Юго-Восточного Крыма представляет собой сложный комплекс геоморфологических и гидрологических элементов ландшафта, используемых в качестве гнездовых и кормовых стаций гнездящимися, зимующими, мигрирующими и кочующими гидрофильными и в меньшей степени другими птицами. Вместе с тем здесь отсутствует или представлен фрагментарно ряд биотопов, типичных для северных районов Крыма (обширные мелководья, аккумулятивные острова и косы, тростниковые заросли), чем обусловлена качественная бедность орнитокомплексов и низкая численность многих видов. Приведенные данные подтверждают оценку значения южных берегов Крыма, как второстепенного резервата водно-болотных птиц (Сабиневский, 1977).

В береговой зоне и на прибрежной акватории Юго-Восточного Крыма во все сезоны года встречается не менее 80 видов водных и окооловодных птиц; с разной регулярностью морские берега посещают еще около 50 видов из других экологических групп.

Гнездовой орнитокомплекс состоит из 18 видов, что составляет более половины (56%) видового состава гнездящихся птиц береговой зоны Южного Крыма (Бескаравайный, 2008). Из них только 4 относятся к облигатно-гидрофильным (хохлатый баклан, кряква, малый зуек, средиземноморская чайка). В качестве гнездовых стаций 9 видов (50% видового состава) используют скальные формы рельефа, гнездование в береговой зоне 5 видов обусловлено наличием там антропогенных объектов (постройки, берегоукрепительные сооружения и др.).

Стабильный и многочислений зимний орнитокомплекс формируется на прибрежной акватории моря. По численности доминируют 11 видов, основную часть которых составляют ихтиофаги (чернозобая гагара, большая поганка, бакланы, длинноносый крохаль) и эврифаги (чайки). При экстремальных похолоданиях, провоцирующих вынужденное перемещение и концентрацию птиц на незамерзающей акватории у южных берегов, резко возрастает видовое разнообразие и численность бентофагов, добывающих корм на небольших глубинах (большинство уток, лысуха). Значительно меньшее количество видов составляет орнитокомплекс берегов (напли, ржанкообразные), где обычны только чайки.

Миграционная часть орнитокомплекса наиболее разнообразна. Весенняя миграция становится заметной во 2 половине февраля, достигает максимальной активности в марте – апреле и заканчивается в начале июня. Осенью видовой состав мигрантов почти вдвое беднее, пролет идет с конца июля до конца ноября при максимальной активности в сентябре – октябре.

Для большинства птиц, кочующих и летующих у морских берегов в теплое время года, характерно нерегулярное или эпизодическое пребывание и невысокая численность. Многочисленны только хохотунья, для которой характерны регулярные кочёвки, и в некоторые сезоны – малый буревестник.

3.2.3. МЛЕКОПИТАЮЩИЕ. ОТРЯД КИТООБРАЗНЫЕ: ВИЗУАЛЬНЫЕ И ЭТОЛОГО-АКУСТИЧЕСКИЕ НАБЛЮДЕНИЯ

численность и доля оседлых особей неизвестны. По предположению А. В. Занина (2004) в данной акватории существует резидентное стадо афалин; также, возможно, что в воды заповедника заходят несколько резидентных групп афалин.

В мае 2014 г. нами начаты наблюдения за дельфинами в акваториях памятников природы регионального значения «Прибрежный аквальный комплекс у горного массива «Караул-Оба» и «Полуостров Меганом»; с 2015 г. – в акватории Карадагского природного заповедника. Наряду с визуальными наблюдениями и проведением фотоидентификации, нами разработан и впервые применен на Черном море акустический метод учета афалин. Суть его заключается в составлении каталога продуцируемых этими дельфинами индивидуальных тональных сигналов («свистов-автографов»). Эти сигналы были открыты в середине 1960-х годов Д. и М. Колдуэллами (Caldwell, Caldwell, 1965). «Автограф» определяется, как свист с уникальной для каждого животной формой частотного контура, являющийся доминирующим в репертуаре данной особи. Частота основного тона таких свистов лежит в диапазоне 3–25 кГц, однако гармоники могут уходить в ультразвуковую область (Matthews et al., 1999). Считается, что «автографы» играют роль контактных сигналов (Janik, Slater, 1998; Watwood et al., 2005), т. е. используются афалинами для идентификации особей-продуцентов и их местоположения в море, а также для поддержания единства группы (Janik, Slater, 1998). В природных условиях продуцирование автографов вызвано с разделением и объединением групп (Janik, Slater, 1998; Saygh et al., 2007; Quick, Janik, 2008) и отдельных особей (в частности, матерей и детенышей) (Smolker et al., 1993). Таким образом, «автограф» может рассматриваться как индивидуальный маркер особи-продуцента, что позволяет регистрировать как постоянных пребывающих в данной акватории дельфинов (резидентных), так и мигрирующих животных из других популяций (гранзитных).

Наблюдения и акустические записи ведутся как стационарно с берега, так и с моря, с использованием катера и педальных катамаранов. Работа в море осуществлялась по маршруту м. Меганом – акватория Новосветских бухт в период с мая 2014 по декабрь 2016 гг.

Для работ с берега выбраны следующие наблюдательные пункты:

1. Мыс у подножья Коба-Кая, высота мыса 10 м над уровнем моря и южная сторона м. Капчик – 3 м над уровнем моря («Прибрежный аквальный комплекс у горного массива «Караул-Оба»).
2. Берег у с. Левинсона-Лессинга (Карадагский природный заповедник).
3. Причал в б. Карадагской (Карадагский природный заповедник).

Данные о перемещении дельфинов по акватории, численность и примерный возрастной состав (новорожденные, подростки, взрослые особи), а также тип поведенческой активности (охота, игра, отдых) заносились в журнал наблюдений по стандартной форме. Для проведения визуальных наблюдений использовался бинокль HORIZON 12x50, фоторегистрация осуществлялась при помощи камеры Canon D1200 (обработка фотографий – в программе Adobe Photoshop 7.0).

Для фотоидентификации дельфинов использовались внешние морфологические признаки: форма спинного плавника, наличие на нем повреждений (шрамы, насечки, зарубины), а также специфические пятна (признаки частичного альбинизма) (рис. 1).

Сбор акустических данных выполнялся при помощи стандартных гидроакустических трактов, состоявших из гидрофона со встроенным предварительным усилителем, кабеля и наземного усилителя-коммутатора с блоком питания и динамиком; акустические записи проводились в монофоническом (одноканальном) режиме. В качестве регистрирующего устройства применялся цифровой рекордер ZOOM H1, формат записи PCM (WAV), 16 бит, частота дискретизации 44,2 кГц (диапазон записи 0,1–22,1 кГц).

Обработка акустических сигналов осуществлялась при помощи программы Adobe Audition 1.5 при следующих установочных параметрах: размер блока быстрого преобразования Фурье 256–1024 точек, весовая функция Хемминга. Программа позволяет визуализировать обрабатываемые сигналы в спектральном или волновом виде и производить точные замеры их частотно-временных характеристик. Анализ и типологизация свистов осуществлялась по спектрограммам на основании сравнения частотных контуров сигналов, при этом рассматривалась только основная (нижняя) гармоника; измеряли общую длительность сигнала и длительность его элементов, начальную, конечную, минимальную и максимальную частоту основного тона (рис. 2).
Рис. 1. Афалина *Tursiops truncatus ponticus* Barabasch, 1940, спинной плавник

Рис. 2. Структура типичного «свиста-автографа» (по: Агафонов и др., 2016):
L – общая длительность сигнала, *l*₁–*l*₃ – длительность отдельных элементов,
*f*₁–*f*₄ – частоты «ключевых точек» сигнала

С мая 2014 г. по декабрь (включительно) 2016 г. на акватории памятников природы регионального значения «Прибрежный аквальный комплекс у горного массива «Караул-Оба» и «Полуостров Меганом» было проведено 302 дня наблюдений. Общий объем акустических записей составляет 496 часов; всего зарегистрировано 57333 тональных (свистовых) сигналов, качество которых приемлемо для дальнейшей обработки. При анализе записей выделено 305 доминирующих типов свистов. Сходные сигналы, как правило, продуцировались дельфинами в виде последовательностей; общее количество свистов, отнесенных к одному типу (вариация), могло составлять от нескольких десятков до нескольких сотен. По результатам систематизации и анализа зарегистрированных сигналов составлен каталог «свистов-автографов», каждому из которых присвоен порядковый номер (рис. 3).
Рис. 3. Примеры «свистов-автографов», зарегистрированных в водах «Прибрежного аквального комплекса у горного массива «Караул-Оба» и «Полуострова Меганом»

На основе данных фотоидентификации спинных плавников составлен каталог индивидуальных внешних морфологических маркеров афалин, всего идентифицировано 120 особей (рис. 4).

Рис. 4. Фотоидентифицированный спинной плавник афалины, типовой номер 113
Встречаемость тех или иных типов сигналов в течение всего периода наблюдений могла значительно различаться. Так, 58 типов «свистов-автографов» регистрировались регулярно в течение всего периода наблюдений. В больших количествах в течение одного дня наблюдений отмечены сигналы (129 типа) и отсутствовавшие в записях на протяжении нескольких месяцев (вплоть до года). Зафиксированы 118 типов «свистов-автографов», которые встречаются в акустических записях, сделанных только в один из дней наблюдений.

Для ряда типов «свистов-автографов» выявлена их устойчивая ассоциация друг с другом в виде групп разного размера. Проведя анализ встречаемости тех или иных типов «свистов-автографов», ассоциированных между собой, мы предполагаем, что данные соответствуют существующим реальным группам дельфинов. Так, например, можно выделить регулярные устойчивые пары афалин со следующими типами «свистов-автографов»: 6 и 13, 7 и 21, 77 и 78, 57 и 101, и 122 и др. Указанные пары свистов в свою очередь, могли ассоциироваться в виде более крупных объединений (групп), численностью от 2–3 особей до 25–30 особей. Всего за весь период наблюдений было выделено 62 возможные группы объединений афалин.

Как правило, количество типов «свистов-автографов» примерно соответствовало числу особей, наблюдаемых в периоды проведения акустических записей. Следует отметить, что визуально границы между группами афалин неостоятны, возможен переход пар и отдельных особей из группы в группу. Так, например, 22.03.2015 г. работы проводились в пункте 1, наблюдался заход в акваторию группы около 20–30 афалин (визуально); при этом была отмечена высокая поведенческая активность (загон рыбы в бухту, охота способом «котел»). При обработке акустического материала определено 23 типа «свистов-автографов», фотоидентифицировано 19 афалин.

По результатам сравнения наблюдений, акустических данных и данных фотоидентификации, можно отметить некоторые сезонные особенности появления и формирования объединений афалин в заповедных аквальных комплексах Караул-Оба и м. Меганом. Так, в зимне-весенний период (с января по май) структуру исследуемой локальной популяции можно охарактеризовать как некое крупное объединение, состоящее из отдельных групп численностью от 6–8 до 16–30 особей. С мая по июль включительно сообщество рассредоточивается на более мелкие группы (от 4 до 12 особей). В августе, сентябре, октябре, при общем сокращении количества отмечались нестабильные группы афалин от 2 до 8 особей. С ноября по декабрь наблюдалась тенденция к формированию более крупного объединения, появились группы, «автографы» которых регистрировались в прошлый зимне-весенний период (январь – апрель).

На основании анализа полученного материала складывается представление о достаточно сложной пространственно-временной структуре исследуемой локальной популяции афалин. Можно предположить, что ее основой являются отдельные группы численностью 4–12–16 особей, которые, в свою очередь, могут создавать более крупные объединения.

Неоднократно в акватории появлялись группы самок с детенышами, состоящие из двух – трех самок и двух – трех детенышей соответственно. Наблюдение подобных материнских групп происходит относительно регулярно, например, во время массовых охот, то есть при загоне рыбы в акваторию. В подобных случаях отмечены достаточно крупные группы, включающие до 8–10 самок и их детенышей.

На основании встречаемости соответствующих «свистов-автографов» в акватории были выявлены две характерные группировки дельфинов. Первая группировка, представленная 247-ю типами «свистов-автографов», формировавшимися в течение от одного до пяти дней, состоит из особей, которые посещают акваторию нерегулярно, т.е. являются «грациозными». Вторая же группировка (58 типов «свистов-автографов), регулярно посещивавших акваторию более пяти дней) представлена афалинами, которые регулярно заходят в акваторию, независимо от сезона, и являются, таким образом, «резидентными» особями. Их группы имеют свою территориальную привязку к индивидуальным участкам в акватории – «сердцевинным местам», что подтверждает сложную социальную структуру сообщества. Следует отметить, что акустическая регистрация сигналов и визуальные наблюдения (фотоидентификация) проводили в границах аквальных комплексов Караул-Оба и м. Меганом, реальный же ареал данной локальной популяции может быть значительно шире.

Наряду с афалинами, в акватории регулярно отмечались азовки, численный состав групп от 2–3 до 10–12 особей. Установлено, что первыми в акваторию обычно заходят группы азовок, через небольшую промежуток времени (от 15 минут до 1 часа) акваторию посещают группы афалин. В период массовых миграций рыбы (осень, весна) можно наблюдать активную охоту азовок; при этом отмечалось кооперирование небольших по численности групп от 2–8 особей в более крупных объединениях.
крупные плотные объединения до 15–20 и более особей. Характерно, что одновременное нахождение азовок и афалин на близком расстоянии друг от друга, по нашим наблюдениям, не ведет к конфликтному и агрессивному поведению между видами.

Появление белобочек в акваториях «Прибрежного аквального комплекса у горного массива Караул-Оба» и «Полуострова Меганом», периодически отмечавшееся с конца 2015 г., в 2016 г. стало довольно регулярным. С ноября по декабрь 2015 г. трижды регистрировался заход в акваторию Караул-Оба группы белобочек численностью порядка 20–30 особей. Во всех случаях их наблюдалась высокая поведенческая активность дельфинов: охота, связанная с загоном косюка рыбы под отвесные скалы. Белобочки находились в акватории от 40 до 60 минут. На протяжении 2016 г. зафиксировано 16 встреч белобочек в исследуемых акваториях. В осенне-летний период (апрель–август) белобочки присутствовали небольшими группами (от 3–4 до 6–10 особей), преимущественно в бухтах м. Меганом (14 встреч). Во всех наблюдаемых группах были новорожденные и подросшие детеныши (возможно прошлого года); животные могли находиться у м. Меганом длительное время – от нескольких часов и более, на протяжении светового дня. В ноябре и декабре зарегистрировано 2 случая захода крупного объединения белобочек, численностью около 30 особей в акватории «Прибрежного аквального комплекса у горного массива Караул-Оба», что также было связано с активной охотой дельфинов.

Акваторию заповедника посещали группы афалин численностью от 4 до 8 особей, дельфины визуально наблюдались в среднем в течение от 20 до 40 минут. Отмечалась высокая поведенческая активность – охота и, возможно, игровое поведение.

В августе 2016 г. при наблюдениях с катера в течение 2–х дней из 7, отмечены группы афалин численностью от 8 до 10 особей (детеныши в возрасте примерно 3–4 месяцев, подростки и взрослые дельфины). Типичным поведением являлась охота с элементами игры (у подростков). В течение 4–х дней наблюдений встречались также группы белобочек, численностью от 8–10 до 14–16 особей; группы состояли из взрослых особей и подростков. В 1-й день наблюдений отмечена только группа азовок, численностью от 5 до 7 особей (взрослые и подростки). В ходе фоторегистрации дельфинов и проведения акустических записей (20,5 часов), выделено 12 типов «свистов-автографов» афалин, которым присвоены типовые порядковые номера. Среди индивидуальных свистов афалин обнаружено 2 типа «свиста-автографа», которые регулярно регистрируются в заповедном аквальном комплексе Караул-Оба и м. Меганом. По индивидуальным внешним морфологическим признакам фотондентифицировано 6 афалин и 8 белобочек (рис. 5). На акватории памятников природы регионального значения «Прибрежный аквальный комплекс у горного массива Караул-Оба» и «Полуостров Меганом» на основании проведенной оценки общего количества зарегистрированных типов «свистов-автографов» афалин по частоте их встречаемости и сопоставления сезонной динамики появления тех или иных типов «свистов-автографов», определены две пространственно-временные группировки их продукентов. Первая из них соответствует 247 типу «автографов», зарегистрировавшихся в течение 1–5 дней. Особи, относящиеся к ней, посещают акваторию нерегулярно, т. е. являются гнездовыми. Вторая группа (8 типов «автографов») зарегистрировавшихся в течение более 5 дней, включает в себя особей, достаточно регулярно заходящих в акваторию «Прибрежного аквального комплекса у горного массива Караул-Оба» и «Полуостров Меганом», независимо от временного сезона, т. е. «резидентных».

Азовка наблюдается регулярно, независимо от сезона года. При этом встречаются как небольшие группы (от 2 до 8 особей), так и крупные объединения (от 10 до 25 и более особей).
Белобочка стала посещать исследуемую акваторию относительно часто с конца 2015 года. Наблюдались группы численностью от 3–4 до 6–10 особей, а также крупные объединения – до 30 особей.

В акваторию Карадагского природного заповедника заходят все три вида черноморских китообразных (рис. 6). Динамика численности и сезонность появления групп азовки, афалины и белобочки, в настоящий момент не установлена, из-за отсутствия систематических наблюдений.

Рис. 5. Фотоидентифицированный спинной плавник белобочки, типовой номер 27

Рис. 6. Самка белобочки с детенышем в акватории Карадагского заповедника
Глава 4.

ГИДРОБИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ШЕЛЬФОВОЙ ЗОНЫ ЧЕРНОГО МОРЯ У ЮГО-ВОСТОЧНЫХ БЕРЕГОВ КРЫМА

4.1. ФИТОПЛАНКТОН

Обобщены и проанализированы данные по видовому составу, численности и биомассе фитопланктона в прибрежной зоне Карадагского заповедника (от пгт Курортное до б. Коктебель) в весенне-летний (май, июнь или июль) и осенний периоды 2010–2016 гг.

Рис. 1. Таксономический состав весенне-летнего (А) и осеннего (Б) фитопланктона в прибрежных водах Карадагского природного заповедника и прилегающих акваторий

Рис. 1. Таксономический состав весенне-летнего (А) и осеннего (Б) фитопланктона в прибрежных водах Карадагского природного заповедника и прилегающих акваториях
В 2010–2011 гг. пробы отобраны на прибрежных станциях Коктебель, б. Сердоликовая и Биостанция. С 2012 г. к указанным точкам отбора были добавлены станции, расположенные у м. Мальчи, пт Курортное (район выпуска хозяйственно-бытовых сточных вод), стока р. Отузька. Пробы объемом 1–1,5 л отбирали с поверхности, концентрировали методом обратной фильтрации с использованием ядерных (трековых) мембран с диаметром пор 1 мкм до объема 30–40 мл, фиксировали раствором Люголя и обрабатывали с помощью светового микроскопа JENAVAL (Carl Zeiss). Учет мелких видов проведен в живой и сгущенной капле 0,01 мл, крупноклеточные виды учитывали в камере объемом 0,8 мл. Биомассу фитопланктона рассчитывали с помощью компьютерной программы Plankton. Доминирующими считали виды, численность или биомасса которых составляли не менее 10 % от суммарных количественных характеристик фитопланктона.

Суммарная численность фитопланктона в весенне-летний период колебалась от 11 до 1089 млн кл./м³, осенью – от 1 до 208 млн кл./м³ (рис. 2); суммарная биомасса варьировала в пределах 3–910 мг/м³ весной-летом и 3–265 мг/м³ – осенью (рис. 3). Более высокие значения численности отмечены в мае, тогда как в июне, июле и сентябре количество планктонных микроводорослей не превышало 210 млн кл./м³.

![Рис. 2. Численность фитопланктона (млн кл./м³) в прибрежных водах Карадага и прилегающих акваториях в весенне-летний (А) и осенний (Б) периоды](image)
В мае 2011 г. максимум численности фитопланктона зафиксирован в б. Коктебель, где отмечено массовое развитие мелких диатомовых рода Chaetoceros spp., типичных для этого периода года в прибрежных водах Черного моря, а также колониальной диатомеи Leptocylindrus minimus. В мае 2012 г. максимальная численность фитопланктона наблюдалась в районе стока р. Откуза, где «цветение» воды (более 1 млрд кл./м³) было вызвано развитием гаптофитовой водоросли Emiliania huxleyi. Осенний период, как указывалось выше, не отличался высокими значениями численности.

Максимальные значения биомассы отмечены в июне 2010 г. на станциях Коктебель и б. Сердоликовая, в июле 2014 г. – в акватории от м. Мальчин до Биостанции (рис. 3) при развитии крупноклеточных диатомовых Pseudosolenia calcic-avis и Dactyliosolen fragilissimus, а также в июне 2015 г., когда основную биомассу фитоценза составляла диатомовая Leptocylindrus danicus.

Биомасса фитопланктона в сентябре в среднем не превышала 200 мг/м³. Значительный вклад в суммарные значения биомассы на всех станциях вносили крупноклеточные виды: диатомовые P. calcic-avis, Proboscia alata и динофитовые роды Protoperidiniun и Ceratium.

Таким образом, суммарные численность и биомасса фитопланктона в районе Карадаг – Коктебель характеризовались низкими значениями, случаев «цветения» воды не отмечено, за исключением мая 2012 г. Как показано ранее, прибрежные воды юго-восточной части Черного моря по показателям численности, биомассы фитопланктона, хлорофиллу относятся к мезотрофному типу (Манжос, 2008; Берсенева, 1999), что согласуется и с нашими данными.
Отдел Bacillariophyta. Высокой численности и наибольшего видового разнообразия в период исследований достигали диатомовые водоросли. Для них характерны высокие скорости роста, в результате чего регулярные «цветения» воды в Черном море чаще всего обусловлены именно этими водорослями (Стельмах, Мансурова, 2012 а).

Общий вклад диатомовых в суммарные значения численности составил 1–94 % в весенне-летний период и 1–99 % осенью. Доля этого таксона в суммарной биомассе колебалась в пределах 3–91 % с мая по июль и 18–93 % в сентябре.

За исследуемый период в весенне-летний период обнаружено 52 вида диатомей, осенью – 50, из них общих видов – 33. Наибольшим разнообразием характеризовался род Chaetoceros (15 видов). По частоте встречаемости выделялись виды P. calcar-avis, Thalassiosira nitzschioides (отмечалась в 100 % проб), Skeletonema costatum, Nitzschia tenuirostris (90), Cerataulina pelagica, P. alata, Chaetoceros compressus (70–80). По численности доминировали 16 видов диатомей (табл. 1).

Таблица 1. Доминирующие виды диатомовых водорослей, их численность (N) и вклад в суммарную численность фитопланктона в прибрежных водах Карадага и на прилегающих акваториях

<table>
<thead>
<tr>
<th>Месяц</th>
<th>Станция</th>
<th>Таксон</th>
<th>N, млн кл./м³</th>
<th>% от Nсум.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 г.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>июнь</td>
<td>Коктебель, б. Сердоликовая</td>
<td>Chaetoceros affinis</td>
<td>22–27</td>
<td>16–17</td>
</tr>
<tr>
<td></td>
<td>б. Сердоликовая</td>
<td>Skeletonema costatum</td>
<td>27</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>б. Сердоликовая</td>
<td>Dactyliosolen fragilissimus</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>май</td>
<td>Коктебель, м. Мальчин</td>
<td>Chaetoceros compressus</td>
<td>84</td>
<td>14</td>
</tr>
<tr>
<td>сентябрь</td>
<td></td>
<td></td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>2011 г.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>май</td>
<td>Коктебель, б. Сердоликовая</td>
<td>Chaetoceros curvisetus</td>
<td>43–208</td>
<td>14–58</td>
</tr>
<tr>
<td></td>
<td>б. Сердоликовая, Биостанция</td>
<td>Chaetoceros wighamii</td>
<td>38–51</td>
<td>13–19</td>
</tr>
<tr>
<td></td>
<td>Коктебель</td>
<td>Leptocylindrus minimus</td>
<td>67</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Биостанция</td>
<td>Pseudo-nitzschia spp.</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>сентябрь</td>
<td>м. Мальчин</td>
<td>Chaetoceros similis</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Коктебель, м. Мальчин, Биостанция</td>
<td>Skeletonema costatum</td>
<td>11–23</td>
<td>30–40</td>
</tr>
<tr>
<td>2012 г.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>сентябрь</td>
<td>от Коктебель до Сток реки</td>
<td>Skeletonema costatum</td>
<td>123–251</td>
<td>55–91</td>
</tr>
<tr>
<td>2013 г.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>май</td>
<td>Сток реки</td>
<td>Pseudo-nitzschia spp.</td>
<td>65</td>
<td>13</td>
</tr>
<tr>
<td>сентябрь</td>
<td>Коктебель, Сток реки</td>
<td>Nitzschia tenuirostris</td>
<td>3–8</td>
<td>10–16</td>
</tr>
<tr>
<td></td>
<td>Коктебель</td>
<td>Skeletonema costatum</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>м. Мальчин, Курортное, Сток реки</td>
<td>Leptocylindrus danicus</td>
<td>3–19</td>
<td>10–27</td>
</tr>
<tr>
<td></td>
<td>Коктебель</td>
<td>Cyclotella choctawhatcheana</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>2014 г.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>июль</td>
<td>Курортное</td>
<td>Skeletonema costatum</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Мес c</td>
<td>местонахождение</td>
<td>вид</td>
<td>2015 г.</td>
<td>2016 г.</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>июль</td>
<td>Биостанция, Сток реки</td>
<td>Pseudo-nitzschia spp.</td>
<td>26–45</td>
<td>22–216</td>
</tr>
<tr>
<td></td>
<td>Биостанция, Курортное</td>
<td></td>
<td>0,4–0,7</td>
<td>32–68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16–30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>м. Мальчин</td>
<td>Thalassionema nitzschioides</td>
<td>18</td>
<td>47–133</td>
</tr>
<tr>
<td></td>
<td>Биостанция</td>
<td></td>
<td>0,8</td>
<td>0,4–31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>74–86</td>
</tr>
<tr>
<td></td>
<td>сентябрь</td>
<td>Chaetoceros insignis</td>
<td>1,7</td>
<td>1,4–27</td>
</tr>
<tr>
<td></td>
<td>Биостанция</td>
<td></td>
<td>50</td>
<td>17–45</td>
</tr>
<tr>
<td>июнь, сеп тябрь</td>
<td>Биостанция, м. Мальчин, б. Сердоликовая</td>
<td>Leptocylindrus danicus</td>
<td>47–133</td>
<td>47–133</td>
</tr>
<tr>
<td></td>
<td>Биостанция, Курортное</td>
<td></td>
<td>0,4–31</td>
<td>0,4–31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11–67</td>
<td>11–67</td>
</tr>
<tr>
<td>сентябрь</td>
<td>м. Мальчин, б. Сердоликовая, Биостанция, Курортное</td>
<td>Proboscia alata</td>
<td>1,4–27</td>
<td>1,4–27</td>
</tr>
<tr>
<td></td>
<td>Биостанция</td>
<td></td>
<td>17–45</td>
<td>17–45</td>
</tr>
<tr>
<td>май</td>
<td>от Коктебель до Сток реки</td>
<td>Pseudo-nitzschia spp.</td>
<td>22–216</td>
<td>22–216</td>
</tr>
<tr>
<td></td>
<td>Биостанция, Коктебель</td>
<td></td>
<td>32–68</td>
<td>32–68</td>
</tr>
<tr>
<td></td>
<td>м. Мальчин, Биостанция</td>
<td>Nitzschia tenuirostris</td>
<td>12–20</td>
<td>12–20</td>
</tr>
<tr>
<td></td>
<td>б. Сердоликовая</td>
<td></td>
<td>20–25</td>
<td>20–25</td>
</tr>
<tr>
<td></td>
<td>Коктебель</td>
<td>Skeletonema costatum</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>м. Мальчин, Биостанция, Сток реки</td>
<td>Leptocylindrus danicus</td>
<td>14–47</td>
<td>14–47</td>
</tr>
<tr>
<td></td>
<td>б. Сердоликовая</td>
<td></td>
<td>55–88</td>
<td>55–88</td>
</tr>
<tr>
<td>сентябрь</td>
<td>Коктебель</td>
<td>Pseudosolenia calcar-avis</td>
<td>0,2–0,5</td>
<td>0,2–0,5</td>
</tr>
<tr>
<td></td>
<td>б. Сердоликовая</td>
<td></td>
<td>15–19</td>
<td>15–19</td>
</tr>
</tbody>
</table>

В сентябре температура морской воды за весь период наблюдений была выше 20 °С, численность диатомовых была невысокой: доминировали мелкоклеточные виды (табл. 1). Максимальных значений биомассы с 2010 по 2016 гг. достигали *P. calcar-avis* и *P. alata*, что типично для этого периода года в прибрежных водах Крыма. Когда слой термоклина залегал на глубине 15–20 м, где температура воды снижалась до минимальных значений (8,7 °С) (сентябрь 2011, 2012 гг.), при вертикальном перемешивании воды фитопланктон, развивающийся в нижних слоях, поднимался к поверхности. Тогда по численности доминировала диатомовая холодолюбивая водоросль *S. costatum* (табл. 1). Но, так как перемешан был только верхний хорошо прогретый слой моря, это не привело к увеличению в нем минеральных солей и клетки диатомовых водорослей, вследствие дефицита минерального питания, отличались мелкими размерами и низким содержанием хлорофилла.

Отдел Dinophyta. Динофитовые являются второй после диатомовых группой микроводорослей по разнообразию и распространению в морском фитопланктоне. Известно, что в аналогичном размерном диапазоне максимальная удельная скорость роста клеток этой группы водорослей в 2–3 раза ниже, чем у диатомовых (Стельмах, Мансурова, 2012 а).

Общий вклад динофлагеллят в суммарные значения численности в исследуемый период составил 0,3–36 % в весенне-летний период и 1–41 % осенью. Доля этого таксона в суммарной биомассе колебалась в пределах 2–60 % с мая по июль и 5–80 % в сентябре. В весенне-летний период 2010–2016 гг. обнаружено 59 видов динофитовых, осенью – 49, из них общих видов – 40. Наибольшим разнообразием характеризовались роды Protoperidinium (11 видов), Gymnodinium (9), Prorocentrum (8) видов. По частоте встречаемости выделялись виды *Prorocentrum cordatum*, *P. micans*, *P. compressum*, *Gonyaulax spinifera* (отмечалась в 100 % проб), *Neoceratium furca*, *Gyrodinium fusiforme Scripsiella trochoidea*, *Gymnodinium wulffii* (90), *Neoceratium fusus*, *Phalacroma rotundatum* (80). По численности доминировали 3 вида динофлагеллят, по биомассе – 5.

Значительный вклад динофитовых в суммарную биомассу (10–41 %) также отмечали при температуре воды выше 20 °С. В основном это были крупноклеточные виды рода Neoceratium, а в мае 2012 и сентябре 2014 г. также виды *P. compressum*, *P. micans* на фоне низких суммарных значений биомассы (табл. 2).

Таблица 2.

Доминирующие виды динофитовых водорослей, их биомасса (B) и вклад в суммарную численность фитопланктона в прибрежных водах Карадагского заповедника и прилегающих акваториях

| Месяц | Станция | Takson | B, мг/м³ | % от B сум.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2010 г.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>сентябрь</td>
<td>Биостанция</td>
<td>Neoceratium fusus</td>
<td>10,5</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011 г.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>сентябрь</td>
<td>м. Мальчин, Биостанция</td>
<td>Neoceratium fusus</td>
<td>6–7</td>
<td>10–13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012 г.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>май</td>
<td>Коктебель</td>
<td>Neoceratium tripos</td>
<td>13</td>
<td>36</td>
</tr>
<tr>
<td>май</td>
<td>м. Мальчин, Курортное от Коктебель до Стока реки</td>
<td>Neoceratium fusus</td>
<td>1,1–21</td>
<td>26–32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17–26</td>
<td>11–18</td>
</tr>
<tr>
<td></td>
<td>м. Мальчин</td>
<td>Prorocentrum compressum</td>
<td>0,6</td>
<td>17</td>
</tr>
<tr>
<td>сентябрь</td>
<td>б. Сердоликовая, Сток реки</td>
<td>Protoperidinium divergens</td>
<td>23–32</td>
<td>19–21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013 г.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>сентябрь</td>
<td>м. Мальchin, б. Сердоликовая, Биостанция, Курортное, Сток реки</td>
<td>Neoceratium fusus</td>
<td>7–22</td>
<td>10–20</td>
</tr>
<tr>
<td></td>
<td>Биостанция</td>
<td>Neoceratium furca</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>сентябрь</td>
<td>июнь</td>
<td>сентябрь</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td>Neoceratium furca</td>
<td>42</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td>Neoceratium fusus</td>
<td>5</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Курортное</td>
<td>Procerominicmicans</td>
<td>1</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>б. Сердоликовая, Биостанция</td>
<td>Neoceratium fusus</td>
<td>4–5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Биостанция</td>
<td>Коктебель, Биостанция</td>
<td>Коктебель, б. Сердоликовая</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neoceratium furca</td>
<td>Neoceratium furca</td>
<td>19–26</td>
<td>15–25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neoceratium furca</td>
<td>3–4</td>
<td>11–16</td>
<td></td>
</tr>
</tbody>
</table>

В исследованиях морской зоны района Судак – Коктебель также показано увеличение численности и видового разнообразия динофлагеллят при повышении температуры воды. Отмечалось доминирование крупноклеточных видов рода Neoceratium (до 50 % суммарной биомассы) в летний период, а виды родов Procracentrum, Gymnominium и Proterominidium встречались и в прибрежной зоне, и на мористых станциях указанных акваторий постоянно (Кузьменко и др., 2001, Сеничкина, 1989).

Таким образом, вклад динофитовых водорослей в суммарные значения численности и биомассы фитопланктона увеличивался при снижении количества диатомовых в период равномерного прогрева воды и снижения количества биогенов. Известно, что динофитовые способны к гетеротрофному питанию одновременно с фотосинтезом, что, очевидно, делает эти водоросли более конкурентоспособными по сравнению с диатомовыми в условиях недостатка света и минеральных веществ (Стельмах, Мансурова, 2012 а).

За период исследования (весна – лето и осень 2010–2016 гг.) обнаружено 169 видов и внутритиповых таксонов планктонных микроводорослей, принадлежащих к 9 отделам. Набольшим видовым разнообразием отличались отделы Bacillariophyta и Dinophyta. Численность и биомасса фитопланктона не достигали уровня «цветения» воды, за исключением мая 2012 г. при максимальном развитии гаптофитовой *E. huxleyi*. Количественное развитие диатомовых водорослей зависело гидролого-гидрохимической структуры вод; в весенне-летний период развитие получали мелкоклеточные виды, характерные для вод, обогащенных биогенами; в начале осени при высокой температуре морской воды доминировали крупноклеточные виды. Динофитовые водоросли отличались высоким разнообразием видов, но слабым количественным развитием. Из гаптофитовых высоких значений численности в мае – июле достигала кокколитофордида *E. huxleyi*, в последнее время часто вызывающая «цветение» воды в различных районах Мирового океана. Высокая численность цианобактерий, зеленых и гетеротрофных криптофитовых водорослей – показателей органического загрязнения вод – наблюдалась в мае, июне 2010–2012 гг. В последующие годы виды этих групп практически не встречались, что может косвенно свидетельствовать об улучшении качества вод в отношении растворенного органического вещества. Современные данные о структурных характеристиках планктонного фитоценоза Карадагского взморья и прибрежных акваторий, а также проведенные ранее исследования районов от Судака до Феодосии показали влияние стонно-нагонных явлений, азовоморских вод, а также антропогенного фактора на видовой состав, количество и пространственное распределение фитопланктона.
4.2. ФИТОБЕНТОС

Юго-Восточный Крым является одним из главных центров рекреации на побережье Черного моря и, одновременно, важным центром сохранения биологического и ландшафтного разнообразия Крыма (Костенко, 1997; Выработка приоритетов..., 1999). Совмещение рекреационных и природоохранных функций этих акваторий вынуждает внимательно относиться к исследованию экосистем региона и постоянно осуществлять мониторинг антропогенного давления на природные биоценозы и процессов их трансформации (Зайцев, Поликарпов, 2002).

На протяжении последних десятилетий прибрежные акватории Черного моря подвергаются значительной антропогенной нагрузке, что приводит к деградации биоценозов шельфа. Одним из наиболее действенных мероприятий по сохранению биологического разнообразия считается создание заповедных объектов, которые включают в себя литоконтур моря (скалы и галечные пляжи) и прибрежные акватории. Именно контурные биотопы испытывают наибольшее антропогенное воздействие, поэтому стратегия развития заповедной сети Черного моря должна строиться по принципу их максимального охвата (Зайцев, Поликарпов, 2002).

Прибрежные воды Черного моря в районе Юго-Восточного Крыма являются важными элементами рекреационного комплекса (Заклецкий и др., 2010). Так, одним из основных центров туризма и рекреации в регионе является курорт Коктебель (Костенко, 1997), расположенный на берегу б. Коктебель. В Юго-Восточном Крыму создан и функционирует ряд объектов ООПТ, включающих морские акватории. К ним относятся три памятника природы регионального значения, два ландшафтно-рекреационных парка регионального значения, вошедших согласно распоряжениям Совета министров Республики Крым от 05 февраля 2015 г. № 69-р и от 04 августа 2015 г. № 679-р в «Перечень особо охраняемых природных территорий регионального значения Республики Крым». К ООПТ федерального значения на территории Республики Крым по Постановлению Российской Федерации от 13 сентября 2018 г. № 1091 относится государственный природный заповедник «Карадагский» (в границах Карадагского природного заповедника), который находится в ведении Минобрнауки России.

Ключевую роль в функционировании экосистем шельфа играют донные макроводоросли, выступающие в качестве первичных продуцентов, организмов-эдификаторов, создающих пространственную структуру биоценозов и биотопы для животного населения. Поэтому в основе научно обоснованных рекомендаций для создания новых морских заповедных объектов или расширения существующих лежит изучение региональных флор и комплексных исследований макрофитобентоса (Мильчакова, 2001).

Изучение фитобентоса проводили по общепринятой методике (Калугина, 1969) с применением рамки 50 х 50 см для отбора проб в четырехкратной повторности. В дополнение к этому при изучении донной растительности на вертикальных поверхностях скал использовали рамку с мешком площадью 0,1 м2 (Евстигнеева и др., 2011), а также рамку размером 20 х 20 см для отбора проб с боковых стенок волнореза пгт Курортное и на скалах Карадагского природного заповедника (Евстигнеева, Танковская, 2014).

Номенклатура и систематическое положение макрофитов приведены по А. Д. Зиновой (Зинова, 1967) и Algaеbase (Guiry, Guiry, 2017).

Видовой состав макрофитов различных акваторий юго-восточного побережья изучен неравномерно. Наиболее полные сведения касаются района Карадага, так как история альгологических исследований здесь насчитывает более 100 лет. В последние десятилетия фрагментарные данные получены для других районов побережья. В таблице 1 содержатся сведения о видовом составе донных макроводорослей на различных участках юго-восточного прибрежья Крыма.
Видовой состав водорослей юго-восточного прибрежья Крыма

<table>
<thead>
<tr>
<th>№</th>
<th>Виды</th>
<th>Новый Свет</th>
<th>Мыс Меганом</th>
<th>Бухта Лисья</th>
<th>Карадаг</th>
<th>Бухта Тихая</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bolbocoleon piliferum Pringsh.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ulvella leptochaeae (Hub.) R. Niel. (=Entocladia leptochaeae (Hub.) Burrows., Ectochaete leptochaeae (Hub.) Wille)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Ulvella viridis (Reinke) R. Niel. (=Entocladia viridis Reinke)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ulvella wittrockii (Wille) (=Entocladia wittrockii Wille, Ectochaete wittrockii (Wille) Kylin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ulvella scutata (Reinke) R. Niel. (=Pringsheimiella scutata (Reinke) Hohnel ex Marchew.)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td>6</td>
<td>Pseudopringsheimia confluens (Rossen.) Wille</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Ulvella lens P. L. et H. M. Crouan.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Epicladia perforans (Hub.) R. Niel. (=Entocladia perforans (Hub.) Levring)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Phaeophila dendroides (P.L. et H.M. Crouan) Batters</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ulothrix tenuissima Kütz. (=Ulothrix implexa (Kütz.) Kütz.)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td>11</td>
<td>Urospora penicilliformis (Roth) Aresch.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Spongomorpha aeruginosa (L.) Hock. (=Spongomorpha lanosa (Roth) Kütz., S. uncialis (O.F. Muller))</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Acrosiphonia arcta (Dillw.) Gain (=Spongomorpha arcta (Dillw.) Kütz., Acrosiphonia centralis (Lyngb.) Kjellm.)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Capsosiphon fulvescens (C. Ag) Setch. et Gardn.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Ulva linza L. (=Enteromorpha ahlneriana Bliding., Enteromorpha linza (L.) J. Ag.)</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td>16</td>
<td>Ulva clathrata (Roth) C. Ag. (=Enteromorpha clathrata (Roth.) Grev.)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Ulva compressa L.</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Ulva flexuosa Wulfen (=Enteromorpha flexuosa (Wulf.) J. Ag.)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Ulva intestinalis L. (=Enteromorpha intestinalis (L.) Nees)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ +</td>
</tr>
<tr>
<td>20</td>
<td>Ulva prolifera O. F. Muller (=Enteromorpha prolifera (O. F. Muller) J. Ag.)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Ulva rigida C. Ag</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ +</td>
</tr>
<tr>
<td>22</td>
<td>Chaetomorpha aërea (Dillw.) Kütz.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ +</td>
</tr>
<tr>
<td>23</td>
<td>Chaetomorpha gracilis Kütz.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Chaetomorpha linum (O.F. Muller) Kütz. (=Chaetomorpha chlorotica (Mont.) Kütz., Chaetomorpha crassa (C. Ag) Kütz.)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ +</td>
</tr>
<tr>
<td>25</td>
<td>Chaetomorpha ligustica (Kütz.) Kütz. (=Chaetomorpha capillaris (Kütz.) Borg. var. capillaris)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+ +</td>
</tr>
<tr>
<td>26</td>
<td>Chaetomorpha zernovii Woronich</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Cladophora albida (Nees) Kütz.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+ +</td>
</tr>
<tr>
<td>28</td>
<td>Cladophora coelothrix Kütz.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Cladophora dalmatica Kütz.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NAME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Cladophora laetevirens (Dillw.) Kütz.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Cladophora liniformis Kütz.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Cladophora rupestris (L.) Kütz.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Cladophora sericea (Huds.) Kütz.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Cladophora siwashensis C. Meyer.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Cladophora vadorum (Aresch.) Kütz.</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Cladophora vagabunda (L.) Hoek.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Cladophoropsis membranacea (Hofm. Bang ex C. Ag.) Borg.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Rhizoclonium tortuosum (Dillw.) Kütz.</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Rhizoclonium riparium (Roth) Harv. (=Rhizoclonium implexum (Dillw.) Kütz.)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Bryopsis adriatica</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Bryopsis corymbosa J. Ag.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Bryopsis duplex De Not. (= Bryopsis balbisiana Lamour.)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Bryopsis hypnoides J. V. Lamour.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Bryopsis plumosa (Huds.) C. Ag.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Codium vermilare (Olivi) Chiaje.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Ectocarpus fasciculatus Harv. var. fasciculatus (= Ectocarpus siliculosus Dillwyn)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Ectocarpus siliculosus (Dillw.) Lyngb. (=Ectocarpus confervoides Le Jolis.)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Ectocarpus siliculosus (Dillw.) Lyngb. var. dasycarpus (Kuck.) Gallaro (=Ectocarpus dasycarpus Kuck.)</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Feldmannia irregularis (Kütz.) Hamel (=Ectocarpus arabicus Fig. et De Not.)</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Feldmannia lebelii (Aresch. ex P. Crouan & H. Crouan Hamel (=Feldmannia caespitula var. lebelii (Aresch. ex P. Crouan & H. Crouan) Knoep.-Pég.)</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Feldmannia paradoxa (Mont.) Hamel.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Phaeostroma bertholdii Kuck.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Punctaria tenuissima (C. Ag) Grev. (=Streblonema effusum Kylin., Entonema effusum (Kylin) Kylin).</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Litosiphon laminariae (Lyngb.) Harv. (=Streblonema oligosporum Stromf., Entonema olygosporum (Stromf.) Kylin).</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Streblonema parasiticum (Sauv.) De Toni (=Entonema parasiticum (Sauv.) Hamel).</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Myriotrichia clavaeformis Harv. (=Streblonema sphaericum (Derb. et Sol.) Thur., Myriotrichia repens (Hauck.))</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Ralfsia verrucosa (Aresch.) J.Ag.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Cladosiphon contortus (Thur.) Kylin.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Eudesme virescens (Carmich. ex Berk.) J. Ag.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Corynophlaea flaccida (C. Ag.) Kütz.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Corynophlaea umbellata (C. Ag.) Kütz. (=Leathesia umbellata (C. Ag) Endl.)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Myriactula arabica (Kütz.) J. Feldm.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Myriactula rivulariae (Suchr) J. Feldm.</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Myrionema balticum (Reinke) Foslie</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Spermatochnus paradoxus (Roth) Kütz.</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Stilophora tenella (Esper) P.C. Silva</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Название</td>
<td>Отметки</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Stilophora nodulosa (C. Ag.) P.C. Silva in P.C. Silva (=Stilophora tuberculosa (Horn.) Reinke)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Nereia filiformis (J. Ag.) Zanard.</td>
<td>+ + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Arthrocladia villosa (Huds.) Duby.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Giraudya sphaelarioide Derb. et Sol.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Punctaria latifolia Grev.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Punctaria tenuissima (C. Ag) Grev. (=Desmotrichum undulatum (J. Ag.) Reinke.)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Stictyosiphon adriaticus Kütz.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Striaria attenuata (Grev.) Grev.</td>
<td>+ +</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Scythisiphon lomentaria (Lyngb.) Link (=Scythisiphon simplicissimus (Clemente) Cremades</td>
<td>+ +</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Zanardinia typus (Nardo) P.S. Silva (=Zanardinia prototypus (Nardo) Nardo)</td>
<td>+ + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Choristocarpus tenellus (Kütz.) Zanard.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Cladostephus spongiosum (Huds.) C. Ag. (=Cladostephus verticillatum (Lightf.) Lyngb.</td>
<td>+ + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>Cladostephus spongiosum f. verticillatum (Ligh.) Prud'homme van Reine</td>
<td>+ +</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Sphacelia cirrosa (Roth) C. Ag.</td>
<td>+ + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>Sphacelorus nanus (Nag. ex Kütz.) Draisma (=Sphacelaria saxatilis (Kuck.) Sauv.)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>Dictyota dichotoma (Huds.) Lamour.</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>Dictyota dichotoma var. intricata (C. Ag) Grev. (=Dictyota linearis (C. Ag) Grev.)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>Dictyota fasciola (Roth) J.W. Lamor. (=Dilophus fasciola (Roth) Howe., Dilophus repens (J. Ag.) J. Ag.)</td>
<td>+ + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Dictyota spiralis Montagne (=Dilophus spiralis (Mont.) Hamel.)</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>Padina pavonica (Linn.) Thivi in W.R. Taylor</td>
<td>+ + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Cystoseira barbata (Stackhouse) C. Ag.</td>
<td>+ + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>Cystoseira crinita Duby</td>
<td>+ + + +</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Отдел Rhodophyta

класс Stylonematophyceae

<table>
<thead>
<tr>
<th>№</th>
<th>Название</th>
<th>Отметки</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>Chroodactylon ornatum (C. Ag) (=Asterocytis ramosa (Thw.) Gobi)</td>
<td>+</td>
</tr>
<tr>
<td>90</td>
<td>Stylonema alsidii (Zanard.) K.M. Drew (=Goniotrichium elegans (Chauv.) Zanard.)</td>
<td>+ +</td>
</tr>
</tbody>
</table>

класс Compsopogonophyceae

<table>
<thead>
<tr>
<th>№</th>
<th>Название</th>
<th>Отметки</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>Sahlingia subintegra (Rosenv.) Korn. (=Erythrocladia subintegra Rosenv.)</td>
<td>+</td>
</tr>
<tr>
<td>92</td>
<td>Erythrotrichia carnea (Dillw.) J. Ag. (=Erythrotrichia carnea (Dillw.) J. Ag.)</td>
<td>+</td>
</tr>
<tr>
<td>93</td>
<td>Erythrotrichia investiens (Zanard.) Born.</td>
<td>+</td>
</tr>
<tr>
<td>94</td>
<td>Erythrotrichia reflexa (Grouan) Thur.</td>
<td>+</td>
</tr>
</tbody>
</table>

класс Bangiophyceae

<table>
<thead>
<tr>
<th>№</th>
<th>Название</th>
<th>Отметки</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>Bangia fuscopurpurea (Dillw.) Lyngb. (Roth) C. Ag</td>
<td>+</td>
</tr>
<tr>
<td>96</td>
<td>Pyropia leucosticta (Thur.) (=Porphyra leucosticta Thur.)</td>
<td>+ +</td>
</tr>
</tbody>
</table>

класс Florideophyceae

<table>
<thead>
<tr>
<th>№</th>
<th>Название</th>
<th>Отметки</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>Colaconema hallandicum (Kylin) (=Kylinia hallandica Kylin (Kylin)).</td>
<td>+</td>
</tr>
<tr>
<td>Page</td>
<td>Species Name</td>
<td>Additional Information</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>98</td>
<td>Colaconema daviesii (Dillw.) (=Acrochaetium daviesii (Dillw.) Nag.)</td>
<td>+</td>
</tr>
<tr>
<td>99</td>
<td>Colaconema savianum (Meneg.) R. Niel. (=Acrochaetium savianum (Menegh.) Nag.)</td>
<td>+</td>
</tr>
<tr>
<td>100</td>
<td>Colaconema thurettii (Born.) (=Acrochaetium thurettii (Born.) Coll. et Herv.)</td>
<td>+</td>
</tr>
<tr>
<td>101</td>
<td>Acrochaetium humile (Rosenv.) Borg. (=Kylinia humilis (Rosenv.) Papenf.)</td>
<td>+</td>
</tr>
<tr>
<td>102</td>
<td>Acrochaetium microscopicum (Näg. ex Kütz.) (=Kylinia microscopica (Nag.) Kylin)</td>
<td>+</td>
</tr>
<tr>
<td>103</td>
<td>Acrochaetium parvulum (Kylin) Hoyt (=Kylinia parvula Kylin.)</td>
<td>+</td>
</tr>
<tr>
<td>104</td>
<td>Acrochaetium secundatum (Lyngh.) (=Kylinia secundata (Lyngh.) Papenf.)</td>
<td>+ + +</td>
</tr>
<tr>
<td>105</td>
<td>Meiodiscus spetsbergensis (Kjellm.) (=Rhodochorton penicilliforme (Kjellm.) Rosenv.)</td>
<td>+</td>
</tr>
<tr>
<td>106</td>
<td>Rhodochorton purpureum (Lightf.) Rosenv.</td>
<td>+</td>
</tr>
<tr>
<td>107</td>
<td>Rubrointrusa membranacea (Magn.) (=Audouinella membranacea (Magn.) Papenf.)</td>
<td>+</td>
</tr>
<tr>
<td>108</td>
<td>Nemalion helminthoides (Vell.) Batt.</td>
<td>+</td>
</tr>
<tr>
<td>109</td>
<td>Gelidium crinale (Hare ex Turner) Gaillon</td>
<td>+ + + +</td>
</tr>
<tr>
<td>110</td>
<td>Gelidium spinosum (S. G. Gmelin) P.C. Silva (=Gelidium latifolium (Grev.) Born. ex Hauck)</td>
<td>+ + + +</td>
</tr>
<tr>
<td>111</td>
<td>Pterocladiella capillacea (Gmelin) (=Pterocladia pinnata (Huds.) Papenf.)</td>
<td>+</td>
</tr>
<tr>
<td>112</td>
<td>Parviphycus antipae Celan (=Gelidiella antipai Celan)</td>
<td>+ + +</td>
</tr>
<tr>
<td>113</td>
<td>Peyssonnelia dubyi P.L. Crouan & H.M. Crouan</td>
<td>+</td>
</tr>
<tr>
<td>114</td>
<td>Peyssonnelia rubra (Grev.) J. Ag.</td>
<td>+</td>
</tr>
<tr>
<td>115</td>
<td>Peyssonnelia squamaria (Gmel.) Decne.</td>
<td>+</td>
</tr>
<tr>
<td>116</td>
<td>Peyssonnelia armorica (P. Crouan & H. Crouan (=Cruoriopsis rosenvingii Borg.)</td>
<td>+</td>
</tr>
<tr>
<td>117</td>
<td>Hildenbrandia prototypus Nardo</td>
<td>+</td>
</tr>
<tr>
<td>118</td>
<td>Phymatolithon calcareum (Pallas) (=Phymatolithon polymorphum (L.) Foslie)</td>
<td>+</td>
</tr>
<tr>
<td>119</td>
<td>Phymatolithon lenormandii (J.E. Aresch.) W.H. Adey (=Lithothamnion lenormandii (J. E. Aresch.) Foslie)</td>
<td>+</td>
</tr>
<tr>
<td>120</td>
<td>Melobesia membranacea (Esper) (=Epilithon membranecum (Esp.) Heydr.)</td>
<td>+</td>
</tr>
<tr>
<td>121</td>
<td>Lithophyllum cystoseirae (Hauck) Heydrich (=Dermatolithon cystoseirae (Hauck) Huve)</td>
<td>+</td>
</tr>
<tr>
<td>122</td>
<td>Titanoderma pustulatum (Lamour.) (=Dermatolithon pustulatum (Lamour.) Foslie., Melobesia pustulata Lamour., Lithophyllum pustulatum Foslie).</td>
<td>+</td>
</tr>
<tr>
<td>123</td>
<td>Acrosiphonia arcta (Dillwyn) Gain (=Acrosiphonia centralis (Lyngbye) Kjellman)</td>
<td>+</td>
</tr>
<tr>
<td>124</td>
<td>Hydrolithon farinosum (J.V. Lamour.) Penrose & Y.M. Chamberlain (=Fosliella farinosa (Lamour.) Howe., Melobesia farinosa Lamour.).</td>
<td>+</td>
</tr>
<tr>
<td>125</td>
<td>Pneophyllum confervicola (Kütz.) Chamberlain Foslie (=Melobesia minutula Foslie)</td>
<td>+</td>
</tr>
<tr>
<td>126</td>
<td>Pneophyllum fragile Kütz. (=Melobesia lejolisii Rosanoff)</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Species</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>127</td>
<td>Corallina officinalis L.</td>
<td>+</td>
</tr>
<tr>
<td>128</td>
<td>Ellisolambia elongata (J. Ellis & Soland.) (=Corallina elongata J. Ellis & Soland., Corallina mediterranea Aresch.)</td>
<td>+</td>
</tr>
<tr>
<td>129</td>
<td>Jania virgata (Zanard.) Mont. (=Corallina granifera Ell. et Soland.)</td>
<td>+</td>
</tr>
<tr>
<td>130</td>
<td>Jania rubens (L.) J.V. Lamour. (=Corallina rubens L.)</td>
<td>+</td>
</tr>
<tr>
<td>131</td>
<td>Dermocorynus dichotomus (J. Ag.) Gargiulo (=Grateloupia dichotoma J. Ag.)</td>
<td>+</td>
</tr>
<tr>
<td>132</td>
<td>Gracilariopsis longissima (S.G. Gmelin) Steentoft (=Gracilaria verrucosa (Huds.) Papenf.)</td>
<td>+</td>
</tr>
<tr>
<td>133</td>
<td>Gracilaria dura (C. Ag.) J. Ag.</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Phyllophora crispa (Huds.) P.S. Dixon (=Phyllophora nervosa (DC.) Grev.)</td>
<td>+</td>
</tr>
<tr>
<td>135</td>
<td>Erythrodermis traillii (Holm. ex Batt.) Guiry & Garbary (=Phyllophora traillii Holm. ex Batt.)</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Chondracanthus acicularis (Roth) (=Gigartina acicularis (Wulf.) Lamour.)</td>
<td>+</td>
</tr>
<tr>
<td>137</td>
<td>Chondracanthus teedii (Mertens ex Roth) Kütz. (=Gigartina teedii (Roth) Lamour.)</td>
<td>+</td>
</tr>
<tr>
<td>138</td>
<td>Lomentaria clavellosa (Turn.) Gail.</td>
<td>+</td>
</tr>
<tr>
<td>139</td>
<td>Lomentaria compressa (Kütz.) Kylin</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Lomentaria firma (J. Ag.) Kylin</td>
<td>+</td>
</tr>
<tr>
<td>141</td>
<td>Lomentaria uncinata Menegh.</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>Gastroclonium reflexum (Chauvin) Kütz. (=Chylocladia reflexa (Chauv.) Lenorm.)</td>
<td>+</td>
</tr>
<tr>
<td>143</td>
<td>Chylocladia squarrosa (Kütz.) Thuret</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>Antithamnion cruciatum (C. Ag) Nageli.</td>
<td>+</td>
</tr>
<tr>
<td>145</td>
<td>Callithamnion corymbosum (J.E. Smith) Lyngb.</td>
<td>+</td>
</tr>
<tr>
<td>146</td>
<td>Callithamnion granulatum (Dueluz.) C. Ag.</td>
<td>+</td>
</tr>
<tr>
<td>147</td>
<td>Ceramium ciliatum (J. Ellis.) Dueluz.</td>
<td>+</td>
</tr>
<tr>
<td>148</td>
<td>Ceramium circinatum (Kütz.) J. Ag.</td>
<td>+</td>
</tr>
<tr>
<td>149</td>
<td>Ceramium deslongchampsii Chauv. et Duby (=Ceramium strictum (Kütz.) Harv.)</td>
<td>+</td>
</tr>
<tr>
<td>150</td>
<td>Ceramium diaphanum (Lightf.) Roth (=Ceramium tenuissimum (Roth) J.E. Aresch.)</td>
<td>+</td>
</tr>
<tr>
<td>151</td>
<td>Ceramium echionotum J. Ag.</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>Ceramium virgatum Roth (=Ceramium rubrum C. Ag.)</td>
<td>+</td>
</tr>
<tr>
<td>153</td>
<td>Ceramium siliquosum (Kütz.) Maggs et Hommers. var. siliquosum (=Ceramium diaphanum var. diaphanum G. Feldm.)</td>
<td>+</td>
</tr>
<tr>
<td>154</td>
<td>Ceramium siliquosum (Kütz.) Maggs et Hom. var. elegans (Roth.) G. Furnari</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Ceramium diaphanum (Lightf.) Roth var. elegans (Roth.) Roth (=Ceramium elegans (Roth.) Dueluz.)</td>
<td>+</td>
</tr>
<tr>
<td>156</td>
<td>Ceramium secundatum (Lyngb.) C. Agardh</td>
<td>+</td>
</tr>
</tbody>
</table>
| | Species Name | Author | Status
|---|--------------|------------|---------
| 157 | Ceramium arborescens | J. Ag. | + + +
| 158 | Compsothamnion gracillimum | De Toni | +
| 159 | Pterothamnion plumula (J. Ellis) | Nag. (=Antithamnion plumula (J. Ellis.) Thur.) | + +
| 160 | Spermothamnion strictum (C. Ag.) | Ardiiss. | + + + + +
| 161 | Apoglossum ruscifolium (Turner) | J. Ag. | + + + + +
| 162 | Hypoglossum hypoglossoides (Stackh.) | Collins et Harv. (=Hypoglossum woodwardii Kütz.) | + +
| 163 | Nitophyllum punctatum (Stackh.) | Grev. | + +
| 164 | Dasya baillouviana (S. G. Gmel.) | Mont. (=Dasya elegans (G. Martens) C. Ag., D. pedicellata (C. Ag) C. Ag.) | + + + + +
| 165 | Chondria capillaris (Huds.) | M.J. Wynne (=Chondria tenuissima C. Ag.) | + + + + +
| 166 | Chondria dasyphylla (Wood.) | C. Ag. | + + + +
| 167 | Palisada thuyoides (Kütz.) | Cassano (=Chondrophyccus paniculatus (C. Ag.) G. Furnari) | +
| 168 | Palisada paniculata (Kütz.) | J.N. Norris (=Laurencia paniculata (C. Ag.) J. Ag.) | + + + +
| 169 | Palisada perforata (Bory de Saint-Vincent) K.W. Nam (=Chondrophyccus papillosus (C. Ag.) Garbary et J. Harper, Laurencia papillosa (C. Ag) Grev.) | + + + +
| 170 | Laurencia coronopus | J. Ag. | + + + + + +
| 171 | Laurencia obtusa (Huds.) | J.V. Lamour. | + + + + +
| 172 | Osmundea pinnatifida (Hudson) | Stackhouse (=Laurencia pinnatifida (Huds.) Lamour.) | + + + + +
| 173 | Osmundea hybryda (DC) | R.W. Nam | + + + +
| 174 | Osmundea truncata Osmundea truncata (Kützing) K.W.Nam & Maggs in K.W.Nam, Maggs & Garbary | + + + + +
| 175 | Lophosiphonia obscura (C. Ag) | Falkenb. | + + + + +
| 176 | Polysiphonia breviarticulata (C. Ag) | Zanard. | + + + + +
| 177 | Polysiphonia denudata (Dillw.) | Grev. et Harv. (=P. variegata (C. Ag.) Zanard.) | + + + + + +
| 178 | Polysiphonia elongata (Huds.) | Spreng. | + + + + + +
| 179 | Polysiphonia fibrillosa (Dillw.) | Spreng. (=P. spinulosa Grev.) | + + + + + +
| 180 | Polysiphonia opaca (C. Ag.) | Moris et De Not. | + + + + + +
| 181 | Polysiphonia pulvinata Kütz. | | + + + + + +
| 182 | Polysiphonia subulata (Ducl.) | P. Crouan et H. Crouan (=P. violacea (Roth) Grev. f. subulata (Ducl.) Hauck.) | + + + + + +
| 183 | Polysiphonia brodiei (Dillw.) | Sprengel | + + + + + +
| 184 | Vertebrata fucoides (Huds.) | Kuntz. (=Polysiphonia fucoides (Huds.) Grev., P. nigrescens (Huds.) Grev. ex Harv., P. violacea (Roth) Spreng.) | + + + + + +
| 185 | Vertebrata subulifera (C. Ag.) | Kuntz. (=Polysiphonia subulifera (C. Ag.) Harv.) | + + + + + +
| 186 | Vertebrata reptabunda (Suhr) | Diaz-Tapia & Maggs (=Lophosiphonia reptabunda (Suhr) Kylin.) | + + + + + +

178

Государственный природный заповедник «Карадагский» (в границах Карадагского природного заповедника)

Начало изучения прибрежной флоры и фауны у берегов Карадага относится к 1910 г., когда Киевское общество любителей природы командировало П. Г. Емельяненко с целью выяснения особенностей их распределения вдоль крымских берегов. Изучением альгофлоры в районе Карадага занимались приват-доцент Московского университета Л. И. Курсанов и профессор В. М. Арышов. В 1931 г. морские водоросли изучала Н. В. Морозова-Водяницкая (1936), которая обработала гербарный материал Карадагской биологической станции. В 1940 и 1941 гг., в 1948 и 1949 гг. В. Н. Генералова (1950) после исследований флоры Карадага отмечает, что преобладание во флоре багряных водорослей (53,6 %) подтверждает тот факт, что исследуемый район является типичным участком открытого моря. Е. И. Тренина (1959) при изучении макрофитов Карадага выделила 6 типов грунтов и 5 типов биоценозов, получила количественные данные о фитомассе видов, наиболее распространенных в прибрежной зоне на глубинах 0–0,5 м.

С 1981 г. исследование фитобентоса заповедной акватории Карадага было организовано Н. С. Костенко, в результате которого были выявлены закономерности сезонных изменений цистозированных сообществ в акватории заповедника и за его пределами, проведено картирование фитобентоса и составлена крупномасштабная геоботаническая карта донной растительности заповедника, изучена структура фитоценозов на ск. Золотые ворота (Костенко, 1988 г, 1989 а).

В начале 1980-х годов внимание исследователей было направлено на изучение сезонной и многолетней динамики структуры популяций массовой зеленой водоросли Ulva rigida Ag. (Костенко, 1988 а; Костенко, Канивец, 1989), что было актуальным в условиях растущего эв-
трофирования прибрежной зоны. Позже перечень объектов популяционных исследований был дополнен (Евстигнеева, Танковская, 2016 а, б; Евстигнеева, Танковская, 2017 а, б).

4. Ассоциация Cystoseira barbata – Phyllophora crispa – Ulva rigida. Эта ассоциация обнаружена впервые (Костенко и др., 2004; 2006 а, б, в) на глубинах 5–10 м. Сформировалась в биотопе цистозировой и цистозирово-филлофоровой ассоциаций. Возникновению такой ассоциации способствовало уменьшение в акватории заповедника фитомассы C. barbata и увеличение ее у Ph. crispa и U. rigida. У западной границы заповедника фитоценозы асоциированных...
сообществе приводит к появлению филлофорово-ульвовых ярусов цистозироных фитоценозов трансформируются в скальном грунте некоторых участков прибрежья с 500 до 200 м. В результате эвтрофирования на стадии пояса с 1984 по 2008 гг. уменьшилась ширина цистозироных поясов у Карадага наблюдается в 500–1000 м от берега. На глубине 15 м на низких грунтах встречается хондриево-кладофоровое или хондриево-кладофорово-ульвовое сообщества. Не менее распространены являются хондриево-кладофорово-этокарпусовые фитоценозы на глубине 10–15 м, зарегистрированные в период восстановительных послештормовых сукцессий. На некоторых участках на глубине 15 м сохранены полисифониево-клондриево-ульвовые сообщества. Фитомасса водорослей цистозироных поясов у Карадага уменьшалась в течение десятилетий: в 1970 г. на глубине 0,5 м она достигала 3776 г/м², а в 2009 г. только 1588,3 г/м²; на глубине 10 м в 1970 г. фитомасса водорослей составляла 1679 г/м², а в 2009 г. – 198,5 г/м². Качественный состав видов при этом сильно изменился. В сообществах существенно уменьшился участие таких олигосапробных видов как Ph. crispa, Vertebrata subulifera, Codium vermilare, Osmundea pinnatifida, N. filiformis (Костенко, 2001 б). Располагая многолетними рядами наблюдений, на разрезе у ск. Кузьмичев камень, можно составить представление о характере изменений домашней растительности и ее отдельных компонентов у берегов Карадага (табл. 2–5).
Таблица 2.
Пространственно-временные изменения фитомассы видов *Cystoseira* (г/м²) у ск. Кузьмичев камень

<table>
<thead>
<tr>
<th>Годы</th>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>1970</td>
<td>–</td>
</tr>
<tr>
<td>1980</td>
<td>1245,0</td>
</tr>
<tr>
<td>1981</td>
<td>5312,0</td>
</tr>
<tr>
<td>1983</td>
<td>–</td>
</tr>
<tr>
<td>1984</td>
<td>5346,0</td>
</tr>
<tr>
<td>1986</td>
<td>5824,0</td>
</tr>
<tr>
<td>1988</td>
<td>6636,0</td>
</tr>
<tr>
<td>1990</td>
<td>6047,0</td>
</tr>
<tr>
<td>1993</td>
<td>5090,0</td>
</tr>
<tr>
<td>1994</td>
<td>4367,0</td>
</tr>
<tr>
<td>1995</td>
<td>–</td>
</tr>
<tr>
<td>1997</td>
<td>4342,0</td>
</tr>
<tr>
<td>1998</td>
<td>4694,0</td>
</tr>
<tr>
<td>1999</td>
<td>–</td>
</tr>
<tr>
<td>2000</td>
<td>4609,9</td>
</tr>
<tr>
<td>2001</td>
<td>4485,3</td>
</tr>
<tr>
<td>2002</td>
<td>3671,0</td>
</tr>
<tr>
<td>2003</td>
<td>4450,0</td>
</tr>
<tr>
<td>2006</td>
<td>5475,0</td>
</tr>
<tr>
<td>2008</td>
<td>1175,8</td>
</tr>
<tr>
<td>2009</td>
<td>1418,4</td>
</tr>
<tr>
<td>2010</td>
<td>–</td>
</tr>
</tbody>
</table>

Таблица 3.
Пространственно-временные изменения фитомассы филлофоры (г/м²) у ск. Кузьмичев камень

<table>
<thead>
<tr>
<th>Годы</th>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>1970</td>
<td>32,0</td>
</tr>
<tr>
<td>1980</td>
<td>–</td>
</tr>
<tr>
<td>1983</td>
<td>0</td>
</tr>
<tr>
<td>1984</td>
<td>0</td>
</tr>
<tr>
<td>1986</td>
<td>0</td>
</tr>
<tr>
<td>1988</td>
<td>0</td>
</tr>
<tr>
<td>1990</td>
<td>0</td>
</tr>
<tr>
<td>1993</td>
<td>0</td>
</tr>
<tr>
<td>1994</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>2,16</td>
</tr>
<tr>
<td>2010</td>
<td>0</td>
</tr>
</tbody>
</table>

Таблица 4.
Пространственно-временные изменения фитомассы кладостефуса (г/м²)
у ск. Кузьмичев камень

<table>
<thead>
<tr>
<th>Год</th>
<th>Глубина, м</th>
<th>0,5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1970</td>
<td></td>
<td>26,0</td>
<td>20,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>26,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td></td>
<td>4,17</td>
<td>96,14</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>4,1</td>
<td>0,68</td>
<td>1,79</td>
<td>15,1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>12,3</td>
<td>0</td>
<td>162,0</td>
<td>215,0</td>
<td>23,3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>1,4</td>
<td>1,8</td>
<td>17,7</td>
<td>254,3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>48,4</td>
<td>37,2</td>
<td>1220,0</td>
<td>1840,0</td>
<td>0</td>
<td>3,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>9,38</td>
<td>197,69</td>
<td>704,0</td>
<td>13,64</td>
<td>3,31</td>
<td>20,48</td>
<td>27,88</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>126,85</td>
<td>4,04</td>
<td>516,0</td>
<td>0</td>
<td>0</td>
<td>27,31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td>0,88</td>
<td>146,72</td>
<td>142,2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>0</td>
<td>39,54</td>
<td>290,03</td>
<td>25,72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>–</td>
<td></td>
<td></td>
<td></td>
<td>23,3</td>
<td>4,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1012,0</td>
<td>1504,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>1,0</td>
<td>129,71</td>
<td>170,0</td>
<td>374,0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>30,0</td>
<td>20,0</td>
<td>-</td>
<td>308,0</td>
<td>5,0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>275,0</td>
<td>59,0</td>
<td>0,52</td>
<td>360,0</td>
<td>0</td>
<td>0,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>20,8</td>
<td>29,6</td>
<td>20,1</td>
<td>1,3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>2,4</td>
<td>263,04</td>
<td>255,28</td>
<td>413,44</td>
<td>93,5</td>
<td>3,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>96,5</td>
<td>125,9</td>
<td>291,4</td>
<td>0,5</td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 5.
Пространственно-временные изменения фитомассы эктокарпуса (г/м²)
у ск. Кузьмичев камень

<table>
<thead>
<tr>
<th>Год</th>
<th>Глубина, м</th>
<th>0,5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>18,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>0</td>
<td>0,1</td>
<td>22,0</td>
<td>123,7</td>
<td>152,0</td>
<td>15,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>149,2</td>
<td>286,66</td>
<td>11,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,4</td>
<td>7,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>0</td>
<td>0</td>
<td>40,6</td>
<td>88,5</td>
<td>1,0</td>
<td>10,38</td>
<td>2,92</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>0</td>
<td>1,36</td>
<td>0</td>
<td>10,8</td>
<td>0,17</td>
<td>0</td>
<td>0,29</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>–</td>
<td>0</td>
<td>80,63</td>
<td>240,7</td>
<td>2,59</td>
<td>0,56</td>
<td>0,24</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td>16,0</td>
<td>40,53</td>
<td>47,88</td>
<td>7,71</td>
<td>5,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>0</td>
<td>1,4</td>
<td>64,98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td>5,0</td>
<td>0</td>
<td>0</td>
<td>5,8</td>
<td>3,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>0</td>
<td>65,7</td>
<td>109,0</td>
<td>1,6</td>
<td>16,7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 6.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
</tr>
<tr>
<td>2</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
<td>Апоглос-сумово-ульвовый</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
<td>Нет данных</td>
</tr>
<tr>
<td>3</td>
<td>Цистозированный</td>
<td>—</td>
<td>—</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
<td>Цистозированный</td>
</tr>
<tr>
<td>6</td>
<td>Полисифоново-эллисоландиновиевый</td>
<td>Полисифоново-эллисоландиновиевый</td>
<td>Полисифоново-эллисоландиновиевый</td>
<td>Филлофорово-ульвовый</td>
<td>Филлофорово-ульвовый</td>
<td>Кодиумово-ульвово-эллисоландиновиевый</td>
<td>Цистозированный</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Эллисоландиновиевый</td>
<td>Ульвово-эллисоландиновиевый</td>
<td>Ульвово-эллисоландиновиевый</td>
<td>Филлофорово-ульвовый</td>
<td>Филлофорово-ульвовый</td>
<td>Лауренциевый</td>
<td>Филлофорово-ульвовый</td>
<td>Кладо-стедусовиевый</td>
</tr>
<tr>
<td>12</td>
<td>Эллисоландиновиевый</td>
<td>Филлофорово-ульвовый</td>
<td>Филлофорово-ультрарандиновиевый</td>
<td>Филлофорово-ульвовый</td>
<td>Филлофорово-ульвовый</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15</td>
<td>Эллисоландиновиевый</td>
<td>Филлофорово-ульвовый</td>
<td>Водорослей нет (ил)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Данные за период 1981–2006 гг. позволяют проследить изменение локации фитоценозов...

Таблица 7.
Распределение фитоценозов на ск. Золотые ворота
(восточная сторона восточной арки) по годам и глубинам

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Лауренциево-апоглоссумовый</td>
<td>Цистозировый</td>
<td>Цистозирово-ультвовый</td>
<td>Лауренциево-ультвово-апоглоссумовый</td>
</tr>
<tr>
<td>2</td>
<td>Цистозирово-ультвовый</td>
<td>Цистозировый</td>
<td>Цистозирово-ультвовый</td>
<td>Полисифониево-ультвовый</td>
</tr>
<tr>
<td>3</td>
<td>Цистозирово-ультвовый</td>
<td>Цистозирово-ультвовый</td>
<td>Полисифониево-ультвовый</td>
<td>Ульвово-эллисоландиневый</td>
</tr>
<tr>
<td>6</td>
<td>Цистозирово-ультвовый</td>
<td>Филлофорово-ультвовый</td>
<td>Филлофорово-ультвово-занардиниевый</td>
<td>Филлофорово-ультвово-занардиниевый</td>
</tr>
<tr>
<td>9</td>
<td>Филлофоровый</td>
<td>Филлофорово-ультвовый</td>
<td>Филлофорово-ультвово-занардиниевый</td>
<td>Филлофорово-ультвово-занардиниевый</td>
</tr>
<tr>
<td>12</td>
<td>Филлофорово-ультвовый</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 8.
Пространственно-временное изменение фитоценозов на ск. Золотые ворота
(южная сторона западной и восточной арок)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Цистозировый</td>
<td>Цистозировый</td>
<td>Цистозировый</td>
<td>Цистозирово-лауренциевый</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Цистозировый</td>
<td>Цистозирово-полисифониево-ультвовый</td>
<td>Цистозирово-ультвовый</td>
<td>Кладостефусовый</td>
<td>Цистозирово-апоглоссумовый</td>
</tr>
<tr>
<td>6</td>
<td>Полисифониево-ультвово-эллисоландиневий</td>
<td>Полисифониево-ультвовый</td>
<td>Цистозирово-ультвовый</td>
<td>Филлофоровый</td>
<td>Цистозирово-ультвово-эллисоландиневый</td>
</tr>
<tr>
<td>9</td>
<td>Кодиумово-филофоровый</td>
<td>Филлофорово-ультвовый</td>
<td>Ульвовый</td>
<td>Эллисоландиневый</td>
<td>Филлофорово-ультвовый</td>
</tr>
<tr>
<td>11</td>
<td>Кодиумово-филофоровый</td>
<td>Филлофорово-ультвовый</td>
<td>Филлофорово-ультвовый</td>
<td>Филлофоровый</td>
<td>Филлофорово-ультвовый</td>
</tr>
</tbody>
</table>
Таким образом, с южной стороны западной и восточной половин арки Золотых ворот на глубинах 0–2 м произрастали цистозировые и цистозирово-ульвовые фитоценозы. Филлофоровые фитоценозы на глубинах 9–11 м в период с 1998 до 2002 гг. были трансформированы в филлофорово-ульвовые (Костенко, 1983).

В таблицах 9–12 представлены данные, иллюстрирующие разнообразие донных фитоценозов и его изменения по глубинам в разные годы на западной стороне восточной арки (З-В) и восточной стороне западной арки (В-З), на северной стороне восточной (С-В) и западной арки (С-З) ск. Золотые ворота, а также общей фитомассы сообществ.

Распределение фитоценозов на ск. Золотые ворота на западной стороне восточной арки (З-В – протока) и восточной стороне западной арки (В-З – протока) по годам и глубинам

<table>
<thead>
<tr>
<th>Глубина, м</th>
<th>Годы</th>
<th>Западная восточная арка (З-В)</th>
<th>Восточная западная арка (В-З)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Апоглоссумовый</td>
<td>Полисифониево-апоглоссумово-ульвовый</td>
<td>Цистозирый</td>
</tr>
<tr>
<td>2</td>
<td>Кладостефусовый</td>
<td>Полисифониево-апоглоссумово-ульвовый</td>
<td>Апоглоссумовый</td>
</tr>
<tr>
<td>6</td>
<td>Филлофоровый</td>
<td>Полисифониево-эллисоландиевый</td>
<td>Эллисоландиевый</td>
</tr>
<tr>
<td>9</td>
<td>Кладостефусовый</td>
<td>Ульвовый</td>
<td>Эллисоландиевый</td>
</tr>
</tbody>
</table>

Пространственно-временное распределение фитоценозов на северной стороне восточной (С-В) и западной арок (С-З) ск. Золотые ворота

<table>
<thead>
<tr>
<th>Глубина, м</th>
<th>Годы</th>
<th>Северная восточная арка (С-В)</th>
<th>Западная западная арка (С-З)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Цистозирый</td>
<td>Цистозирый</td>
<td>Лауренциевый</td>
</tr>
<tr>
<td>2</td>
<td>Лауренциево-apolгоссумово-ульвовый</td>
<td>Цистозиро-apolгоссумово-ульвовый</td>
<td>Лауренциево-apolгоссумово-занардиниев</td>
</tr>
<tr>
<td>6</td>
<td>Полисифониево-кладостефусово-лауренциевый</td>
<td>Цистозиро-полисифониево-кладостефусово-лауренциевый</td>
<td>Ульвово-апоглоссумово-ульвовый</td>
</tr>
<tr>
<td>9</td>
<td>Водорослей нет</td>
<td>Полисифониево-ульвовый</td>
<td></td>
</tr>
</tbody>
</table>

Пространственно-временные изменения общей фитомассы водорослей (т/м²) на ск. Золотые ворота (западная арка) по экспозициям

<table>
<thead>
<tr>
<th>Глубина, м</th>
<th>Год</th>
<th>Западная</th>
<th>Южная</th>
<th>Северная</th>
<th>Восточная (протока)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1981</td>
<td>673,0</td>
<td>3338,0</td>
<td>183,0</td>
<td>589,0</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>1500,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>1730,0</td>
<td>1250,0</td>
<td>50,0</td>
<td>1550,0</td>
</tr>
<tr>
<td>2</td>
<td>1981</td>
<td>1010,5</td>
<td>3286,0</td>
<td>1003,0</td>
<td>359,0</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>1726,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>520,5</td>
<td>2051,0</td>
<td>172,5</td>
<td>1030,0</td>
</tr>
<tr>
<td>6</td>
<td>1981</td>
<td>949,5</td>
<td>353,0</td>
<td>161,0</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>594,9</td>
<td>985,0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>320,0</td>
<td>480,5</td>
<td>511,0</td>
<td>300,0</td>
</tr>
</tbody>
</table>
продолжение табл. 11

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>638,0</td>
<td>953,3</td>
<td>470,0</td>
</tr>
<tr>
<td></td>
<td>1549,0</td>
<td>211,2</td>
<td>81,0</td>
</tr>
<tr>
<td>12</td>
<td>357,0</td>
<td>3814,3</td>
<td>225,0</td>
</tr>
<tr>
<td></td>
<td>565,0</td>
<td>276,8</td>
<td>150,5</td>
</tr>
<tr>
<td>15</td>
<td>277,0</td>
<td>2028,6</td>
<td>Водорослей нет (ил)</td>
</tr>
</tbody>
</table>

Таблица 12.
Пространственно-временные изменения общей фитомассы водорослей (г/м²) на ск. Золотые ворота (восточная арка)

<table>
<thead>
<tr>
<th>Глубина, м</th>
<th>Год</th>
<th>Западная (протока)</th>
<th>Южная</th>
<th>Северная</th>
<th>Восточная</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>44,0</td>
<td>782,0</td>
<td>876,0</td>
<td>390,0</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2682,1</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>22,5</td>
<td>406,5</td>
<td>1103,0</td>
<td>301,0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>833,0</td>
<td>312,0</td>
<td>850,0</td>
<td>445,0</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>–</td>
<td>–</td>
<td>1998,9</td>
<td>3520,0</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>290,0</td>
<td>550,0</td>
<td>102,0</td>
<td>1710,5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>52,0</td>
<td>656,0</td>
<td>965,0</td>
<td>939,0</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>–</td>
<td>–</td>
<td>1816,5</td>
<td>422,7</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>180,0</td>
<td>301,0</td>
<td>310,0</td>
<td>901,0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>105,1</td>
<td>2,5</td>
<td>Дно</td>
<td>3504,0</td>
</tr>
<tr>
<td></td>
<td>1998</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3673,0</td>
</tr>
<tr>
<td></td>
<td>2002</td>
<td>40,5</td>
<td>611,5</td>
<td>Дно</td>
<td>608,0</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Дно</td>
<td>2876,0</td>
<td>Дно</td>
<td>–</td>
</tr>
</tbody>
</table>

Многолетняя динамика фитоценозов

Особенности многолетней динамики фитоценозов на отдельных разрезах в пределах Карадагского заповедника иллюстрируют таблицы 13–16. Как следует из таблицы 13, вдоль всего Карадагского побережья на глубине 1 м на протяжении последних десятилетий сохраняются не-трансформированные цистозировые и диктиотовые фитоценозы (Костенко и др., 2008 а; Костенко и др., 2005 а).

Таблица 13.
Многолетняя динамика фитоценозов в акватории Карадагского заповедника на глубинах 1 и 3 м

<table>
<thead>
<tr>
<th>Район</th>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Скала Левинсона-Лессинга</td>
<td>Нет данных</td>
</tr>
</tbody>
</table>

188
продолжение табл. 13

<table>
<thead>
<tr>
<th>Район</th>
<th>Фитоценоз</th>
</tr>
</thead>
<tbody>
<tr>
<td>Бухта Пуццолановая</td>
<td>Нет данных, Цистозирово-ульвовый (2006)</td>
</tr>
<tr>
<td>Бухта Сердоликовая</td>
<td>Цистозировый (1980–2002)</td>
</tr>
</tbody>
</table>

Цистозирово-ульвовые фитоценозы, отмеченные в б. Пуццолановая и Пограничная, после шторма 2007 г. за счет элиминации ульвы были трансформированы в цистозировые.

Таблица 14.

Многолетняя динамика фитоценозов в акватории Карадагского заповедника на глубинах 5–6 м

<table>
<thead>
<tr>
<th>Район</th>
<th>Фитоценоз</th>
</tr>
</thead>
<tbody>
<tr>
<td>Бухта Пуццолановая</td>
<td>Цистозирово-ульвовый (2006)</td>
</tr>
<tr>
<td>Бухта Лягушачья</td>
<td>Цистозирово-филлофорово-ульвовый (2006)</td>
</tr>
</tbody>
</table>

Данные таблицы 14 свидетельствуют о том, что в цистозирово-ульвовых фитоценозах, широко распространенных в акватории заповедника, до 2007 г., после шторма и вплоть до 2009 г. происходило исчезновение ульвы на глубине 5–6 м.
Таблица 15.
Многолетняя динамика фитоценозов в акватории
Карадагского заповедника на глубинах 9 и 10 м

<table>
<thead>
<tr>
<th>Район</th>
<th>Фитоценоз</th>
</tr>
</thead>
</table>

Таблица 16.

Многолетняя динамика фитоценозов в акватории Карадагского заповедника на глубинах 12 и 15 м

<table>
<thead>
<tr>
<th>Район</th>
<th>Фитоценоз</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Черный овраг</td>
<td>Полисифоние-званардиниевый (1984)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Кузьминов камень</td>
<td>Полисифонево-званардиниевый (1984)</td>
</tr>
<tr>
<td>Мыш Мальчин</td>
<td></td>
</tr>
</tbody>
</table>

Фитообрастание твердых субстратов Карадага. Значительную часть морского прибрежья Крыма занимают сообщества обрастания твердых субстратов разного генезиса и гидротехнических сооружений. Такие сообщества включают сотни видов беспозвоночных и макроскопических водорослей, формирующих основу биомассы бентоса и во много раз превосходят по этому показателю сообщества рыхлых грунтов (Евстигнеева, Гринцов, Танковская, 2011). Среди обрастателей рифов встречаются хозяйственно ценные виды организмов. Эти факты позволяют рассматривать искусственные рифы не только как способ сохранения биоразнообразия в прибрежных акваториях, но и как морские фермы (Гринцов, Мурина, Евстигнеева, 2004). Несмотря на то, что водоросли являются важным компонентом обрастания, работ, посвященных фитообрастанию в Черном море, весьма мало (Гринцов, Мурина Евстигнеева, 2006; Евстигнеева, Танковская, 2010). В связи с этим был проведен сравнительный анализ некоторых
параметров сообщества макрофитов в обрастании твердых естественных (ск. Маяк и ск. Золотые ворота) и искусственных субстратов (птг Курортное) прибрежной акватории Карадага в разные сезоны 2004 г. у поверхности воды и на расстоянии от нее в 2 м.

Фитокомпонента сообщества обрастания бетонного волнореза птг Курортное сформирована 54 видами макроводорослей, относящихся к 30 родам, 15 семействам и 11 порядкам отделов Chlorophyta (Ch), Ochrophyta (Och) и Rhodophyta (Rh). По всем показателям таксономического разнообразия лидируют Rh (свыше 60 % видов, родов, семей и более половины порядков). Ch и Och в этом отношении занимают вторую и третью позиции. В целом, видовая структура сообщества обрастания в заповедной акватории вдвое разнообразнее, чем на неохраняемой (Евстигнеева, Гринцов, 2001).

Особенностью распределения видов по надвидовым таксонам в структуре фитоперифитона является господство монотипных родов и наличие большого количества порядков и семей с незначительным разнообразием соподчиненных им таксонов. Это свидетельствует о высоком систематическом разнообразии изученного типа растительных сообществ.

По результатам анализа данных о встречаемости в течение года виды-альгообрастатели были распределены на две из трех известных категорий (Дажо, 1975): постоянные и количественно доминирующие добавочные (57 % общего числа видов макроводорослей на волнорезе). Категория случайных видов не характерна для данного фитообрастания. Значения индексов гомотонности (J1; J2), рассчитанные с учетом коэффициента встречаемости каждого вида в разные сезоны, говорят о высокой временной гетерогенности фитоценоза на волнорезе.

Флористическая структура альгообрастания подвержена сезонной изменчивости. Например, число видов Ch в течение года изменяется от 6 до 11, составляя в среднем 9 ± 2 вида (рис. 1). У Rh и особенно у Och пределы вариации данного показателя ниже. На весенне-летний период приходится максимум разнообразия видовой структуры всего сообщества и прежде всего за счет Rh и Ch. Такой же пик у Och зафиксирован в осенне-зимний период.

Анализ значений коэффициента общности видовой структуры (Kj) показал, что чуть более половины видов неизменно присутствуют в составе каждого сезонного комплекса. Особенно велика доля таких видов среди Och и относительно мала – среди Ch. Видовое сходство альгообрастателей наиболее выражено весной и летом.

Сравнение флористической структуры перифитона на разных глубинах показало, что вблизи поверхности воды она совпадает с таковой на глубине 2 м по общему числу видов в сообществе.

Рис. 1. Сезонные изменения флористической структуры (1) и фитомассы (2) водорослей в обрастании волнореза

Равными оказались пределы встречаемости видов в целом, а также Ch и Och, в частности. Вместе с тем летом вблизи поверхности воды выше видовое и родовое разнообразие сообщества, а также его Rh и особенно Ch. Для фитокомпонента на расстоянии от поверхности воды характерны более высокие число видов с максимальной и минимальной частотой встречаемости и их доля в общей структуре. Коэффициент общности видов Ch на обоих горизонтах постепенно снижается от зимы к осени. Степень общности Rh вблизи поверхности воды и на глубине немного ниже, чем у Ch, но и она уменьшается от зимы к лету, после чего осенью
повышается до весеннего уровня. Сходство видовых комплексов Och на разных горизонтах особенно выражено осенью.

Установлено, что в экологической структуре фитоперифитона присутствуют все группы водорослей, за исключением пресноводно-солоноватоводной, мало характерной для фитобентоса Черного моря. К разряду лидирующих в течение года экологических групп относятся ведущая, однолетняя, олигосапробная и морская, на долю которых приходится 50–61 % общего числа идентифицированных видов. Подобное распределение видов по группам характерно и для фитоценозов морского прибрежного экотона Черного моря. Вклад таких групп, как сопутствующая, сезонная, полисапробная и солоноватоводная крайне мал (2–17 %).

Экологические спектры разных отделов в структуре обрастания твердых субстратов отличаются друг от друга, а их сходство проявляется лишь в неизменном господстве ведущих видов. Эти же спектры меняются в зависимости от сезона и глубины (табл. 17). Зимой они включают все группы, кроме солоноватоводной. Среди Ch весомый вклад в экологическую структуру зимнего фитоперифитона вносят ведущие, однолетние, мезосапробные и солоноватоводно-морские водоросли. Och в составе фитоперифитона этого периода отличаются незначительным экологическим разнообразием и абсолютным господством ведущих, многолетних, олигосапробных и морских видов. Перечень групп, лидирующих среди Rh зимой, дополнен однолетниками и во многом совпадает с таким у Och. Сопоставление экологических спектров зимнего фитоперифитона на разных глубинах выявило лидерство одних и тех же групп за исключением того, что на малой глубине к ним примыкает мезосапробная группа.

Таблица 17.

Сезонные изменения экологической структуры макроводорослей обрастания волнореза в районе Карадага у поверхности воды (1) и на расстоянии от нее (2)

<table>
<thead>
<tr>
<th>Экологические группы водорослей</th>
<th>Зима</th>
<th>Весна</th>
<th>Лето</th>
<th>Осень</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ведущая</td>
<td>14/70</td>
<td>20/74</td>
<td>15/58</td>
<td>18/67</td>
</tr>
<tr>
<td>однолетняя</td>
<td>8/40</td>
<td>11/41</td>
<td>14/54</td>
<td>13/48</td>
</tr>
<tr>
<td>сезонная</td>
<td>3/15</td>
<td>3/11</td>
<td>5/19</td>
<td>3/11</td>
</tr>
<tr>
<td>полисапробная</td>
<td>2/10</td>
<td>3/11</td>
<td>1/4</td>
<td>3/11</td>
</tr>
<tr>
<td>мезосапробная</td>
<td>9/45</td>
<td>11/41</td>
<td>15/58</td>
<td>11/41</td>
</tr>
<tr>
<td>олигосапробная</td>
<td>9/45</td>
<td>13/48</td>
<td>10/38</td>
<td>13/48</td>
</tr>
<tr>
<td>солоноватоводно-морская</td>
<td>7/35</td>
<td>10/37</td>
<td>12/46</td>
<td>10/37</td>
</tr>
<tr>
<td>морская</td>
<td>13/65</td>
<td>17/63</td>
<td>14/54</td>
<td>17/63</td>
</tr>
<tr>
<td>солоноватоводная</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

*Примечание: перед чертой абсолютное число видов, после нее – относительное (%)

У Ch на границе воздух – твердый субстрат в первую половину года (зима, весна) преимущественное развитие получают редкие и ведущие виды, летом – только редкие, а осенью – ведущие. На погруженных в воду частях волнореза сезонное распределение лидирующих групп с разной встречаемостью то же, что и у поверхности воды, однако, зимой спектр таких групп расширен за счет сопутствующих растений. Однолетники среди Ch лидируют вне зависимости от сезона и глубины. Эта же тенденция характерна и для сезонного распределения групп сапробности, среди которых наиболее развиты мезосапробийонты. Зимой все группы данной части экологического спектра представлены в равной мере. Среди галобных групп Ch на обоих горизонтах круглогодично господствует солоноватоводно-морская группа, с которой весной на малой глубине и летом на большой синхронно доминирует морская.

Экологический состав комплекса видов Och мало зависит от сезона и глубины. Варьирование подвержено только перечень лидеров среди групп встречаемости.

У Rh на всех горизонтах в течение года преобладают ведущие и морские виды. Среди групп с разной продолжительностью жизни в холодное время преимущественно развиваются многолетники, а в теплое – однолетники. Сапробная часть экоспектра Rh в основном сложена олигосапробионтами и лишь весной (гу-
Структура. Общим для сообществ на двух горизонтах является лидирующей мезосапробной группой.

Комплекс доминирующих экогрупп весеннего и летнего фитоперифитона лишен, соответственно, многолетников и мезосапробионтов. Солоноватоводная группа зарегистрирована исключительно летом. В остальное время года перечень лидирующих экогрупп в разных отделах большой частью совпадает и характеризуется равным развитием одно- и многолетников, мезо- и олигосапробионтов.

Доля участия (%) большинства экогрупп увеличивается летом, тогда как зимой и особенно весной уменьшается. Летний пик обусловлен высокой интенсивностью вегетации водорослей, зимой же сказываются элиминирующее действие штормов и понижение температуры.

Фитомassa альгообрастания волнореза в исследованный промежуток времени варьирует от 107 до 827 г/м² с летним максимумом и зимним минимумом. Такая сезонная приуроченность пики в процессе формирования биомассы сближает сообщества перифитона и бентоса в Черном море, а также фитоперифитон заповедной акватории Карадага и неохраняемой территории Севастопольского региона (Евстигнеева и др., 2011). Основной вклад в фитомассу сообщества вносят Rh, доля которых составляет 74–91 % (рис. 1). Их фитомassa особенно велика летом (680,4 г/м²) и минимальна зимой (97,5 г/м²), ее среднее значение – 385 ± 235 г/м². Высокая сезонная вариабельность фитомассы Rh подтверждается значением коэффициента вариации, равным 62 %. Направленность сезонных изменений фитомассы Rh и всей фитокомпоненты перифитонного сообщества одинакова. Доля фитомассы Rh равномерно снижается от зимы к осени. Средняя фитомassa Ch в 5,5 раз ниже, чем у Rh, а значение коэффициента вариации этого показателя (80 %) говорит о еще больших сезонных вариациях его у видов отдела. На Ch приходится 7,5 (зима) – 16,8 (лето) % биомассы фитоперифитона.

Och на волнорезе представлен крупнотелыми видами цистозиры и кладостефуса, одна-како развивающая ими фитомassa составляет только 0,8–12,2 %. Для ее изменений, в отличие от Rh, характерно увеличение от зимы к осени. Доля фитомассы Och зимой, весной и летом мала и лишь к осени достигает максимума.

Биомасса фитокомпоненты в целом и у каждого отдела более зависит от глубины произрастания, чем ее эколого-флористическая структура. Общим для сообществ на двух горизонтах является одинаковый или близкий к нему уровень фитомассы, формируемой Ch в зимне-весенний период. Совпадают и значения коэффициента вариации анализируемого показателя у всего сообщества (65 и 67 %) и Och, в отдельности (125 и 126 %). Вместе с тем вклады поверхности воды и осени 8 и 2 раза превышает подобную на глубине 2 м. Такое же распределение характерно для общей фитомассы видов в осенне-зимний период. Значение коэффициента вариации продукционного показателя у видов Ch максимально на малой глубине, у Rh – на большой.

Группа доминантов, составленная на основе данных о фитомассе, малочислена и включает три вида (5 % общего видового разнообразия) Rh. К ней относятся G. crinale, C. virgatum и E. elongata. Встречааемость этих видов в течение года максимально высока, а их господство распределено во времени: G. crinale проявляет его в начале и конце года, C. virgatum – весной и летом. Такое же положение летом занимает E. elongata. Доля фитомассы, создаваемой этими видами, достигает 19–39 %.

Группа сопряженных с доминантами видов гораздо разнообразнее и включает: G. spinosum, E. elongata, Phymatolithon lenormandii, J. rubens, Callithamnion corymbosum, Ph. crispa и U. rigida из Ch и Rh. Среди Och наиболее заметным вкладом отличается C. crinita (осенью), а также C. spongiosum (весной и летом). В холодное время года среди Rh по уровню формируемой фитомассы лидирует G. crinale, а в теплое (весна и лето) – C. virgatum. Сезонное влияние на процесс формирования фитомассы сочетается с батиметрическим, что предопределяет изменение в видовом составе доминантов на границе разных сред. Если зимой и весной группы доминирующих видов у поверхности воды и на глубине сложены одинаковыми видами одного и того же отдела (Rh), то летом на малой глубине по уровню фитомассы лидирует – C. virgatum, а на большой – E. elongata. Для доминантного и субдоминантного комплексов в отдельности на каждом горизонте характерно примерно равное число видов (2 и 3 доминанта; 5 и 4 содоминанта), однако коэффициент сходимости доминантов на двух горизонтах в несколько раз выше, чем у содоминантов. Значения индекса Шеннона у видового комплекса Ch варьируют от 1,19 летом до 2,33 осенью. В зимне-весенний период его значения одинаковы. У Och этот показатель заметно ниже, но и его
уровень зимой и весной совпадает между собой. Индекса Шеннона у Rh выше, чем у других отделов. Максимум данного показателя разнообразия у разных отделов разобьен во времени: у Ch он приходится на осень (2,33), у Och – на зимне-весенний период (1,2), у Rh – на весенне-летний (3,0). Вместе с тем у первых двух отделов степень видового разнообразия совпадает в зимне-весенее время (по 1,58 – у Ch; по 1,20 – у Och) и на один и тот же сезон приходится минимум анализируемой характеристики. Комплекс видов Rh в этом отношении специфичнее, что проявляется в более высоких сезонных значениях индекса Шеннона, в равной степени разнообразия фитокомпоненты весной и летом, а также в приуроченности минимума к зиме. Для всей фитокомпоненты индекса Шеннона относительно невысок зимой, в остальное время его значения удерживались на одном достаточном высоком уровне (3,2–3,4 бит).

Степень сезонного разнообразия фитоперифитона зависит от глубины произрастания. Так, вблизи поверхности воды зарегистрирован максимум индекса Шеннона у летнего сообщества, на глубине 2 м – у зимне-осеннего. Среднегодовая величина индекса одинакова на обоих горизонтах.

Оценка эколого-таксономического разнообразия и продукционных возможностей сообщества обрастания искусственного субстрата может быть уточнена путем сопоставления с сообществами естественного субстрата и особенно тех, которые располагаются в смежной акватории. Сравнение ряда параметров фитоценоза бетонного волнореза в пгт Курортное и обрастания ск. Маяк на одной и той же глубине, в один и тот же месяц позволяет сделать выводы о границах специфичности состава и структуры фитоперифитона и фитобентоса. Установлено, что альгообрастание волнореза в несколько раз разнообразнее как по общему числу видов, так и по представленности отделов Ch и Rh. Из 35 видов макроводорослей, обнаруженных в период исследования сравниваемых акваторий, на долю фитоперифитона приходится 91 %, что в 2,5 раза выше подобного показателя фитобентоса (рис. 2). Различие сообществ двух типов проявляется и на уровне соотношения отделов по числу видов (1Ch : 1Och : 4Rh – фитобентос и 5Ch : 1Och : 9Rh – фитоперифитон). В отличие от фитоперифитона относительное число видов Och в фитобентосе вдвое больше. В целом, видовая структура двух сообществ совпадает примерно на треть ($K_1 = 29 \%$).

Фитообрастание искусственного сооружения включает водоросли 12 экологических групп, за исключением мало характерной для Черного моря пресноводно-солоноватоводной. У ск. Маяк кроме последней группы отсутствует еще и солоноватоводная. Каждая группа, представляющая фитоперифитон, превосходит такие же группы в фитобентосе по числу видов. При этом разница может составлять 2–5 раз с максимумом у полисапробионтов и редких видов. В перифитоне гораздо выше относительное число видов поли- и олигосапробной, морской и редкой групп.
В фитобентосе это распространяется на мезосапробионты, солоноватоводно-морские, ведущие и сезонные виды.

Сходство экологических групп рассматриваемых сообществ наблюдается только на уровне доли однолетних, многолетних и сопутствующих видов.

Сообщества, развивающиеся на разных по происхождению твердых субстратах, проявляют сходство и различие комбинаций базовых (по числу видов) экогрупп. Они отличаются в сапробной и галобной частях спектра. У ск. Маяк превалируют мезосапробионты и солоноватоводно-морские виды, а на волнорезе — олигосапробионты и морские растения. Вместе с тем в этих сообществах одинаково лидируют ведущие и однолетние виды.

Биомassa фитоценозов двух типов характеризуется незначительным преимуществом (в 1,2 раза) фитобентоса (1118 г/м²). Предположительной причиной этого — неровная поверхность скалы по сравнению с более гладкой у волнореза и исторически разный срок формирования ценозов на этих субстратах. Кроме того, биомасса Och на естественном субстрате выше на порядок, чем на искусственном. На волнорезе, в сравнении со скалой, биомасса Rh больше вдвое, а Ch — на три порядка. Если отделы расположить в порядке возрастания биомассы, то для фитобентоса и фитоперифитона можно выстроить ряды: Ch — Rh — Och и Och — Ch — Rh, соответственно.

Основным продуцентом органического вещества на естественном субстрате является бурая многолетняя водоросль C. crinita, содомinant которой — близкородственный вид C. barbata. На искусственном субстрате доминирует красный однолетний C. virgatum, а в темноте значимости видом является зеленая U. rigida. Поскольку на долю C. crinita приходится около 50 % суммарной биомассы сообщества, то в целом биомасса фитоперифитона можно выстроить ряды: Ch — Rh — Och и Och — Ch — Rh, соответственно.

Фитокомponenta сообщества обрастания волнореза вблизи заповедной акватории Карадага сформирована 54 видами, среди которых доминируют Rh.

Группа доминантов фитоперифитона малочисленна, но слагающие ее виды отличаются круглогодично стопроцентной встречаемостью. Господство каждого вида данной категории разобщено во времени. Комплекс содоминантов втрое разнообразнее. В сообществе близким по вероятности воды и на заглубленных частях волнореза примерно равное число видов доминантов и содоминантов, высокое качественное сходство первых и низкое — вторых.

Несмотря на то, что для структуры фитоперифитона характерны отдельные черты фитобентоса, степень его таксономического разнообразия и уровень формируемой биомассы не-
редко превалируют над подобными в естественных биотопах, что свидетельствует о биопозитивной роли искусственных рифов в прибрежье Черного моря (Евстигнеева, Гринцов, Танковская, 2011). Учитывая, что выделенные доминанты сообщества распространены по всему Черному морю, полученные результаты и выводы проведенных исследований могут быть экстраполированы на другие участки прибрежья данного водоема при наличии подобных твердых субстратов.

Макроводоросли биологического литоконтура акватории Карадагского природного заповедника

Биологический литоконтура моря включает каменистую грань, сформированную скалами, глыбами, валунами и камнями, а также антропогенный контур, в качестве которого выступают размещенные здесь же твердые субстраты и объекты искусственного происхождения (Зайцев, 2006). Такие элементы литоконтура активно заселяются единым комплексом сидящих животных и растений. Считается, что условия биологического литоконтура, как жизненной среды, способствуют образованию сообществ с высоким уровнем видового разнообразия и биомассы. В 2009 г. было проведено сравнительное исследование структурно-функциональных особенностей макроальгоценозов верхнего биологического литоконтура моря в зоне заплеска Карадагского природного заповедника (Евстигнеева, Танковская, 2014, 2016 а).

В зоне исследования альгоценозы обрастания разных участков биологического литоконтура (искусственное сооружение и прибрежные скалы) акватории Карадага представлены 37 видами макроводорослей, распределенных между 27 родами, 18 семействами и 14 порядками отделов Ch, Och, Rh. Пропорция таксонов в общем составе водорослей, а также у Ch и Rh, в частности, выглядит так: 3 вида : 2 рода : 1 семейство : 1 порядок. Rh лидирует по числу видов (56 % общего числа обнаруженных видов) олигосапробных и преимущественно ведущих видов. В свою очередь, у Ch самый широкий перечень групп, характеризующихся высоким разнообразием видов, поэтому их развитие в условиях заплеска можно считать равномерным.

На скалах обитают 29 видов 21 рода, 13 семейств и 10 порядков (3 : 2 : 1 : 1). Видовое и родовое разнообразие Rh вдвое превосходит подобное у других отделов. Пропорции таксонов в отделах не совпадают, однако их видовое соотношение (1Ch : 1Och : 2Rh) на скалах не отличается от соотношения, рассчитанного по данным А. А. Калугиной-Гутник (Калугина-Гутник, 1975) для псевдолиторали Черного моря. Здесь наиболее богато представлены Cladophora, Ceramium, Polysiphonia, Cladophoraceae, Ceramiaceae, Rhodomelaceae, Cladophorales, Ceramiaceas. Водоросли скал Карадага относятся к 12 экологическим группам, среди которых наибольшим вкладом в общую структуру выделяются ведущая (66 % общего числа видов на скалах), олигосапробная (59 %), морская (76 %) и однолетняя (45 %). Низким числом видов отличаются сопутствующая, сезонная, полисапробная группы. Экоспектр каждого отдела имеет свой перечень групп и характер распределения видов между ними. Среди Ch многие экогруппы представлены в равной между собой мере, видимым преимуществом отличаются редкие виды, однолетники и мезосапробонты. Среди Rh высокое развитие получают ведущие, однолетние, олигосапробные и морские виды. В условиях заплеска Och не имеют представителей сопутствующей, однолетней, полисапробной и мезосапробной групп. В обрастании скал фитомасса видов варьирует в широких пределах. Большой вклад в фитомассу ценоза вносит Rh (83 %). Среди Ch
максимум показателя отмечен у Cladophoropsis membranacea, среди Rh - у Ceramium ciliatum, среди Och - у D. fasciola. Исходя из шкалы доминирования, на скалах преобладают мало значимые виды (56 %) с низким учитываемым показателем, треть видов относится к второстепенным. Доминантом ценоза является показатель, треть видов относится к второстепенным, но его состав совпадает лишь наполовину (Kj = 57 %). Больше всего сходства видов между собой, чем на скалах. Однако состав доминантов и субдоминантов на скалах и волнорезе не совпадает. На волнорезе ими являются C. membranacea, G. crinale, C. spongiosum и E. elongata. Фитомасса всех видов на разных субстратах одинаково больше 2 кг/м².

Заключение. В ходе исследования был установлен видовой состав, экологотаксономическая структура и продукционные возможности альгоценозов обрастания скал и волнореза, как элементов биологического литоконтура акватории Карадага. Сравнительный анализ показал, что для них характерны при мерно равные или близкие к ним общее число видов и Ch, в частности, надвидовых таксонов и доля моновидовых родов, количество доминирование Rh, одно и то же распределение видов между экоэкологическими группами, формирование фитомассы, которая у ценозов одинаково выше 2 кг/м², равный вклад Och в об щую фитомассу и численное превосходство группы мало значимых видов. Отличие ценозов обрастания элементов литоконтура Карадага проявляется в количестве надродовых таксонов, в пропорции таксонов в ценозах и каждом отделе. Выявлены структурно-экологические различия обрастания, касающиеся числа экогрупп и представ ленности каждой из них у Ch и Och. Среди Ch на волнорезе, в отличие от ситуации на скалах, лидируют у не только мезо-, но и полисапробионты, а среди галобных групп основная часть видов принадлежит солоноватоводно-морской. На волнорезе, по сравнению со скалами, выше доля поли-, олигосапробионтов, солоноватоводно-морских видов и ниже у морских. Och на волнорезе, как и на скалах, представлен ведущими, олигосапробными и морскими видами, хотя большинство их относится не только к многолетней, но и к сезонной группе. Среди перифитонных видов Och выше доля редких видов и ниже ведущих, здесь же они уступают водорослям на скалах по уровню абсолютно числа многолетних, сезонных, олигосапробных и морских видов.

Размах вариабельности индивидуальной фитомассы у обрастателей волнореза и скал один и тот же. Однако, на волнорезе доля фитомассы Ch вчетверо выше, а у Rh на 20 % ниже, чем на скалах. Вклад Och в суммарную фитомассу примерно одинаков. Rh среди отделов и C. membranacea среди видов Ch остаются основными продуктантами, однако максимум фитомассы видов Rh и Och, в отличие от обрастания скал, приходится на другие виды (G. crinale и C. spongiosum). Анализ распределения видов по группам доминирования показывает господство мало значимых видов (76 %), то есть тех же, что и на скалах. Однако состав доминантов и субдоминантов на скалах и волнорезе не совпадает. На волнорезе ими являются C. membranacea, G. crinale, C. spongiosum и E. elongata. Фитомасса всех видов на разных субстратах одинаково больше 2 кг/м².

Экологотаксономическая характеристика фитообрастания ск. Иван-Разбойник

Водоросли-макрофиты ск. Иван-Разбойник представлены 35 видами, которые относятся к 3 отделам, 10 порядкам, 18 семействам и 20 родам. 66 % общего числа видов составляют крас ные водоросли. Число видов зеленых и бурых
водорослей ниже соответственно в 3 и 6 раз. 50 % всех порядков приходится на Rh, по числу семейств ведущее положение занимают красные и бурые водоросли, разнообразие спектра родов особенно велико у последних. Большинство семейств представлено 1 родом и только четыре семейства включают 2–5 родов. Роды Ceramium и Polysiphonia — таксономически наиболее богатые (табл. 18).

Таблица 18.

<table>
<thead>
<tr>
<th>Вид (семейства)</th>
<th>R</th>
<th>Фитомassa, г·м⁻²</th>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Chlorophyta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryopsis plumosa</td>
<td>13</td>
<td>0,8</td>
<td>–</td>
</tr>
<tr>
<td>Cladophora sericea</td>
<td>60</td>
<td>6,9</td>
<td>33,2</td>
</tr>
<tr>
<td>C. albida</td>
<td>73</td>
<td>1,3</td>
<td>41,2</td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>60</td>
<td>40,5</td>
<td>63,8</td>
</tr>
<tr>
<td>Ochrophyta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>40</td>
<td>116,5</td>
<td>5,2</td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td>67</td>
<td>2295,2</td>
<td>1,4</td>
</tr>
<tr>
<td>Ectocarpus siliculosus</td>
<td>20</td>
<td>43,4</td>
<td>–</td>
</tr>
<tr>
<td>Padina pavonica</td>
<td>7</td>
<td>15,6</td>
<td>–</td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td>33</td>
<td>66,0</td>
<td>0,03</td>
</tr>
<tr>
<td>Zanardinia typus</td>
<td>27</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Corynophlaea umbellata</td>
<td>7</td>
<td>11,9</td>
<td>–</td>
</tr>
<tr>
<td>Feldmannia irregularis</td>
<td>7</td>
<td>0,06</td>
<td>–</td>
</tr>
<tr>
<td>Rhodophyta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colaconema thuretii</td>
<td>7</td>
<td>0,04</td>
<td>–</td>
</tr>
<tr>
<td>Antithamnion cruciatum</td>
<td>13</td>
<td>1,4</td>
<td>–</td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td>30</td>
<td>25,0</td>
<td>18,1</td>
</tr>
<tr>
<td>Callithamnion corymbosum</td>
<td>33</td>
<td>7,3</td>
<td>0,01</td>
</tr>
<tr>
<td>Ceramium virgatum</td>
<td>73</td>
<td>12,4</td>
<td>6,9</td>
</tr>
<tr>
<td>C. echionotum</td>
<td>20</td>
<td>1,3</td>
<td>0,25</td>
</tr>
<tr>
<td>C. diaphanum</td>
<td>40</td>
<td>131,3</td>
<td>32,8</td>
</tr>
<tr>
<td>Chondria dasyphylla</td>
<td>13</td>
<td>0,01</td>
<td>0,3</td>
</tr>
<tr>
<td>Chondria capillaris</td>
<td>13</td>
<td>–</td>
<td>75,0</td>
</tr>
<tr>
<td>Ellisollandia elongata</td>
<td>73</td>
<td>0,001</td>
<td>–</td>
</tr>
<tr>
<td>Gelidium spinosum</td>
<td>80</td>
<td>55,9</td>
<td>21,9</td>
</tr>
<tr>
<td>Jania rubens</td>
<td>27</td>
<td>112,5</td>
<td>137,5</td>
</tr>
<tr>
<td>Acrochaetium secundatum</td>
<td>7</td>
<td>1,1</td>
<td>–</td>
</tr>
<tr>
<td>Laurencia coronopus</td>
<td>20</td>
<td>8,8</td>
<td>–</td>
</tr>
<tr>
<td>L. obtusa</td>
<td>7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Palisada perforata</td>
<td>13</td>
<td>7,5</td>
<td>1,2</td>
</tr>
<tr>
<td>Osmundea truncata</td>
<td>13</td>
<td>40,1</td>
<td>–</td>
</tr>
<tr>
<td>Lomentaria clavellosa</td>
<td>27</td>
<td>0,5</td>
<td>1,2</td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td>7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Polysiphonia elongata</td>
<td>53</td>
<td>0,1</td>
<td>0,3</td>
</tr>
<tr>
<td>P. opaca</td>
<td>27</td>
<td>31,2</td>
<td>0,06</td>
</tr>
<tr>
<td>Vertebrata fucoides</td>
<td>7</td>
<td>5,0</td>
<td>–</td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>7</td>
<td>–</td>
<td>0,07</td>
</tr>
</tbody>
</table>

Указанием на принадлежность флоры к той или иной фитогеографической зоне может быть величина индекса Фельдмана. Для водорослей ск. Иван-Разбойник она вдвое ниже (0,5) таковой для всего Карадагского региона, а сама флора ближе к тепловодной.
Характерной особенностью растительности ск. Иван-Разбойник является незначительное число видов с высокой частотой встречаемости. Из пяти классов встречаемости с шагом 20 % выявлены лишь первые четыре. 51 % видов имели низкую встречаемость первого класса (0–20%), четыре вида – четвертого (61–80%).

Характерными и константными видами фитоценоза скалы являются зеленая нитчатка *C. albida*, а также багрянки *C. virgatum, E. elongata, G. spinosum*. Второе место по частоте встречаемости занимают *U. rigida, C. sericea, C. crinita* и *Apoglossum ruscifolium*.

Степень подобия таксономического состава внутри изученного фитоценоза невелика, о чем свидетельствуют величины индексов гомотонности (*J1, J2*) один из которых ниже 1,0 (0,3), а другой не превышает 2,0 (1,1).

Данные таблицы 19 показывают, что в общем списке водорослей доминируют группы одно- и многолетних видов. Первая группа сформирована зелеными и красными водорослями, вторая – кроме них еще и бурыми. Сезонный комплекс видов выражен незначительно.

Таблица 19.

<table>
<thead>
<tr>
<th>Экологическая группа</th>
<th>Число видов</th>
<th>Глубина</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>отделы</td>
<td>3 м</td>
</tr>
<tr>
<td></td>
<td>зеленые</td>
<td>бурые</td>
</tr>
<tr>
<td>однолетняя</td>
<td>2</td>
<td>–</td>
</tr>
<tr>
<td>многолетняя</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>сезонная</td>
<td>1</td>
<td>44</td>
</tr>
<tr>
<td>олигосапробная</td>
<td>–</td>
<td>7</td>
</tr>
<tr>
<td>мезосапробная</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>полисапробная</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>солоноватоводно-морская</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>морская</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>редкая</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>сопутствующая</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ведущая</td>
<td>2</td>
<td>7</td>
</tr>
</tbody>
</table>

Среди сапробиологических группировок превалируют олигосапробионты – индикаторы вод с низкой трофностью, доля участия мезо- и полисапробионтов ниже в 2 и 7 раз соответственно. Полисапробионты представлены красными водорослями, олигосапробионты – красными и бурыми, мезосапробионты – водорослями всех трех отделов.

Из четырех групп галобности, известных для Черного моря, для фитоценоза ск. Иван-Разбойник характерны представители двух: солоноватоводно-морской и морской с преобладанием последней. Основой первой группы стали зеленые и красные водоросли, второй – красные.

Растительности исследованного участка побережья Карадага присуще высокое содержание (71 %) водорослей ведущей группы. Наибольшее количество редких, ведущих и сопутствующих видов среди багрянок.

Батиметрическая изменчивость эколого-таксономической структуры и биомассы фитообрастания ск. Иван-Разбойник. Как и вся черноморская растительность, фитообрастание скалы подвержено батиметрической изменчивости (табл. 18 и 19). Так, для глубины 3 м характерно максимальное число видов в целом и в разных отделах, в частности. Здесь все экологические группировки отличаются высоким видовым разнообразием. По мере увеличения глубин обитания снижаются показатели количественного развития красных водорослей, олигосапробионтов, солоноватоводно-морских, редких и ведущих видов. На нижних горизонтах отсутствуют однолетние водоросли, число видов в многолетней и полисапробионтной группах почти не меняется. На глубинах 6 и 9 м равным количеством видов представлены мезосапробионты и сопутствующие виды, отделы зеленых и бурых водорослей.

Высокие значения коэффициента общности видов Жаккара характерны для таксономического состава фитоценоза на глубинах 3 и 6 м, 6 и 9 м (56 и 54 %). Наименьшие величины этого коэффициента отмечены у видовых комплексов на крайних для данного разреза глубинах (3 и 9 м). Заметное таксономическое сходство на разных глубинах проявляют зеленые водоросли
(75–100 %), идентичность видовых списков бурых водорослей отмечена на 6 и 9 м (50 %), красных – на 3 и 6 м (57 %).

В широких пределах меняется суммарная биомасса водорослей с максимумом на 3 м и минимумом – на 9 м (табл. 18). На глубине 3 м основная роль в формировании фитомассы принадлежит бурым и красным водорослям, на 6 и 9 м – зеленым. У трети видов, зарегистрированных на всех станциях разреза, отмечена тенденция снижения биомассы с ростом глубины.

Высокие уровни биомассы олигосапробионтов зарегистрированы на глубинах 3 и 6 м, мезосапробионтов – на 3 м, полисапробионтов – на 6 м. Чем больше глубина, тем меньше биомасса олиго- и мезосапробионтов.

Водоросли, господствующие по фитомассе, на разных глубинах отличаются видовой принадлежностью и долей участия в сложении растительного сообщества. Например, на глубине 3 м доминируют бурые водоросли и среди них C. crinita (75,5 %), на 6 м – багрянки и особенно J. rubens (31 %), на 9 м – зеленые, треть суммарной фитомассы которых приходится на долю C. albid. Доминанты первых двух горизонтов относятся к морским, ведущим, многолетним, олигосапробным водорослям. На глубине 9 м роль доминанта выполняет солоноватоводно-морская, сопутствующая, однолетняя, мезосапробионтная нитчатка из отдела Ch. Группа содоминантов на верхнем горизонте представлена бурой C. spongiosum (39 %), на среднем – багрянкой Ch. capillaris (17 %), на нижнем – бурой Z. typus (17 %). Все содоминанты – представители морской, многолетней, ведущей и олигосапробной групп водорослей. Видовой состав и экологическая характеристика доминантов и содоминантов свидетельствуют о низкой степени трофности вод в районе исследования.

На глубине 3 м, где основная доля фитомассы приходится на цистозиру, сообщество имеет монодоминантный характер, чему соответствует низкое значение индекса Шеннона (1,69). На более низких горизонтах разнородность фитомассы между видами более равномерна, о тносительно низкое значение индекса Шеннона выше почти вдвое (2,99) и свидетельствует о достаточном разнообразии сопутствующих видов по сравнению с фитообразцами на 3 м.

Методом кластерного анализа водоросли фитоценоза ск. Иван-Разбойник были распределены на две примерно равные по числу видов группы (27 и 28 таксонов). В первой группе – обитатели глубины 3 м, во второй – водоросли всех трех горизонтов. Степень общности видовых группировок превысила 50 %. Особенно много общих видов среди зеленых и красных водорослей, тогда как среди бурых водорослей сходна только половина видов. По количественному развитию в первой группе выделяется C. crinita, во второй – C. capillaris, J. rubens, E. elongata.

Заключение. Фитоценоз ск. Иван-Разбойник представлен 35 видами, 3 отделами, 10 порядками, 18 семействами и 20 родами. Наиболее важными экологическими группами являются олигосапробионтные водоросли, наименее – зеленые. Степень экологического подобия внутри фитоценоза ск. Иван-Разбойник кодифицирована на основе постоянных видов и их долей участия в фитомассе.

На глубине 3 м, где основная доля фитомассы приходится на цистозиру, сообщество имеет монодоминантный характер, чему соответствует низкое значение индекса Шеннона (1,69).

Рекогносцировочное обследование донной растительности в районе пгт Новый Свет проведено в 1989 г. В его прибрежной зоне на глубине 3 м распространены цистозирово-хондриевые фитоценозы. Их фитомасса варьирует от 281,6 до 1100,8 г/м², составляя в среднем 675,8 г/м². Первый ярус сообщества образует Cystoseira crinita, второй – Ulva linza, третий – Cladostephus spongiosum. В данном сообществе изредка встречается Corallina officinalis, формирующая четвертый ярус. Для сообщества, большая часть которого образована сезонно-летними видами, характерна мозаичность. Особо следует отметить включение в состав фитоценоза видов Ectocarpus, что свидетельствует о подверженности данного района антропогенному воздействию.

На глубине 5 м представлены цистозирово-филлофоровые сообщества, фитомасса которых...
изменяется от 1693,6 до 4484 г/м², достигая в среднем 3375,9 г/м². Первый ярус занимает доминант сообщества Cystoseira с фитомассой 1804 г/м², второй Phyllophora crispa, C. spongiosum, третий – E. elongata и G. spinosum. В данном сообществе по уровню формируемой фитомассы выделяются олигосапробные виды V. subulifera, Stilophora tenella, а также некоторые виды рода Ceramium. Зеленые водоросли (U. rigida, виды Chaetomorpha и Cladophora) представлены слабо.

«Прибрежный аквальный комплекс у горного массива «Караул-Оба» и «Прибрежный аквальный комплекс между пгт Новый Свет и г. Судаком»

Проведенные исследования актуальны и сегодня, так как содержат наиболее полные сведения о донной растительности двух памятников природы и могут служить основой для по-
Видовой состав макрофитов двух памятников природы представлен в таблице 1 и насчитывает 64 вида водорослей: 13 видов Chlorophyta (Ch), 12 – Ochrophyta (Och), 39 – Rhodophyta (Rh) и 2 – Tracheophyta (Маслов, Белич, 2002 а; Костенко и др., 2009; Костенко, Евстигнеева, 2017). Из общего числа обнаруженных макрофитов 7 видов водорослей и 2 вида цветковых растений внесены в Красную книгу Республики Крым (Zostera marina L., Zostera noltei Hornem), 2 вида водорослей – в Красную книгу Российской Федерации.

Полученные данные свидетельствуют о том, что район исследования характеризуется высоким биологическим разнообразием флоры водорослей и является типичным для шельфа южного берега Крыма, а выявленное соотношение зеленых, бурых и красных водорослей свидетельствует об относительно благополучной экологической обстановке этого участка Черного моря. Флористический коэффициент Ченея Р составляет 4,4, что соответствует флоре районов со средней степенью загрязнения. Ранее исследования фитопланктона позволили установить наличие антропогенной нагрузки в б. Судакская (Кузьменко и др., 2001).

ООПТ «Прибрежный аквальный комплекс у горного массива «Караул-Оба»

Донная растительность памятника природы формируется в достаточно разнообразных экологических условиях, включающих восточную часть б. Кутлакской с большим пляжем и открытый берег моря с высокой степенью прибойности. Обильному развитию донной растительности описываемого памятника природы способствует наличие подводных скал из известняков, которые практически не подвергаются разрушению. Скальный пояс довольно мощный и простирается до глубины 5 м.

В таблице 20 представлены сведения о распределении донных фитоценозов по глубинам и разрезам у памятника природы «Прибрежный аквальный комплекс у горного массива «Караул-Оба».

Таблица 20. Распределение фитоценозов по глубинам и разрезам у памятника природы «Прибрежный аквальный комплекс у горного массива «Караул - Оба»

<table>
<thead>
<tr>
<th>Глубина, м</th>
<th>Караул-Оба-1</th>
<th>Караул-Оба-2</th>
<th>Мыш Чикен</th>
<th>Бухта Голубая</th>
<th>Мыс Капчик</th>
<th>Бухта Синяя</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Диктиотовый Дермокоринусовый</td>
<td>Диктиотовый</td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>Цистозиро́вый</td>
<td>Цистозиро́вый</td>
<td>Цистозиро́вый</td>
<td>Цистозиро́вый</td>
<td>–</td>
<td>Цистозиро́вый</td>
</tr>
<tr>
<td>1</td>
<td>Цистозиро́вый</td>
<td>Цистозиро́вый</td>
<td>–</td>
<td>Цистозиро́вый</td>
<td>–</td>
<td>Цистозиро́вый</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Цистозиро́вый Дермокоринусовый</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Цистозиро́вый</td>
<td>Цистозиро́вый</td>
<td>Цистозиро́вый</td>
<td>Цистозировофиллофоровый</td>
<td>Цистозировофиллофоровый</td>
<td>Цистозировофиллофоровый</td>
</tr>
<tr>
<td>5</td>
<td>Цистозиро́вый; Нереййово- грация- риопсисовый</td>
<td>Цистозиро́вый</td>
<td>Цистозиро́вый</td>
<td>Цистозировофиллофоровый; Нереййевый</td>
<td>–</td>
<td>Цистозировофиллофоровый</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Цистозировофиллофоровый</td>
<td>–</td>
</tr>
<tr>
<td>9</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Филлофорово- ульворованный</td>
<td>Нереййевый</td>
</tr>
</tbody>
</table>
Всего выделено 12 типов фитоценозов. Среди них самым распространенным является цистозированный, за ним следуют цистозированно-филлофоровидный и зостеровый. К редко встречающимся относятся диктиотовый, нерейевограциляриопсисовый, филлофоровый и хондреевый. Центр разнообразия фитоценозов смещен на акваторию бухт Голубая, Синяя и м. Капчик. Как следует из таблицы 20, некоторые фитоценозы и прежде всего цистозированный имеют поясное распределение. Ширина цистозированных зарослей колеблется от 31 м у м. Чикен до 135 м у комплекса «Караул-Оба».

На глубине 0,5–5 м произрастает ассоциация Cystoseira crinita + C. barbata – Cladostephus spongiosum – Ellisolandia elongata, тогда как цистозированно-филлофоровая ассоциация Cystoseira crinita + C. barbata – (Phyllophora crispa) – Cladostephus spongiosum встречается на глубинах 3–6 м в обеих бухтах и у м. Чикен. На глубинах 9–15 м произрастают фитоценозы ассоциации Phyllophora crispa – Ulva rigida, Gracilariopsis longissima, Zostera marin a, Nereia filiformis, Chondria capillaris.

На верхних горизонтах в б. Голубая и б. Синяя обитает ассоциация Dilctyota fasciola + Polysiphonia opaca + Ceramium ciliatum. В б. Синяя на мягких грунтах произрастают чистые заросли Zostera marina, встречаются поселения Zostera noltiei. Оба вида обрабатываются Бернской конвенцией, внесены в Красную книгу Республики Крым. На отдельных участках дна и особенно на глубине 15 м среди зостеры обитает Ulva rigida. Морские травы образуют ассоциации Zostera marina, Zostera noltei, Zostera marina + Z. noltei. Заросли зостеры также обнаружены и за пределами памятника природы «Караул-Оба». На глубине 15 м на мягких грунтах в б. Голубая зафиксировано наличие ассоциации Chondria capillaris + Cladophora sp.

В результате проведенных гидроботанических исследований получены данные, позволяющие охарактеризовать не только видовой состав фитоценозов, продукционные способности макрофитов памятников природы, но и их пространственную динамику.

Комплекс «Караул-Оба» (разрез 1). В таблице 21 представлены данные по распределению видового состава и фитомассы макрофитов на станциях разреза 1. Среди идентифицированных видов обнаружены 18 видов макроводорослей и 1 вид Tracheophyta (табл. 21).
Таблица 21.

Количественная характеристика флористического состава фитоценозов двух памятников природы

<table>
<thead>
<tr>
<th>Район</th>
<th>Отделы водорослей</th>
<th>Тра</th>
<th>Всего видов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ch</td>
<td>Och</td>
<td>Rh</td>
</tr>
<tr>
<td>«ПАК у горного массива Караул-Оба»</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Караул-Оба (1)</td>
<td>3/17</td>
<td>8/44</td>
<td>7/39</td>
</tr>
<tr>
<td>Караул-Оба (2)</td>
<td>6/29</td>
<td>5/24</td>
<td>10/47</td>
</tr>
<tr>
<td>Мыс Чикен</td>
<td>5/22</td>
<td>5/22</td>
<td>13/56</td>
</tr>
<tr>
<td>Бухта Голубая</td>
<td>4/17</td>
<td>7/29</td>
<td>13/54</td>
</tr>
<tr>
<td>Мыс Капчик</td>
<td>5/23</td>
<td>6/27</td>
<td>11/50</td>
</tr>
<tr>
<td>Бухта Синяя</td>
<td>4/19</td>
<td>7/33</td>
<td>10/48</td>
</tr>
<tr>
<td>«ПАК между пгт Новый Свет и г. Судаком»</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гора Сокол (м. Широкий)</td>
<td>3/13</td>
<td>7/30</td>
<td>13/57</td>
</tr>
<tr>
<td>Гора Сокол (восточнее м. Широкого)</td>
<td>2/12</td>
<td>6/38</td>
<td>8/50</td>
</tr>
<tr>
<td>Пансионат «Дельфин»</td>
<td>3/15</td>
<td>7/35</td>
<td>10/50</td>
</tr>
<tr>
<td>Западнее пансионата «Дельфин»</td>
<td>3/13</td>
<td>8/35</td>
<td>12/52</td>
</tr>
</tbody>
</table>

Примечание: перед чертой – абсолютное число, за чертой – относительное число видов (%).

Между отделами водоросли распределяются следующим образом: 3 вида Ch, 8 видов Och, 7 видов Rh. Соотношение отделов по числу видов можно представить как 1 Ch : 3 Och : 2 Rh. Род Cystoseira представлен двумя видами, остальные – одним. Отделы и виды водорослей обладают разной встречаемостью в пространстве. У Ch и Rh она 100 %-ная, у Och – ниже на 17 %. Среди конкретных видов только Cladophora sp. имеет максимально высокую встречаемость, близка к ней встречаемость C. spongiosum (83 %). У половины видов макрофитов уровень данного показателя крайне низок.

Общее число видов макроводорослей изменяется от 4 на 15 м до 11 (12) на 1, 3 и 5 м (табл. 22). На глубине 0,5 м их состав сведен до 8 видов, а на самых больших для данного разреза горизонтах его разнообразие вдвое – втрое ниже. Число видов Ch на станциях разреза ограничено 1–2 таксонами.

Таблица 22.

Вертикальное изменение видового состава и фитомассы (г/м²) макрофитов в районе комплекса «Караул-Оба» (разрез 1)

<table>
<thead>
<tr>
<th>Виды</th>
<th>0,5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetomorpha sp.</td>
<td>–</td>
<td>0,2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>0,6</td>
<td>1,6</td>
<td>0,4</td>
<td>0,1</td>
<td>0,1</td>
<td>1,0</td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1,9</td>
<td>6,7</td>
</tr>
<tr>
<td>Ochrophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td>2380,0</td>
<td>319,0</td>
<td>269,8</td>
<td>11,0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C. barbata sp.</td>
<td>15,4</td>
<td>–</td>
<td>–</td>
<td>30,6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>–</td>
<td>0,3</td>
<td>0,8</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>0,5</td>
<td>955,0</td>
<td>247,0</td>
<td>0,1</td>
<td>–</td>
<td>0,5</td>
</tr>
<tr>
<td>Ectocarpus sp.</td>
<td>–</td>
<td>0,4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gelidium spinosum</td>
<td>0,1</td>
<td>0,1</td>
<td>0,3</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gracilariopsis longissima</td>
<td>–</td>
<td>–</td>
<td>22,1</td>
<td>10,5</td>
<td>31,7</td>
<td>37,0</td>
</tr>
<tr>
<td>Laurencia sp.</td>
<td>–</td>
<td>28,5</td>
<td>29,8</td>
<td>8,0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>182,5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Padina pavonica</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>12,7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td>1,1</td>
<td>3,6</td>
<td>2,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rhodophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chondria capillaris</td>
<td>–</td>
<td>–</td>
<td>2,9</td>
<td>–</td>
<td>3,0</td>
<td>–</td>
</tr>
</tbody>
</table>

205
Размах числа видов двух других отделов во много раз выше. Максимум видового разнообразия всех отделов пространственно не совпадает (у Ch он приходится на глубины 1, 10 и 15 м, у Och – на 5 м, у Rh – на 3 м).

Продукционные способности видов детерминированы не только генетическими особенностями, но и комплексом экологических факторов среды обитания. Общая фитомасса макрофитов на станциях разреза варьирует широко с максимумом на глубине 0,5 м и минимумом на самых низких горизонтах. Крайнее значения данного продукционного показателя отличаются в десятки раз (табл. 22). Прослеживается четкая выраженная тенденция снижения общей фитомассы по мере возрастания глубины. К основным продуктантам среди макрофитов акватории комплекса «Караул-Оба» относятся 3 вида бурых водорослей, по одному красных водорослей и цветковых растений. На глубинах 3 и 10 м группа доминантов представлена двумя видами, на остальных – одним. Показано, что C. crinita по уровню абсолютной фитомассы господствует на 0,5 и 3 м, C. spongiosum – на 1 и 3 м, G. longissima – на 10 и 15 м, N. filiformis – на 5 м, Z. marina на 10 м. Следует отметить, что фитомасса C. crinita, выступающей в роли доминанта сообщества, может превышать 2,0 кг/м². На глубине 0,5 м ее доля в общей фитомассе достигает 99 %, на других горизонтах она вдвое – втрое ниже или даже не достигает 4 %.

Наиболее весомый вклад C. spongiosum зафиксирован на глубине 1 м (72 % общей фитомассы). G. longissima на больших глубинах (10 и 15 м) отличается высоким показателем не только абсолютной фитомассы, но и относительной (42 и 82 %) Продукционный потенциал остальных видов водорослей крайне мал.

Комплекс «Караул-Оба» (разрез 2). На станциях этого разреза обнаружен 21 вид макроводорослей и 2 вида Tracheophyta, что на 3 и 1 вид, соответственно, больше, чем на станциях разреза 1. Кроме того, установлено, что видовое разнообразие Ch и Rh здесь выше, а Och ниже, чем на предыдущем разрезе (табл. 23). Отсюда меняется и соотношение отделов, которое выглядит как 1Ch : 1Och : 2Rh. Таксономическая структура является более сложной, в частности, за счет увеличения доли двухкомпонентных родов.

Таблица 23.

<table>
<thead>
<tr>
<th>Виды</th>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>Chlorophyta</td>
<td></td>
</tr>
<tr>
<td>Chaetomorpha sp.</td>
<td>0,2</td>
</tr>
<tr>
<td>Codium vermilara</td>
<td>–</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>0,3</td>
</tr>
<tr>
<td>Ulva intestinalis</td>
<td>–</td>
</tr>
<tr>
<td>U. linza</td>
<td>0,1</td>
</tr>
<tr>
<td>U. rigida</td>
<td>0,7</td>
</tr>
<tr>
<td>Ochrophyta</td>
<td></td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>3,0</td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td>1520,0</td>
</tr>
<tr>
<td>C. barbata</td>
<td>–</td>
</tr>
<tr>
<td>Padina pavonica</td>
<td>–</td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Вертикальное распределение видового состава и фитомассы (т/м²) макрофитов в районе комплекса «Караул-Оба» (разрез 2)
Rhodophyta

<table>
<thead>
<tr>
<th></th>
<th>23,0</th>
<th>24,1</th>
<th>24,6</th>
<th>37,7</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramium sp.</td>
<td>–</td>
<td>–</td>
<td>1,0</td>
<td>6,7</td>
<td>–</td>
</tr>
<tr>
<td>Chondria capillaris</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gelidium crinale</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5,7</td>
<td>–</td>
</tr>
<tr>
<td>G. spinosum</td>
<td>7,3</td>
<td>1,9</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Gracilariaopsis longissima</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,8</td>
<td>19,8</td>
</tr>
<tr>
<td>Laurencia sp.</td>
<td>–</td>
<td>2,4</td>
<td>65,2</td>
<td>192,3</td>
<td>1,0</td>
</tr>
<tr>
<td>Ellisandia elongata</td>
<td>10,0</td>
<td>2,3</td>
<td>2,0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>4,6</td>
<td>1,2</td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>34,9</td>
<td>55,2</td>
<td>131,8</td>
<td>145,2</td>
<td>14,1</td>
</tr>
<tr>
<td>Polysiphonia opaca</td>
<td>40,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Tracheophyta

<table>
<thead>
<tr>
<th></th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>60,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zostera marina</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Z. noltei</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1,5</td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>1639,8</td>
<td>881,3</td>
<td>985,1</td>
<td>924,4</td>
<td>105,9</td>
</tr>
</tbody>
</table>

Rh проявляет 100 %-ную встречаемость, у других отделов она ниже на 13 %. Морские травы обнаружены лишь на глубине 10 м. Среди видов максимально высокий уровень R характерен только V. subulifera. Кроме нее, к группе константных видов следует отнести Cladophora sp., C. spongiosum и C. crinita с большим, но не максимальным значением коэффициента R. Более трети состава макрофитов являются редкими для станций разреза 2.

Общее число видов макроводорослей колеблется примерно в тех же границах, что и на разрезе 1, с сохранением пространственной приуроченности своего минимума (0,5 м).

В отличие от ранее описанного разреза, на станциях разреза 2, за исключением 15 м, число видов является равно высоким (11 или 12 видов). Rh доминируют на всех горизонтах, за исключением 15 м, где они сходно сопоставимы с Ch. Вторая и третья позиция поочередно заняты остальными отделами. Размах пространственных колебаний числа видов каждого отдела большой частью совпадает. Максимум разнообразия Ch приходится на 0,5 и 10 м, Och и Rh наиболее богаты видами на одном и том же горизонте 5 м. Установлено, что видовая пропорция отделов на глубинах 0,5; 1 и 3 м одинакова (1Ch: 1Och : 2Rh). На 10 м все отделы представлены равной долей.

Общая фитомасса макрофитов изменяется в широких пределах с минимумом в 15 и 0,5 м, соответственно (табл. 23). Такое пространственное распределение показателя ранее было обнаружено и на станциях разреза 1. Однако крайние значения и размах изменения фитомассы здесь в 1,5–2 раза ниже. Примечательно, что такая обратная взаимосвязь между фитомассой и глубиной обитания также характерна и для макрофитов разреза 2.

Группа видов, лидирующих по уровню абсолютной фитомассы, включает 3 вида Och и по одному Rh и Tracheophyta, что является еще одной аналогией распределения ключевых продуцентов по отделам на станциях двух разрезов. Однако, на качественном уровне группы сходны лишь на 67 %. Горизонты, на которых виды-доминанты достигают наибольшего развития, не совпадают. Так, для C. spongiosum условия, наиболее благоприятные для эффективного формирования фитомассы, складываются на глубинах 1 и 3 м, для C. crinita – на 0,5 м, для C. barbata – на 5 м, для G. longissimi – на 15 м, а для Z. marina – на 10 м. На долю фитомассы этих видов приходится 22–93 % общей фитомассы макрофитов на соответствующем горизонте.

Мыс Чикен. В акватории мыса обитают 25 видов макроводорослей, из которых 2 вида относятся к Tracheophyta (табл. 24). Среди макроводорослей господствуют Rh (13 видов), виды других отделов распределены поровну. Видовое соотношение отделов выглядит, как 1Ch: 1Och : 3Rh. Пропорция видов зеленых и бурых водорослей не отличается от таковой на предыдущем разрезе. Из 19 родов водорослей Cystoseira, Gelidium и Polysiphonia включают по 2 вида. Остальные роды водорослей представлены одним видом (табл. 24).
<table>
<thead>
<tr>
<th>Виды</th>
<th>Глубина, м</th>
<th>0,5</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyta</td>
<td>Chaetomorpha sp.</td>
<td>–</td>
<td>0,3</td>
<td>0,01</td>
<td>0,1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Cladophora sp.</td>
<td>–</td>
<td>0,2</td>
<td>0,21</td>
<td>1,6</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>Ulva sp.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td>U. rigida</td>
<td>–</td>
<td>0,4</td>
<td>2,4</td>
<td>1,0</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td>Codium vermilara</td>
<td>–</td>
<td>–</td>
<td>0,7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ochrophyta</td>
<td>Cladostephus spongiosum</td>
<td>–</td>
<td>110,4</td>
<td>733,0</td>
<td>30,2</td>
<td>3,12</td>
</tr>
<tr>
<td></td>
<td>Cystoseira crinita</td>
<td>3400,0</td>
<td>285,8</td>
<td>528,0</td>
<td>0,1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Cystoseira barbata</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1,5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Padina pavonica</td>
<td>–</td>
<td>1,0</td>
<td>1,8</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Sphacelaria cirrosa</td>
<td>–</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rhodophyta</td>
<td>Apoglossum ruscifolium</td>
<td>–</td>
<td>–</td>
<td>0,4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Ceramium sp.</td>
<td>–</td>
<td>3,3</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Chondria capillaris</td>
<td>–</td>
<td>0,6</td>
<td>0,1</td>
<td>0,4</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Gelidium crinale</td>
<td>96,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>G. spinosum</td>
<td>–</td>
<td>5,6</td>
<td>7,1</td>
<td>0,1</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Dermocorynus dichotomus</td>
<td>–</td>
<td>0,2</td>
<td>0,3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Ellisolandia elongata</td>
<td>24,0</td>
<td>27,9</td>
<td>16,1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Dasya baillouviana</td>
<td>–</td>
<td>0,2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Gracilariopsis longissima</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>25,4</td>
<td>25,8</td>
</tr>
<tr>
<td></td>
<td>Laurencia sp.</td>
<td>–</td>
<td>99,2</td>
<td>9,8</td>
<td>0,5</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>Vertebrata subulifera</td>
<td>–</td>
<td>65,0</td>
<td>33,7</td>
<td>19,8</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td>Polysiphonia opaca</td>
<td>–</td>
<td>–</td>
<td>29,5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>P. elongata</td>
<td>–</td>
<td>–</td>
<td>18,1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tracheophyta</td>
<td>Zostera marina</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>65,5</td>
<td>52,0</td>
</tr>
<tr>
<td></td>
<td>Z. nolti</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1,2</td>
<td>–</td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>3520</td>
<td>600,2</td>
<td>1381,22</td>
<td>146,3</td>
<td>84,28</td>
<td></td>
</tr>
</tbody>
</table>

Все отделы характеризуются максимальным уровнем встречаемости. Tracheophyta произрастают только на двух последних горизонтах. В отличие от отделов, среди видов нет ни одного со 100 %-ным значением R. Тем не менее, к группе константных видов можно отнести по два таксона из Och и Ch и один из Rh. 40 % видов обнаружены лишь на одном из горизонтов.

Общее число видов в ценозе варьирует от 3 (0,5 м) до 16 (5 м). Наиболее обедненный видовой состав характерен для крайних станций разреза. По числу видов Rh превалирует почти на всех горизонтах, вторая позиция, как правило, занята Och. Виды Ch отсутствуют на 0,5 м, на других же станциях их количество примерно одинаково. Количественные минимумы разнообразия Och и Rh приурочены к одним и тем же крайним для разреза глубинам. Максимумы числа видов трех отделов большой частью разнесены в пространстве. Размах вертикальных колебаний видового разнообразия минималь у Ch (1 вид) и максималь у Rh (7 видов). На глубинах 3, 5 и 10 м отмечены совпадение количественной пропорции Ch и Och (1 : 1) и убедительное господство Rh. На крайних горизонтах, а также на 10 м сходство распространяется и на соотношение Och и Rh.

Общая фитомасса макрофитов в районе м. Чикен варьирует в широких границах, что подтверждается многократным отличием крайних значений этого показателя (табл. 24). Пространственные изменения фитомассы носят скорее колебательный характер с более выраженными максимумом на 0,5 м и минимумом на 15 м.

К группе ключевых продуцентов ценозов акватории мыса относятся C. crinita,
C. spongiosum, Z. marina, максимум продуцирования которых приходится на разные горизонты. Вклад фитомассы доминирующих видов оценивается в 40–97 % с максимумом у C. crinita на наименьшей глубине. Полученные данные свидетельствуют о том, что все фитоценозы обладают монодоминантной структурой. На глубинах 5 и 10 м можно выделить по одному виду содоминантной категории.

Бухта Голубая. На станциях данного разреза обнаружены 24 вида макроводорослей трех отделов (табл. 2) в соотношении 1Ch : 2Och : 3Rh. Большинство родов представлено одним видом и только Cystoseira и Polysiphonia – двумя (табл. 6).

Среди идентифицированных видов б. Голубая каждый пятый обладает высоким показателем встречаемости (83 %). К ним относятся C. spongiosum, E. elongata, G. spinosum, Laurencia sp., V. subulifera. Очень редкими для данного местообитания являются C. vermilara, A. ruscifolium, G. longissima, Z. typus. Встречаемость остальных видов достигает 30–67 %.

Минимум видового разнообразия ценоза зафиксирован на глубине 15 м, максимум – на 5 м. На горизонтах от 0,5 до 3 м число видов примерно одинаковое.

Количество видов Ch варьирует от 1 до 3 с максимумом на 10 м. Зеленые водоросли на глубинах 3–15 м, исключая горизонт 5 м, представлены 2–3 видами. Видовое разнообразие Och изменяется от 1 (15 м) до 4 (0,5, 1, 5 м) видов. Несмотря на такой размах крайних значений видового состав этих водорослей сформирован примерно одним и тем же числом таксонов.

Для вертикального распределения видов Rh, по сравнению с другими отделами, характерен самый широкий размах крайних значений их числа (8 видов). Вместе с тем, подобно Och, красные водоросли проявляют минимум своего разнообразия на наибольшей для данного разреза глубине. На большинстве других горизонтов число их видов одинаково выше в несколько раз.

Общая фитомасса водорослей изменяется в широких пределах с размахом в 1804,2 г/м² (табл. 25).

Таблица 25.
Вертикальное распределение видового состава и фитомассы (г/м²) макрофитов в б. Голубая

<table>
<thead>
<tr>
<th>Виды</th>
<th>Глубина, м</th>
<th>0,5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaetomorpha sp.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>0,4</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>–</td>
<td>58,6</td>
<td>–</td>
<td>0,5</td>
<td>0,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Codium vermilara</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>196,6</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>0,3</td>
<td>–</td>
<td>3,8</td>
<td>0,6</td>
<td>8,2</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>Ochrophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>18,2</td>
<td>145,3</td>
<td>8,4</td>
<td>184,6</td>
<td>1,8</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td>565,0</td>
<td>1395,0</td>
<td>420,0</td>
<td>497,0</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>C. barbata</td>
<td>–</td>
<td>–</td>
<td>775,0</td>
<td>–</td>
<td>3,1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>0,7</td>
<td>2,0</td>
<td>–</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Padina pavonica</td>
<td>89,2</td>
<td>26,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Zanardinia typus</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1,1</td>
<td></td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td>–</td>
<td>–</td>
<td>13,0</td>
<td>167,6</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhodophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td>–</td>
<td>–</td>
<td>0,21</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Callithamnion corymbosum</td>
<td>0,3</td>
<td>0,2</td>
<td>–</td>
<td>2,1</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ceramium sp.</td>
<td>0,5</td>
<td>0,2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Chondria capillaris</td>
<td>0,2</td>
<td>6,8</td>
<td>0,4</td>
<td>–</td>
<td>–</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>Ellisolandia elongata</td>
<td>0,21</td>
<td>0,7</td>
<td>7,0</td>
<td>0,2</td>
<td>1,0</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Dasya baillouviana</td>
<td>–</td>
<td>0,5</td>
<td>0,9</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Gelidium spinosum</td>
<td>1,3</td>
<td>0,8</td>
<td>1,6</td>
<td>2,2</td>
<td>0,9</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Gracilariosis longissima</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1,01</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Laurencia sp.</td>
<td>2,6</td>
<td>28,2</td>
<td>8,5</td>
<td>100,5</td>
<td>0,3</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td>0,6</td>
<td>–</td>
<td>290,0</td>
<td>58,6</td>
<td>197,5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>68,2</td>
<td>142,7</td>
<td>231,4</td>
<td>433,0</td>
<td>0,1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Polysiphonia opaca</td>
<td>0,3</td>
<td>–</td>
<td>–</td>
<td>4,0</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>P. elongata</td>
<td>–</td>
<td>0,3</td>
<td>–</td>
<td>7,5</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>747,61</td>
<td>1807,3</td>
<td>1747,31</td>
<td>1305,61</td>
<td>577,2</td>
<td>3,1</td>
<td></td>
</tr>
</tbody>
</table>
На глубинах от 0,5 до 3 м количественно господствуют виды цистозиры, на глубине 5 м к ним присоединяется V. subulifera, на 10 м преобладают Ph. crispa, N. filiformis и C. vermilara. На долю таких видов приходится 33–77 % общей фитомассы ценоза. C. cinita, типичная для бухты, наибольшего развития достигает на глубине 1 м. В целом, исходя из имеющихся данных, на глубинах 0,5–3 м сообщества водорослей монодоминантные, глубже – полидоминантные.

Мыс Капчик. В акватории мыса обнаружены 22 вида макроводорослей, которые между отделами распределяются в соответствии с пропорцией 1 Ch : 1 Och : 2 Rh (табл. 26). Три рода из 19 представлены двумя видами, остальные одним. Чл и Rh имеют 100 %-ную встречаемость, у Och она ниже на 14 %. Среди видов этих отделов нет ни одного с максимально высоким показателем R. Только у двух видов (C. spongiosum, E. elongata) он составляет 86 %. Каждый пятый вид встречается в единичных случаях (R = 14 %). Такие данные свидетельствуют о неравномерности распределения видового состава по глубинам.

Общее число видов колеблется широко, при котором крайних значений приуроченность их совпадает с таковой на выше описанных разрезах (табл. 26).

Таблица 26.

<table>
<thead>
<tr>
<th>Виды</th>
<th>Глубина, м</th>
<th>0</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>9</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaetomorpha sp.</td>
<td>0,2</td>
<td>0,5</td>
<td>1,0</td>
<td>1,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>0,6</td>
<td>5,0</td>
<td>0,5</td>
<td>–</td>
<td>–</td>
<td>0,5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ulva intestinalis</td>
<td>0,8</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Codium vermilara</td>
<td>5,8</td>
<td>3,0</td>
<td>–</td>
<td>0,5</td>
<td>20,5</td>
<td>10,5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>5,8</td>
<td>3,0</td>
<td>132,5</td>
<td>875,0</td>
<td>181,0</td>
<td>119,0</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>3,0</td>
<td>342,0</td>
<td>1322,5</td>
<td>875,0</td>
<td>181,0</td>
<td>119,0</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td>2880,0</td>
<td>3050,0</td>
<td>1205,0</td>
<td>28,0</td>
<td>–</td>
<td>40,5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>C. barbata</td>
<td>–</td>
<td>–</td>
<td>56,5</td>
<td>0,5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td>0,4</td>
<td>0,5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Zanardinia typus</td>
<td>–</td>
<td>–</td>
<td>2,5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>51,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ellisolandia elongata</td>
<td>50,4</td>
<td>0,5</td>
<td>4,5</td>
<td>5,0</td>
<td>8,0</td>
<td>–</td>
<td>6,5</td>
<td></td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td>0,4</td>
<td>–</td>
<td>0,5</td>
<td>1,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Callithamnion corymbosum</td>
<td>1,4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ceramium sp.</td>
<td>560,0</td>
<td>8,5</td>
<td>0,5</td>
<td>0,5</td>
<td>–</td>
<td>0,5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Gelidium crinale</td>
<td>–</td>
<td>–</td>
<td>0,5</td>
<td>–</td>
<td>4,0</td>
<td>2,0</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>G. spinosum</td>
<td>40,08</td>
<td>34,0</td>
<td>0,5</td>
<td>5,0</td>
<td>0,5</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Gracilariopsis longissima</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Dermocorynus dichotomus</td>
<td>36,0</td>
<td>13,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Laurencia sp.</td>
<td>0,2</td>
<td>–</td>
<td>154,0</td>
<td>201,5</td>
<td>3,5</td>
<td>0,5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td>–</td>
<td>–</td>
<td>21,5</td>
<td>5,0</td>
<td>37,5</td>
<td>183,0</td>
<td>298,0</td>
<td></td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>16,5</td>
<td>284,5</td>
<td>39,5</td>
<td>0,5</td>
<td>0,5</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>3579,28</td>
<td>3473,5</td>
<td>2995,5</td>
<td>1221,0</td>
<td>307,5</td>
<td>874,0</td>
<td>1009,5</td>
<td></td>
</tr>
</tbody>
</table>

Количество видов Ch изменяется от 1 (15 м) до 4 (0 м). В пространственном распределении видов данного отдела можно наблюдать снижение их числа по мере увеличения глубины с 0 до 9 м. Как правило, число видов Ch на каждой глубине выводит их на вторую позицию. Размах вариабельности видового разнообразия Och немного ниже, чем у Ch. Максимум числа видов этого отдела приходится на глубину 4 м. В целом, для видов Och характерна неравномерность в количественном распределении по глубинам. Rh лидирует на всех станциях разреза. Больше всего таких видов на 3 м, на один вид меньше – на 0, 6 и 9 м. Минимум видового разнообразия зафиксирован на самой большой глубине. Во всех случаях максимум видового разнообразия отделов приходится на разные горизонты.

Общая фитомасса варьирует по глубинам в очень широких границах, при которых размах
крайних значений превышает 3 кг/м². Наиболее
абсолютная фитомасса водорослей прихо-
dится на ценоз на горизонте 0 м, наименьшая на
9 м. В этом промежутке глубин можно наблю-
dать постепенное, а затем резкое сни-
жение анализируемого показателя до миниму-
ма. После этого происходит нарастание фито-
массы, но без достижения первого максимума.

Группа ключевых продуцентов акватории
м. Капчик состоит из C. spongiosum, C. crinita,
C. vermilara. Станции, на которых перечислен-
ные виды играют доминирующую роль, не сов-
pадают. Доля фитомассы доминантов варьирует
от 40 до 88 %. За исключением глубины 3 м, на
всех горизонтах сообщество водорослей имеет
монодоминантный характер.

Бухта Синяя. Здесь обитают 22 вида мак-
рофитов, один из которых относится к цветко-
вым (табл. 27).

Таблица 27.

<table>
<thead>
<tr>
<th>Виды</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Chlorophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>463,0</td>
<td>533,7</td>
<td>6,2</td>
<td>117,1</td>
<td>0,4</td>
</tr>
<tr>
<td>Ulva linza</td>
<td>–</td>
<td>0,2</td>
<td>–</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>U. rigida</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>–</td>
</tr>
<tr>
<td>Chaetomorpha linum</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>0,1</td>
<td>–</td>
</tr>
<tr>
<td>Ochrophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td>863,0</td>
<td>870,0</td>
<td>1325,0</td>
<td>775,0</td>
<td>–</td>
</tr>
<tr>
<td>C. barbata</td>
<td>–</td>
<td>–</td>
<td>220,0</td>
<td>–</td>
<td>28,0</td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>51,0</td>
<td>64,1</td>
<td>14,0</td>
<td>110,4</td>
<td>35,2</td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>–</td>
<td>0,5</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Padina pavonica</td>
<td>0,7</td>
<td>5,8</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sphacelaria sp.</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>29,2</td>
<td>12,1</td>
</tr>
<tr>
<td>Rhodophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellisolandia elongata</td>
<td>–</td>
<td>–</td>
<td>2,5</td>
<td>0,3</td>
<td>1,2</td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td>–</td>
<td>0,1</td>
<td>0,3</td>
<td>0,1</td>
<td>–</td>
</tr>
<tr>
<td>Ceratium sp.</td>
<td>5,6</td>
<td>–</td>
<td>–</td>
<td>0,3</td>
<td>–</td>
</tr>
<tr>
<td>Chondria capillaris</td>
<td>–</td>
<td>–</td>
<td>15,2</td>
<td>3,5</td>
<td>–</td>
</tr>
<tr>
<td>Gracilariopsis longissima</td>
<td>2,6</td>
<td>0,6</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Laurencia sp.</td>
<td>9,0</td>
<td>–</td>
<td>49,95</td>
<td>68,6</td>
<td>16,8</td>
</tr>
<tr>
<td>Gelidium spinosum</td>
<td>–</td>
<td>–</td>
<td>2,6</td>
<td>0,3</td>
<td>–</td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td>3,7</td>
<td>–</td>
<td>47,8</td>
<td>8,0</td>
<td>12,1</td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>101,8</td>
<td>2,5</td>
<td>555,0</td>
<td>421,8</td>
<td>223,2</td>
</tr>
<tr>
<td>Polysiphonia elongata</td>
<td>0,5</td>
<td>–</td>
<td>0,3</td>
<td>–</td>
<td>2,4</td>
</tr>
<tr>
<td>Tracheophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zostera marina</td>
<td>180,0</td>
<td>3,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>1501,0</td>
<td>1447,5</td>
<td>2229,05</td>
<td>1505,6</td>
<td>528,5</td>
</tr>
</tbody>
</table>

45 % общего состава приходится на Rh,
32 % – на Och и оставшиеся – на Ch. Видовая
пропорция отделов выглядит как 1Ch : 2Och : 3Rh. Из 19 родов макроводорослей только два
представлены таким же количеством видов,
остальные – одним. Подобное распределение
видов по родам отмечено для альгофлоры всех
выше описанных районов памятника природы.

Представители трех отделов обнаружены
на всех станциях разреза, цветковые – только на
10 и 15 м. Среди видов 100 %-ную встречае-
mость проявляют Cladophora sp., C. spongiosum,
V. subulifera. Немногим ниже этот показатель у
C. crinita и Ph. crispa. Мало типичными для аль-
гофлоры бухты являются D. fasciola,
Sphacelaria sp., U. rigida (R = 17 %). Остальные
виды обитают на двух-трех из шести обследо-
ванных горизонтах.

Общее число видов макроводорослей варьи-
рует в более узких границах, чем в ранее опи-
саных районах и отличается относительной
равномерностью вертикального распределения
(табл. 8). Это же касается и динамики видового
разнообразия Ch и Och. У Rh пространственные
колебания числа видов выражены сильнее: их размах (6 видов) втрое значительнее, чем у других отделов. На глубинах 3 и 5 м доля Rh пре- вышает 60 %, на иных горизонтах она ниже (33–53 %). Минимум разнообразия Och и Rh зафиксирован на одном и том же горизонте.

В пространственной динамике общей фитомассы макрофитов можно наблюдать возрастание показателя по мере увеличения глубины от 0,5 до 3 м, после чего наступает его много- кратное снижение, особенно на 10 и 15 м. Отличие крайних значений показателя достигает нескольких порядков.

На первых четырех горизонтах в качестве основного продуцента выступает C. crinita. На ее долю здесь приходится 51–59 % общей фитомассы на каждом горизонте. На больших глубинах подобную роль выполняет V. subulifera. В отличие от других районов, в составе фитоценозов б. Синяя на глубинах 0,5–5 м возможно вы- деление двух содоминантов (Cladophora sp. и V. subulifera). Остальные виды по своей значимо- сти являются второстепенными продуцентами.

В целом, донная растительность комплекса «Караул-Оба» отличается богатым составом растительных сообществ и наличием редких видов водорослей. Полученные данные подтверждают важную роль данной охраняемой территории в сохранении биологического разнообразия Черного моря.

ООПТ «Прибрежный аквальный комплекс между пгт Новый Свет и г. Судаком»

Этот район характеризуется высоким био- логическим разнообразием флоры водорослей, которая является типичной для ненарушенных участков шельфа южного берега Крыма. Данные таблицы 28 свидетельствуют о разнообра- зии фитоценозов в акватории данного памятни- ка природы, которое вполовину ниже, чем в районе памятника «Прибрежный аквальный комплекс у горного массива «Караул-Оба». Од-нако здесь на скальных грунтах также развит мощный пояс цистозировых и цистозирово- филофоровых зарослей, которые представлены несколькими ассоциациями. Зостеровые фито- ценозы обитают только на глубине 15 м у широ- рокого мыса с. Сокол. На глубинах 1 и 15 м встречаются фитоценозы трех типов, на осталь- ных – по два. У горы Сокол восточнее широко- го мыса водоросли представлены наибольшим числом фитоценозов.

Ассоциация Cystoseira barbata + C. crinita – Cladostephus spongiosum – Ellisolandia elongata образует пояс на глубинах 0,5–1 м на востоке от широкого мыса в основании горы Сокол, а также западнее пансионата «Дельфина» и напротив него. Широкое распространение (0,5–10 м) получает асс. Cystoseira crinita + C. barbata – Phyllophora crispa – Ellisolandia elongata, формирующая само- стоятельный пояс у широкого мыса.

Таблица 28.

<table>
<thead>
<tr>
<th>Разрезы</th>
<th>Глубина, м</th>
<th>Фитоценозы</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>Фитоценозы</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Гора Сокол (м. широкий)</td>
<td>Цисто-</td>
<td>Цистозирово-</td>
</tr>
<tr>
<td></td>
<td>зирово-</td>
<td>филофоровый</td>
</tr>
<tr>
<td>Гора Сокол (восточнее</td>
<td>Цисто-</td>
<td>Цистози-</td>
</tr>
<tr>
<td>м. широкого)</td>
<td>зировый</td>
<td>зировый</td>
</tr>
<tr>
<td>Западнее</td>
<td>Цисто-</td>
<td>Цистози-</td>
</tr>
<tr>
<td>пансионата «Дельфин»</td>
<td>зировый</td>
<td>зировый</td>
</tr>
<tr>
<td>Пансионат «Дельфин»</td>
<td>Цисто-</td>
<td>Диктиотовый</td>
</tr>
<tr>
<td></td>
<td>зировый</td>
<td>филофоровый</td>
</tr>
</tbody>
</table>

На глубине 15 м к востоку от широкого мыса и западнее пансионата «Дельфин» зарегистрированы: Phyllophora crispa – Ellisolandia elongata. В районе широкого мыса на мягких грунтах на глубине 15 м произраста-
ют смешанные заросли асс. Zostera marina + Z. noltei.

Гора Сокол (широкий мыс). Фитобентосные сборы показали, что в данном районе израстают сообщества, видовой состав которых насчитывает 25 видов макрофитов из 22 родов (табл. 29). Среди них присутствуют 2 вида Tracheophyta, остальные – макроводоросли. 52 % общего состава водорослей приходится на Rh, 28 % – на Och и 12 % – на Ch. Соотношение отделов выглядит как 1Ch : 2Och : 4Rh, что свидетельствует о высоком видовом преимуществе красных водорослей. Из общего числа родов Cystoseira, Polyssiphonia и Zostera представлены двумя видами, остальные – одним (табл. 29).

Таблица 29.
Вертикальные изменения видового состава и фитомассы макрофитов (г/м²) у широкого мыса под г. Сокол

<table>
<thead>
<tr>
<th>Виды</th>
<th>Глубина, м</th>
<th>0,5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetomorpha sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>2,0</td>
<td>2,0</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ochrophyta							
Sphacelaria sp.							0,31
Cladostephus spongiosum		1290,0	7,0	21,3			
Cystoseira crinita	1290,0	2005,0	53,3				
C. barbata	-	43,0	164,2	0,1	3,0		
Dictyota fasciola	-	-	0,1				
Zanardinia typus	-	-	-	0,3	-		
Nereia filiformis	-	-	-	9,3			

Rhodophyta							
Apoglossum ruscifolium							
Callithamnion corymbosum	-	-	-	1,5	-		
Ceramium sp.	-	0,1	-	-			
Ellisolandia elongata	10,4	42,3	11,7	2,6			
Chondria capillaris	-	0,6	0,3	0,8	-		
Dermocorynus dichotomus	0,3	-	-	-	-		
Kylinia sp.	-	-	-	1,5	-		
Laurencia sp.	-	8,4	-	11,1	0,9	-	
Phyllophora crispa	16,7	6,8	32,8	22,0	1,3	10,5	
Сравнительно высокое видовое и родовое разнообразие макрофитов данного района сочетается с довольно низким показателем их встречаемости R. Около половины видов обнаружены лишь на одном из горизонтов (R=17%). У остальных видов лимиты значений коэффициента R часто составляют 33–67%. Из общего состава выделяются Ph. crispa и V. subulifera с встречаемостью 100 и 83%.

Анализ пространственного распределения водорослей показал, что Och и Rh присутствуют на всех горизонтах, Ch – только на 0,5–5 м. Максимум видового разнообразия каждого отдела и сообщества в целом приходится на одну и ту же глубину 5 м, минимум – на 0,5 и чаще на 15 м. С увеличением глубины от 0,5 до 5 м происходит постепенное возрастание числа видов каждого отдела, после 5 м наблюдается обратная зависимость. Rh численно господствует на всех горизонтах, где на его долю приходится от 50 до 75 % общего видового состава.

В итоге, относительно высокое таксономическое разнообразие, существенное преимущество Rh и, в целом, невысокая встречаемость большинства видов, смещение локализации максимума видового разнообразия с 0,5 до 5 м происходит постепенное возрастание числа видов каждого отдела, после 5 м наблюдается обратная зависимость. Rh численно господствует на всех горизонтах, где на его долю приходится от 50 до 75 % общего видового состава.

Общая фитомасса макрофитов на станциях разреза варьирует очень широко (табл. 30). Разница крайних значений показателя достигает нескольких десятков раз. С увеличением глубины от 0,5 до 3 м наблюдается рост фитомассы, ниже происходит ее резкое уменьшение.

В сообществе на горизонтах 0,5; 1, 3 и 5 м в качестве продукнта преобладают виды цистозиры, среди которых доля C. crinita в общей фитомассе составляет 80–91 %. Содомinantами цистозиры являются V. subulifera на глубине 1 м (16 %) и 5 м (28 %). На глубине 10 м 64 % фитомассы приходится на N. filiformis, на 15 м 68 % фитомассы сформирована за счет деятельности Z. marina и 23 % – ее содоминанта Ph. crispa. Вклад остальных видов незначительный.

Гора Сокол (восточнее широкого мыса). На станциях данного разреза обнаружены 16 видов, половина которых принадлежит Rh, второе и третье места заняты Och и Ch, соответственно. Видовая пропорция отделов выглядит как 1Ch : 3Och : 4Rh, то есть сохраняется соотношение отделов Ch и Rh, установленное для альгофлоры предыдущего района и увеличивается вклад Och в формирование видовой структуры сообществ. Из общего числа родов только Cystoseira представлен двумя видами, остальные – одним (табл. 30).

Таблица 30.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Глубина, м</th>
<th>Глубина, м</th>
<th>Глубина, м</th>
<th>Глубина, м</th>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Chlorophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetomorpha sp.</td>
<td>–</td>
<td>–</td>
<td>0,2</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>Ochrophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td>400,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C. barbata</td>
<td>–</td>
<td>–</td>
<td>53,3</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>6,9</td>
<td>100,0</td>
<td>0,5</td>
<td>8,4</td>
<td></td>
</tr>
<tr>
<td>Sphacelaria sp.</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Zanardinia typus</td>
<td>–</td>
<td>–</td>
<td>9,8</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td>–</td>
<td>–</td>
<td>72,5</td>
<td>3,2</td>
<td></td>
</tr>
</tbody>
</table>
Представители отделов Och и Rh обнаружены на всех станциях разреза, Ch – только на 10 и 15 м. 100 %-ная встречаемость характерна для C. spongiosum, E. elongata, V. subulifera, у Laurencia sp., Ph. crispa она равна 75 %. Встречаемость остальных видов достигает 25 (6 видов) и 50 % (5 видов).

Общее число видов в сообществах на первых двух горизонтах равно 5 таксонам, на остальных – 12. Виды Rh доминируют на всех горизонтах, но в разной степени: незначительно на 3 и 5 м и более существенно – на 5 и 15 м. На их долю приходится от 50 до 80 % общего видового состава. Вклад видов Och вдвое ниже, у Ch он менее 10 %. Максимум общего числа видов и видов Och, в отдельности, приходится на 10 м, у Rh – на 15 м.

Общая фитомасса водорослей варьирует в более узких пределах, чем на ранее описанном участке моря. Максимальное значение фитомассы только вчетверо превышает минимальное. Самый низкий уровень фитомассы зарегистрирован на 5 и 15 м, на других горизонтах он выше в несколько раз. В целом, пространственные изменения показателя осуществляются в колебательном режиме.

На самой малой для данного разреза глубине позиция доминирующего продуцента занята C. crinita, где ее вклад в продукционный процесс оценивается в 86 %. Доля остальных видов небольшая. На глубине 5 м такая роль принадлежит V. subulifera, а на 10 и 15 м – Ph. crispa. На глубине 5 м помимо доминанта можно выделить содоминирующий вид C. spongiosum. Роль других видов в формировании общей фитомассы невелика. Такие данные убедительно свидетельствуют о выраженной монодомinantности анализируемых сообществ. К выше названным особенностям альгофлоры, произрастающей восточнее широкого мыса г. Сокол, следует добавить и незначительность участия Ch в формировании видовой структуры и в продукционном процессе.

Пансионат «Дельфин». В сборах на станциях данного разреза обнаружены макроводоросли 20 видов 19 родов (табл. 31).
Между отделами виды распределяются в соответствии с пропорцией 1Ch : 2Och : 3Rh, то есть иначе, чем на двух других разрезах, но с сохранением преимущества у последнего отдела. На долю Rh приходится 50 % общего состава. Подобно альгофлоре предыдущих разрезов, здесь существенен вклад родов, представленных одним видом.

Водоросли трех отделов обитают на всех горизонтах. Неизменными компонентами видовой структуры на всех станциях являются C. crinita, C. barbata, Ph. crispa и V. subulifera. Доля их фитомассы достигает 28–93 %. В сообществах, где есть содоминанты или роль доминанта принадлежит нескольким видам, относительная фитомassa ниже. На глубине 3 и 5 м отмечено наличие такого содоминанта, как V. subulifera. Показано, что виды цистозиры господствуют на 1, 3, 5 м, филлофора – на 10 и 15 м, вертебрата – на 10 м.

Разрез западнее пансионата «Дельфин». В акватории данного участка берега произрастают макроводоросли 23 видов 20 родов, при надлежащих трем отделам. 52 % общего состава приходится на видах Rh, 35 % – на Och и оставшиеся – на Ch. Видовая пропорция отделов выглядит так: 1Ch : 3Och : 4Rh, что отличает ее от таковой на предыдущем разрезе. Три рода представлены двумя видами, остальные – одним (табл. 32).

Таблица 32.

<table>
<thead>
<tr>
<th>Вид</th>
<th>0,5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetomorpha sp.</td>
<td>–</td>
<td>0,31</td>
<td>–</td>
<td>0,3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>0,2</td>
<td>1,71</td>
<td>2,2</td>
<td>–</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>0,4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ochrophyta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>42,6</td>
<td>902,2</td>
<td>391,6</td>
<td>19,4</td>
<td>3,0</td>
<td>0,7</td>
</tr>
</tbody>
</table>
Встречаемость Och и Rh остается такой же, как на предыдущем разрезе, тогда как у Ch она немного ниже. Величина коэффициента R у видов колеблется от 17 до 100 % с максимумом у C. spongiosum, E. elongata, G. spinosum, V. subulifera. Близка к максимальной и встречаемость Laurencia sp. Менее трети видов встречаются крайне редко. Такие данные свидетельствуют о более выраженной пространственной консервативности видового состава, по сравнению с комплексами водорослей выше описанных участков.

Анализ пространственной динамики видового состава показал, что на всех станциях преимущественное развитие получает Rh, на долю видов которого приходится 46–61 % общего состава. На малых глубинах количество видов Och не отличается от такового у Ch, глубже – их больше в 4–6 раз. Минимум разнообразия всего фитоценоза, Och и Rh, в отдельности, приходится на 0,5 м, максимум – на 1, 3 и 5 м. У Ch на 0,5 и 1 м видовое разнообразие выше, чем на других горизонтах. Начиная с глубины 3 м видовое разнообразие постепенно уменьшается.

Установлено, что размах пространственных вариаций общей фитомассы и разница ее крайних значений ниже, чем на соседнем разрезе. Это еще одно свидетельство относительной устойчивости анализируемых параметров альгофлоры данного района. Пониженный уровень фитомассы отмечен на крайних для этого разреза горизонтах. На других глубинах величина показателя одинаково выше.

Группа ключевых продуцентов состоит из C. crinita, C. spongiosum, Ph. crispa, V. subulifera. На глубине 3 м сообщество полидоминантное, на остальных – монодоминантное. На некоторых горизонтах в качестве содоминантов выступают C. crinita, V. subulifera, C. barbata. В таком случае первые два вида можно причислить к фитоценозам. Доля видов, входящих в группу доминантов, колеблется от 24 до 97 % суммарной фитомассы на соответствующем горизонте. Максимум этого показателя указывает на монодоминантность того или иного сообщества, минимум – на полидоминантную структуру или на наличие содоминантовых видов. Фитомassa остальных видов исчисляется несколько граммами. В целом, разнообразие ключевых продуцентов в составе фюзигабра ООПТ «Прибрежный аквальный комплекс между пгт Новый Свет и г. Судаком» меньше, чем подобное у ранее описанного памятника, но они также относятся к ведущим, морским и олигосапробным видам.

Проведенное исследование показало, что донная растительность этого памятника природы имеет большую природохозяйственную ценность, так как представлена достаточно хорошо сохранившимися сообществами с включением редких олигосапробных видов нерей и занардинии, предпочитающих акватории с достаточно высоко-кой гидродинамикой прибрежных вод.
Заключение. В районах исследований оби- тают 64 вида бентосных водорослей и два вида морских трав. Среди макрофитов наибольшее развитие получают красные водоросли. Таксо- номическая структура бентосной альгофлоры отличается упрощенностью и преобладанием родов, представленных одним видом. Альгофлора двух памятников природы отличается друг от друга степенью разнообразия фитоценозов, одной из них незначительно лидируют цистозиро- вые и цистозиро-филофорные комплексы. Ключевые продукты охраняемых территорий относятся к морским, ведущим, оли- госапробным видам, большинство которых явля- ются красными и бурыми водорослями. Общее число видов, фитомassa всего ценоза и сла- гаю- щих его отделов отличается неравномерностью распределения как по раям, так и по глуби- нам, что особенны?тично для альгофлоры ООПТ «Прибрежный аквальный комплекс у горного массива «Караул-Оба». Наиболее бо- гатство видового состава, как правило, характер- но для ценоэз мальных глубин, наименьшая – больших. Максимум видового разнообразия от- делов территориально не совпадает. Для про- странственных изменений фитомассы ценозов наиболее свойствена обратная зависимость между ее величиной и глубиной обитания.

Обследование донной растительности двух памятников природы «Прибрежный аквальный комплекс у горного массива «Караул-Оба» и «Прибрежный аквальный комплекс между пгт Новый Свет и г. Судаком» показало хоро- шую сохранность донной растительности, относи- тельно высокое видовое и ценотическое разнообразие водорослей в условиях высокой гидро- динамической активности вод, наличие редких видов, внесенных в Красную книгу Крыма. Полученные данные могут служить основой для долговременного мониторинга донной растительности этих памятников природы.

ООПТ Памятник природы регионального значения «Полуостров Меганом»

Полуостров Меганом выделяется далеко в от- крытое море и характеризуется наибольшей для всего Юго-Восточного Крыма динамично- стью водных масс и высокой прибойностью (Чекме- нева, Субботин, 2004). Донная растительность шельфа полуострова Меганом тяготеет к при- бежному поясу известковых глыб. Глыбы залегают на траверсе м. Рыбачий от уреза воды до глубины 15–17 м, на остальной акватории – до глубины 7 м. На глубинах 7–11 м субстратом для водорослей являются раковины мидий, а также отдельные камни. На глубинах свыше 13 м наблюдаются выходы известковых плит.

В акватории полуострова Меганом для выявленных семи растительных ассоциаций многолетних водорослей с включением участков морских трав на песчаных грунтах характерно вертикально-поясное распространение.

На глубинах 0,3–3 м вдоль побережья Меганом на скалистых субстратах выявлены характерные для данного региона цистозировальные и цистозировально-кладостефусовые фитоценозы, входящие в ассоциацию Cystoseira crinita + C. barbata – Cladostephus spongiosum – Ellisoselandia elongata. Здесь встречаются C. spongiosus, D. fasciola, E. elongata, C. dalmatica, G. spinosum.

У м. Бугас в 2005 и 2006 гг. на глубинах 0,5–1 м в условиях высокой прибойности была обнаружена мало распространенная асс. Dictyota fasciola – 1838,5 г/м2. Фитомасса фитоценоза на глубине 5 м составляет 1225 г/м2. На долю C. crinita приходится 458,3 г/м2, Ph. crispa – 545,7 г/м2, U. rigida – 56,6 г/м2. Среди сопутствующих видов ассоциации встречены A. ruscifolium, виды Cladophora, G. spinosum, N. filiformis, виды Laurencia, V. subulifera, Z. typus. На глубине 10 м фитомасса ассоциации почти вдвое ниже (697,2 г/м2). На долю C. barbata приходится 9,4 г/м2, Ph. crispa – 119 г/м2. Высокие значения фитомассы на глубине 10 м имеют C. spongiosum (412,4 г/м2, или 59,2 %), N. filiformis – (110,6 г/м2, или 15,9 %).

Ассоциация Phyllophora crispa – Ulva rigida произрастает на известняковых глыбах на глубине 10–5 м в районе м. Меганом и м. Рыбачий. Ph. crispa имеет фитомассу до 1940 г/м2 и U. rigida до 135 г/м2, обычная Z. typus. Общая фитомасса фитоценозов в ассоциации варьирует очень широко (от 44,8 г/м2 до 2290 г/м2), составляя в среднем 1203 г/м2.

Ассоциация Chondria capillaris – Cladophora albida была описана А. Л. Калугиной-Гутник (1973) для южных берегов Крыма. В районе м. Меганом на глубинах 3–5 м она занимает мягкие грунты. В 1998 г. на глубине 3 м фитомасса ее фитоценозов достигала 18,44 г/м2, на глубине 5 м – 50,56 г/м2. Участие C. albida на глубине 3 м составляло 12,54 г/м2 (68 %), а на 5 м – 45,78 г/м2 (90,5 %).

На глубинах 10–15 м произрастают заросли зостеры с незначительной фитомассой (табл. 33, 34, 36).

Таблица 33.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Cladophora vagabunda</td>
<td>12,54</td>
</tr>
<tr>
<td>Cladophora albida</td>
<td>–</td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>1,68</td>
</tr>
<tr>
<td>U. intestinalis</td>
<td>–</td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>3,85</td>
</tr>
<tr>
<td>Ceramium diapanum</td>
<td>0,37</td>
</tr>
<tr>
<td>Polysiphonia demudata</td>
<td>–</td>
</tr>
<tr>
<td>Polysiphonia elongata</td>
<td>–</td>
</tr>
<tr>
<td>Ellisolandia elongata</td>
<td>–</td>
</tr>
</tbody>
</table>
Изменение фитомассы водорослей (г/м²) у м. Меганом в 2005 и 2006 гг.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Глубина, м</th>
<th>0,5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ulva rigida</td>
<td>0,6</td>
<td>1,0</td>
<td>1,26</td>
<td>20,8</td>
<td>9,1</td>
<td>17,6</td>
<td>56,6</td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>14,6</td>
<td>70,6</td>
<td>282,2</td>
<td>138,0</td>
<td>563,8</td>
<td>100,4</td>
<td>17,8</td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>50,27</td>
<td>2,0</td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
<td>0,4</td>
</tr>
<tr>
<td>Padina pavonica</td>
<td>2,9</td>
<td>16,0</td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,8</td>
</tr>
<tr>
<td>Corynophlaea umbellata</td>
<td>–</td>
<td>0,2</td>
<td>–</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td>2460,58</td>
<td>1486,0</td>
<td>3404,0</td>
<td>3000,0</td>
<td>785,0</td>
<td>2040,0</td>
<td>458,3</td>
</tr>
<tr>
<td>Cystoseira barbata</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td>0,2</td>
<td>–</td>
<td>0,2</td>
<td>–</td>
<td>0,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stilophora tenella</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,2</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Zanardinia typus</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>19,3</td>
</tr>
<tr>
<td>Gelidium spinosum</td>
<td>6,68</td>
<td>–</td>
<td>2,5</td>
<td>8,4</td>
<td>6,0</td>
<td>8,0</td>
<td>14,8</td>
</tr>
<tr>
<td>Ellisolandia elongata</td>
<td>16,0</td>
<td>–</td>
<td>35,2</td>
<td>9,0</td>
<td>12,2</td>
<td>55,0</td>
<td>29,2</td>
</tr>
<tr>
<td>Chondria capillaris</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ceramium</td>
<td>0,03</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td>0,03</td>
<td>–</td>
<td>1,0</td>
<td>–</td>
<td>0,4</td>
<td>3,0</td>
<td>3,01</td>
</tr>
<tr>
<td>Dasys baiollouwiana</td>
<td>–</td>
<td>4,4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Dermocorynus dichotomus</td>
<td>–</td>
<td>1,2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Laurencia</td>
<td>2,5</td>
<td>–</td>
<td>54,1</td>
<td>–</td>
<td>34,6</td>
<td>2,8</td>
<td>11,5</td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>2,3</td>
<td>–</td>
<td>56,2</td>
<td>7,2</td>
<td>6,8</td>
<td>1460,0</td>
<td>61,4</td>
</tr>
<tr>
<td>Phyllophora crispas</td>
<td>–</td>
<td>–</td>
<td>60,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>545,7</td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>2557,76</td>
<td>1582,2</td>
<td>3898,66</td>
<td>3184,6</td>
<td>1417,9</td>
<td>3696,2</td>
<td>1225,31</td>
</tr>
</tbody>
</table>
Таблица 35.
Изменение фитомассы макрофитов у м. Бугас в 2005 и 2006 гг.

<table>
<thead>
<tr>
<th>Вид Стольная</th>
<th>Глубина, м</th>
<th>0,5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>11</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaetomorpha linum</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>0,4</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>–</td>
<td>–</td>
<td>3,0</td>
<td>–</td>
<td>3,2</td>
<td>1,6</td>
<td>0,4</td>
<td>0,7</td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>–</td>
<td>2,0</td>
<td>4,0</td>
<td>0,1</td>
<td>–</td>
<td>2,5</td>
<td>–</td>
<td>3,4</td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>–</td>
<td>52,0</td>
<td>18,0</td>
<td>0,71</td>
<td>–</td>
<td>0,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>13,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Padina pavonica</td>
<td>506,0</td>
<td>12,5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Cystoseira barbata + C. crinita</td>
<td>190,5</td>
<td>1628,0</td>
<td>166,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Chondria dasyphylla</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>139,34</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Chondria capillaris</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1,2</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
</tr>
<tr>
<td>Dermocorymus dichotomus</td>
<td>–</td>
<td>100,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Dasyba baillouwiana</td>
<td>11,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Laurencia sp.</td>
<td>–</td>
<td>3,0</td>
<td>72,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>Gracilaripsis longissima</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,2</td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>1,5</td>
<td>39,0</td>
<td>0,2</td>
<td>0,42</td>
<td>0,4</td>
<td>4,8</td>
<td>4,0</td>
<td>3,5</td>
</tr>
<tr>
<td>Polysiphonia elongata</td>
<td>–</td>
<td>0,5</td>
<td>–</td>
<td>0,667</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3,7</td>
</tr>
<tr>
<td>Zostera marina</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>16,7</td>
<td>84,0</td>
<td>68,0</td>
<td></td>
</tr>
<tr>
<td>Zostera noltei</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>39,75</td>
<td>0,667</td>
<td>70,5</td>
<td>–</td>
<td>0,4</td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>722</td>
<td>1836,5</td>
<td>270</td>
<td>251,61</td>
<td>6,134</td>
<td>96,5</td>
<td>88,8</td>
<td>80,5</td>
</tr>
</tbody>
</table>

Таблица 36.
Изменение фитомассы водорослей (г/м²) у м. Рыбачий в 2006 г.

<table>
<thead>
<tr>
<th>Вид Стольная</th>
<th>Глубина, м</th>
<th>0,5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaetomorpha crassa</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>2,0</td>
<td>7,8</td>
<td>0,8</td>
<td>2,0</td>
<td>2,8</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>1,4</td>
<td>29,2</td>
<td>6,2</td>
<td>5,2</td>
<td>135,0</td>
<td>45,3</td>
<td></td>
</tr>
<tr>
<td>Cladosterphus spongiosum</td>
<td>–</td>
<td>9,0</td>
<td>230,6</td>
<td>305,1</td>
<td>11,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>0,2</td>
<td>0,2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td>0,4</td>
<td>0,2</td>
<td>0,1</td>
<td>0,2</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Corynophlaea umbellata</td>
<td>0,4</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td>–</td>
<td>–</td>
<td>5,0</td>
<td>4,5</td>
<td>72,7</td>
<td>30,0</td>
<td></td>
</tr>
<tr>
<td>Zanardinia typus</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>6,7</td>
<td>28,7</td>
<td></td>
</tr>
<tr>
<td>Cystoseira barbata + C. crinita</td>
<td>2240,0</td>
<td>2560,0</td>
<td>1926,0</td>
<td>2189,0</td>
<td>122,7</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td>–</td>
<td>–</td>
<td>5,5</td>
<td>70,8</td>
<td>12,2</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ceramium sp.</td>
<td>132,6</td>
<td>55,2</td>
<td>–</td>
<td>–</td>
<td>4,0</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ellisolandia elongata</td>
<td>38,0</td>
<td>9,0</td>
<td>43,6</td>
<td>26,3</td>
<td>3,8</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Gelidium spinosum</td>
<td>5,8</td>
<td>4,2</td>
<td>13,3</td>
<td>16,4</td>
<td>3,2</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Laurencia sp.</td>
<td>–</td>
<td>–</td>
<td>55,1</td>
<td>44,8</td>
<td>57,2</td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td>–</td>
<td>–</td>
<td>28,2</td>
<td>178,1</td>
<td>1855,0</td>
<td>1940,0</td>
<td></td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>192,0</td>
<td>194,0</td>
<td>286,6</td>
<td>225,2</td>
<td>3,4</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>Polysiphonia elongata</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,4</td>
<td>0,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>2612,8</td>
<td>2868,8</td>
<td>2601,1</td>
<td>3067,8</td>
<td>2290,2</td>
<td>2050,3</td>
<td></td>
</tr>
</tbody>
</table>
На мягких грунтах у м. Бугас на глубине от 5 до 15 м растет сообщество Zostera noltei. Как отмечала А. А. Калугина-Гутник (1973), характерной особенностью южного побережья Крыма является то, что здесь ассоциация зостеры располагается не у самого берега, а отодвинута вглубь зарослями цистозиры и растет на песчаных террасах, расположенных на глубине от 10 до 15 м. Фитомасса сообщества незначительная (табл. 35).

Так, на глубине 5 м на мелком песке у м. Бугас в 2005 г. она достигала 108,42 г/м². На долю Z. noltei приходилось 37 %. Максимум фитомассы был зафиксирован у Ch. capillaris (139,34 г/м²). Фитомасса сопутствующих видов (V. subulifera, C. spongiosus, Gracilaria dura, U. rigida) была незначительной. Для ассоциации было характерно четкое разделение на пояса Z. noltei – (5–11 м) и Z. marina (10–15 м). На глубине 10 м в 1998 г. общая фитомасса сообщества составляла 106,92 г/м², причем на долю Z. noltei приходилось 27,53 г/м² (25,7 %), а максимум фитомассы был достигнут у C. albida 79,05 г/м² (73,9 %). На глубине 15 м в 1998 г. общая фитомасса сообщества составляла 51,73 г/м², а Z. noltei – 8,37 г/м². Вклад C. albida был сопоставим с таковым на 10 м.

Такие показатели фитомассы свидетельствуют об угнетенном состоянии зостерового фитоценоза в районе м. Меганом. Фитомасса Z. marina была максимальной на глубине 15 м (68 г/м²), а Z. noltei – на глубине 10–11 м (70,5–84 г/м²).

Заключение. В целом, среди обитания донных биоценозов в прибрежной зоне полуострова Меганом можно считать хорошо сохранившейся. Растительный покров шельфа полуострова Меганом в целом отвечает олиготрофным условиям с минимальным загрязнением. Отдаленность этого участка от рекреационных зон и ограниченное техногенное влияние позволяют донным сообществам Меганома сохранять природное естественное состояние на протяжении последних 50 лет, что дополнительно подтверждается исследованиями зооценозов (Сергеева, 1992). Однако отдельные негативные тенденции, характерные для всего крымского побережья, как снижение фитомассы бурых многолетних водорослей, в первую очередь Cystoseira, угнетенное состояние морских трав, прослеживаются и в акватории Меганома.

Для обеспечения охраны акватории и береговой зоны объекта рекомендовано повышение его категории до государственного природного заказника, что позволит регулировать и оптимизировать рекреационную нагрузку, в том числе в береговой зоне и прибрежной акватории (Мильчакова и др., 2015).

ООПТ «Ландшафтно-рекреационный парк «Лисья бухта – Эчкидаг»

Пояс малых и средних глубин (1–5 м) занимают типичные для региона фитоценозы с доминированием C. crinita и C. barbata. Фитомасса таких цистозировых фитоценозов достигает 4 кг/м², что свидетельствует об их хорошей сохранности и сопоставимо со значениями для нетрансформированных коренных фитоценозов. На глубинах свыше 10 м доминирует Ph. crispa, содомinantом которой на глубине 15 м является Ch. capillaris. На глубине свыше 15 м развиваются фитоценозы полисифониево-знардиговой ассоциации.

В б. Лисья за последние 35 лет ареал C. barbata сместился с 10-метровой глубины на 5-метровую. В центральной части бухты за этот же период фитомасса и численность цистозиры уменьшились в 4,5 и в 5 раз, соответственно.

В исследованной акватории на глубинах 10–20 м вдоль береговой линии широкой полосой простираются заросли филлофоры. На ее талломах в большом количестве поселяются мшанки, губки, митилистеры, в зарослях находит приют многие виды рыб.

Из таблицы 37 следует, что цистозировые фитоценозы в 1995 г. располагались на глубинах 1–5 м с максимумом фитомассы на глубине 1 м.
Изменение фитомассы водорослей (г/м²) в б. Лисья в 1995 г.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Ulva linza</td>
<td>45,45</td>
</tr>
<tr>
<td>Chaetomopha capillaris</td>
<td>0,85</td>
</tr>
<tr>
<td>Cladophora sericea</td>
<td>–</td>
</tr>
<tr>
<td>Ectocarpus siliculosus</td>
<td>–</td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>168,71</td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td>–</td>
</tr>
<tr>
<td>Zanardinia typus</td>
<td>–</td>
</tr>
<tr>
<td>Stilophora tenella</td>
<td>1,21</td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td>–</td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>0,68</td>
</tr>
<tr>
<td>Cystoseira barbata + C. crinita</td>
<td>3059,0</td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td>–</td>
</tr>
<tr>
<td>Ceramium</td>
<td>2,24</td>
</tr>
<tr>
<td>Ellisolandia elongata</td>
<td>0,42</td>
</tr>
<tr>
<td>Laurencia</td>
<td>20,48</td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>23,36</td>
</tr>
<tr>
<td>Parviphycus antipae</td>
<td>–</td>
</tr>
<tr>
<td>Gracilariopsis longissima</td>
<td>–</td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td>–</td>
</tr>
<tr>
<td>Polysiphonia elongata</td>
<td>–</td>
</tr>
<tr>
<td>Gelidium crinale</td>
<td>–</td>
</tr>
<tr>
<td>Chondria dasyphylla</td>
<td>–</td>
</tr>
<tr>
<td>Arthrocladia villosa</td>
<td>–</td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>3322,4</td>
</tr>
</tbody>
</table>

Наиболее подробная съемка донной растительности б. Лисья была проведена в 2007 г. на нескольких разрезах. Данные приведены в таблицах 38–42.

Изменение фитомассы водорослей в западной части б. Лисья в 2007 г. (разрез б. Лисья-1)

<table>
<thead>
<tr>
<th>Вид</th>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>Chaetomorpha crassa</td>
<td>0,2</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>0,2</td>
</tr>
<tr>
<td>Ulva linza</td>
<td>2,5</td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>236,0</td>
</tr>
<tr>
<td>Corynophila umbellata</td>
<td>–</td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>–</td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td>–</td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td>0,1</td>
</tr>
<tr>
<td>Stilophora tenella</td>
<td>–</td>
</tr>
<tr>
<td>Zanardinia typus</td>
<td>–</td>
</tr>
</tbody>
</table>
продолжение табл. 38

<table>
<thead>
<tr>
<th>Вид</th>
<th>Глубина, м</th>
<th>Глубина, м</th>
<th>Глубина, м</th>
<th>Глубина, м</th>
<th>Глубина, м</th>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Bryopsis plumosa</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>41,5</td>
<td>–</td>
</tr>
<tr>
<td>Chaetomorpha crassa</td>
<td>–</td>
<td>0,2</td>
<td>0,4</td>
<td>0,3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>0,3</td>
<td>2,0</td>
<td>0,2</td>
<td>2,8</td>
<td>2,3</td>
<td>–</td>
</tr>
<tr>
<td>Ulva linza</td>
<td>0,8</td>
<td>94,2</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>U. rigida</td>
<td>–</td>
<td>2,6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>24,7</td>
<td>102,0</td>
<td>270,7</td>
<td>202,6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>–</td>
<td>–</td>
<td>0,4</td>
<td>0,7</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td>0,1</td>
<td>–</td>
<td>0,4</td>
<td>0,4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Stilophora tenella</td>
<td>–</td>
<td>–</td>
<td>1,1</td>
<td>4,6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Corynophilaea umbellata</td>
<td>–</td>
<td>–</td>
<td>0,2</td>
<td>0,3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td>2385,0</td>
<td>2536,0</td>
<td>1655,7</td>
<td>635,0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C. barbata</td>
<td>1461,0</td>
<td>13,2</td>
<td>355,5</td>
<td>662,0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>–</td>
</tr>
<tr>
<td>Ceramium sp.</td>
<td>47,48</td>
<td>124,4</td>
<td>17,1</td>
<td>13,3</td>
<td>0,7</td>
<td>–</td>
</tr>
<tr>
<td>Chondria capillaris</td>
<td>0,1</td>
<td>–</td>
<td>8,4</td>
<td>0,1</td>
<td>0,1</td>
<td>–</td>
</tr>
<tr>
<td>Ellisolandia elongata</td>
<td>0,1</td>
<td>–</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Laurencia sp.</td>
<td>47,5</td>
<td>89,5</td>
<td>65,4</td>
<td>8,1</td>
<td>0,1</td>
<td>–</td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td>1,0</td>
<td>–</td>
<td>0,5</td>
<td>–</td>
<td>71,0</td>
<td>118,2</td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>6,2</td>
<td>83,0</td>
<td>384,3</td>
<td>59,2</td>
<td>2,6</td>
<td>0,5</td>
</tr>
<tr>
<td>Polysiphonia elongata</td>
<td>–</td>
<td>–</td>
<td>0,6</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Zostera noltei</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>27,0</td>
<td>–</td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>3974,28</td>
<td>3047,1</td>
<td>2961,1</td>
<td>1589,4</td>
<td>145,4</td>
<td>118,7</td>
</tr>
</tbody>
</table>

Как следует из таблицы 38 цистозира в западной части б. Лисья, распространена до глубины 15 м, что является достаточно большой редкостью для берегов Юго-Восточного Крыма. Филлофора входит в состав цистозиро-филлофоровой ассоциации и на глубинах от 5 до 15 м отличается незначительной фитомассой с максимумом на глубине 10 м. Хондриевые фитоценозы встречаются на глубинах от 3 до 10 м. Наибольшая для разреза фитомасса сосредоточена на глубине 3 м, что свидетельствует о ненарушенности распределения фитоценозов в западной части бухты.

На станциях разреза б. Лисья-2 цистозировые фитоценозы распространены до глубины 5 м с максимумом фитомассы на глубине 0,5 м, а на глубинах 10–15 м встречаются филлофоровые фитоценозы с незначительной фитомассой, на глубине 10 м есть заросли взморника малого с фитомассой 27 г/м² (табл. 39).
Данные таблицы 40 свидетельствуют о том, что на разрезе б. Лисья-3 основная фитомасса зарослей цистозиры сосредоточена на глубине до 5 м, с минимумом на глубине 10 м.

Таблица 40.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>Chaetomorpha crassa</td>
<td>0,3</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>–</td>
</tr>
<tr>
<td>Ulva linza</td>
<td>0,2</td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>61,2</td>
</tr>
<tr>
<td>Corynophleae umbellata</td>
<td>–</td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>–</td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td>0,1</td>
</tr>
<tr>
<td>Stilophora tenella</td>
<td>–</td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td>5755,0</td>
</tr>
<tr>
<td>Cystoseira barbata</td>
<td>337,0</td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td>–</td>
</tr>
<tr>
<td>Ceramium sp.</td>
<td>50,5</td>
</tr>
<tr>
<td>Chondria dasyphylla</td>
<td>–</td>
</tr>
<tr>
<td>Ellisolandia elongata</td>
<td>–</td>
</tr>
<tr>
<td>Gelidium crinale</td>
<td>–</td>
</tr>
<tr>
<td>Gracilariopsis longissima</td>
<td>–</td>
</tr>
<tr>
<td>Laurencia sp.</td>
<td>56,4</td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td>–</td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>11,1</td>
</tr>
<tr>
<td>Polysiphonia elongata</td>
<td>–</td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>6271,8</td>
</tr>
</tbody>
</table>

На глубинах 10 и 15 м в незначительном количестве представлена филлофора. Из таблицы 41 следует, что на разрезе б. Лисья-4 оба вида цистозиры встречаются до глубины 15 м, причем максимум фитомассы сосредоточен на глубине 0,5 м.

Таблица 41.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>Chaetomorpha crassa</td>
<td>0,3</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>0,3</td>
</tr>
<tr>
<td>Ulva linza</td>
<td>0,4</td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>140,4</td>
</tr>
<tr>
<td>Corynophleae umbellata</td>
<td>0,3</td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>–</td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td>–</td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td>0,2</td>
</tr>
<tr>
<td>Stilophora tenella</td>
<td>–</td>
</tr>
<tr>
<td>Zanardinia typus</td>
<td>–</td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td>1140,0</td>
</tr>
<tr>
<td>C. barbata</td>
<td>1565,4</td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td>–</td>
</tr>
<tr>
<td>Ceramium sp.</td>
<td>29,6</td>
</tr>
<tr>
<td>Chondria capillaris</td>
<td>–</td>
</tr>
</tbody>
</table>
Филлофора встречается на глубине от 5 до 15 м, максимум ее фитомассы приходится на глубину 15 м. На глубинах 10 и 15 м зафиксированы N. filiformis и P. elongata, образующие самостоятельные сообщества.

Как следует из таблицы 42, на станциях разреза б. Лисья-5 максимум фитомассы водорослей сосредоточен на глубине 0,5 м, оба вида цистозиры встречаются до глубины 10 м, филлофора присутствует на глубинах от 3 до 15 м. На глубинах 10 и 15 м представлены небольшие заросли зостеры.

Таблица 42.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Глубина, м</th>
<th>0,5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaetomorpha crassa</td>
<td></td>
<td>0,2</td>
<td></td>
<td>0,4</td>
<td>0,4</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td></td>
<td>0,1</td>
<td>1</td>
<td></td>
<td>1,1</td>
<td>0,2</td>
<td>0,8</td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td></td>
<td>0,7</td>
<td>211,0</td>
<td>518,4</td>
<td>76,3</td>
<td>2,7</td>
<td></td>
</tr>
<tr>
<td>Corynophila umbellata</td>
<td></td>
<td>0,2</td>
<td>0,3</td>
<td></td>
<td>0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td></td>
<td>5,6</td>
<td></td>
<td>0,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td></td>
<td>0,1</td>
<td>1,1</td>
<td>0,9</td>
<td>2,5</td>
<td></td>
<td>12,9</td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td></td>
<td>0,1</td>
<td>1,1</td>
<td>0,9</td>
<td>2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stilophora tenella</td>
<td></td>
<td>0,1</td>
<td>1,1</td>
<td>0,9</td>
<td>2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zanardinia typus</td>
<td></td>
<td>0,1</td>
<td>1,1</td>
<td>0,9</td>
<td>2,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td></td>
<td>1825,0</td>
<td>1035,0</td>
<td>35,0</td>
<td>75,0</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Cystoseira barbata</td>
<td></td>
<td>1795,0</td>
<td>285,0</td>
<td>860,0</td>
<td>1143,2</td>
<td>5,0</td>
<td></td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td></td>
<td>141,9</td>
<td>93,6</td>
<td>34,5</td>
<td>1,6</td>
<td>0,7</td>
<td>17,7</td>
</tr>
<tr>
<td>Ceramium sp.</td>
<td></td>
<td>141,9</td>
<td>93,6</td>
<td>34,5</td>
<td>1,6</td>
<td>0,7</td>
<td>17,7</td>
</tr>
<tr>
<td>Chondria dasiphylla</td>
<td></td>
<td>1,3</td>
<td>29,4</td>
<td>118,0</td>
<td>0,3</td>
<td>1,7</td>
<td></td>
</tr>
<tr>
<td>Ellisolandia elongata</td>
<td></td>
<td>1,6</td>
<td>13,7</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gelidium spinosum</td>
<td></td>
<td>0,1</td>
<td>0,1</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gracilariopsis longissima</td>
<td></td>
<td>0,1</td>
<td>0,1</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laurencia sp.</td>
<td></td>
<td>1,9</td>
<td>37,6</td>
<td>147,9</td>
<td>50,2</td>
<td>14,9</td>
<td>0,1</td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td></td>
<td>0,5</td>
<td>209,7</td>
<td>99,5</td>
<td>135,0</td>
<td>187,5</td>
<td></td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td></td>
<td>21,1</td>
<td>139,7</td>
<td>154,7</td>
<td>155,6</td>
<td>2,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Polysiphonia elongata</td>
<td></td>
<td>0,1</td>
<td>64,3</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zostera marina</td>
<td></td>
<td>0,1</td>
<td>64,3</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z. noltei</td>
<td></td>
<td>0,1</td>
<td>64,3</td>
<td>0,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td></td>
<td>3791,7</td>
<td>1807,9</td>
<td>2100,2</td>
<td>1776,9</td>
<td>184,5</td>
<td>196,7</td>
</tr>
</tbody>
</table>

Мыс Крабий расположен к востоку от б. Лисья и к западу от пгт Курортное и Карадагского природного заповедника. Особенности распределения донной растительности у этого мыса представлены в таблице 43.
Таблица 43.

Изменение фитомассы макрофитов (г/м²) на разрезе у м. Крабий в 2007 г.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Глубина, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>Chaetomorpha crassa</td>
<td>0,3</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>3,0</td>
</tr>
<tr>
<td>Ulva linza</td>
<td>0,1</td>
</tr>
<tr>
<td>U. rigida</td>
<td>2,8</td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>36,3</td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>–</td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td>–</td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td>1,0</td>
</tr>
<tr>
<td>Cladophora tenella</td>
<td>–</td>
</tr>
<tr>
<td>Zanardinia typus</td>
<td>–</td>
</tr>
<tr>
<td>Corynophlaea umbellata</td>
<td>0,1</td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td>3000,0</td>
</tr>
<tr>
<td>C. barbata</td>
<td>1080,0</td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td>–</td>
</tr>
<tr>
<td>Ceramium sp.</td>
<td>71,95</td>
</tr>
<tr>
<td>Chondria dasypylla</td>
<td>–</td>
</tr>
<tr>
<td>Chondria capillus</td>
<td>1,0</td>
</tr>
<tr>
<td>Ellisolandia elongata</td>
<td>2,67</td>
</tr>
<tr>
<td>Gelidium crinale</td>
<td>2,8</td>
</tr>
<tr>
<td>G. spinosum</td>
<td>0,1</td>
</tr>
<tr>
<td>Gracilariopsis longissima</td>
<td>–</td>
</tr>
<tr>
<td>Laurencia sp.</td>
<td>0,75</td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td>3,02</td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>239,0</td>
</tr>
<tr>
<td>Zostera marina</td>
<td>–</td>
</tr>
<tr>
<td>Z. noltei</td>
<td>–</td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>4447,14</td>
</tr>
</tbody>
</table>

Два вида цистозиры у м. Крабий произрастают до глубины 15 м, причем максимум их фитомассы приходится на глубину 0,5 м. Филлофора встречается в небольшом количестве на всех горизонтах с максимумом ее фитомассы на 15 м. Сообщества взморника малого и взморника морского обнаружены, соответственно, на глубинах 10 и 15 м:

Бухта Коктебель

Бухта Коктебель ограничена м. Мальчин и м. Хамелеон. Б. вблизи мысов встречается в небольшом количестве на всех горизонтах с максимумом ее фитомассы на 15 м. Сообщества взморника малого и взморника морского обнаружены, соответственно, на глубинах 10 и 15 м:

1. Букетка Коктебель ограничена м. Мальчин и м. Хамелеон. Б. вблизи мысов встречается в небольшом количестве на всех горизонтах с максимумом ее фитомассы на 15 м. Сообщества взморника малого и взморника морского обнаружены, соответственно, на глубинах 10 и 15 м:

2. Два вида цистозиры у м. Крабий произрастают до глубины 15 м, причем максимум их фитомассы приходится на глубину 0,5 м. Филлофора встречается в небольшом количестве на всех горизонтах с максимумом ее фитомассы на 15 м. Сообщества взморника малого и взморника морского обнаружены, соответственно, на глубинах 10 и 15 м:

3. Двух вида цистозиры у м. Крабий произрастают до глубины 15 м, причем максимум их фитомассы приходится на глубину 0,5 м. Филлофора встречается в небольшом количестве на всех горизонтах с максимумом ее фитомассы на 15 м. Сообщества взморника малого и взморника морского обнаружены, соответственно, на глубинах 10 и 15 м:

4. Двух вида цистозиры у м. Крабий произрастают до глубины 15 м, причем максимум их фитомассы приходится на глубину 0,5 м. Филлофора встречается в небольшом количестве на всех горизонтах с максимумом ее фитомассы на 15 м. Сообщества взморника малого и взморника морского обнаружены, соответственно, на глубинах 10 и 15 м:

5. Двух вида цистозиры у м. Крабий произрастают до глубины 15 м, причем максимум их фитомассы приходится на глубину 0,5 м. Филлофора встречается в небольшом количестве на всех горизонтах с максимумом ее фитомассы на 15 м. Сообщества взморника малого и взморника морского обнаружены, соответственно, на глубинах 10 и 15 м:

6. Двух вида цистозиры у м. Крабий произрастают до глубины 15 м, причем максимум их фитомассы приходится на глубину 0,5 м. Филлофора встречается в небольшом количестве на всех горизонтах с максимумом ее фитомассы на 15 м. Сообщества взморника малого и взморника морского обнаружены, соответственно, на глубинах 10 и 15 м:

7. Двух вида цистозиры у м. Крабий произрастают до глубины 15 м, причем максимум их фитомассы приходится на глубину 0,5 м. Филлофора встречается в небольшом количестве на всех горизонтах с максимумом ее фитомассы на 15 м. Сообщества взморника малого и взморника морского обнаружены, соответственно, на глубинах 10 и 15 м:

8. Двух вида цистозиры у м. Крабий произрастают до глубины 15 м, причем максимум их фитомассы приходится на глубину 0,5 м. Филлофора встречается в небольшом количестве на всех горизонтах с максимумом ее фитомассы на 15 м. Сообщества взморника малого и взморника морского обнаружены, соответственно, на глубинах 10 и 15 м:

9. Двух вида цистозиры у м. Крабий произрастают до глубины 15 м, причем максимум их фитомассы приходится на глубину 0,5 м. Филлофора встречается в небольшом количестве на всех горизонтах с максимумом ее фитомассы на 15 м. Сообщества взморника малого и взморника морского обнаружены, соответственно, на глубинах 10 и 15 м:

10. Двух вида цистозиры у м. Крабий произрастают до глубины 15 м, причем максимум их фитомассы приходится на глубину 0,5 м. Филлофора встречается в небольшом количестве на всех горизонтах с максимумом ее фитомассы на 15 м. Сообщества взморника малого и взморника морского обнаружены, соответственно, на глубинах 10 и 15 м:
свыше 10 м (до 15 м включительно) развивается ассоциация *Phyllophora crispa* с фитомассой до 2120 г/м².

На глубинах от 7 до 15 м располагается ассоциация морских трав *Zostera noltei* и *Z. marina*. Фитоценозы этой ассоциации разреженные, представлены в виде отдельных куртин. Фитомassa *Z. noltei* составляет около 86 г/м², а *Z. marina* – до 96 г/м². Основными сопутствующими видами являются *Bryopsis plumosa* (фитомасса до 32 г/м²) и *C. albida* (фитомасса до 49,6 г/м²).

У вершины б. Коктебель на иллистопесчаных грунтах на глубине до 7 м донная растительность, как правило, отсутствует. Изредка на выходах коренных пород на глубине 2–5 м встречаются отдельные пятна цистозированных фитоценозов. Сплошные поселения водорослей узкой полосой появляются вдоль берега в средней части бухты на глубине 0,5–3 м.

Идентифицированные виды относятся к зеленым (10 видов, 6 родов, 5 семейств), бурым (9 видов, 8 родов, 7 семейств) и красным (26 видов, 14 родов, 13 семейств) водорослям (Евстигнеева, 2001). Основу флоры составляют *Rh* (59,6 %). Почти равным количеством представлены *Ch*.

Среди *Ch* наибольшей встречаемостью отличаются *Chaetomorpha linum* (33,3 %), *C. albida* (55,5 %), *C. liniformis* (46,6 %). Последний вид покрывает сплошной зеленой тканью иллистопесчаные грунты на большой части акватории бухты, ограниченной глубиной 5–20 м.

Осн характеристизуются более высокой встречаемостью, чем *Ch*. Такие обитатели чистых вод, как *C. crinita*, *C. barbata*, *S. spongiosum*, *S. cirrosa* имеют 100 %-ную встречаемость. Среди красных водорослей наиболее часто встречаются *V. subulifera* (100 %), *Laurencia coronopus* (77,8 %), *L. obtusa* (66,6 %), *Osmundea pinnatifida* (61,1 %).

Анализ состава водорослей как индикаторов сапроплности воды показал, что во флоре бухты преобладают олигосапропальные виды (59,6 %) (табл. 44). Мезосапропобионты в ней составляют 29,8 %. Среди последних преимущественное развитие получили α-мезосапропобионты (21,3 %), которые по требованиям к экологическим условиям стоят ближе к олигосапробам. Полисапропобионты составляют 10,6 %, что характерно для районов, степень загрязнения которых хозяйственно-бытовыми стоками близка к среднему уровню. Эти данные согласуются с величинами индекса сапроплности (X) и флористического индекса (P), равными соответственно 1,6 и 4,2. Известно, что при повышении эвтрофности водных масс величина X изменяется от 3 до 0, а P – от 0 до 9. Отсюда следует, что по составу альгофлоры качество воды в б. Коктебель скорее соответствует мезотрофным водам.

Таблица 44. Сапропольный состав водорослей в б. Коктебель в июле 1991 г.

<table>
<thead>
<tr>
<th>Группа</th>
<th>Зеленые</th>
<th>Бурные</th>
<th>Красные</th>
<th>Всего</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Кол-во видов</td>
<td>%</td>
<td>Кол-во видов</td>
<td>%</td>
</tr>
<tr>
<td>полясапропобная</td>
<td>2</td>
<td>20</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>α-мезосапропобная</td>
<td>3</td>
<td>30</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>β-мезосапропобная</td>
<td>3</td>
<td>30</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>олигосапропобная</td>
<td>2</td>
<td>20</td>
<td>9</td>
<td>100</td>
</tr>
<tr>
<td>Всего</td>
<td>10</td>
<td>100</td>
<td>9</td>
<td>100</td>
</tr>
</tbody>
</table>

Важным фактором, влияющим на видовой состав водорослей, является соленость воды (Калугина-Гутник,1975). По галобности водоросли-макрофиты бухты в основном относятся к морским (61,7 %) и солоноватоводно-морским (34,0 %) формам. Произрастание последних, представленных видами *Ulva, Cladophora* и *Chaetomorpha*, обусловлено периодическим поступлением в бухту как канализационных, так и ливневых стоков.

В соответствии с принятой классификацией (Калугина-Гутник,1975) по срокам развития водоросли бухты можно распределить на 4 группы: многолетние, однолетние, сезонно-зимние и сезонно-летние формы. Однолетняя группа включает 26 видов, что составляет 57,8 % общего количества видов. Ядро этой группы образовано *Rh* (69,2 %), а остальная часть – *Ch*. Большинство однолетних водорослей образует эпифитные синузии на цистозире и филлофоре и
лишь незначительная часть их относится к сопутствующим литофитным формам. Группа многолетников сформирована вдвое меньшим количеством видов (12 видов; 26,7 %). Сюда входят только Och (4 вида) и Rh (8 видов). Группа сезонных видов является самой малочисленной и включает 7 видов, из которых 5 приходятся на летние формы, относящиеся исключительно к Och. Интересным представляется нахождение во флоре бухты двух зимних видов из отдела Ch.

ООПТ «Ландшафтно-рекреационный парк «Тихая бухта»

Таблица 45.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Глубина, м</th>
<th>7–8</th>
<th>10</th>
<th>5</th>
<th>3</th>
<th>1</th>
<th>0</th>
<th>0,5</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryopsis plumosa</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
</tr>
<tr>
<td>Chaetomorpha crassa</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Ulva linza</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>15,63</td>
<td>3,1</td>
<td>1,0</td>
<td>0,1</td>
<td>1,73</td>
<td>1,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladophora</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10,6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5,34</td>
<td>5,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>–</td>
</tr>
<tr>
<td>Codium vermilare</td>
<td>–</td>
<td>21,0</td>
<td>–</td>
<td>1,0</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>Cladostephus</td>
<td>0,1</td>
<td>21,0</td>
<td>397,4</td>
<td>457,8</td>
<td>–</td>
<td>314,87</td>
<td>203,0</td>
<td>2,1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>spongiosum</td>
<td>–</td>
</tr>
<tr>
<td>Corynophila umbellata</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>–</td>
<td>1,0</td>
<td>0,2</td>
<td>0,2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1,3</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Бухта Тихая расположена между м. Хамелеон и основанием полуострова Киик-Атлама у горы Джанкуторан в 3 км северо-западнее пгт
Продолжение табл. 45

<table>
<thead>
<tr>
<th>Вид</th>
<th>0,5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nereia filiformis</td>
<td></td>
<td></td>
<td>1,0</td>
<td></td>
<td></td>
<td>10,79</td>
</tr>
<tr>
<td>Sphacelaria cirrosa</td>
<td></td>
<td></td>
<td>0,3</td>
<td>61,3</td>
<td>5,0</td>
<td>9,5</td>
</tr>
<tr>
<td>Stilophora tenella</td>
<td></td>
<td></td>
<td>0,1</td>
<td></td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Zanardinia typus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,7</td>
</tr>
<tr>
<td>Cystoseira</td>
<td></td>
<td></td>
<td>27,1</td>
<td>520,0</td>
<td>2047,0</td>
<td>2968,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1112,0</td>
<td>883,0</td>
<td>18,1</td>
<td>9,6</td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td></td>
<td></td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callithamnion corymbosum</td>
<td></td>
<td></td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramium</td>
<td></td>
<td></td>
<td>0,1</td>
<td>8,0</td>
<td></td>
<td>0,1</td>
</tr>
<tr>
<td>Chondria capillaris</td>
<td>35,6</td>
<td>12,9</td>
<td>10,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellisolandia elongata</td>
<td></td>
<td></td>
<td>1,8</td>
<td>186,7</td>
<td>167,9</td>
<td>325,4</td>
</tr>
<tr>
<td>Gelidium spinosum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gracilariopsis longissima</td>
<td></td>
<td></td>
<td>8,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laurencia</td>
<td>7,6</td>
<td></td>
<td>13,0</td>
<td>116,0</td>
<td>133,6</td>
<td>143,5</td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1708,5</td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td></td>
<td></td>
<td>64,7</td>
<td>9,8</td>
<td>65,0</td>
<td>384,0</td>
</tr>
<tr>
<td>Polyssiphonia elongata</td>
<td>14,3</td>
<td>1,0</td>
<td></td>
<td></td>
<td></td>
<td>245,3</td>
</tr>
<tr>
<td>Zostera marina</td>
<td>32,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130,8</td>
</tr>
<tr>
<td>Z. noltei</td>
<td>185,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,1</td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>348,7</td>
<td>22,7</td>
<td>191,65</td>
<td>1654,4</td>
<td>3216,03</td>
<td>3041</td>
</tr>
</tbody>
</table>

Примечание: 0 – вершина ск. Таш-Баши над поверхностью моря. От середины бухты на глубинах от 7–8 м до уреза воды у выхода скалы на поверхность и по мере увеличения глубин до 15 м в сторону открытого моря.

Таблица 46.

Изменение фитомассы водорослей (т/м²) у м. «Пятый» (б. Тихая) в 2006 г.

<table>
<thead>
<tr>
<th>Вид</th>
<th>0,5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bryopsis plumosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,1</td>
</tr>
<tr>
<td>Chaetomorpha crassa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,1</td>
</tr>
<tr>
<td>Cladophora sp.</td>
<td>1,3</td>
<td>3,2</td>
<td>0,9</td>
<td>4,0</td>
<td>0,9</td>
<td>0,4</td>
</tr>
<tr>
<td>Codium vermilata</td>
<td></td>
<td></td>
<td></td>
<td>38,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>0,7</td>
<td>38,1</td>
<td>2,0</td>
<td>4,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladostephus spongiosus</td>
<td>241,3</td>
<td>179,05</td>
<td>359,6</td>
<td>98,95</td>
<td>7,0</td>
<td></td>
</tr>
<tr>
<td>Corynophila umellata</td>
<td>0,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td></td>
<td></td>
<td></td>
<td>52,25</td>
<td>8,0</td>
<td></td>
</tr>
<tr>
<td>Cystoseira barbata + C. crinita</td>
<td>2247,0</td>
<td>2619,0</td>
<td>1231,1</td>
<td>462,8</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td></td>
<td></td>
<td>9,9</td>
<td>54,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callithamnion corymbosum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,2</td>
</tr>
<tr>
<td>Gelidium spinosum</td>
<td>1,2</td>
<td>84,9</td>
<td></td>
<td>9,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gracilariopsis longissima</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,0</td>
<td></td>
</tr>
<tr>
<td>Laurencia sp.</td>
<td>144,6</td>
<td>30,4</td>
<td>93,5</td>
<td>78,63</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td></td>
<td></td>
<td>0,6</td>
<td>569,64</td>
<td>246,1</td>
<td></td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>103,9</td>
<td>617,0</td>
<td>689,0</td>
<td>486,43</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>Polyssiphonia elongata</td>
<td></td>
<td></td>
<td></td>
<td>0,9</td>
<td>0,6</td>
<td></td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td>2873,2</td>
<td>3582,25</td>
<td>2440,9</td>
<td>1937</td>
<td>279,9</td>
<td>0,8</td>
</tr>
</tbody>
</table>
Особый интерес представляет распределение водорослей по профилю ск. Таш-Баши и ск. Таш-Тепе, расположенных в б. Тихая (табл. 45). На склоне, обращенном к бухте, на глубине от 1 м до 5 м встречаются заросли цистозиры с максимумом на 1 м. Ближе к берегу на мягких грунтах на глубине 7–8 м произрастают заросли двух видов взморника. На склоне, обращенном в сторону открытого моря, на глубинах от 0,5 до 15 м встречается цистозира, а на 10 и 15 м – филлофора. В незначительном количестве присутствует нерейя.

У м. Хамелеон удалось проследить изменение фитомассы водорослей с интервалом в 25 лет с 1991 по 2006 гг. (табл. 47). Следует отметить постоянное присутствие видов цистозиры на глубинах до 10 м, причем на глубинах от 0,5 до 3 м наблюдалось увеличение её фитомассы до 2,2 раза, а начиная с глубины 5 м – уменьшение в 2 раза и на 10 м – в 13,2 раза. Наблюдался рост фитомассы в цистозиро-филлофоровых фитоценозах следующим образом: на глубине 3 м – в 32 раза, на 5 м – в 3,7 раза, на 10 м – почти в 5 раз. На глубине 15 м в 2006 г. отмечены высокие значения фитомассы нерейи (69,3 г/м²) и филлофоры (890 г/м²) (Костенко и др., 2007).

Таблица 47.

<table>
<thead>
<tr>
<th>Вид</th>
<th>Глубина, м</th>
<th>0,2</th>
<th>0,5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cladophora</td>
<td></td>
<td>22,0</td>
<td>74,0</td>
<td>0,4</td>
<td>2,0</td>
<td>0,2</td>
<td>8,5</td>
<td>2,1</td>
</tr>
<tr>
<td>Ulvalinza</td>
<td></td>
<td>0,4</td>
<td>0,4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Chaetomorpha crassa</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>–</td>
</tr>
<tr>
<td>Codium vermilara</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5,0</td>
<td>–</td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td></td>
<td>184,0</td>
<td>81,0</td>
<td>11,2</td>
<td>3,0</td>
<td>8,0</td>
<td>27,0</td>
<td>62,4</td>
</tr>
<tr>
<td>Corynopliaea umbellata</td>
<td></td>
<td>–</td>
<td>–</td>
<td>0,2</td>
<td>–</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Zanardinia typus</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td></td>
<td>426,0</td>
<td>2376,0</td>
<td>5044,0</td>
<td>1097,0</td>
<td>3005,0</td>
<td>279,0</td>
<td>1847,93</td>
</tr>
<tr>
<td>Cystoseira barbata</td>
<td></td>
<td>92,0</td>
<td>3618,0</td>
<td>1168,0</td>
<td>551,0</td>
<td>1205,0</td>
<td>350,0</td>
<td></td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>13,0</td>
<td>–</td>
</tr>
<tr>
<td>Ceramium</td>
<td></td>
<td>–</td>
<td>3,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>92,0</td>
<td>–</td>
</tr>
<tr>
<td>Ellisolanda elongata</td>
<td></td>
<td>–</td>
<td>71,6</td>
<td>8,0</td>
<td>28,9</td>
<td>–</td>
<td>44,9</td>
<td>–</td>
</tr>
<tr>
<td>Gelidium spinosum</td>
<td></td>
<td>–</td>
<td>2,1</td>
<td>–</td>
<td>5,1</td>
<td>–</td>
<td>0,7</td>
<td>–</td>
</tr>
<tr>
<td>Chondria capillaris</td>
<td></td>
<td>–</td>
<td>2,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Laurencia</td>
<td></td>
<td>–</td>
<td>156,0</td>
<td>8,2</td>
<td>31,0</td>
<td>4,8</td>
<td>8,0</td>
<td>9,4</td>
</tr>
<tr>
<td>Phyllophora crispa</td>
<td></td>
<td>–</td>
<td>–</td>
<td>1,0</td>
<td>–</td>
<td>3,0</td>
<td>98,0</td>
<td>101,0</td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td></td>
<td>220,0</td>
<td>314,0</td>
<td>38,0</td>
<td>190,0</td>
<td>660,0</td>
<td>335,0</td>
<td>1841,5</td>
</tr>
<tr>
<td>Polysiphonia denudata</td>
<td></td>
<td>–</td>
<td>–</td>
<td>28,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Polysiphonia elongata</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1,0</td>
<td>–</td>
</tr>
<tr>
<td>Общая фитомасса</td>
<td></td>
<td>944,4</td>
<td>6624,4</td>
<td>5175,7</td>
<td>2528</td>
<td>3712,1</td>
<td>1303,5</td>
<td>3926,03</td>
</tr>
</tbody>
</table>

Как следует из приведенных данных, за 25-летний период по траверсу м. Хамелеон на глубинах 1 и 3 м наблюдалось возрастание фитомассы цистозиры, а, начиная с глубины 5 м, оно сменялось резким снижением вдвое. Можно считать, что на глубине 10 м цистозира практически исчезла, поскольку ее фитомassa уменьшилась в 13,2 раза.

В 1991 и 2006 гг. отмечено значительное увеличение фитомассы филлофоры на глубинах от 3 до 10 м с максимумом на глубине 10 м, что, по-видимому, связано с уменьшением фитомассы цистозиры на этих глубинах. Кроме этого, можно отметить тот факт, что на глубинах 1–5 м за 25 лет произошло увеличение фитомассы кладостефуса в 2–5 раз. В анализируемые годы фитомасса вида одинаково менялась в колебательном режиме, при этом максимумы показателя территориально не совпадали. Минимумы были одинаково приурочены к глубинам 10 м и 15 м.

На глубинах 5–10 м произрастает ассоциация Cystoseira crinita + C. barbata – Phyllophora crispa. Фитомасса фитоценозов составляет от 280 г/м² до 1937 г/м². На сев. Таш-Баш в сторону моря на глубинах свыше 10 м (до 15 м включительно), обитает ассоциация Phyllophora crispa с массой фитоценоэза до 1261 г/м². Таким образом, проведенные исследования подтвердили представление о б. Тихая как в одном из центров сохранения биологического разнообразия в регионе.

В центральной части б. Тихая на глубинах свыше 5 м донная растительность развита слабо и только на глубине 7–8 м узкой полосой произрастает фитоценоз Zostera noltei + Z. marina (фитомасса 186 и 33 г/м² соответственно).

В 1991 и 2006 гг. были выполнены разрезы у м. Хамелеон. На этом участке растительный покров характеризуется 100 %-ным покрытием, а сам растительность отличается рядом особенностей. Во-первых, в цистозировых фитоценозах значительно увеличена доля C. barbata, достигающая 45–55 % общей фитомассы, что превосходит подобный показатель у C. crinita. Во-вторых, повсеместное развитие здесь имеют виды – содоминанты ровов Polisiphonia, Ceramium, Cladostephus, Laurencia, Cladophora и др. Даже на глубине 0,2 м их фитомасса достигает 45,2 % фитомассы фитоценоза. В-третьих, фитоценозы у м. Хамелеон характеризуются сложной структурой (H = 1,50–2,25) особенно на глубине 0,2 м, что связано с массовым развитием сопутствующих видов, большая часть которых эпифитирует на цистозире.

Бухта Провато

В б. Провато, расположенной у пгт Орджоникидзе, к востоку от ООПТ «Тихая бухта», произрастают ассоциации Cystoseira crinita + C. barata – Cladostephus spongiosum – Ellisolandia elongata и Zostera noltei. Фрагментарно на глубине 0,5 м встречается ассоциация Dictyota fasciola – Padina pavonica. В связи с небольшим распространением твердых грунтов цистозировая ассоциация занимает глубины от 0,5 до 2 м. Общая фитомасса фитоценоэза ассоциации варьирует от 2068 г/м² до 3265 г/м². Среди сопутствующих видов преобладают C. spongiosus, Laurencia sp., V. subulifera. Максимальная фитомасса зафиксирована на глубине 2 м. На глубинах от 3 до 10 м донная растительность развита мало, встречаются отдельные куртинки видов Cladophora, а глубину 10 м занимает ассоциация Zostera noltei с фитомассой 11,6 г/м² (Костенко и др., 2007). Изменение состава фитоценозов и фитомассы видов в б. Провато по годам и глубинам иллюстрируют таблицы 48 и 49.

<table>
<thead>
<tr>
<th>Год</th>
<th>Глубина, м</th>
<th>Цистозировый</th>
<th>Цистозирово-кладофоровый</th>
<th>Полисифониево-кладофоровый</th>
<th>Грацилярно-подошвенно-кладофоровый</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>1</td>
<td>Цистозировый</td>
<td>Цистозирово-кладофоровый</td>
<td>Zostera noltei</td>
<td>Zostera noltei</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>0,5</td>
<td>Цистозировый</td>
<td>Цистозировый</td>
<td>Zostera noltei</td>
<td>Zostera noltei</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>Кладофоровый</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 48.

Изменение состава фитоценозов по годам и глубинам в б. Провато
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaetomorpha crassa</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,14</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ulva linza</td>
<td>3,0</td>
<td>0,25</td>
<td>0,1</td>
<td>0,71</td>
<td>–</td>
<td>0,55</td>
<td>–</td>
<td>0,67</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>U. prolifera</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,29</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Bryopsis plumosa</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,31</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ulva rigida</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,03</td>
<td>3,0</td>
<td>0,4</td>
<td>0,1</td>
<td>0,06</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ectocarpus siliculosus</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>8,85</td>
<td>3,28</td>
<td>0,12</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Cladostephus spongiosum</td>
<td>31,9</td>
<td>8,35</td>
<td>4,8</td>
<td>–</td>
<td>0,1</td>
<td>0,65</td>
<td>0,1</td>
<td>5,72</td>
<td>–</td>
<td>4,5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Dictyota fasciola</td>
<td>13,35</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,08</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Padina pavonica</td>
<td>125,2</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Corynophlaea umbellata</td>
<td>0,1</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Nereia filiformis</td>
<td>–</td>
<td>0,5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Pterothamnion plumula</td>
<td>–</td>
<td>0,39</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Cystoseira crinita</td>
<td>1818,8</td>
<td>4654,0</td>
<td>2969,0</td>
<td>11,94</td>
<td>0,5</td>
<td>0,53</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Apoglossum ruscifolium</td>
<td>–</td>
<td>0,32</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ellisolandia elongata</td>
<td>–</td>
<td>–</td>
<td>71,48</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Gelidium spinosum</td>
<td>–</td>
<td>–</td>
<td>2,5</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Chondria</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,02</td>
<td>–</td>
<td>–</td>
<td>0,66</td>
<td>1,29</td>
<td>–</td>
<td>0,66</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Laurencia</td>
<td>55,5</td>
<td>57,33</td>
<td>22,6</td>
<td>3,53</td>
<td>–</td>
<td>0,32</td>
<td>–</td>
<td>0,16</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Gracilarioptis longissima</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,47</td>
<td>–</td>
<td>–</td>
<td>0,3</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Vertebrata subulifera</td>
<td>20,3</td>
<td>1,57</td>
<td>193,8</td>
<td>20,76</td>
<td>–</td>
<td>15,05</td>
<td>0,1</td>
<td>3,17</td>
<td>–</td>
<td>2,19</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Polysiphonia denuata</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,34</td>
<td>–</td>
<td>1,19</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>P. elongata</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
<td>2,47</td>
<td>–</td>
<td>0,27</td>
<td>0,1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Ceramium</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0,34</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Zostera noltei</td>
<td>7,57</td>
<td>–</td>
<td>–</td>
<td>2,43</td>
<td>11,6</td>
<td>0,24</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td>Общая фитомassa</td>
<td>2068,15</td>
<td>4721,82</td>
<td>3264,28</td>
<td>48,3</td>
<td>3,7</td>
<td>27,68</td>
<td>4,24</td>
<td>17,24</td>
<td>11,7</td>
<td>8,25</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Подводя итоги, можно отметить, что, в целом, для исследованного побережья характерен типичный для шельфа всего южного берега Крыма тип пространственного распределения макрофитобентоса: вертикально-поясный с доминированием бурых многолетников в верхнем горизонте и багрянок в сциофильном горизонте на твердых субстратах, с остревым распространением фитоценозов морских трав на песчаных грунтах заливов и бухт. Так, в б. Провато фитоценоз морских трав находится на грани исчезновения.
4.3. ЗООПЛАНКТОН

4.3.1. МЕРОПЛАНКТОН

К планктонным организмам относятся гидробионты, не способные к активным движениям или обладающие ими, но не противостоящие токам воды. Состав планктона разнообразен. По срокам нахождения организмов в водной толще выделен меропланктон («меро» – означает временный). Этот термин был предложен немецким ученым Эрнестом Геккелем в 1890 г. К меропланктону относятся формы, обитающие в толще воды только на определенных стадиях своего развития, а остальную часть жизненного цикла ведущие иной образ жизни. Наиболее многочисленными представителями меропланктона являются личинки моллюсков, многощетинковых червей, ракообразных. Изучение пелагических стадий личиночного развития морских донных беспозвоночных – меропланктона ведется с нарастающей интенсивностью.

В 1980–1990-х годах XX века исследования меропланктона прибрежных вод Крыма были возобновлены В. В. Муриной. Ею получены обширные материалы по видовому составу и сезонной динамике численности личинок донных беспозвоночных, проведены исследования в акватории Карадагского природного заповедника, в результате которых установлено, что процентное содержание меропланктона в кормовом зоопланктоне составляло от 6 до 19 % (Мурина, Загородняя, 1989). Повторные исследования в 1996 г. показали, что за прошедшее десятилетие численность и биомасса зоопланктона, в том числе и меропланктона, уменьшились, а процентное содержание меропланктона в кормовом зоопланктоне увеличилось до 30 % по численности и до 50 % по биомассе (Загородняя, Мурина, 2001). Совместно с Я.Н. Артемьевой в акватории Карадага были подробно изучены пелагические личинки Gastropoda (к существующему ранее списку добавлено 6 новых видов), Polychaeta (впервые указаны личинки 5 видов) и Decapoda. В результате исследований составлен список меропланктона, включающий 37 видов личинок, четыре из них (2 вида полихет и 2 вида гастропод) дополнены список фауны донных беспозвоночных акватории Карадага (Мурина, Артемьева, 1991).

Мониторинг меропланктона в акватории Карадага и прилегающих районах проводится с 1998 г. С 2002–2003 гг. в прилегающих к Карадагу районах начали выполнять комплексные гидролого-гидрохимические и гидробиологические съемки, включающие и отбор проб меропланктона. Полученные данные показали, что прибрежные воды в значительной степени подвержены антропогенному воздействию, а это негативно отражается на состоянии гидробионтов. Исследования последних лет в районе Карадагского природного заповедника выявили симптомы ухудшения состояния...
обитателей прибрежных акваторий (Павлова, Мурина 2004; Ковригина и др., 2008). Изменения в качественном и количественном составе бентоса отражаются и на составе меропланктона.

Полученные многолетние данные позволили проанализировать динамику видового состава и численности пелагических личинок донных беспозвоночных в прибрежных водах Юго-Восточного Крыма.

Меропланктон собирали сетью Джеди (диаметр входного отверстия 36 см, размер ячей газа – 135 мкм) в слое 10–0 м. Пробы отбирали на прибрежных станциях с глубинами до 13–15 м, расположенных от б. Лисьей до пгт Коктебель. В сентябре 2008 г. проведен дополнительный отбор проб в слое 30–0 м на мористых станциях с глубинами до 35 м (напротив Биостанции, б. Сердоликовой и пгт Коктебель).

В летние сезоны 2005–2008 гг. во время экспедиций в Карадагский природный заповедник был исследован видовой состав личинок донных беспозвоночных, встречающихся в нейстоне. Пробы отбирали нейстонной сетью по методу Ю. П. Зайцева (Зайцев, 1970) над глубинами до 2 м в разное время суток.

Предварительную обработку проб меропланктона проводили на живом материале путем тотального подсчета личинок в камере Богорова под бинокуляром МБС–9; для дальнейшей обработки пробы фиксировали 4 % раствором формалина. Для уточнения видовой принадлежности личинок использовали световые микроскопы МБИ–3 и Микмед–5. Личинок донных беспозвоночных, идентификация которых была затруднена, подращивали в лабораторных условиях до появления характерных видовых признаков. При изучении таксономической структуры меропланктона использовали данные по количеству видов, численности отдельных видов и суммарной численности крупных таксонов меропланктона: Polychaeta, Bivalvia, Gastropoda; Cirripedia и Decapoda, а также по общей численности меропланктона.

Таблица 1.

Таксономический состав меропланктона прибрежных вод Юго-Восточного Крыма

<table>
<thead>
<tr>
<th>Таксон, вид</th>
<th>Таксон, вид</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип Annelida; Класс Polychaeta</td>
<td>Тип Bivalvia</td>
</tr>
<tr>
<td>Phyllodocidae</td>
<td>Arcidae</td>
</tr>
<tr>
<td>Genetyllis tuberculata (Bobretzky, 1868)</td>
<td>Mytilaster lineatus (Gmelin, 1844)</td>
</tr>
<tr>
<td>Phylloco sp.</td>
<td>Nereis zonata (Malmgren, 1867)</td>
</tr>
<tr>
<td>Nephtyidae</td>
<td>Gibbomodiola adriatica (Lamarck, 1819)</td>
</tr>
<tr>
<td>Nephtys hombergii Savigny, 1818</td>
<td>Nereis zonata Malmgren, 1867</td>
</tr>
<tr>
<td>Glyceridae</td>
<td>Alitta succinea (Leuckart, 1847)</td>
</tr>
<tr>
<td>Glycera tridactyla Schmarda, 1861</td>
<td>Platynereis dumerilii (Aud. et M.-Edwards, 1833)</td>
</tr>
<tr>
<td>Polynoidae</td>
<td>Тип Mollusca; Класс Bivalvia</td>
</tr>
<tr>
<td>Harmothoe imbricata (Linnaeus, 1767)</td>
<td>Arcidae</td>
</tr>
<tr>
<td>H. reticulata (Claparede, 1879)</td>
<td>Mytilaster lineatus (Gmelin, 1791)</td>
</tr>
<tr>
<td>H. exitivatata (Grube, 1840)</td>
<td>Nereis zonata Malmgren, 1867</td>
</tr>
<tr>
<td>Sigalionidae</td>
<td>Alitta succinea (Leuckart, 1847)</td>
</tr>
<tr>
<td>Pholoe inornata Johnston, 1839</td>
<td>Platynereis dumerilii (Aud. et M.-Edwards, 1833)</td>
</tr>
<tr>
<td>Nereididae</td>
<td>Тип Artropoda; Класс Cirripedia</td>
</tr>
<tr>
<td>Modiolula phaseolina (Philippi, 1844)</td>
<td>Amphibalanus improvisus Darwin, 1854</td>
</tr>
<tr>
<td>Nereis zonata (Malmgren, 1867)</td>
<td>Verrucidae</td>
</tr>
<tr>
<td>Platyneris dumerilii (Aud. et M.-Edwards, 1833)</td>
<td>Verrucula spengleri Darwin, 1854</td>
</tr>
<tr>
<td>Pholoe inornata Johnston, 1839</td>
<td>Verrucula spengleri Darwin, 1854</td>
</tr>
<tr>
<td>Harpactecidae</td>
<td>Verrucula spengleri Darwin, 1854</td>
</tr>
<tr>
<td>Platyneris dumerilii (Aud. et M.-Edwards, 1833)</td>
<td>Verrucula spengleri Darwin, 1854</td>
</tr>
<tr>
<td>Pholoe inornata Johnston, 1839</td>
<td>Verrucula spengleri Darwin, 1854</td>
</tr>
<tr>
<td>Harpactecidae</td>
<td>Verrucula spengleri Darwin, 1854</td>
</tr>
<tr>
<td>Platyneris dumerilii (Aud. et M.-Edwards, 1833)</td>
<td>Verrucula spengleri Darwin, 1854</td>
</tr>
<tr>
<td>Отряд</td>
<td>Семейство</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>Eunicidae</td>
<td>Eunicidae</td>
</tr>
<tr>
<td>Protodrilidae</td>
<td>Protodrilidae</td>
</tr>
<tr>
<td>Megadrilus purpureus</td>
<td>Veneridae</td>
</tr>
<tr>
<td>Spionidae</td>
<td>Spionidae</td>
</tr>
<tr>
<td>Aonides paucibranchiata</td>
<td>Veneridae</td>
</tr>
<tr>
<td>Malacoceros tetracerus</td>
<td>Protodrilidae</td>
</tr>
<tr>
<td>Malacoceros fuliginosus</td>
<td>Veneridae</td>
</tr>
<tr>
<td>Scoloelepis squamata</td>
<td>Protodrilidae</td>
</tr>
<tr>
<td>Microspio mecznikowianus</td>
<td>Veneridae</td>
</tr>
<tr>
<td>Spio filicornis</td>
<td>Spionidae</td>
</tr>
<tr>
<td>Spio decorata</td>
<td>Prionospio sp.</td>
</tr>
<tr>
<td>Polydora ciliata</td>
<td>Polydora ciliata</td>
</tr>
<tr>
<td>Sabellariidae</td>
<td>Sabellariidae</td>
</tr>
<tr>
<td>Pectinariidae</td>
<td>Pectinariidae</td>
</tr>
<tr>
<td>Magelonidae</td>
<td>Magelonidae</td>
</tr>
<tr>
<td>Capitellidae</td>
<td>Capitellidae</td>
</tr>
<tr>
<td>Sabellariidae</td>
<td>Sabellariidae</td>
</tr>
<tr>
<td>Sabellaria taurica</td>
<td>Sabellaria taurica</td>
</tr>
<tr>
<td>Pectinariidae</td>
<td>Pectinariidae</td>
</tr>
<tr>
<td>Magelonidae</td>
<td>Magelonidae</td>
</tr>
<tr>
<td>Capitellidae</td>
<td>Capitellidae</td>
</tr>
<tr>
<td>Sabellariidae</td>
<td>Sabellariidae</td>
</tr>
<tr>
<td>Sabellaria taurica</td>
<td>Sabellaria taurica</td>
</tr>
<tr>
<td>Pectinariidae</td>
<td>Pectinariidae</td>
</tr>
<tr>
<td>Lagis neapolitana</td>
<td>Lagis neapolitana</td>
</tr>
<tr>
<td>Rissoa membranacea</td>
<td>Rissoa membranacea</td>
</tr>
<tr>
<td>Rissoa splendida</td>
<td>Rissoa splendida</td>
</tr>
<tr>
<td>Hippolytididae</td>
<td>Hippolytididae</td>
</tr>
<tr>
<td>Hippolyte leptocerus</td>
<td>Hippolyte leptocerus</td>
</tr>
<tr>
<td>Lysmata seticaudata</td>
<td>Lysmata seticaudata</td>
</tr>
<tr>
<td>Alpheidae</td>
<td>Alpheidae</td>
</tr>
<tr>
<td>Alpheus dentipes</td>
<td>Alpheus dentipes</td>
</tr>
<tr>
<td>Palaemonidae</td>
<td>Palaemonidae</td>
</tr>
<tr>
<td>Palaemon elegans</td>
<td>Palaemon elegans</td>
</tr>
<tr>
<td>Crangonidae</td>
<td>Crangonidae</td>
</tr>
<tr>
<td>Crangon crangon</td>
<td>Crangon crangon</td>
</tr>
<tr>
<td>Philocheras trispinosus</td>
<td>Philocheras trispinosus</td>
</tr>
<tr>
<td>Processidae</td>
<td>Processidae</td>
</tr>
<tr>
<td>Processa edulis</td>
<td>Processa edulis</td>
</tr>
<tr>
<td>Calianassidae</td>
<td>Calianassidae</td>
</tr>
<tr>
<td>Upogebia pusilla</td>
<td>Upogebia pusilla</td>
</tr>
<tr>
<td>Pestarella candida</td>
<td>Pestarella candida</td>
</tr>
<tr>
<td>Necallianassa truncate</td>
<td>Necallianassa truncate</td>
</tr>
<tr>
<td>Paguridae</td>
<td>Paguridae</td>
</tr>
<tr>
<td>Diogenes pugilator</td>
<td>Diogenes pugilator</td>
</tr>
<tr>
<td>Clibanarius erythropus</td>
<td>Clibanarius erythropus</td>
</tr>
<tr>
<td>Porcellanidae</td>
<td>Porcellanidae</td>
</tr>
<tr>
<td>Pisidida longimana</td>
<td>Pisidida longimana</td>
</tr>
<tr>
<td>Majidae</td>
<td>Majidae</td>
</tr>
</tbody>
</table>
Macropodia longirostris (Fabricius, 1775)
Portunidae
Liocarcinus navigator (Herbst, 1794)
Liocarcinus holsatus Fabricius, 1798
Carcinus aestivalis Nordo, 1847
Xanthidae
Pilumnus hirtellus (Linnaeus, 1761)
Xantho poressa (Olivi, 1792)
Rhiithropanopeus harrisi tridentata (Maitland, 1874)
Eriphia verrucosa Forskal, 1775
Grapsidae
Pachygrapsus marmoratus (Fabricius, 1787)
Portunidae
Phoronis
Liocarcinus navigator (Herbst, 1794)
Liocarcinus holsatus Fabricius, 1798
Carcinus aestuarii Nordo, 1847
Xantho poressa (Olivi, 1792)
Rhiithropanopeus harrisi tridentata (Maitland, 1874)
Eriphia verrucosa Forskal, 1775
Pilumnus hirtellus (Linnaeus, 1761)
Xantho poressa (Olivi, 1792)
Rhithropanopeus harrisi tridentata (Maitland, 1874)
Macropodia longirostris (Fabricius, 1775)
Portunidae
Liocarcinus navigator (Herbst, 1794)
Liocarcinus holsatus Fabricius, 1798
Carcinus aestuarii Nordo, 1847
Xanthidae
Pilumnus hirtellus (Linnaeus, 1761)
Xantho poressa (Olivi, 1792)
Rhithropanopeus harrisi tridentata (Maitland, 1874)
Eriphia verrucosa Forskal, 1775
Grapsidae
Pachygrapsus marmoratus (Fabricius, 1787)

Тип Coelenterata, класс Hydrozoa. Для прибрежных районов Крыма указано 27 видов Hydrozoa (Ревков, 2003). В планктоне планулы Hydrozoa присутствовали в течение года, количество их существенно увеличивалось в январе и мае. Так, в мае 2004 г. в районе Кузьмичева камня (Карадагский природный заповедник) численность планул достигала 160 экз./м³.

Тип Nemertea. Пиллодии немертин единично встречались в планктоне в летне-осенний период. Необходимо отметить, что увеличение пиллодиумов Nemertea было зарегистрировано в июне 2015 г. Их численность у причала Биостанции достигала 28 экз./м³, в б. Сердоликовой – до 9 экз./м³.

Тип Bryozoa. В планктоне у берегов Восточного Крыма не идентифицированные до вида личинки мшанок единично встречались с весны до осени.

Тип Annelida, класс Polychaeta. На 2003 г. фауна полихет акватории Карадага включала 100 видов, более половины из них имеют в своем развитии пелагическую стадию (Мурина, Киселева, Костенко, 2004). За период исследований в прибрежных водах Юго-Восточного Крыма обнаружены пелагические личинки 29 видов многощетинковых червей, относящихся к 13 семействам (табл. 1). Некоторые виды полихет, например, представители семейств Spirorbidae, Serpulidae имеют короткую пелагическую стадию в развитии (Киселева, 2004). Представители этих семей встречаются в обрастании твердых субстратов в районе Карадага (Мурина, Киселев, Костенко, 2004), но в планктонных пробах их пелагические стадии не обнаружены, вероятно, личинки быстро завершали метаморфоз и оседали. Личинки многощетинковых червей постоянно присутствовали в планктоне исследуемых районов, но их видовой состав и численность изменялись по сезонам. В зимний период единично встречались личинки семейства Spionidae, находящиеся на стадии 5–7 сегментов. Преобладали в пробах трохофоры и метатрохофы *Harmothoe imbricata* (Polynoidae), но их численность не превышала 15–20 экз./м³. Весной доминировали ранние стадии другого вида данного семейства – *Harmothoe reticulata*, их максимальная численность достигала 45 экз./м³ (зарегистрирована у м. Мальчин). При прогреве воды до 13°C начинали активно размножаться полихеты семейства Spionidae. В пробах доминировали личинки *Spio filicornis*, *Spio decorata*, Microspio mecznikowianus, Malacoceros fuliginosus.

В последние годы в прибрежных водах Карадага практически круглый год встречались личинки *Polydora cornuta*. Они обнаружены по всей акватории с численностью до 22 экз./м³. Ранее в составе фауны полихет Карадага указывали один вид рода *Polydora – Polydora ciliata*, перфорирующий камни, донные моллюски, раковины моллюсков (Мурина, Киселева, Костенко, 2004). По результатам последних исследований, выполненных при участии канд. биол. наук В. И. Радашевского, установлено, что в прибрежных водах Крыма обитает другой вид...
этого рода – *P. cornuta*. Учитывая морфологическое сходство *P. ciliata* и *P. cornuta* и сложность их идентификации, можно предположить, что полидоры, которых обнаруживали в акватории Карадага с 80-х годов ХХ века до настоящего времени также относились к виду *P. cornuta*. В настоящее время этот вид широко распространялся и стал массовым в донных сообществах Азово-Черноморского бассейна (Лисицкая, Болтачева, 2016).

В июне 2015 г. В пробах меропланктона, взятых у Биостанции, были обнаружены единичные личинки полидоры, идентифицированные нами как *Polydora websteri*. Черви этого вида перфорируют известковые субстраты и раковины моллюсков. Необходимо отметить, что взрослые *P. websteri* были найдены и в камнях у причала Биостанции на глубине 0,3 м (сбор материала выполнен совместно с канд. биол. наук В.А. Гринцовым). Впервые нахождение *P. websteri* в камнях было отмечено в 2005 г. у румынского побережья, в настоящее время черви этого вида зарегистрированы и у берегов Севастополя (Лисицкая, Болтачева, 2016).

Весной при температуре воды 15–17 °С видовое разнообразие пелагических личинок многощетинковых червей увеличивалось. В планктоне появлялись трохофоры и метатрохофоры *Pholoe inornata* (до 12 экз./м³), не идентифицированные до вида нектохеты *Phyllodocidae* и трохофоры *Nereididae* (до 28 экз./м³). Так, в мае 2012 г. их общее количество в районе Биостанции достигало 345 экз./м³, на остальных участках акватории от Коктебеля до Курортного изменялось от 153 до 171 экз./м³. Личинки редко встречающегося вида *Magelona rosea* (*Magelonidae*) обнаружены в мае и сентябре в б. Лисьей (4 экз./м³). В июле в планктоне повсеместно встречались нектохеты многощетинковых червей семейства *Nereididae*, находящиеся на разных стадиях развития (от 3-х сегментных до стадий оседания). Численность нектохет *A. succinea* в б. Лисьей достигала 76 экз./м³. Необходимо отметить, что в пробах 1980-х годов личинки нереиса были единичны, а в сборах 1999–2000 гг. их численность не превышала 14 экз./м³ (Мурина, Безвушко, Лисицкая, 2000). В наших сборах, начиная с 2004 г. нектохеты *A. succinea* отмечались по всей акватории Карадага. Можно предположить, что распространению данного вида полихет, а, следовательно, и увеличению численности их личинок в планктоне, способствует заильение дна в районе Карадага. Личинки *Prionospio* sp. (*Spionidae*) встречались в летне-осенний период по всей акватории, летом они преобладали в районе Кузьминчева камня (до 44 экз./м³), в сентябре – в б. Сердюковский (до 141 экз./м³). Кроме того, личинки многощетинковых червей семейства *Spionidae* и 3-х сегментных нектохет семейства *Nereididae* были отмечены и в ночном нейстоне.

Личинки *Capitella capitata* (*Capitellidae*) в 2012–2015 гг. практически не встречались, хотя ранее нектохеты этого вида были отмечены в планктоне в районе Карадага в небольшом количестве. Взрослые особи этого вида обитают на рыхлых грунтах (Мурина, Киселева, Костенко, 2004).

По литературным данным, большинство личинок многощетинковых червей предпочитает оседать вблизи поселений особей своего вида (Киселева, 2004). Можно предположить, что перечисленные выше виды полихет, у которых в последние годы зарегистрировано возрастание численности пелагических личинок в планктоне, характеризуются также и увеличением плотности поселений взрослых особей в бентосе.

Класс Crustacea, отряд Cirripedia. По литературным данным, в Черном море обитает 6 видов усоногих раков, из которых в районе Ка-
радага отмечено 4, относящихся к трем семействам (Шалаева, Гринцов, 2004). Все они имеют в своем развитии пелагические стадии. В прибрежных водах обнаружены личинки 3 видов усоногих раков: Amphibalanus improvisus (Balanidae), Verruca spengleri (Verrucidae) и не идентифицированные до вида наутилусы Chthamalidae.

Эврибионтный вид A. improvisus является массовым компонентом сообщества обрастания, а его личинки характеризуются длительной пелагической стадией и большой плотностью (до нескольких тысяч в м³). Наутилусы данного вида постоянно встречались в планктоне. В зимний период в пробах отмечены единичные наутилусы A. improvisus. Высокой численности они достигали весной и осенью. Максимальные значения (1332 экз./м³) зарегистрированы в мае 2004 г. в б. Львиной. В разные годы значения численности личинок существенно различались. Так, в мае 2012 г. их количество в районе Коктебеля составляло 327 экз./м³, в акватории заповедника изменилось от 84 до 134 экз./м³. Численность циркулярных личинок (до 20 экз./м³) увеличивалась в июне и октябре, в этот период можно ожидать наиболее массовое оседание наутилусов на твердые субстраты. Необходимо отметить, что наутилусы A. improvisus постоянно присутствовали и в нейстонных пробах.

Наутилусы усоногого рака V. spengleri входили в состав зоопланктона только в летний период года. За весь период исследований их максимальная численность не превышала 300 экз./м³. В отличие от A. improvisus этот вид немногочислен, населяет твердые субстраты на глубинах более 5 м, предпочитает районы с холодным водообменом (Шалаева, Гринцов, 2004).

Виды семейства Chthamalidae распространены вдоль всего побережья, но их местообитание различается. Так, C. stellatus доминирует на участках с чистой морской водой, гольф-поверхностях, отдельно стоящих в море скалах. Тогда как M. depressa и C. montagui предпочитают укрытые места обитания, участки, где вода более богата биогенными веществами. В местах, прибрежных, повышенному антропогенному загрязнению, встречались только M. depressa. Личинки усоногих раков сем. Chthamalidae в планктоне были немногочисленны (до 10 экз./м³) и отмечены нами только в летние месяцы. Вероятно, их основная масса сосредоточена у самого берега, возле скал, где обитают взрослые особи и происходит выход личинок в планктон.

Класс Crustacea, отряд Decapoda. По сравнению с другими таксонами – полихетами и моллюсками, фауна десятиногих раков Черного моря довольно бедна. Для Черного моря указана всего 31 вид Decapoda, в исследуемом районе отмечено 32 (Аносов, 2016). Все виды Decapoda имеют в своем развитии планктонную стадию. В прибрежных водах Юго-Восточного Крыма обнаружены пелагические личинки 23 видов, относящихся к 12 семействам. Их процентное соотношение в меропланктоне существенно колебалось и зависело от сезона. Максимальные значения количества видов десятиногих раков и их численности были зарегистрированы в летние месяцы. Так, в августе 2002 г. на долю личинок десятиногих раков приходилось до 60 % численности всего меропланктона. В октябре – ноябре личинки декапод встречались редко, а в зимние месяцы в пробах практически не попадались. В весенний период были обнаружены только личинки Crangon crangon, которые, в отличие от личинок остальных видов Decapoda, в летние месяцы не встречались. Единично они отмечены в апреле – мае и в конце сентября – начале октября, что дает возможность предположить наличие двух генераций у данного вида – весенней и раннеосенний. И лишь в мае, при прогреве воды в море выше 17 °C в планктоне появились личинки Decapoda.

Одним из немногих видов десятиногих раков, личинки которых изредка встречаются в зимний период, является Upogebia pusilla. Из 33 проб планктона, собранных в декабре 1998 г. и январе – феврале 1999 г. личинка U. pusilla обнаружена лишь однажды в пробе, взятой 5 декабря на траверзе Золотых ворот (Мурина, Лицицкая, Безвушко, 1999). На необычную терпимость данного вида к низкой температуре (в начале декабря при температуре 10 °C) в районе Карадага впервые указала М. А. Долгопольская (Долгопольская, 1940). В период исследований личинки U. pusilla постоянно встречались в пробах, взятых в летне-осенний период, их максимальная численность – 29 экз./м³ отмечена 4 сентября 2008 г. при температуре 24 °C на траверзе пгт Коктебель. Личинки упогебия обнаружены также в ночном планктоне, взятом в июне 2005 г. Личинки Hippolyte leptocerus в акватории Карадага впервые отмечены М. А. Долгопольской (1940) на середину июня до начала декабря при минимальной температуре 10 °C. Позднее они были единично найдены в летнем планктоне и более обильно в осеннем со встречаемостью 7 % летом и 50 % осенью (Мурина, Арте-

В летне-осенних сборах, а также в ночном планктоне, взятом 15 июня 2005 г., встречались личиночные стадии Palaemon elegans. Взрослые особи креветок этого вида обычны на камнях и скалах в прибрежных районах Крыма. Необходимо отметить, что личинки другого вида семейства Palaemonidae – Palaemon adspersus в планктоне обнаружены не были, хотя взрослые особи в районе Карадага встречаются. Вероятно, они придерживаются придонного слоя, что согласуется с литературными данными (Макаров, 2004).

Личинки Athanas nitescens в пла нктоне Карадага впервые отмечены в планктонных сборах в августе – сентябре 1929 г. и 1931 г. (Долгопольская, 1940). В дальнейшем в периоды исследований личинки этого вида встречались единично, их максимальная численность 6 экз./м³ зарегистрирована на траверзе Коктебеля в сентябре 2008 г. (Мурина, Аносов, Лисицкая, 2010).

В планктоне всех районов исследований обнаружены личинки недавнего вселенца в Черное море – «голландского краба» Rhithropanopeus harrisi tridentata, что может свидетельствовать о распространении этого вида вдоль берегов Крыма. В акватории Карадага личинки Rh. harrisi tridentata впервые обнаружены А. И. Безвушко (Безвушко, 2001). Как в июньских пробах 2007 г., так и сентябрьских 2008 г. они найдены на первой и второй стадиях развития почти на всех станицах от Биостанции до м. Мальчин и пгт Коктебель с максимальной плотностью 4 экз./м³. Личинки голландского краба обнаружены на всех станциях и пгт Коктебель с максимальной плотностью 4 экз./м³. Личинки голландского краба обнаружены в ночном планктоне, взятом 15 июня 2005 г. В водах Черного моря этот краб впервые был зарегистрирован Ю. Н. Макаровым в 1939 г. по находке в Днепровско-Бугском лимане. Позже этот небольшой краб распространялся по всему морю с преобладанием в
опресненных районах, особенно в лиманах северо-западного района (Макаров, 2004).

Единичные личинки песчаного краба Xantho poressa найдены в пробах зоопланктона, взятых в летних и осенних период. Кроме того, личинки песчаного краба обнаружены также в ночном планктоне. Вид встречается в зоне литорали среди камней и скал с цистозией, а также на заиленных участках (Гринцов, Мурина и др., 2004). В настоящее время X. poressa вместе с голландским крабом является наиболее широко распространенным в Черном море.

Таким образом, в прибрежных водах Юго-Восточного Крыма личинки десятиногих раков в летне-осенний период. Максимальные значения численности отмечены у личинок P. hirtellus (167 экз./м³) и U. pusilla (29 экз./м³), а встречаемости (более 50 %) – у H. leptocerus, D. pugilator, X. poressa.

Существенным компонентом меропланктона являлись личинки моллюсков.

Тип Mollusca, класс Bivalvia. По литературным данным, у берегов Крыма обитает 49 видов Bivalvia (Ревков, 2003 а), для района Карадага указано 43 вида (Ревков и др., 2004). Все двустворчатые моллюски имеют в своем развитии пелагическую фазу. Идентификация личинок на ранних стадиях развития затруднена, поэтому приведенный список меропланктона не полный и требует дальнейшего уточнения и дополнения. За период исследований в планктонных сборах идентифицированы личинки 12 видов Bivalvia, относящиеся к 7 семействам (табл. 1).

Личинки Bivalvia являлись одним из постоянных компонентов меропланктона прибрежных вод Юго-Восточного Крыма и встречались круглый год. Наиболее массово представлены в планктоне двустворчатые моллюски семейств Mytilidae, Cardiidae и Veneridae. Личинки кардии единично встречались в зимних пробах, весной количество их в планктоне увеличивалось. В течение года в прибрежном планктоне в незначительном количестве отмечались великонхи Modiolus sp.

По численности в меропланктоне личинки Bivalvia доминировали в мае. Так, в 2004 г. в б. Лысьей их численность достигала 4692 экз./м³. В районе Карадагского заповедника она была ниже и колебалась от 257 экз./м³ у ск. Кузьмищев Камень до 2044 экз./м³ у м. Мальчин. В мае 2012 г. наблюдалась аналогичная ситуация. Личинки Bivalvia (представители семейств Mytilidae и Cardiidae) встречались на всей исследованной акватории с минимальным количеством (6 экз./м³) в районе пгт Коктебель. Их количество увеличивалось в сторону заповедника и составляло у м. Мальчин 19 экз./м³, в б. Сердоликовой 521 экз./м³, у Биостанции – 316 экз./м³. Доминировали личинки мидий Mytilus galloprovincialis, на ранней стадии великонхи «без глазка» находилось до 93 % личинок, на поздней стадии великонхи «с глазком» – не более 7 %. M. galloprovincialis – один из массовых в районе Карадага видов, но численность его поселений существенно изменялась в различные годы исследований (Болтачева и др., 2015). Необходимо отметить, что в сентябре 2015 г. в планктоне было зарегистрировано появление личинок M. galloprovincialis, их численность была существенно выше в б. Сердоликовой и у м. Мальчин – 100 и 86 экз./м³ соответственно. Для данного месяца наличие личинок мидий в планктоне не характерно. Учитывая, что все личинки находились на поздней стадии великонхи «с глазком», можно предположить, что их принесло с водными массами из других районов Черного моря.

В июньских пробах численность великоних M. galloprovincialis не превышала 4 экз./м³. В планктоне начали преобладать личинки Mytilaster lineatus. Так, в июне 2015 г. их численность у причала Биостанции составляла 28 экз./м³, в б. Сердоликовой – 156 экз./м³. В сентябре численность великоних M. lineatus у Биостанции составляла 101 экз./м³, в б. Сердоликовой – 863 экз./м³, у м. Мальчин – 1107 экз./м³. Личинки M. lineatus и не идентифицированные до вида вельгеры Bivalvia были отмечены и в ночном нейстоне. По результатам исследований макрозообентоса, в биотопе скал Карадага по биомассе преобладает M. lineatus.
(Болтачева и др., 2015). В планктоне личинки митилястера доминируют с июня по сентябрь. Необходимо отметить, что в мае 2004 г. в планктоне у берегов Карадага нами впервые обнаружены личинки двустворчатого моллюска *Mya arenaria*, являющегося вселенцем в Черное море. Их максимальная численность – 310 экз./м³ зарегистрирована в районе Стены Лагорио, минимальные значения (41 экз./м³) отмечены напротив очистных сооружений пгт Курортное. В последующие годы личинки мии в трещали в мае в пробах в небольшом количестве, максимальные значения (до 34 экз./м³) отмечены у м. Мальчин. Личинки другого моллюска-вселенца *Anadara kagoshimensis* в акватории Карадагского природного заповедника впервые были обнаружены в 1999 г. с максимальной численностью до 1000 экз./м³ в районе б. Лисья (Безвушко, 2001). Учитывая, что с 2002 г. отбор проб в акватории Карадага проводился раз в сезон, годовую динамику численности личинок анадары проследить сложно. По нашим данным, в прибрежных водах Карадага в осенний сезон 2002 и 2003 гг. количество личинок снизилось – в 2002 г. не превышало 42 экз./м³, а в 2003 г. – 96 экз./м³. В сентябре 2015 г. максимальная численность личинок анадары составляла 115 экз./м³.

Таким образом, личинки двустворчатых моллюсков встречались в планктоне круглый год. Весной и поздней осенью по численности доминировали личинки мидии *M. galloprovincialis*, а летний сезон – митилястера *M. lineatus* (Mytilidae).

Тип Mollusca, класс Gastropoda. С учетом литературных данных (Ревков и др., 2004), у берегов Карадага обитает 65 видов брюхоногих моллюсков. За период исследований в прибрежных водах Юго-Восточного Крыма обнаружены личинки 23 видов гастропод, относящихся к 14 семействам (табл. 1). Некоторые виды *Gastropoda* (например, представители семейства *Trochidae*) имеют короткую пелагическую стадию развития, а отдельные виды нерестятся в штормовую погоду (Чухчин, 1984), что затрудняет отбор проб и идентификацию личинок. Поэтому приведенный список видов явно неполный и будет дополняться по мере исследований.

Таким образом, личинки брюхоногих моллюсков встречались в планктоне у берегов Юго-Восточного Крыма в основном в теплые времена года, максимальные значения численности приходились на летние месяцы. По численности доминировали *B. reticulatum*, *R. parva*, *T. pullus*.

Сравнивая таксономический состав меропланктона в различных акваториях Юго-Восточного Крыма, можно отметить его относительное видовое сходство, однако, числен-
ность личинок существенно отличалась. Так, во время планктонной съемки 15 мая 2012 г. в акватории Карадагского природного заповедника численность личинок брюхоногих моллюсков была в 2 раза выше, чем в районе Коктебеля, тогда как количество науплиусов усоногого рака было в 2–3 раза ниже. Максимальное количество личинок мидии *M. galloprovincialis* было отмечено в б. Сердоликовой. В 2015 г. численность меропланктона также была существенно выше в б. Сердоликовой (419 экз./м³ в июне и 1703 экз./м³ в сентябре), чем в районе Биостанции (164 экз./м³ и 221 экз./м³ соответственно). Максимальная численность меропланктона (1985 экз./м³) отмечена в сентябре в районе м. Мальчин. Личинки многощетинковых червей постоянно преобладали в районе причала Биостанции (до 345 экз./м³), тогда как на остальных участках их численность не превышала 153–171 экз./м³. Учитывая, что многие виды полихет предпочитают илисто-песчаные донные осадки, можно предположить, что в районе причала Биостанции происходит заиливание грунта.

На процессы, протекающие в прибрежной зоне моря, существенное влияние оказывает циркуляция вод. От направления и скорости прибрежных течений зависит уровень загрязнения акваторий, а также интенсивность обменных процессов. При стонных явлениях в летний период понижается температура воды, изменяется величина рН, повышается соленость, увеличивается содержание кислорода, снижается концентрация биогенных элементов. Резкое изменение гидрохимических показателей при понижении температуры воды подтверждает подъем глубинных вод (Зац и др., 1980). Перемещение водных масс в результате стонов отражается и на планктонных организмах прибрежной зоны моря – изменяется их видовой состав и численность.

Влияние стонов на видовой состав и численность меропланктона отмечено нами в акватории Карадагского природного заповедника. Исследования проводили вблизи берегов – на станциях отбора проб глубины не превышали 13 м, что давало возможность облавливать весь слой воды от дна до поверхности. Так, в конце мая 1999 г., во время стона, температура воды в море резко понизилась с 17 °C до 12,5 °C, при этом численность личинок в планктоне не превышала 24 экз./м³. В мае 2003 г., когда температура воды в море достигала 17,6 °C, численность меропланктона в водах заповедника колебалась от 729 до 1744 экз./м³. Минимальные значения отмечались в районе птт Курортное (244 экз./м³). Основную долю в меропланктоне составляли велигеры представителей семейства Cardiidae; а также науплиусы усоногого рака *A. improvisus*. В этот период в планктонных пробах встречались десятки экземпляров личинок многощетинковых червей. Единично отмечались личинки брюхоногих моллюсков, личинки десятиногих раков обнаружены не были. В июне – июле 2003 г. в акватории Карадага были зарегистрированы длительные, продолжающиеся более месяца стонные явления, которые привели к понижению температуры воды в море до 12,2–15 °C. Личинки донных беспозвоночных из прибрежной зоны с водными массами были вынесены в открытое море. К берегу подошли холодные глубинные воды. Низкая температура воды, вероятно, вызвала задержку нереста многих видов донных беспозвоночных, размножающихся при температуре воды выше 18 °C, в частности, личинок двустворчатых моллюсков. Все это привело к изменению таксономической структуры меропланктона. По данным планктонной съемки, выполненной 9 июля 2003 г. в акватории Карадагского природного заповедника, число видов меропланктона на всех станциях было минимальным. Численность личинок донных беспозвоночных существенно уменьшилась и не превышала 73 экз./м³. Основную долю в меропланктоне (58–87 %) составляли нектохеты многощетинковых червей, размножение которых происходит при температуре воды 13–15 °C. Практически отсутствовали в плактоне личинки *M. lineatus* – моллюска, нерестящегося только в теплый сезон при температуре воды выше 18 °C. Можно предположить, что продолжительное действие низких температур привело к задержке нереста у митилестеров.

Таким образом, результаты наших наблюдений подтверждают существенное влияние стонных явлений на таксономическую структуру меропланктона у черноморского побережья Восточного Крыма.

Видовой состав меропланктона прибрежных вод Восточного Крыма зависел от сроков размножения морских беспозвоночных и изменялся по сезонам. Максимальное количество видов (до 34 в пробе) зарегистрировано в теплый период года, минимальное (2–3 вида) зимой. По численности в меропланктоне доминировали представители...
Cirripedia, Mollusca и Polychaeta. Массовыми являлись личинки двустворчатых моллюсков – M. galloprovincialis, M. lineatus; брюхоногого моллюска – B. reticulatum и усоногого рака A. improvisus. Изменения в видовом составе меропланктона связаны и с вселением новых видов. Личинки видов-вселенцев (краба Rh. harrisi tridentata, двустворчатого моллюска A. kagoshimensis, хищного брюхоногого моллюска R. venosa, полихеты P. cornuta) в последние годы стали в планктоне обычными, следовательно, эти виды широко распространялись вдоль побережья Крыма. Напротив, личинки некоторых ранее массовых черноморских видов, таких как устрица Ostrea edulis Linnaeus, 1758 и гребешок Flexopecten glaber ponticus (Bucquoy, Dautzenberg & Dollfus, 1889), в планктонных сборах, начиная с 1990-х годов, ни разу обнаружены не были, что подтверждает существенное снижение численности данных видов в бентосе. На таксономическую структуру меропланктона влияли многие факторы: гидрохимическое состояние морской среды, температура воды, течения, сгонно-нагонные явления и др. Существенных особенностей в таксономическом составе меропланктона прибрежных вод Юго-Восточного Крыма не выявлено. Необходимо отметить, что личинки некоторых редких видов Decapoda и Polychaeta обнаружены только в акватории Карадагского природного заповедника, что подтверждает целесообразность и необходимость дальнейшего соблюдения заповедного режима с целью сохранения биоразнообразия прибрежных вод Крыма.

Благодарности. Выражаю благодарность д-ру биол. наук, проф. В. В. Муриной за многолетние научные консультации при изучении меропланктона, канд. биол. наук В. А. Гринцову и канд. геогр. наук О. А. Трошечко за помощь в отборе проб, канд. биол. наук Н. С. Костенко и сотрудникам Карадагской биостанции за предоставленную возможность проводить научные исследования в районе заповедника.

4.3.2. ГОЛОПЛАНКТОН

Зоопланктон морской акватории возле Карадага исследовали многие авторы. В результате были получены сведения о его видовом составе, уровне количественного развития, сезонной динамике, особенностях вертикального распределения и межгодовой изменчивости (Долгопольская, 1940; Ключарев, 1952; Лазарева, 1957; Бенько, 1962). Эти исследования показали относительно невысокое видовое разнообразие зоопланктона, что в целом характерно для всего Черного моря. Зоопланктон включает две группы животных – голопланктон и меропланктон. После организации заповедника исследования зоопланктона были возобновлены в конце 1980-х годов (Мурина, Загородняя, 1989; Загородняя, Мурина, 2001; Загородняя и др., 2004 а; Гринцов и др., 2004). Учитывая слабую изученность меропланктона в бухтах заповедника, большое внимание было уделено видовому составу и количественных характеристиках этой группы животных, как одной из важнейших составляющих зоопланктона в прибрежных районах моря. Одновременно были получены сведения о состоянии всего голопланктона общества на протяжении 1980–1990-х годов. Показаны изменения видового состава зоопланктона и его количественных характеристик в акватории заповедника в 2000-е годы. Сбор зоопланктона проводили на постоянных станциях (рис. 1), расположенных вдоль береговой полосы заповедника над глубинами около 15 м в разные сезоны и годы, начиная с 1987 г. Обычно пробы отбирали на всех станциях в течение одного дня. Зоопланктон облавливали в слое 0–10 м сетью Джеди с площадью входного отверстия 0,1 м², оснащенной мельничным ситом с размером ячей 145 мкм. Пробы фиксировали 4 % формалином. Кроме того, для анализа привлечены материалы, собранные в б. Карадагской в 2010–2013 гг. В 64, 68, 70 и 72 рейсах НИС «Профessor Водяницкий». Учет зоопланктона проводили в камере Богорова. Определяли видовую принадлежность животных, их длину и количество в пробе согласно (Методика ..., 2016). Укспользовали все копеподитные стадии идентифицированы до вида. Биомассу планктонных организмов рассчитывали по таблице стандартных весов (Kovalev et al., 1995), а желетелых – по соответствующим формулам (Аннинский, Тимофе, 2009).
В морском голопланктоне акватории Карадагского заповедника по численности доминировали планктонные ракообразные копеподы и кладоцеры, составляя в отдельные сезоны 80–90 %.

Весной и осенью массовой в планктоне была динофлагеллята Noctiluca scintillans, встречались тинтиниды, из которых только Favella ehrenbergii, благодаря большим размерам, улавливалась планктонной сетью. С апреля по июнь в планктоне обычно встречалось много коловраток, представленных несколькими морскими видами. Типичными представителями зоопланктона бухт являются хетогнаты Parasagitta setosa, ойкоплевра Oikopleura dioica. Ланцетник Branchiostoma lanceolatus встречался редко. В акватории заповедника встречались два вида сцифоидных медуз Aurelia aurita и Rhizostoma pulmo, мелкие гидромедузы Sarsia tubulosa (Coryna tubulosa) и другие, три вида гребневиков – аборигенный Pleurobrachia pileus и вселенцы Mnemiopsis leidyi и Beroe ovata, которые на ранних этапах развития регистрируются в голопланктоне, а на более поздних из-за крупных размеров их относят к макрозоопланктону. Бореальные формы голопланктона: копеподы C. euxinus, P. elongatus, O. similis и гребневик P. pileus обычно встречались в бухтах заповедника в холодное время года. Летом их можно обнаружить в малом количестве при подъёме холодных вод в результате стянно-нагонной циркуляции. Наряду с голопланктонными формами, в зоопланктоне обычно много личинок донных животных. Это разные стадии развития гарпактикод, амфипод, изопод, редко встречались личинки экзопаразитических изопод, церкарии трематод, водные клещи Acarina. Личинки донных животных и поднимающиеся в пелагиальный демерсальные (бентопелагические) формы вместе составляют более половины видового разнообразия зоопланктона у берегов Крыма (Загородняя и др., 2003).
Таблица 1.
Список видов голопланктона, обнаруженных в бухтах Карадагского природного заповедника (* – массовые и ред. – редкие)

<table>
<thead>
<tr>
<th>Вид</th>
<th>Встречаемость</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип Protozoa</td>
<td></td>
</tr>
<tr>
<td>Класс Dinolagellata</td>
<td></td>
</tr>
<tr>
<td>Noctiluca scintillans (Macartney) Kofoid & Swezy, 1921</td>
<td>+ *</td>
</tr>
<tr>
<td>Тип Ciliophora</td>
<td></td>
</tr>
<tr>
<td>Класс Polyhymenophorea</td>
<td></td>
</tr>
<tr>
<td>Отряд Oligotrichida</td>
<td></td>
</tr>
<tr>
<td>Favella ehrenbergii (Claparede & Lachmann, 1855)</td>
<td>+</td>
</tr>
<tr>
<td>Тип Chidaria</td>
<td></td>
</tr>
<tr>
<td>Класс Saccharina</td>
<td></td>
</tr>
<tr>
<td>Aurelia aurita (Linneus, 1758)</td>
<td>+ *</td>
</tr>
<tr>
<td>Rhizostoma pulmo (Macri, 1778)</td>
<td>+</td>
</tr>
<tr>
<td>Класс Hydrozoa</td>
<td></td>
</tr>
<tr>
<td>Sarsia tubulosa (M. Sars, 1835)</td>
<td>+</td>
</tr>
<tr>
<td>Тип Ctenophora</td>
<td></td>
</tr>
<tr>
<td>Pleurobrachia pileus (O. F. Müller, 1776)</td>
<td>+</td>
</tr>
<tr>
<td>Mnemiopsis leidy A. Agassiz, 1865</td>
<td>+</td>
</tr>
<tr>
<td>Beroe ovata Bruguière, 1789</td>
<td>+</td>
</tr>
<tr>
<td>Класс Nemathelminthes</td>
<td></td>
</tr>
<tr>
<td>Тип Artropoda</td>
<td></td>
</tr>
<tr>
<td>подтип Crustacea</td>
<td></td>
</tr>
<tr>
<td>Класс Branchiopoda</td>
<td></td>
</tr>
<tr>
<td>Инфраотряд Cladocera</td>
<td></td>
</tr>
<tr>
<td>Penilia avirostris Dana, 1849</td>
<td>+ *</td>
</tr>
<tr>
<td>Pleopia polyphemoides (Leuckart, 1859)</td>
<td>+ *</td>
</tr>
<tr>
<td>Pseudoelaphidium tergestinum (Claus, 1877)</td>
<td>+ *</td>
</tr>
<tr>
<td>Evadne spinifera P.E. Müller, 1867</td>
<td>+</td>
</tr>
<tr>
<td>Evadne nordmanni Loven, 1836</td>
<td>+ ред.</td>
</tr>
<tr>
<td>Подкласс Copepoda</td>
<td></td>
</tr>
<tr>
<td>Отряд Calanoida</td>
<td></td>
</tr>
<tr>
<td>Anomalocera patersoni Templeton, 1837</td>
<td>+ ред.</td>
</tr>
<tr>
<td>Pontella mediterranea (Claus, 1863)</td>
<td>+ ред.</td>
</tr>
<tr>
<td>Labidocera brunescens (Czerniavsky, 1868)</td>
<td>+ ред.</td>
</tr>
<tr>
<td>Calanus euxinus Hulsemann, 1991</td>
<td>+</td>
</tr>
<tr>
<td>Centropages ponticus Karavaev, 1895</td>
<td>+ *</td>
</tr>
<tr>
<td>Pseudocalanus elongatus (Boeck, 1865)</td>
<td>+</td>
</tr>
<tr>
<td>Paracalanus parvus (Claus, 1863)</td>
<td>+ *</td>
</tr>
<tr>
<td>Acartia clausi Giesbrecht, 1889</td>
<td>+ *</td>
</tr>
<tr>
<td>A. tonsa Dana, 1849</td>
<td>+</td>
</tr>
<tr>
<td>Отряд Cyclopoida</td>
<td></td>
</tr>
<tr>
<td>Oithona davisae Ferrari F.D. & Orsi, 1984</td>
<td>+ *</td>
</tr>
<tr>
<td>O. similis Claus, 1866</td>
<td>+</td>
</tr>
<tr>
<td>Cyclopina gracilis Claus, 1866</td>
<td>+ ред.</td>
</tr>
<tr>
<td>C. pontica Monchenko, 1977</td>
<td>+ ред.</td>
</tr>
<tr>
<td>Отряд Monstrilloida</td>
<td></td>
</tr>
<tr>
<td>Cymbasoma longispinosum (Bourne, 1890)</td>
<td>+ ред.</td>
</tr>
<tr>
<td>Подтип Chelicerata</td>
<td></td>
</tr>
<tr>
<td>Класс Arachnoidea</td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Даты</td>
<td>10 апреля</td>
<td>21–25 мая</td>
<td>19 мая</td>
</tr>
<tr>
<td>Вид, таксон</td>
<td>Параметры</td>
<td>Количество станций</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ч</td>
<td>Б</td>
<td>Ч</td>
</tr>
<tr>
<td>Копеподы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ч</td>
<td>566,0</td>
<td>6469,00</td>
<td>1565,9</td>
</tr>
<tr>
<td>Б</td>
<td>1,43</td>
<td>20,93</td>
<td>8,76</td>
</tr>
<tr>
<td>Кладоцеры</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ч</td>
<td>0</td>
<td>9,1</td>
<td>0</td>
</tr>
<tr>
<td>Б</td>
<td>0</td>
<td>0,08</td>
<td>0</td>
</tr>
<tr>
<td>Rotatoria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ч</td>
<td>130,0</td>
<td>942,8</td>
<td>192,1</td>
</tr>
<tr>
<td>Б</td>
<td>0,35</td>
<td>2,55</td>
<td>0,52</td>
</tr>
<tr>
<td>Oikopleura dioica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ч</td>
<td>37,5</td>
<td>1323,3</td>
<td>6</td>
</tr>
<tr>
<td>Б</td>
<td>0,54</td>
<td>10,05</td>
<td>0,04</td>
</tr>
<tr>
<td>Parasagitta setosa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ч</td>
<td>0</td>
<td>4,1</td>
<td>1,3</td>
</tr>
<tr>
<td>Б</td>
<td>0</td>
<td>0,04</td>
<td>0,02</td>
</tr>
<tr>
<td>Noctiluca scintillans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ч</td>
<td>95,0</td>
<td>1039,7</td>
<td>579,4</td>
</tr>
<tr>
<td>Б</td>
<td>7,60</td>
<td>99,99</td>
<td>62,11</td>
</tr>
<tr>
<td>Прочие</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ч</td>
<td>0</td>
<td>2,0</td>
<td>9,4</td>
</tr>
<tr>
<td>Б</td>
<td>0</td>
<td>0,001</td>
<td>0,006</td>
</tr>
<tr>
<td>Средние Ч и Б голопланктона</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ч</td>
<td>828,5</td>
<td>9792,0</td>
<td>2352,8</td>
</tr>
<tr>
<td>Б</td>
<td>9,92</td>
<td>133,57</td>
<td>71,44</td>
</tr>
<tr>
<td>Стандартное отклонение</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ч</td>
<td>4352,1</td>
<td>1795,6</td>
<td>1510,36</td>
</tr>
<tr>
<td>Б</td>
<td>71,46</td>
<td>41,8</td>
<td>31,81</td>
</tr>
</tbody>
</table>

Примечание: * – в основном личинки гребневиков
биомасса голопланктона в мае 2004 г. оказалась ниже, чем в 2003 г. В июле 2004 г. доля копепод в голопланктоне существенно увеличилась, составляя 95 % и по численности, и по биомассе. Доминировала среди них A. clausi (средняя численность 1700 экз./м³). В сентябре доля копепод снизилась до 50 % численности, за счет резкого сокращения их количества в море в результате их выведения гребневиком мнемиопсисом. При этом лидировала A. tonsa (130 экз./м³). В целом для летнего сезона характерно массовое развитие кладцер. В сентябре они были на втором месте по численности. По биомассе в сентябре лидировали гребневики. В пробах голопланктона были обнаружены личиночные стадии развития тепловодных видов гребневиков-вселенцев (M. leidy и B. ovata). В ноябре численность и соответственно биомassa копепод существенно увеличилась. Их вклад в суммарные показатели голопланктона составил 98 % по численности и 97 % по биомассе. Среди копепод по численности лидировала A. tonsa (698 экз./м³). В связи с понижением температуры воды в море в ноябре количество кладцер резко сократилось, и они составляли менее 1 % голопланктона. В период исследования биомassa копепод определяли обычно два вида: A. clausi и C. ponticus в мае и июле, A. tonsa и A. clausi в сентябре и ноябре.

Зоопланктон в акватории заповедника в мае 2006 г. За этот год данные по голопланктону представлены только сборами возле причала. Видовой состав голопланктона был очень бедным, а его численность крайне низкой. Средняя численность составляла 497,1 экз./м³ (Std=56), а биомасса 22,0 мг/м³ (Std=1,8). По численности преобладали копеподы 53 %, по биомассе ноктилюка 84,5 %.

Зоопланктон в акватории заповедника в июле 2004 г. Видовой состав зоопланктона в мае 2004 г. доминировали копеподы, превышая 70 % общей численности зоопланктона. Среди копепод лидировал C. ponticus (59 %), субдомinantным видом была A. clausi (30 %). На долю вселенца A. tonsa приходилось только 4 % общей численности копепод. В суммарной численности зоопланктона личинки донных животных были на втором месте. Их доля составляла 19 %, на третьем месте были кладцеры – 6 %. На долю сагитт и ойкоплевр приходилось по 1 %. Среди пелагических личинок донных животных по численности лидировали брюхоногие моллюски (37 %), субдомinantными группами были личинки усоногих раков (Ciàripedia) (23 %) и двусторчатых моллюсков (21 %). Личинки Decapoda и Polychaeta составляли соответственно 11 и 8 % суммарной численности меропланктона.

Биомасса зоопланктона, как и его численность, на разных станциях сильно различалась, от 0,21 у м. Мальчина до 37,55 мг/м³ против створа ск. Золотые Ворота.

Численность (Ч, экз./м³) и биомасса (Б, мг/м³) зоопланктона в акватории Карадагского природного заповедника в июле 2009 г.

<table>
<thead>
<tr>
<th>Вид, таксон</th>
<th>Параметры</th>
<th>Бухты заповедника</th>
<th>Средняя</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>У Биостанции</td>
<td>Гравий-</td>
<td>Львиная</td>
</tr>
<tr>
<td></td>
<td>Бухта заповедника</td>
<td>гравий-</td>
<td>львиная</td>
</tr>
<tr>
<td>Acartia clausi</td>
<td>Ч</td>
<td>145,0</td>
<td>270,8</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>1,99</td>
<td>3,05</td>
</tr>
<tr>
<td>Acartia tonsa</td>
<td>Ч</td>
<td>240,0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>1,88</td>
<td>0</td>
</tr>
<tr>
<td>Calanus euxinus</td>
<td>Ч</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Centropages ponticus</td>
<td>Ч</td>
<td>760,0</td>
<td>416,7</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>11,37</td>
<td>7,34</td>
</tr>
<tr>
<td>Paracalanus parvus</td>
<td>Ч</td>
<td>0</td>
<td>70,8</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>0,32</td>
<td>1,63</td>
</tr>
<tr>
<td>Harpacticoida</td>
<td>Ч</td>
<td>0</td>
<td>0,8</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>0,03</td>
<td>0</td>
</tr>
<tr>
<td>Penilia avirostris</td>
<td>Ч</td>
<td>0</td>
<td>8,3</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>0,29</td>
<td>0</td>
</tr>
<tr>
<td>Pleopsis polyphemoides</td>
<td>Ч</td>
<td>35,0</td>
<td>16,7</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>0,32</td>
<td>0,15</td>
</tr>
<tr>
<td>Pseudovadne tergestina</td>
<td>Ч</td>
<td>30,0</td>
<td>23,0</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>1,20</td>
<td>0,93</td>
</tr>
<tr>
<td>Oikopleura dioica</td>
<td>Ч</td>
<td>0</td>
<td>12,5</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>0,04</td>
<td>0,14</td>
</tr>
<tr>
<td>Parasagitta setosa</td>
<td>Ч</td>
<td>17</td>
<td>14,2</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>0,48</td>
<td>0,46</td>
</tr>
<tr>
<td>Личинки паразитической изоподы</td>
<td>Ч</td>
<td>1,0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>0,02</td>
<td>0</td>
</tr>
<tr>
<td>Меропланктон</td>
<td>Ч</td>
<td>142,0</td>
<td>392,5</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>4,83</td>
<td>6,35</td>
</tr>
<tr>
<td>Pisces</td>
<td>Ч</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Б</td>
<td>22,08</td>
<td>18,95</td>
</tr>
</tbody>
</table>

Примечание: * в таблице приводятся данные по всем группам зоопланктона.

Таблица 4.

<table>
<thead>
<tr>
<th>Вид, таксон</th>
<th>Дата</th>
<th>Слой, м</th>
<th>Глубины, м</th>
<th>Станция, №</th>
<th>Параметры</th>
<th>Сентябрь</th>
<th>Ноябрь</th>
<th>Июль</th>
<th>Август</th>
<th>Май</th>
<th>Июль</th>
<th>Июль</th>
<th>Ноябрь</th>
<th>Ноябрь</th>
<th>Август</th>
<th>Лето</th>
<th>Весна</th>
<th>Сумма</th>
</tr>
</thead>
<tbody>
<tr>
<td>Копеподы</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>38</td>
<td>39</td>
<td>9</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ч</td>
<td>974,7</td>
<td>870,0</td>
<td>1915,3</td>
<td>4004,4</td>
<td>1288,3</td>
<td>1037,4</td>
<td></td>
</tr>
<tr>
<td>Б</td>
<td>15,74</td>
<td>16,82</td>
<td>16,26</td>
<td>33,51</td>
<td>10,32</td>
<td>15,60</td>
<td></td>
</tr>
<tr>
<td>Кладоцеры</td>
<td>2133,3</td>
<td>1755,0</td>
<td>6,6</td>
<td>17,5</td>
<td>5083,3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ч</td>
<td>164,0</td>
<td>569,0</td>
<td>45,8</td>
<td>52,5</td>
<td>553,3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Б</td>
<td>5,71</td>
<td>14,33</td>
<td>2,54</td>
<td>10,91</td>
<td>27,38</td>
<td>21,18</td>
<td></td>
</tr>
<tr>
<td>Parasagitta setosa</td>
<td>Ч</td>
<td>106,7</td>
<td>122,0</td>
<td>243,4</td>
<td>221,2</td>
<td>575,0</td>
<td>3,7</td>
<td></td>
</tr>
<tr>
<td>Б</td>
<td>0,49</td>
<td>0,47</td>
<td>2,52</td>
<td>3,19</td>
<td>10,68</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Oikopleura dioica</td>
<td>Ч</td>
<td>64,0</td>
<td>303,0</td>
<td>130,5</td>
<td>119,4</td>
<td>1395,8</td>
<td>7,4</td>
<td></td>
</tr>
<tr>
<td>Б</td>
<td>2,43</td>
<td>8,58</td>
<td>1,18</td>
<td>2,17</td>
<td>29,18</td>
<td>0,08</td>
<td></td>
</tr>
<tr>
<td>Личинки бентосных животных</td>
<td>Ч</td>
<td>2733,3</td>
<td>45,0</td>
<td>92,1</td>
<td>22,5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Б</td>
<td>218,67</td>
<td>3,60</td>
<td>10,87</td>
<td>2,66</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Noctiluca scintillans</td>
<td>Ч</td>
<td>9,3</td>
<td>1,0</td>
<td>3,1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pleurobrachia pileus</td>
<td>Ч</td>
<td>2268,20</td>
<td>113,00</td>
<td>1,58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ctenophora</td>
<td>Ч</td>
<td>0</td>
<td>30,0</td>
<td>0</td>
<td>8,8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Branchiostoma lanceolatum</td>
<td>Ч</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Б</td>
<td>0,03</td>
<td>0</td>
<td>4,38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Кормовой зоопланктон</td>
<td>Ч</td>
<td>3442,7</td>
<td>3619,0</td>
<td>2341,6</td>
<td>4415,0</td>
<td>8895,8</td>
<td>1051,1</td>
<td></td>
</tr>
<tr>
<td>Б</td>
<td>86,96</td>
<td>99,23</td>
<td>22,72</td>
<td>50,24</td>
<td>259,43</td>
<td>36,91</td>
<td></td>
</tr>
<tr>
<td>Сумма</td>
<td>6185,3</td>
<td>3698,0</td>
<td>2438,4</td>
<td>4446,2</td>
<td>10185,0</td>
<td>1051,1</td>
<td></td>
</tr>
</tbody>
</table>

Кормовой зоопланктон (в него не входят гребневики, медузы и ноктилюка) в верхнем слое характеризовался биомассами, изменяющимися в диапазоне от 23 до 260 мг/м³ с максимумом в августе за счет обилия кладоцер в теплый сезон. При высокой численности копепод они лидировали в планктоне и по биомассе. При низкой их численности первое место по биомассе занимали другие группы планктонов. Например, в июле на одной станции кладоцеры, а на другой ноктилюка, в августе кладоцеры, а в мае сагитты.

Обобщая результаты исследований зоопланктона в разные годы в акватории Карадагского природного заповедника (Мурина, Загородняя, 1989; Загородняя, Мурина, 2001; Загородняя и др., 2004; Гринцов и др., 2004 и др.) просматривается тенденция увеличения численности копепод (рис. 2) и всего голопланктона после 1999 г. В настоящее время можно говорить о стабилизации количественных показателей голопланктона, при этом влияние миопсиса сохраняется, проявляясь в резком снижении численности копепод в августе – начале сентября 2002 и 2004 гг.
Видовая структура таксоцена копепод на протяжении исследованного периода претерпела существенные изменения. На протяжении 1990-х годов в летнем голопланктоне доминировали акарциды (A. clausi либо A. tonsa). В 2000-е годы возросла численность эпипланктонных копепод (C. ponticus и P. parvus). Численность копеподы-вселенца A. tonsa в акватории заповедника снизилась, сохраняя более высокие величины только в эвтрофных бухтах, например, у очистных сооружений, в б. Лисья, у пгт Курортное. В эти годы в планктонном сообществе появился новый вселенец — циклопоид O. davisae, высокая численность которой отмечена в августе 2011 г. в б. Карадагской.

Наибольшее влияние на уровень количественного развития копепод в акватории Карадагской биостанции до начала 90-х годов XX века оказывали климатические факторы: температура, определяющая сезонную динамику, и синоптическая изменчивость, когда в результате сгонно-нагонной циркуляции резко менялись видовой состав и численность зоопланктона в прибрежной акватории у Карадага (Долгопольская, 1940; Ключарев, 1952; Бенько, 1962; Мурина, Загородняя, 1989).

Антропогенное воздействие, вызванное в 1970–1980-е гг. эвтрофикацию северо-западной части и прибрежных районов Черного моря привело к смене доминирующих видов в зоопланктоне (Kovalev et al., 1998 а). Трансформация зоопланктонного сообщества продолжилась в результате вселения новых для черноморской экосистемы эвтрофных видов — копеподы A. tonsa (Kovalev et al., 1998 b) и гребневика M. leidy (Переладов, 1988). С появлением мнемопсиса в акватории заповедника резко упали численность и биомасса рачкового зоопланктона, являющего наилучшим кормом для личинок рыб и планктонядных рыб, сократились количественные показатели практически всех видов зоопланктона (Загородняя, Мурина, 2001). Существенно пострадали виды эпипланктонного комплекса вплоть до полного исчезновения из сообществ зоопланктона, например, циклопоиды Oithona nana (Загородняя, Скрябин, 1995; Загородняя, Мурина, 2001 и др.). Появление на рубеже XXI века в Черном море другого гребневика — B. ovata (Konsulov, Kamburska, 1998 и др.), потребляющего мнемопсиса, и его массовое развитие в Черном море привело к увеличению численности зоопланктона и способствовало дальнейшей трансформации планктонного
сообщества, которая продолжилась с вселением новой циклопоиды *O. davisae*.

В настоящее время в прибрежной акватории Карадагского природного заповедника наблюдается стабилизация количественных показателей зоопланктона. После 1999 г. возросли количественные показатели как отдельных видов копепод, так и всего голопланктона. Эти изменения в значительной степени связаны с появлением у берегов Крыма гребневика *Beroe ovata*, питающегося мнемиопсисом. Влияние гребневика мнемиопсиса на зоопланктонное сообщество сохраняется, но оно стало кратковременным и проявляется в существенном снижении численности копепод в августе – начале сентября, с последующим её восстановлением в осенние месяцы. Интродукция новых видов существенно повлияла на видовой состав и количественные характеристики зоопланктона. В настоящее время зоопланктон прибрежной акватории Карадагского природного заповедника пополнился циклопоидой-вселенцем *Oithona davisae*.

4.4. ЗООБЕНТОС

4.4.1. МАКРОЗООБЕНТОС ПСЕВДОЛИТОРАЛИ

Псевдолитораль относится к контактным зонам моря. Гидробионты, обитающие на этом участке, испытывают негативное воздействие природных и антропогенных факторов: значительные сезонные колебания температуры и солености воды, прибойность, в летний период на участке выше уреза воды – высокую степень инсоляции и высыхания верхнего слоя грунта. Кроме этого, краевые сообщества испытывают негативное воздействие поллютантов, поступающих не только со стороны берега, но и со стороны моря (Зайцев, Поликарпов, 2002; Миронов, 2001; Зайцев, Поликарпов 2002; Миронов и др., 2003; Миронов, 2009; Копий, 2012, 2017; Копий, Бондаренко, 2016).

Проведен сравнительный анализ таксономического состава и количественных показателей макробентоса зоны псевдолитораля акваторий, прилегающих к Карадагскому природному заповеднику.

В основу работы положены материалы бентосных съемок мягких грунтов псевдолиторали акваторий, прилегающих к Карадагу. Отбор проб проводили в летний период 2007 г. (б. Тихая) и 2008 г. (пляж Биостанции, б. Лисья) (рис. 1).

Рис. 1. Карта-схема районов исследования
Сбор материала проводился ручным дночерпачем (S=0,4 м²) в двух повторностях. На каждом разрезе, расположенном перпендикулярно берегу, пробы отбирали в пяти точках: в зоне уреза воды, ниже уреза воды на 0,5 и 1 м и выше уреза воды на 0,5 и 1 м. Урезом воды считали среднюю линию между верхним и нижним краями заплеска.

Всего было взято 72 количественные пробы. В лабораторных условиях пробы промывали через сито диаметром ячеек 0,5 мм и фиксировали 4 % раствором формалина. Затем материал разбирали по группам: Polychaeta, Crustacea, Oligochaeta, Platyhelminthes, Nemertea и Pantopoda. При описании количественного развития фауны использованы показатели численности (N, экз./м²), биомассы (B, г/м²) и встречаемость (Р, %).

В исследуемой зоне идентифицированы представители макрозообентоса, относящиеся к разным таксономическим категориям: Polychaeta, Crustacea, Platyhelminthes, Nemertea, Oligochaeta и Pantopoda (табл. 1).

В табл. 1 приведен видовой состав и количественные показатели макрозообентоса псевдолиторали акваторий, прилегающих к Карадагу.

Таксоны*	б. Тихая N	б. Лисья B	Пляж Биостанции N	P	Олигохета B	Пляж Биостанции	P	Олигохета B	P	Полихета B	Пляж Биостанции	P	Полихета B	Пляж Биостанции	P
---	------------	-------------	-------------------	---	------------	-------------------	---	------------	---	-------------------	---	-------------------	---
PLATYHELMINTES (Turbellaria) g. sp.	267	0,006	67		8	0,0008		650	1,625	100	13	0,006	14		
NEMERTEA g. sp.	–	–	4	0,198	6	650	1,625	100	13	0,006	14				
ANNELIDA				33	–	–		–	–	–	–	–			
Hesionides arenaria Friedrich, 1937	1133	0,033	–	–	–	–		–	–	–	–	–			
Pisione remota (Southern, 1914)	–	–	–	–	–	–		–	–	–	–	–			
Protodorvillea kefersteini (McIntosh, 1869)*	–	–	4	0,0004	6	–	–		–	–	–	–	–		
Saccocirrus papillosercus Bobretzky, 1872	1583	0,067	83	1913	5,633	24	138	0,267	71						
OLIGOCHAETA g. sp.	1083	0,042	67	–	–	–		–	–	–	–	–			
PANTOPODA				13	0,006	14									
CRUSTACEA															
Echinogammarus foxi (Schellenberg, 1928)	–	–	86	0,225	6	4875	2,977	100	–	–					
Echinogammarus olivii (Milne-Edwards, 1830)*	–	–	17	0,003	6	942	0,364	50	–	–					
Echinogammarus sp.	–	–	104	0,059	6	42	0,013	14	–	–					
ВСЕГО	4067	0,148	2579	6,099	10049	7,266	1409	0,44							

Таблица 1.
Наибольшие численность и биомасса макрозообентоса отмечены в акватории б. Лисья. Ранжированный ряд по этим показателям возглавляли ракообразные, их вклад в общую численность макрозообентоса составил 92%, в общую биомассу – 74 %. Здесь зарегистрированы представители рода *Echinogammarus*. Среди данной группы по численности и биомассе доминировал *E. foxi*, который является типично прибрежной формой и обычно предпочитает обитать в зоне заплеска (Гринцов, Лисицкая, 2016). Данный вид размножается в течение всего года, но имеет два пика размножения – весна и осень. Весной *E. foxi* для более быстрого соzerosвания половых продуктов мигрирует на мелководье, а затем после размножения, вновь перемещается в более глубоководные места в заросли макrophyтов (Грезе, 1977, 1985). *E. foxi* внес значительный вклад в общую численность и биомассу ракообразных (53 % и 55 %, соответственно).

Мы предполагаем, что высокая численность эхиногамма обусловлена прибрежной гранулометрической составляющей грунта в этом районе, т.к. известно, что данный вид предпочитает обитать на галечно-песчаном грунте (Гринцов, Лисицкая, 2016).

Для всех исследуемых районов характерен бедный видовой состав и это связано с трудными условиями обитания в зоне псевдолиторали. Известно, что в зоне заплеска обитают не только характерные для данного участка виды, но и редкие виды, которые пополняют сообщество с участка супралиторали. С прибрежной супралиторали в зону псевдолиторали обычно попадают полихеты, ракообразные и моллюски, а со стороны супралиторали – супралиторальные виды амфибий, обитающих только выше уреза воды и другие животные (Копий, Бондаренко, 2016).

В своих исследованиях были зарегистрированы не только типичные для этой зоны виды: полихеты: *P. remotus*, *S. papilocercus* и ракообразные рода *Echinogammarus*, *Turbellaria* и *Oligochaeta*, но и представители макрозообентоса, обычно обитающие в прибрежной зоне – полихеты *Hesionides arenaria* и *Nemertea*.

Следует отметить неравномерное распределение бентосных животных по горизонтам псевдолиторали (рис. 2). Рис. 2. Средняя численность макрозообентоса по горизонтам в зоне псевдолиторали участков, прилегающих к Карадагу

Во всех районах наибольшее количество гидробионтов отмечено на урезе воды (б. Тихая 47 %, пляж Биостанции 57 %, б. Лисья 83 %, общей численности макрозообентоса).

На этом горизонте ранжированный ряд по численности возглавляли полихеты: на пляже Биостанции *S. papilocercus* (5576 экз./м²), в б. Тихой – *H. arenaria* (3400 экз./м²) и амфиоподы *E. olivii* (4687 экз./м²) – в б. Лисьей. На всех исследуемых участках на горизонте выше уреза воды отмечена самая низкая численность гидробионтов.

Мы предполагаем, что такое распределение макрозообентоса по горизонтам псевдолиторали связано с различием условий обитания. Ниже уреза и на урезе воды условия наиболее стабильные, поэтому в летнее время гидробионты предпочитают нижний горизонт псевдолиторали.
или урез воды, выше уреза воды — в основном, представители макрозообентоса, которые способны избегать негативного воздействия природных и антропогенных факторов, зарываясь глубже в грунт или перемещаясь в более благоприятные условия.

Исследование трофической структуры макрозообентоса показало наличие четырех трофических групп: детритофаги, фитофаги, полифаги и плотоядные (рис. 3).

Рис. 3. Трофическая структура макрозообентоса в зоне псевдолиторали участков, прилегающих к Карадагу

Самые многочисленные группы — фитофаги и плотоядные, на их долю приходится по 40 % общего количества зарегистрированных видов. На долю полифагов и детритофагов приходится по 10 % общего количества зарегистрированных видов.

Таким образом, в зоне псевдолиторали участков, прилегающих к Карадагу, идентифицированы представители макрозообентоса, относящиеся к разным таксономическим категориям: Polychaeta, Crustacea, Platyhelminthes, Nemertea, Oligochaeta и Pantopoda.

Видовой состав исследуемых районов очень беден. Наибольшие численность и биомасса макрозообентоса отмечены в акватории б. Лисья: по два вида Polychaeta и Crustacea, Platyhelminthes, Nemertea и Pantopoda.

Наименьшее число видов макрозообентоса отмечено в б. Тихой: Polychaeta (2 вида), Platyhelminthes и Oligochaeta.

Распределение макрозообентоса по горизонтам псевдолиторали показало, что гидробионты предпочитают участки на урезе и ниже уреза воды, где условия обитания для них наиболее благоприятны.

Исследование трофической структуры макрозообентоса показало наличие четырех трофических групп: детритофаги, фитофаги, полифаги и плотоядные.

Благодарность. Автор выражает искреннюю благодарность мл. науч. сотр. Бондаренко Л.В. за помощь в сборе материала и обработку данных по ракообразным.

4.4.2. МАКРОЗООБЕНТОС СУБЛИТОРАЛИ

4.4.2.1. МАКРОЗООБЕНТОС ГЛИНИСТЫХ СУБСТРАТОВ

В глинистом субстрате зоны верхней сублиторали Крыма обитают два вида моллюсков-камнеточцев семейства Pholadidae: Pholas dactylus Linnaeus, 1758 и Barnea candida (Linnaeus, 1758). О распространении, биологии и плотности их поселений в Черном море имеются весьма ограниченные сведения (Зернов, 1913; Зенкевич, 1954; Никитин, 1951; Милашеевич, 1916; Dragos, 2007), что может объясняться скрытым образом жизни моллюсков и непригодностью классических методов бентосной съемки для их сбора. Изучен качественный и количественный состав макрозообентоса глини в б. Двуякорной.

Материалом для исследований послужили 11 количественных проб макрозообентоса, собранных в августе 2013 г. и 6 количественных проб с моллюсками, взятых в августе 2011 г. в б. Двуякорной, расположенной между м. Кик-Атлам и м. Ильы. Ширина бухты около 7,5 км, берега представлены серой глиной (рис. 1).
Исследования проводили на глубине 2–2,5 м. С поверхности субстрата животных собирали бентосной рамкой площадью 0,04 м2, обшитой мельничным газом, диаметром ячей 0,5 мм. Затем с помощью молотка и зубила откалывали от дна монолитный кусок глины. На берегу измеряли площадь его поверхности, заселенную животными, после чего глину разбивали, извлекая все живые организмы. Один монолит считали одной пробой. Материал фиксировали 4 % раствором формальдегида. До вида идентифицированы все группы макрофауны, за исключением Oligochaeta. В общих подсчетах их рассматривали как один вид. Mollusca определены М. А. Ковалевой, Annelida – Н. А. Болтачевой, Arthropoda – Л. В. Бондаренко. Рассчитывали среднюю численность (N, экз./м2), среднюю биомассу (B, г/м2) и встречаемость (Р, %) видов. Сообщество выделяли по доминирующему по биомассе виду (Воробьёв, 1949). Для сравнения плотности видов в сообществе строили кривые доминирования–разнообразия, где ось абсцисс – ранжированный ряд от наиболее многочисленного вида к наименее многочисленному, а ось ординат – накопленный процент численности видов (Одум, 1986). Также строили K-домinantные кривые (Warwick, 1986).

В северной части б. Двуякорной, с целью описания донного ландшафта и выбора мест отбора проб, водолазом были проведены наблюдения на разрезе от берега и до глубины 6 м. Они показали, что полоса дна от уреза воды до глубины 2 м представлена галькой, далее дно выстлано окатанными валунами сначала мелкого, а с увеличением глубины – более крупного размера, с глубины 4 м начинается илистый песок. На всем этом пространстве на дне встречаются выходы серой глины площадью приблизительно 2–3 м2. Эта глина послужила субстратом для сбора материала. В исследованном биотопе обнаружено 34 вида макрозообентоса (табл. 1).
Таблица 1.
Качественный состав и количественные показатели (N, экз./м²; B, г/м²; P, %) макрозообентоса глин б. Двуякорной

<table>
<thead>
<tr>
<th>Видовой состав</th>
<th>N</th>
<th>B</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANNELIDA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphitritides gracilis (Grube, 1860)</td>
<td>4</td>
<td>0,4</td>
<td>9</td>
</tr>
<tr>
<td>Genetyllis tuberculata (Bobretzky, 1868)</td>
<td>2</td>
<td>0,01</td>
<td>9</td>
</tr>
<tr>
<td>Hediste diversicolor (O.F. Müller, 1776)</td>
<td>64</td>
<td>0,2</td>
<td>36</td>
</tr>
<tr>
<td>Lyssidice ninetta Audouin & Milne Edwards, 1833</td>
<td>71</td>
<td>1,4</td>
<td>45</td>
</tr>
<tr>
<td>Micronephrys stammeri (Augener, 1932)</td>
<td>3</td>
<td>0,001</td>
<td>9</td>
</tr>
<tr>
<td>Perinereis cultrifera (Grube, 1840)</td>
<td>12</td>
<td>2,4</td>
<td>27</td>
</tr>
<tr>
<td>Phyllodocidae gen. sp.</td>
<td>6</td>
<td>0,01</td>
<td>9</td>
</tr>
<tr>
<td>Platynereis dumerilii (Audouin & Milne Edwards, 1834)</td>
<td>5</td>
<td>0,01</td>
<td>9</td>
</tr>
<tr>
<td>Polyopthalmus pictus (Dujardin, 1839)</td>
<td>40</td>
<td>0,03</td>
<td>27</td>
</tr>
<tr>
<td>Prionaspis cirrifera Wirén, 1883</td>
<td>20</td>
<td>0,02</td>
<td>9</td>
</tr>
<tr>
<td>Sabellaria taurica (Rathke, 1837)</td>
<td>6</td>
<td>0,05</td>
<td>9</td>
</tr>
<tr>
<td>Schistomeringos rudolphi (Delle Chiaje, 1828)</td>
<td>3</td>
<td>0,02</td>
<td>9</td>
</tr>
<tr>
<td>Sthenelais boa (Johnston, 1833)</td>
<td>4</td>
<td>0,01</td>
<td>9</td>
</tr>
<tr>
<td>Oligochaeta</td>
<td>4</td>
<td>0,001</td>
<td>9</td>
</tr>
<tr>
<td>MOLLUSCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mytilaster lineatus (Gmelin, 1791)</td>
<td>212</td>
<td>35</td>
<td>54</td>
</tr>
<tr>
<td>Barnea candida (Linnaeus, 1758)</td>
<td>16</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>Pholas dactylus Linnaeus, 1758</td>
<td>150</td>
<td>194</td>
<td>63</td>
</tr>
<tr>
<td>Irus irus (Linnaeus, 1758)</td>
<td>12</td>
<td>15</td>
<td>36</td>
</tr>
<tr>
<td>Rissoa splendida (Eichwald, 1830)</td>
<td>2</td>
<td>0,01</td>
<td>9</td>
</tr>
<tr>
<td>Tricola pullus (Linnaeus, 1758)</td>
<td>54</td>
<td>1,5</td>
<td>36</td>
</tr>
<tr>
<td>Bittium reticulatum Da Costa, 1788</td>
<td>90</td>
<td>3,6</td>
<td>36</td>
</tr>
<tr>
<td>Cyclope sp.</td>
<td>4</td>
<td>0,72</td>
<td>9</td>
</tr>
<tr>
<td>ARTHROPODA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampelisca diadema (Costa, 1853)</td>
<td>5</td>
<td>0,001</td>
<td>9</td>
</tr>
<tr>
<td>Amphithoe ramondi Audouin, 1826</td>
<td>36</td>
<td>0,01</td>
<td>9</td>
</tr>
<tr>
<td>Athanas nitescens (Leach, 1813 [in Leach, 1813–1814])</td>
<td>32</td>
<td>3</td>
<td>27</td>
</tr>
<tr>
<td>Corophium sp.</td>
<td>3</td>
<td><0,001</td>
<td>9</td>
</tr>
<tr>
<td>Clibanarius erythrops (Latreille, 1818)</td>
<td>2</td>
<td>64</td>
<td>9</td>
</tr>
<tr>
<td>Dexamene spinosa (Montagu, 1813)</td>
<td>6</td>
<td>0,01</td>
<td>9</td>
</tr>
<tr>
<td>Dynamene bidentata (Adams, 1800)</td>
<td>35</td>
<td>0,1</td>
<td>27</td>
</tr>
<tr>
<td>Erichthoecius diformis Milne Edwards, 1830</td>
<td>15</td>
<td>0,001</td>
<td>9</td>
</tr>
<tr>
<td>Microdeutopus gryllotalpa Costa, 1853</td>
<td>14</td>
<td>0,003</td>
<td>18</td>
</tr>
<tr>
<td>Pilumnus hirtellus (Linnaeus, 1761)</td>
<td>6</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Pisidia longimana (Risso, 1816)</td>
<td>32</td>
<td>1</td>
<td>54</td>
</tr>
<tr>
<td>Xantho poressa (Olivi, 1792)</td>
<td>6</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Всего</td>
<td>976</td>
<td>352</td>
<td>11</td>
</tr>
</tbody>
</table>

Наиболее полно представлены многощетинковые черви – 13 видов (39,4 % общего количества видов), ракообразные – 12 (36,3 %), моллюски – 8 (24,2 %).

По биомассе доминировал *Ph. dactylus* (54,6 % от общей биомассы всего макrozообентоса). Средние численность и биомасса его составили 150 экз./м² и 194 г/м². Максимальные численность и биомасса были отмечены в пробах 2011 г. – 4910 экз./м² и 797 г/м² соответственно. Большая часть поселения тогда состояла из ювенильных особей. В 2013 г. также встречено полноценное поселение, представленное разноразмерными особями (рис. 2).
Большую часть поселения составляют особи размером от 10 до 34 мм. Максимальная длина моллюсков — 56 мм.

Наличие самого высокого показателя биомассы этого вида среди других бентосных животных позволило нам впервые для Черного моря выделить в биотопе глин сообщество *Pholas dactylus*. В своем ареале (Средиземное море, восточная часть Атлантического океана, от Норвегии до островов Зеленого мыса) (Определитель..., 1972) *Ph. dactylus* в последние годы считается редким видом и охраняется в Средиземном море согласно Бернской и Барселонской конвенциям (Dragos, 2007). В Черном море этот вид малочислен и статус его не определен. Очевидно, что фоласы могут быть многочисленными только в определенных биотопах. Являясь камнеточцами, моллюски очень избирательно подходят к выбору субстрата. Исследуя естественные твердые субстраты акватории крымского побережья, мы обнаружили *Ph. dactylus* только в глинах, а массово — только в глинах б. Двуякорной (Ковалева, 2011). Эти глины отличались от других. Мы отметили две их разновидности. Первая — серая, бескарбонатная, с прослойками более светлого оттенка, обогащенная органическим веществом. Ее твердость по минералогической шкале твердости Мооса оценена нами в 1 балл, а массово — только в глинах б. Двуякорной (Ковалева, 2011). Эти глины отличались от других. Мы отметили две их разновидности. Первая — серая, бескарбонатная, с прослойками более светлого оттенка, обогащенная органическим веществом. Ее твердость по минералогической шкале твердости Мооса оценена нами в 1 балл. Вторая — серая, бескарбонатная, без прослоек, средней степени цементации, твердость ее — 2 балла по шкале Мооса. Всего шкала Мооса имеет десять баллов. Отсюда можно заключить, что *Ph. dactylus* в Черном море предпочитает селиться на не очень твердых субстратах. Это объясняется наличием у моллюсков хрупкой раковины, задача которой состоит в сверлении относительно длинных ходов вглубь грунта.

Еще менее изученный моллюск-камнеточец, живущий внутри глин, это *B. candida* (его ареал схож с таковым у *Ph. dactylus*). Средние численность и биомасса его составили 16 экз./м² и 25 г/м² соответственно. Вид не очень многочисленный на исследуемом полигоне, но популяция представлена разноразмерными особями от 7 до 45 мм (рис. 3, 4).

Несмотря на то, что Pholadidae живут в норках, они не защищены от хищников. В теплое время года на мелких глубинах появляется хищный брюхоногий моллюск рапана. Его хоботок имеет длину 15–20 см (Dragos, 2007), что как раз соответствует глубинам норок фоладид. Также на них охотятся крупные бычки, которые способны частично раскапывать норки и выедать моллюсков. Особенно страдают эти моллюски, когда субстрат разрушается эрозией и части раковины с моллюском обнажаются. Тогда они могут стать жертвой стаи рыб. Кроме того, глинистые берега б. Двуякорной очень динамичны. Иногда здесь случаются обвалы, пагубно влияющие, в том числе, и на бентосных животных. Например, во время сбора материала автором были намечены несколько участков для последующей их обработки. Предварительный осмотр показал на них наличие изучаемых моллюсков. Однако собрать материал со всех участков не удалось, так как произошел обвал, который преградил доступ к двум площадкам. Очевидно, обитавшие там моллюски погибли.
Рис. 3. *Pholas dactylus* (справа) и *Barnea candida* (слева)

Рис. 4. *Pholas dactylus* в глине
Из видов, типичных для инфауны твердых субстратов, отмечены также двустворчатый моллюск *Irus irus* и полихета *Lysidice ninetta*. *Irus irus* не сверлит субстрат, но очень часто селится в норках, ранее занимаемых камнеточцами. Кроме глин, встречается в известняках. Плотность поселения этого моллюска, как правило, невысокая, однако для указанных субстратов он является характерным видом (встречаемость >25 %). *L. ninetta*, вероятно, может сверлить субстрат. Эта полихета имеет смешанный детрито-растительный тип питания и при этом обладает мощным челюстным аппаратом, более характерным для хищных видов. Очевидно, она использует его для проделывания ходов в пористом известняке и плотных глинах (Ковалева и др., 2014). Известно, что этот вид может обитать внутри таллома крупных макрофитов (рис. 5).

Средняя численность всего макрозообентоса в исследованном биотопе составила 976±14 экз./м², биомасса – 352±11 г/м². По численности преобладали моллюски – 540 экз./м², большая часть которых была представлена Bivalvia – *Ph. dactylus* и *Mytilaster lineatus*. Численность ракообразных и полихет была ниже и составила 192 и 240 экз./м² соответственно.

Структура сообщества макрозообентоса в б. Двуякорной такова: в число руководящих (встречаемость – >50 %) входят 3 вида, характерных (25–50 %) – 10, редких (<25 %) – 22 вида.

Для оценки выравненности видов построили графики доминирования–разнообразия макрозообентоса по его численности и биомассе (рис. 6).
Кривые численности и биомассы на графиках не имеют резкого спада, что свидетельствует о высокой выравненности сообществ и отсутствии резкого доминирования. Отсюда можно предположить, что сообщество макрозообентоса глин в б. Двуякорной находилось в относительно благоприятных условиях. Однако подобная ситуация, возможно, обусловлена специфичностью субстрата и предварительным характером обследования этого сообщества. Так же кривые рангового распределения были построены для пяти лидирующих по биомассе видов (рис 7).

В число доминирующих по численности и по биомассе вошли виды, приуроченные к твердым субстратам – Pholas dactylus, Barnea candida, Mytilaster lineatus, Irus irus, Lysidice ninetta, а также виды, обитающие и на других субстратах – брюхоногий моллюск Bittium reticulatum, полихета Hediste diversicolor, ракообразный Clibanarius erythropus.

Для оценки условий, в которых находится сообщество, построили К-доминантные кривые (рис. 8).
Расположение кривой биомассы над кривой численности свидетельствует о том, что в сообществе преобладают K-стратеги, а значит, оно находится в относительно благоприятных условиях (Мазлумян и др., 2004).

Впервые в биотопе глин в Черном море выделено сообщество с доминирующим по биомассе видом Pholas dactylus. Средняя численность макрозообентоса этого сообщества – 976 экз./м², средняя биомassa – 352 г/м². В этом сообществе зарегистрировано небольшое количество видов (34), однако присутствуют виды – обитатели только этого субстрата. Сообщество характеризуется низким уровнем доминирования, высокой выравненностью, обитает в относительно чистых акваториях.

4.4.2.2. МАКРОБЕНТОС ТВЕРДЫХ ЕСТЕСТВЕННЫХ И ИСКУССТВЕННЫХ СУБСТРАТОВ

Материалом для исследования обрастания бетонного волнореза пгт Курортное и пгт Нового Света послужили фрагменты, которые отбирали с двух боковых сторон волнореза с таким расчетом, чтобы охватить съемкой полосу обрастания шириной 20 см от дна до поверхности. Каждая проба представляет собой часть этой полосы (разрез) длиной от 0,5 до 1 м в зависимости от расположения и обилия обрастания. Пробы помещали в пластиковые баночки, маркировали и фиксировали 4 % раствором формальдегида. В лаборатории пробы разбирали по таксономическим группам растений и животных и по возможности идентифицировали до вида.

В таксономической обработке представителей фауны волнореза пгт Курортное и пгт Нового Света приняли участие В. В. Мурина (многощетинковые черви); М. А. Макаров для волнореза пгт Курортное (брюхоногие моллюски); В. А. Гринцов (плоские черви, ракообразные (усоногие раки, равноногие раки, разноногие раки, клешненосные ослики, десятиногие раки), мшанки, двустворчатые моллюски, панцирные моллюски). Таксономические названия всех видов приведены по «WoRMS». Для каждого вида была получена сырая биомасса (г/м²) и по возможности численность (экз./м²) — для неколониальных беспозвоночных.

Для волнореза пгт Курортное на основе полученных данных были сформированы матрицы численности и биомассы. Для каждого вида были рассчитаны Х биомассы и численности, встречаемость (P). В программе «Biodiversity Pro» сообщество в целом, а также растительную и животную компоненту биоценоза подвергли кластерному анализу с целью выявления возможных локальных группировок по пробам в пределах исследуемого пространства волнореза. Для приближения к качественным группировкам видов проводили анализ с трансформированными значениями биомассы Ln (X+1). При этом использовали индексы сходства Bray-Curtis. Для построения дендрограмм применяли метод «Group Average Link». Дальнейший анализ проводили с учетом выделенных кластеров (на уровне значения индекса сходства Bray-Curtis равного 0,4). Образцы проб со скал Шаляпина пгт Новый Свет отбирали вручную с площади 10х10 см² на глубине 0 м.

Материалом для исследования фауны скал Карадагского природного заповедника послужили фрагменты обрастания на скалах Маяк (25 образцов), отобранные 20.07.2004 г. водолазом с глубины 0, 5, 10 и 15 м (по 5 фрагментов с глубины 0, 5, 10 м и 10 фрагментов с 15 м). На скалах Золотые Ворота 21.07.2004 г. отобрано 10 проб с глубиной 5 м (4 пробы) и 8 м (взято 6 проб), со скал Иван-Разбойник 11.07.2003 г. 15 проб с глубиной 3 м (5 проб), 6 м (5 проб) и 9 м (5 проб). Обраст соскребали в мешок из газа с площади 20х20 см². На поверхности пробу помещали в емкости и фиксировали 4 % раствором формальдегида. Дальнейшую обработку проводили в лаборатории отдела марикультуры и прикладной океанологии ИнБЮМ НАНУ. Макрофиты и беспозвоночных идентифицировали по возможности до вида, взвешивали и для неколониальных беспозвоночных подсчитывали численность. Многощетинковые черви идентифицировал В. В. Муриной. Видовой состав, численность и биомассу брюхоногих моллюсков семейства Pyramidelidae рассчитывал М. А. Макаров. Идентификация и анализ данных выполнены В. А. Гринцовым. Биомасса (г) и численность (экз.) пересчитывалась на 1 м² поверхности субстрата. Ряд видов, ввиду их ма-
лых размеров регистрировали без расчета биомассы и численности.
Макробентос твердых субстратов района Карадага. В результате идентификации беспозвоночных были определены виды, относящиеся к нескольким таксонам.
Макробентос волнореза пгт Курортное насчитывает 52 вида беспозвоночных (табл. 1), распределенных по таксонам следующим образом: Polycladida – 1; Polychaeta – 17; Cirripedia – 1; Malacostraca – 23; Polyplacophora – 2; Bivalvia – 2; Gastropoda – 5; Bryozoa – 1; Ascidiae – 1. Наибольшее разнообразие видов на уровне отрядов отмечено для Phyllodocida (Polychaeta) – 14 и Amphipoda (Malacostraca) – 13.

Таблица 1.

Список видов беспозвоночных, обнаруженных на поверхности волнореза района пгт Курортное

<table>
<thead>
<tr>
<th>Таксоны беспозвоночных</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycladida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stylochus (Stylochus) tauricus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polychaeta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphithritides gracilis (Grube, 1860)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eulalia viridis (L., 1767)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogone naidina Orsted, 1845</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetyllis tuberculata (Bobretzky, 1868)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmothoe reticulata (Claparede, 1870)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysidice ninjeta Aud et M.Edw, 1833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mysta picta Quatrefages, 1865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naineris laevigata (Grube, 1855)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nereis zonata Malmgren, 1867</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perinereis cultrifera (Grube, 1840)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platynetreis dumerilii (Aud et M.Edw, 1834)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pholoe inornata Johnson, 1839</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyllophthalus pictus (Dujardin, 1839)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syllis gracilis Grube, 1840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syllis prolifera (Krohn, 1852)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syllis variegata Grube, 1860</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirripedia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphibalanus improvisus (Darwin, 1854)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decapoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athanas nitescens (Leach, 1813 [in Leach, 1813-1814])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hippolyte leptocerus (Heller, 1863)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palaemon elegans Rathke, 1837</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilumnus hirtellus (L., 1758)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pisidia longimana (Risso, 1816)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processa edulis edulis (Risso, 1816)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanaidacea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chondrochelia savignyi (Kroyer, 1842)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isopoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamene bidentata (Adams, 1800)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idotea baltica (Pallas, 1772)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenosoma capito (Rathke, 1837)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphithoe ramondi Audouin, 1826</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apherusa chiereghinii Giordani-Soika, 1949</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caprella acantifera Leach, 1814</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caprella danilevskii Czerniavski, 1868</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Макробентос ск. Маяк включает 92 вида беспозвоночных (табл. 2) распределенных по таксонам следующим образом: Polycladida – 1; Polychaeta – 25; Cirripedia – 1; Malacostraca – 31; Pantopoda – 2; Polyplacophora – 2; Bivalvia – 5; Gastropoda – 18; Bryozoa – 4; Ascidiacea – 3. Наибольшее разнообразие видов на уровне отрядов отмечено для Amphipoda (Malacostraca) – 20.

Макробентос ск. Золотые Ворота включает 80 видов беспозвоночных, распределенных по таксонам следующим образом: Coelenterata – 1; Polycladida – 1; Polychaeta – 28; Cirripedia – 1; Malacostraca – 27; Pantopoda – 2; Polyplacophora – 2; Bivalvia – 3; Gastropoda – 15; Bryozoa – 4; Ascidiacea – 1. Наибольшее разнообразие на уровне отрядов отмечено для Amphipoda (Malacostraca) – 19 видов.

Таблица 2.

<table>
<thead>
<tr>
<th>Список видов беспозвоночных, обнаруженных на поверхности скал района Карадагского природного заповедника</th>
</tr>
</thead>
<tbody>
<tr>
<td>Виды</td>
</tr>
<tr>
<td>COELENTERATA</td>
</tr>
<tr>
<td>Calvadosia campanulata Lamourix, 1815</td>
</tr>
<tr>
<td>POLYCLADIDA</td>
</tr>
<tr>
<td>Stylochus (Stylochus) tauricus</td>
</tr>
<tr>
<td>ANNELIDA</td>
</tr>
<tr>
<td>Polychaeta</td>
</tr>
<tr>
<td>GASTROPODA</td>
</tr>
<tr>
<td>BIVALVIA</td>
</tr>
<tr>
<td>GASTROPODA</td>
</tr>
<tr>
<td>BRYOZOA</td>
</tr>
<tr>
<td>ASCIIDIACEA</td>
</tr>
<tr>
<td>Molgula euprocta (Drasche, 1884)</td>
</tr>
<tr>
<td>Amphitritides gracilis (Grube, 1860)</td>
</tr>
<tr>
<td>Eulalia viridis (L., 1767)</td>
</tr>
<tr>
<td>Eumida sanguinea (Orsted, 1843)</td>
</tr>
<tr>
<td>Exogone naidina Orsted, 1845</td>
</tr>
<tr>
<td>Genetyllis tuberculata (Bobretzky, 1868)</td>
</tr>
<tr>
<td>Haplosyllis spongicola (Grube, 1855)</td>
</tr>
<tr>
<td>Harmothoe imbricata (Linnaeus, 1767)</td>
</tr>
<tr>
<td>Harmothoe reticulata (Claparede, 1870)</td>
</tr>
<tr>
<td>Lagis koreni Malmgren, 1866</td>
</tr>
<tr>
<td>Lysidice ninneta Aud et M.Edw, 1833</td>
</tr>
<tr>
<td>Mysta picta Quatrefages, 1865</td>
</tr>
<tr>
<td>Nannareis pontica (Bobretzky, 1872)</td>
</tr>
<tr>
<td>Nereis zonata Malmgren, 1867</td>
</tr>
<tr>
<td>Perinereis cultrifera (Grube, 1840)</td>
</tr>
<tr>
<td>Platynetreis dumerilii (Aud et M.Edw, 1834)</td>
</tr>
<tr>
<td>Pholoe inornata Johnson, 1839</td>
</tr>
<tr>
<td>Phylloco lineata (Claparède, 1870)</td>
</tr>
<tr>
<td>Phylloco maculata (Linnaeus, 1767)</td>
</tr>
<tr>
<td>Polyopthalmus plectus (Dujardin, 1839)</td>
</tr>
<tr>
<td>Pseudomystides limbata (Saint-Joseph, 1888)</td>
</tr>
<tr>
<td>Salvatoria clavata (Claparède, 1863)</td>
</tr>
<tr>
<td>Salvatoria limbata (Claparède, 1868)</td>
</tr>
<tr>
<td>Spirobranchus triquetru (L., 1758)</td>
</tr>
<tr>
<td>Syllis gracilis Grube, 1840</td>
</tr>
<tr>
<td>Syllis hylalina Grube, 1863</td>
</tr>
<tr>
<td>Syllis prolifera (Krohn, 1852)</td>
</tr>
<tr>
<td>Syllis variegata Grube, 1860</td>
</tr>
<tr>
<td>Spirobranchus corugatus Montagu, 1803</td>
</tr>
<tr>
<td>Trypanosyllis zebra (Grube, 1860)</td>
</tr>
<tr>
<td>Vermiliopsis infundibulum (Philippi, 1844)</td>
</tr>
<tr>
<td>PANTOPODA</td>
</tr>
<tr>
<td>Endeis spinosa (Montagu, 1808)</td>
</tr>
<tr>
<td>Tanystylum contirostre (Dohrn, 1881)</td>
</tr>
<tr>
<td>CRUSTACEA</td>
</tr>
<tr>
<td>Cirripedia</td>
</tr>
<tr>
<td>Amphibalanus improvisus (Darwin, 1854)</td>
</tr>
<tr>
<td>Decapoda</td>
</tr>
<tr>
<td>Alpheus dentipes Guérin, 1832</td>
</tr>
<tr>
<td>Athenas nitescens (Leach, 1813 [in Leach, 1813–1814])</td>
</tr>
<tr>
<td>Eriphia verrucosa (Forskål, 1775)</td>
</tr>
<tr>
<td>Pilumnus hirtellus (L., 1758)</td>
</tr>
<tr>
<td>Pisidia longimana (Risso, 1816)</td>
</tr>
<tr>
<td>Xanther poressa (Olivi, 1792)</td>
</tr>
<tr>
<td>Tanaidacea</td>
</tr>
<tr>
<td>Apseudopsis austroamov Bacescu & Carasu, 1947</td>
</tr>
<tr>
<td>Chondochelia savignyi (Kroyer, 1842)</td>
</tr>
<tr>
<td>Isopoda</td>
</tr>
<tr>
<td>Dynamene bidentata (Adams, 1800)</td>
</tr>
<tr>
<td>Gnathia oxyuracea (Lillieborg, 1855)</td>
</tr>
<tr>
<td>Idotea baltica (Pallas, 1772)</td>
</tr>
<tr>
<td>Stenosoma capitio (Rathke, 1837)</td>
</tr>
<tr>
<td>Amphipoda</td>
</tr>
<tr>
<td>Дополнение табл. 2</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Ampelisca sp.</td>
</tr>
<tr>
<td>Amphithoe ramondi Audouin, 1826</td>
</tr>
<tr>
<td>Apherusa chiereghinii Giordani-Soika, 1949</td>
</tr>
<tr>
<td>Biancolina algicola Della Valle, 1893</td>
</tr>
<tr>
<td>Caprella acantifera Leach, 1814</td>
</tr>
<tr>
<td>Caprella danilevskii Czerniavski, 1868</td>
</tr>
<tr>
<td>Caprella lipothenthus Heller, 1879</td>
</tr>
<tr>
<td>Caprella mitis Mayer, 1890</td>
</tr>
<tr>
<td>Dexamine spinosa (Montagu, 1813)</td>
</tr>
<tr>
<td>Echinogammarus foxi (Schellenberg, 1928)</td>
</tr>
<tr>
<td>Eriotphus difformis H. Milne Edwards, 1830</td>
</tr>
<tr>
<td>Hyale crassipes (Heller, 1866)</td>
</tr>
<tr>
<td>Hyale pontica Rathke, 1847</td>
</tr>
<tr>
<td>Jassa marmorata Holmes, 1905</td>
</tr>
<tr>
<td>Jassa oca (Spence Bate, 1862)</td>
</tr>
<tr>
<td>Melita palmata (Montagu, 1804)</td>
</tr>
<tr>
<td>Microdeutopus gryllotalpa Costa, 1853</td>
</tr>
<tr>
<td>Microdeutopus versicillatus (Spence Bate, 1857)</td>
</tr>
<tr>
<td>Nannonyx goesii reductus Greze, 1975</td>
</tr>
<tr>
<td>Parhyale taurica Grintsov, 2009</td>
</tr>
<tr>
<td>Pleomecanes gammaroides Spence Bate, 1857</td>
</tr>
<tr>
<td>Pseudoprotella phasma (Montagu, 1804)</td>
</tr>
<tr>
<td>Stenothoe monoculoides (Montagu, 1815)</td>
</tr>
<tr>
<td>Tritaeo gibbosa (Spence Bate, 1862)</td>
</tr>
<tr>
<td>MOLLUSCA</td>
</tr>
<tr>
<td>Polyplacophora</td>
</tr>
<tr>
<td>Acanthochitonina fascicularis (L., 1767)</td>
</tr>
<tr>
<td>Lepidochitonina cinerea (L., 1767)</td>
</tr>
<tr>
<td>Bivalvia</td>
</tr>
<tr>
<td>Anadara kagoshimensis (Tokunaga, 1906)</td>
</tr>
<tr>
<td>Mytilaster lineatus (Gmelin, 1791)</td>
</tr>
<tr>
<td>Mytilus galloprovincialis Lamarck, 1819</td>
</tr>
<tr>
<td>Parvicardium exiguum (Gmelin, 1791)</td>
</tr>
<tr>
<td>Petricola lithophaga (Retzius, 1788)</td>
</tr>
<tr>
<td>Gastropoda</td>
</tr>
<tr>
<td>Bittium reticulatum (Da Costa, 1778)</td>
</tr>
<tr>
<td>Brachystoma eulimoides (Hanley, 1844)</td>
</tr>
<tr>
<td>Cerithopsis minima (Brusina, 1865)</td>
</tr>
<tr>
<td>Cerithopsis tuberculata (Montagu, 1803)</td>
</tr>
<tr>
<td>Gibbula adriatica (Philippi, 1844)</td>
</tr>
<tr>
<td>Iravadia quadrasi (O. Boettger, 1893)</td>
</tr>
<tr>
<td>Mangelia costata (Pennant, 1777)</td>
</tr>
<tr>
<td>Omalogyra atomus (Philippi, 1841)</td>
</tr>
<tr>
<td>Parthenina indistincta (Montagu, 1808)</td>
</tr>
<tr>
<td>Parthenina interstincta (J. Adams, 1797)</td>
</tr>
<tr>
<td>Rapana venosa (Valenciennes, 1846)</td>
</tr>
<tr>
<td>Retusa truncatula (Bruguière, 1792)</td>
</tr>
<tr>
<td>Rissoa splendida Eichwald, 1830</td>
</tr>
<tr>
<td>Rissoa parva (Da Costa, 1778)</td>
</tr>
<tr>
<td>Setia valvatoides (Milaschewitsch, 1909)</td>
</tr>
<tr>
<td>Spiralinella incerta (Milaschewitsch, 1916)</td>
</tr>
</tbody>
</table>
Таким образом, наименьшее число видов отмечено для волнореза пгт Курортное, расположенного близ Карадага, возможно по причине небольшой глубины погружения субстрата (в среднем от 0 до 2,5 м), в то время как для ск. Маяк глубины составляли от 0 до 15 м, от 0 до 9 м для ск. Иван-Разбойник и от 0 до 8 м для ск. Золотые Ворота. Кроме того, поверхность скал изобилует множеством углублений и выступов, обеспечивающих различные микрорельефы, что способствует развитию различных видов беспозвоночных. Волна измельчает крупнозернистое субстратное покрытие, что приводит к увеличению общей численности видов.

Таким образом, наименьшее число видов отмечено для волнореза пгт Курортное, расположенного близ Карадага, возможно по причине небольшой глубины погружения субстрата (в среднем от 0 до 2,5 м), в то время как для ск. Маяк глубины составляли от 0 до 15 м, от 0 до 9 м для ск. Иван-Разбойник и от 0 до 8 м для ск. Золотые Ворота. Кроме того, поверхность скал изобилует множеством углублений и выступов, обеспечивающих различные микрорельефы, что способствует развитию различных видов беспозвоночных. Волна измельчает крупнозернистое субстратное покрытие, что приводит к увеличению общей численности видов.
шает 10000 экз./м². В эту группу входит только *M. lineatus* — 13948 экз./м². Максимальная станционная биомасса, превышающая 1000 г/м² отмечена только для *M. lineatus* — 2056 г/м².

Как и для числа видов, показатели численности и биомассы наиболее массового вида *M. lineatus* в ряду исследованных субстратов наименьшие в обрастании бетонного волнореза, что, возможно связано с воздействием штормов и небольшого диапазона глубины расположения субстрата.

Как правило, беспозвоночные, обитающие в обрастании, распределены агрегированно, однако, не всегда при этом они агрегируются в одних и тех же участках (образуют комплексы). Так, в результате кластерного анализа (использован индекс сходства Брея-Куртиса, для построения дендрограммы использовали метод групповых средних) беспозвоночных, обитающих на волнорезе пгт Курортное, весь комплекс видов, вошел в единый кластер (рис. 1).

Кластеризация беспозвоночных обрастания ск. Золотые Ворота также не выявила разделение комплексов видов на кластеры. На ск. Маяк выделилось два 2 комплекса видов (рис. 2). По доминирующим и субдоминирующим видам 1 комплекс возможно обозначить как *M. galloprovincialis + M. lineatus* а второй — *M. lineatus + M. galloprovincialis*. При этом первый комплекс образовался только на глубине 0 м, а второй — на глубинах 5, 10, 15 м. По биомассе в обоих комплексах наблюдается абсолютное доминирование представителей Bivalvia. Биомассу других видов не учитывали, поскольку она была очень мала по сравнению с Bivalvia (табл. 3).

Рис 1. Дендрограмма распределения проб беспозвоночных в обрастании волнореза пгт Курортное

Рис 2. Два комплекса видов на ск. Маяк (по результатам кластерного анализа):
1 кластер — 0 м, 2 кластер — 5–15 м
Таблица 3.

Наиболее массовые виды первого и второго комплексов сообщества обрастания ск. Маяк

<table>
<thead>
<tr>
<th>Вид</th>
<th>Биомassa, г/м²</th>
<th>Численность, экз./м²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 комплекс (глубина 0 м)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mytilus galloprovincialis Lamarck, 1819</td>
<td>15855</td>
<td>14575</td>
</tr>
<tr>
<td>Mytilaster lineatus (Gmelin, 1791)</td>
<td>1577</td>
<td>63340</td>
</tr>
<tr>
<td>Jassa marmorata Holmes, 1905</td>
<td>–</td>
<td>14780</td>
</tr>
<tr>
<td>Hyale crassipes (Heller, 1866)</td>
<td>–</td>
<td>14570</td>
</tr>
<tr>
<td>Caprella liparotensis Heller, 1879</td>
<td>–</td>
<td>1685</td>
</tr>
<tr>
<td>Stenothoe monoculoides (Montagu, 1815)</td>
<td>–</td>
<td>1650</td>
</tr>
<tr>
<td>Jassa ocia (Spence Bate, 1862)</td>
<td>–</td>
<td>1595</td>
</tr>
<tr>
<td>Amphithoe ramondi Audouin, 1826</td>
<td>–</td>
<td>1020</td>
</tr>
<tr>
<td>Hyale pontica Rathke, 1847</td>
<td>–</td>
<td>1015</td>
</tr>
<tr>
<td>2 комплекс (глубина 5–15 м)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mytilaster lineatus (Gmelin, 1791)</td>
<td>1758</td>
<td>60913</td>
</tr>
<tr>
<td>Mytilus galloprovincialis Lamarck, 1819</td>
<td>627</td>
<td>8772</td>
</tr>
<tr>
<td>Caprella acantifera Leach, 1814</td>
<td>–</td>
<td>6015</td>
</tr>
<tr>
<td>E. difformis</td>
<td>–</td>
<td>5863</td>
</tr>
<tr>
<td>Caprella liparotensis Heller, 1879</td>
<td>–</td>
<td>3198</td>
</tr>
<tr>
<td>Stenothoe monoculoides (Montagu, 1815)</td>
<td>–</td>
<td>2289</td>
</tr>
<tr>
<td>Amphithoe ramondi Audouin, 1826</td>
<td>–</td>
<td>1849</td>
</tr>
<tr>
<td>Bittium reticulatum (Da Costa, 1778)</td>
<td>–</td>
<td>1259</td>
</tr>
<tr>
<td>Tricola pullus (L., 1758)</td>
<td>–</td>
<td>928</td>
</tr>
</tbody>
</table>

Примечание: (–) – биомасса не учитывалась

Для обрастания ск. Иван-Разбойник выделено 2 комплекса видов (рис. 3). По доминирующим и субдоминирующим видам 1 комплекс возможно обозначить как *M. galloprovincialis*, а второй – *M. lineatus* + *M. galloprovincialis*. Таким образом, и доминирующие виды в этих комплексах разные. Первый комплекс видов представлен на глубине 3 м (3 фрагмента сообщества), а 2-й на всех диапазонах глубины (преимущественно на 6 и 9 м).

Распределение организмов обрастания по глубине на ск. Маяк отражает особенности приспособления особей конкретных видов к среде обитания и наиболее показательно. Почти все виды полихет были обнаружены на всех 4 горионтах глубины (0, 5, 10, 15 м). То же касается усоногих раков. Из десятиногих раков *P. longimana* и *P. hirtellus* обнаружены на всех 4

Особенности распределения видов по глубине отчасти отражают основные биотопы обитания: для видов, обнаруженных только на 15 м, больше характерны биотопы донных сообществ, для видов, зарегистрированных у уреза воды (0 м), обычными являются биотопы залива.

Район Нового Света. В акватории Нового Света исследовали обрастание различных субстратов – волнореза и скал. Наибольшее видовое разнообразие отмечено в обрастании волнореза, на котором отбирали пробы с глубины 0 м и 2,5 м. Значения численности беспозвоночных (экз./м²) представлены в табл. 4. Наибольшее видовое разнообразие отмечено для *Polychaeta* (29 видов), среди которых по числу видов преобладают бокоплавы (Amphipoda – 17 видов). Максимальной численностью на глубине 0 м отличаются бокоплавы *H. schmidtii* (1788 экз./м²) и *S. monoculoides* (1781 экз./м²). На глубине 2 м по численности преобладают бокоплавы *E. difformis* (1150 экз./м²) и равноногие раки *D. bidentata* (710 экз./м²). Два редких вида бокоплавов – *C. danilevskii* и *C. mitis* встречаются весьма в небольшом количестве (16 экз./м² и 10 экз./м² соответственно).

Таблица 4.

<table>
<thead>
<tr>
<th>Таксон, вид</th>
<th>Глубина</th>
<th>Таксон, вид</th>
<th>Глубина</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polychaeta</td>
<td></td>
<td>Eulalia viridis (L., 1767)</td>
<td>0 м</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phyllodoco sp.</td>
<td>0 м</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harmothoe reticulata (Claparede, 1870)</td>
<td>0 м</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pholoe inornata Johnson, 1839</td>
<td>0 м</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nereis zonata Malmgren, 1867</td>
<td>0 м</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Platynetreis dumerilii (Aud et M.Edw, 1834)</td>
<td>0 м</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Syllis gracilis Grube, 1840</td>
<td>0 м</td>
</tr>
</tbody>
</table>

270
Обрастание скал исследовали на глубине 0 м в районе грота Шаляпина (табл. 5). Наибольшего видового разнообразия достигают ракообразные, прежде всего бокоплавы (Amphipoda) – 10 видов. Два из них (C. danilevskii и C. liparotensis) считаются малочисленными.

Таблица 5.

<table>
<thead>
<tr>
<th>Список видов беспозвоночных, отмеченных у грота Шаляпина</th>
</tr>
</thead>
<tbody>
<tr>
<td>Таксон, вид</td>
</tr>
<tr>
<td>Malacostraca</td>
</tr>
<tr>
<td>Chondrochelia savignyi (Kroyer, 1842)</td>
</tr>
<tr>
<td>Tanais dulongii (Audouin, 1826)</td>
</tr>
<tr>
<td>Pachygrapsus marmoratus (Fabricius, 1877)</td>
</tr>
<tr>
<td>Palaemon elegans Rathke, 1837</td>
</tr>
<tr>
<td>Amphithoe ramondi Audouin, 1826</td>
</tr>
<tr>
<td>Pleonexes gammaroides Spence Bate, 1857</td>
</tr>
<tr>
<td>Hyale schmidtii (Heller, 1866)</td>
</tr>
<tr>
<td>Hyale perieri (Lucas, 1849)</td>
</tr>
<tr>
<td>Jassa marmorata Holmes, 1905</td>
</tr>
<tr>
<td>Jassa ocia (Spence Bate, 1862)</td>
</tr>
<tr>
<td>Parhyale taurica Grintsov, 2009</td>
</tr>
<tr>
<td>Stenothoe monoculoides (Montagu, 1815)</td>
</tr>
</tbody>
</table>
Заключение. Фаунистическая компонента сообщества волнореза пгт Курортное не разделилась на группировки видов в зависимости от расположения сторон волнореза. Для донных беспозвоночных поверхность рифа оказалась довольно однородной средой. Число видов беспозвоночных на скалах Карадага близко по значению и колеблется от 74 до 86. Наибольшее количество видов отмечено для Phyllodocida (Polychaeta) и Amphipoda (Malacostraca). На поверхности волнорезов пгт Курортное и пгт Нового свeta беспозвоночных встречено меньше, чем на скалах (52 и 43 вида соответственно). Наименьшее число видов было отмечено для скал грота Шалямина в районе пгт Нового Света (21).

4.4.2.3. МАКРОЗООБЕНТОС ПЕСЧАНЫХ СУБСТРАТОВ ВЕРХНЕЙ ЗОНЫ СУБЛИТОРАЛИ

Ландшафтно-рекреационный парк регионального значения «Лисья бухта – Эчки-Даг» находится примерно в 3 км к западу от Карадага у подножия хр. Эчки-Даг (юго-восточное побережье Крыма). Бухта Лисья является наиболее глубоко вдающейся в сушу частью большой Чалкинской бухты, расположенной между м. Меганом и массивом Карадаг. Интерес к изучению сравнительного разнообразия морского бентоса в данном районе обусловлен динамичностью происходящими изменениями его среды обитания. Известно, что определённый уровень биоразнообразия обеспечивает буферные условия, противодействующие колебаниям окружающей среды. Анализ динамики биоразнообразия и трофической структуры бентоса акваторий б. Лисьей и Карадагского природного заповедника с 1973 по 2008 гг. позволит оценить степень устойчивости и направление структурных трансформаций сообществ биотопов песка.

С 7 по 9 июля 1973 г. в б. Лисья отобраны пробы бентоса на трех разрезах (центральном, западном и восточном). Разрезы расположены перпендикулярно берегу на расстоянии 150 м один от другого. Пробы отбирали водолазным дночерпателем ("кошелёк") площадью захвата 0,05 м², как правило, по 2 пробы на каждой станции, на глубинах от 1 до 10 м через каждый метр глубины. Всего выполнено 26 станций, на которых собрано 51 проба. Пробы промывали через систему сит с ячейками 5 и 1 мм, отобранных животных фиксировали (Киселёва, 1992).

Анализ биоразнообразия. Биоразнообразие концептуально объединяет два кумулятивных понятия: видовое богатство и выровненность (порядок концентрации) (Simpson, 1949). Гетерогенность – характеристика сообщества, предлагающая аналогичные идеи, концептуально тождественна биоразнообразию. Анализируя однотипные биотопы во времени и пространстве, мы всегда сталкиваемся с различиями в видовом богатстве населяющих их сообществ. Таким образом, исследование «неоднородности структуры» всегда безотчётно присутствует в анализе

Динамика разнообразия в биотопах песка

В 1973 г. грунт практически на всем полигоне был представлен песком с примесью гальки (на глубине 1, 2 м), либо песком с примесью ракушечника. Только на двух станциях отмечалось небольшое количество зостеры (Киселёва, 1992 б). В 1998 г. чисто песчаный грунт обнаружен лишь на центральном разрезе. На двух других разрезах песчаный грунт располагался пятнами, между которыми наблюдались выходы коренных пород. На шести станциях восточного и западного разрезов отмечены макро водоросли – цистозира, филлофора, ульва, на одной станции – рдест. На западном разрезе на глубине от 3 до 6 м процент покрытия дна ульвой достигал 90 %, далее с увеличением глубины он уменьшался, и на глубине 10 м составлял 10 %.

Анализ полученного материала показал, что в 1998 г. в б. Лисье значительно изменился состав фауны, встречаемость отдельных видов и показатели их количественного развития. В 1973 г. в исследованном районе отмечено 56, а в 1998 г. – 93 таксона (табл. 1).
Таблица 1.

Видовой состав и количественное развитие макрообентоса в б. Лисья в 1973 и 1998 гг.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PORIFERA</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1,5</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>CNIDARIA</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>12</td>
<td>0,07</td>
<td></td>
</tr>
<tr>
<td>Sagartiogeton undatus (Müller, 1778)</td>
<td>27</td>
<td>45</td>
<td>0,014</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PLATYHELMINTHES (Turbellaria)</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>NEMERTEA</td>
<td>7</td>
<td>2,9</td>
<td>0,004</td>
<td>24</td>
<td>3</td>
<td>0,003</td>
</tr>
<tr>
<td>ANNELIDA (Polychaeta)</td>
<td>10</td>
<td>1,4</td>
<td>0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Genetyllus tuberculata (Bobretzky, 1868)</td>
<td>10</td>
<td>4,3</td>
<td>0,005</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phyllodoce maculata (Linnaeus, 1767)</td>
<td>7</td>
<td>1,4</td>
<td>0,002</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eulalia viridis (Linnaeus, 1767)</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Nephtys hombergii Savigny, 1818</td>
<td>3</td>
<td>1,8</td>
<td>0,002</td>
<td>8</td>
<td>1</td>
<td>0,003</td>
</tr>
<tr>
<td>Nephtys cirrosa Ehlers, 1868</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0,4</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>Micronephthys stammeri (Augener, 1932)</td>
<td>3</td>
<td>0,7</td>
<td>0,001</td>
<td>28</td>
<td>6</td>
<td>0,02</td>
</tr>
<tr>
<td>Glycera tridactyla Schmarda, 1861</td>
<td>7</td>
<td>0,7</td>
<td>0,015</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Glycera alba (O.F. Müller, 1776)</td>
<td>3</td>
<td>1,4</td>
<td>0,005</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Harmothoe sp.</td>
<td>3</td>
<td>0,7</td>
<td>0,001</td>
<td>7</td>
<td>1,1</td>
<td>0,003</td>
</tr>
<tr>
<td>Pholoe inornata Johnston, 1839</td>
<td>23</td>
<td>35,4</td>
<td>0,091</td>
<td>4</td>
<td>1,5</td>
<td>0,001</td>
</tr>
<tr>
<td>Nereis zonata Malmgren, 1867</td>
<td>3</td>
<td>27,14</td>
<td>0,013</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nereinidae g. sp.</td>
<td>7</td>
<td>1,1</td>
<td>0,002</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Perinereis cultrifera (Grube, 1840)</td>
<td>3</td>
<td>0,7</td>
<td>0,002</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Platynereis dumerilii (Audouin et M.-Edwards, 1834)</td>
<td>27</td>
<td>31,4</td>
<td>0,022</td>
<td>4</td>
<td>0,4</td>
<td><0,001</td>
</tr>
<tr>
<td>Syllis hyalina Grube, 1863</td>
<td>7</td>
<td>1,8</td>
<td>0,003</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sphaerosyllis bulbosa Southern, 1914</td>
<td>3</td>
<td>0,7</td>
<td><0,001</td>
<td>8</td>
<td>7</td>
<td>0,007</td>
</tr>
<tr>
<td>Erinaceusyllis erinaceus (Claparède, 1863)</td>
<td>13</td>
<td>16,4</td>
<td>0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Salvatoria clavata (Claparède, 1863)</td>
<td>37</td>
<td>215</td>
<td>0,006</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Exogone naidina Orsted, 1845</td>
<td>47</td>
<td>384</td>
<td>0,012</td>
<td>8</td>
<td>1</td>
<td>0,001</td>
</tr>
<tr>
<td>Nudisyllis pulligera (Krohn, 1852)</td>
<td>23</td>
<td>58,2</td>
<td>0,003</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Microphthalmus fragilis Bobretzky, 1870</td>
<td>3</td>
<td>7,1</td>
<td>0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Protodorvillea kefersteini (McIntosh, 1869)</td>
<td>33</td>
<td>420</td>
<td>0,079</td>
<td>29</td>
<td>11</td>
<td>0,004</td>
</tr>
<tr>
<td>Polygordius neapolitanus Fraipont, 1887</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0,004</td>
<td></td>
</tr>
<tr>
<td>Megadrilus purpureus (Schneider, 1868)</td>
<td>3</td>
<td>1,4</td>
<td><0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spio filicornis (Müller, 1776)</td>
<td>13</td>
<td>6,4</td>
<td>0,013</td>
<td>20</td>
<td>5</td>
<td>0,003</td>
</tr>
<tr>
<td>Scolelepis (Scolelepis) squamata (O.F. Muller, 1806)</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0,4</td>
<td><0,001</td>
<td></td>
</tr>
<tr>
<td>Scolelepis (Parascolelepis) tridentata Southern, 1914</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0,004</td>
<td></td>
</tr>
<tr>
<td>Polydora cornuta Bosc, 1802</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>Prionispio cirriferia Wiren, 1883</td>
<td>20</td>
<td>29</td>
<td>0,011</td>
<td>8</td>
<td>3</td>
<td>0,01</td>
</tr>
</tbody>
</table>
Продолжение табл. 1

<table>
<thead>
<tr>
<th>Животное</th>
<th>Объем</th>
<th>Длина</th>
<th>Ширина</th>
<th>Высота</th>
<th>Масса</th>
<th>Относительная масса</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prionispio malmgreni Claparède, 1869</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>1,5</td>
<td>0,005</td>
</tr>
<tr>
<td>Microspio mecznikowianus (Claparède, 1869)</td>
<td>3</td>
<td>2,5</td>
<td>0,003</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aonides paucibranchiata Southern, 1914</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0,4</td>
<td><0,001</td>
</tr>
<tr>
<td>Magelona rosea Moore, 1907</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td><0,001</td>
</tr>
<tr>
<td>Cirrophorus harpagoneus (Storch, 1967)</td>
<td>17</td>
<td>3,2</td>
<td>0,004</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aphelochaeta marioni (Saint-Joseph, 1894)</td>
<td>3</td>
<td>0,4</td>
<td>0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Aricidea claudiae Laubier, 1967</td>
<td>7</td>
<td>1,1</td>
<td>0,001</td>
<td>4</td>
<td>0,4</td>
<td>0,001</td>
</tr>
<tr>
<td>Ophelia limicina (Rathke, 1843)</td>
<td>7</td>
<td>1,4</td>
<td>0,025</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polyophthalmus pictus (Dujardin, 1839)</td>
<td>10</td>
<td>22</td>
<td>0,002</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Capitella capitata (Fabricius, 1780)</td>
<td>17</td>
<td>50</td>
<td>0,005</td>
<td>24</td>
<td>5</td>
<td>0,005</td>
</tr>
<tr>
<td>Heteromastus filiformis (Claparède, 1864)</td>
<td>7</td>
<td>1,4</td>
<td>0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leiochone leiopygos (Grube, 1860)</td>
<td>13</td>
<td>3,2</td>
<td>0,008</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polycirrus jubatus Bobretzky, 1869</td>
<td>20</td>
<td>10</td>
<td>0,015</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Melinna palmata Grube, 1870</td>
<td>7</td>
<td>1,1</td>
<td>0,007</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lagis neapolitana (Claparède, 1869)</td>
<td>3</td>
<td>0,7</td>
<td><0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spirobranchus triqueter (Linnaeus, 1758)</td>
<td>3</td>
<td>0,4</td>
<td><0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CRUSTACEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphibalanus improvisus (Darwin, 1854)</td>
<td>33</td>
<td>50,7</td>
<td>2,31</td>
<td>4</td>
<td>0,4</td>
<td>0,005</td>
</tr>
<tr>
<td>Iphinoe maeotica Sowinskyi, 1893</td>
<td>13</td>
<td>6</td>
<td>0,004</td>
<td>9</td>
<td>1</td>
<td><0,001</td>
</tr>
<tr>
<td>Iphinoe elisae Băcescu, 1950</td>
<td>10</td>
<td>1,4</td>
<td><0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cumella pygmaea euxinica Băcescu, 1950</td>
<td>3</td>
<td>0,4</td>
<td><0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bodotria arenosa mediterranea (Steuer, 1938)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>0,001</td>
</tr>
<tr>
<td>Pseudocuma (Pseudocuma) longicorne (Bate, 1858)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>39</td>
<td>0,04</td>
</tr>
<tr>
<td>Pseudocuma (Stenocuma) tenuicauda Sars, 1894</td>
<td>3</td>
<td>0,7</td>
<td><0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Apseudopsis ostroumovi Băcescu & Carausu, 1947</td>
<td>3</td>
<td>0,7</td>
<td><0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chondrochelia savignyi (Kroyer, 1842)</td>
<td>17</td>
<td>24</td>
<td>0,012</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eurydice dollfusi Monod, 1930</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0,4</td>
<td>0,001</td>
</tr>
<tr>
<td>Stenosoma capitio (Rathke, 1837)</td>
<td>17</td>
<td>1,8</td>
<td>0,017</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dynamene bidentata (Adams, 1800)</td>
<td>7</td>
<td>4,6</td>
<td>0,023</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bathyporeia guilliamsoniana (Spence Bate, 1857)</td>
<td>13</td>
<td>6</td>
<td>0,003</td>
<td>32</td>
<td>6</td>
<td>0,006</td>
</tr>
<tr>
<td>Nototropis guttatus Costa, 1853</td>
<td>27</td>
<td>21</td>
<td>0,011</td>
<td>4</td>
<td>0,4</td>
<td><0,001</td>
</tr>
<tr>
<td>Microdeutopus gryllotalpa Costa, 1853</td>
<td>20</td>
<td>4,6</td>
<td>0,010</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Microdeutopus sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0,001</td>
</tr>
<tr>
<td>Ampelisca diadema (Costa, 1853)</td>
<td>7</td>
<td>1,8</td>
<td>0,005</td>
<td>12</td>
<td>2</td>
<td>0,002</td>
</tr>
<tr>
<td>Ampithoe ramondi Audouin, 1826</td>
<td>10</td>
<td>96</td>
<td>0,040</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Apherusa bispinosa (Spence Bate, 1857)</td>
<td>10</td>
<td>15</td>
<td>0,009</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Biancolina algicola Della Valle, 1893</td>
<td>7</td>
<td>5,4</td>
<td>0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caprella acantifera Leach, 1814</td>
<td>30</td>
<td>138</td>
<td>0,060</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dexamine spinosa (Montagu, 1813)</td>
<td>13</td>
<td>20</td>
<td>0,005</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ericthonius difformis H. Milne Edwards, 1830</td>
<td>20</td>
<td>165</td>
<td>0,066</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Echinogammarus olivii (H. Milne Edwards, 1830)</td>
<td>7</td>
<td>12</td>
<td>0,023</td>
<td>12</td>
<td>5</td>
<td>0,005</td>
</tr>
<tr>
<td>Siphoneocetes (Centraloecetes) delavallei Stebbing, 1899</td>
<td>10</td>
<td>7,5</td>
<td>0,004</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stenothea monoculoides (Montagu, 1815)</td>
<td>10</td>
<td>44</td>
<td>0,022</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diogenes pugilator (Roux, 1829)</td>
<td>70</td>
<td>201</td>
<td>2,537</td>
<td>64</td>
<td>31</td>
<td>1,05</td>
</tr>
<tr>
<td>Carcinus aestuarii Nardo, 1847</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0,002</td>
</tr>
<tr>
<td>Chironomus salinarius Kieffer, 1915</td>
<td>3</td>
<td>2,9</td>
<td>0,002</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MOLLUSCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthohitona fascicularis (Linné, 1767)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>0,007</td>
</tr>
<tr>
<td>Lepidochitona cinerea (Linné, 1767)</td>
<td>10</td>
<td>2,1</td>
<td>0,004</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tricolia pulla (Linné, 1758)</td>
<td>20</td>
<td>248</td>
<td>0,175</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gibbula adriatica (Philippi, 1844)</td>
<td>3</td>
<td>0,4</td>
<td><0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rissoa splendidida Eichwald, 1830</td>
<td>3</td>
<td>2,1</td>
<td>0,079</td>
<td>4</td>
<td>0,4</td>
<td><0,001</td>
</tr>
<tr>
<td>Rissoa membranacea (J. Adams, 1800)</td>
<td>17</td>
<td>3,6</td>
<td>0,017</td>
<td>4</td>
<td>1</td>
<td>0,001</td>
</tr>
<tr>
<td>Rissoa parva (Da Costa, 1778)</td>
<td>13</td>
<td>3,6</td>
<td>0,016</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caecum trachea (Montagu, 1803)</td>
<td>40</td>
<td>188</td>
<td>0,23</td>
<td>24</td>
<td>60</td>
<td>0,135</td>
</tr>
<tr>
<td>Calyptraea chinesis (Linnaeus, 1758)</td>
<td>17</td>
<td>5,7</td>
<td>0,098</td>
<td>4</td>
<td>1</td>
<td>0,044</td>
</tr>
<tr>
<td>Bittium reticulatum (Da Costa, 1778)</td>
<td>7</td>
<td>1,8</td>
<td>0,075</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tritia reticulata (L., 1758)</td>
<td>13</td>
<td>2,9</td>
<td>3,179</td>
<td>24</td>
<td>4</td>
<td>2,02</td>
</tr>
<tr>
<td>Tritia donovani (Risso, 1826)</td>
<td>23</td>
<td>26,4</td>
<td>0,888</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tritia neritea (L., 1758)</td>
<td>37</td>
<td>53</td>
<td>3,9</td>
<td>52</td>
<td>12</td>
<td>3,1</td>
</tr>
<tr>
<td>Bela nebula (Montagu, 1803)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>3</td>
<td>0,072</td>
</tr>
<tr>
<td>Odostomia plicata (Montagu, 1803)</td>
<td>3</td>
<td>0,4</td>
<td><0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Odostomia sp.</td>
<td>3</td>
<td>0,7</td>
<td><0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Odostomia unidentata (Montagu, 1803)</td>
<td>3</td>
<td>0,7</td>
<td>0,003</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brachystomia eulimoides (Hanley, 1844)</td>
<td>3</td>
<td>5</td>
<td>0,002</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
продолжение табл.1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parthenina sp.</td>
<td>3</td>
<td>0,4</td>
<td><0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Turbonilla acuta (Donovan, 1804)</td>
<td>3</td>
<td>0,7</td>
<td>0,002</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Retusa truncatula (Bruguière, 1792)</td>
<td>17</td>
<td>3,2</td>
<td>0,005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Retusa robagliana (P. Fischer, 1869)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0,003</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mytilaster lineatus (Gmelin, 1791)</td>
<td>73</td>
<td>2413</td>
<td>9,055</td>
<td>4</td>
<td>3</td>
<td>0,05</td>
<td>47</td>
<td>81</td>
<td>0,115</td>
<td>0</td>
</tr>
<tr>
<td>Mytilus galloprovincialis Lamarck, 1819</td>
<td>47</td>
<td>81</td>
<td>0,115</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gibbomodiola adriatica (Lamarck, 1819)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0,001</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Loripes orbiculatus Poli, 1791</td>
<td>17</td>
<td>6</td>
<td>0,060</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lucinella divaricata (Linnaeus, 1758)</td>
<td>17</td>
<td>4,3</td>
<td>0,032</td>
<td>69</td>
<td>77</td>
<td>0,405</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kurtiella bidentata (Montagu, 1803)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0,005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Donax semistriatus Poli, 1795</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28</td>
<td>6</td>
<td>2,883</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parvicardium exiguum (Gmelin, 1791)</td>
<td>17</td>
<td>17</td>
<td>0,079</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gouldia minima (Montagu, 1803)</td>
<td>7</td>
<td>1,8</td>
<td>0,017</td>
<td>12</td>
<td>12</td>
<td>0,42</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pitar rudis (Poli, 1795)</td>
<td>7</td>
<td>1,1</td>
<td>0,539</td>
<td>4</td>
<td>2</td>
<td>1,88</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chamelea gallina (L., 1758)</td>
<td>80</td>
<td>907</td>
<td>753,825</td>
<td>52</td>
<td>32</td>
<td>22</td>
<td>23</td>
<td>4,3</td>
<td>0,120</td>
<td>12</td>
</tr>
<tr>
<td>Spisula subtruncata (da Costa, 1778)</td>
<td>23</td>
<td>4,3</td>
<td>0,120</td>
<td>12</td>
<td>2</td>
<td>0,3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Moerella donacina (Linnaeus, 1758)</td>
<td>7</td>
<td>2,1</td>
<td>0,216</td>
<td>24</td>
<td>7</td>
<td>0,12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Macomangulus tenuis (da Costa, 1778)</td>
<td>30</td>
<td>19</td>
<td>0,081</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fabulina fabula (Gmelin, 1791)</td>
<td>17</td>
<td>3,6</td>
<td>0,007</td>
<td>32</td>
<td>8</td>
<td>0,01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lenthidium mediterraneum (O. G. Costa, 1830)</td>
<td>30</td>
<td>12,1</td>
<td>0,019</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CHORDATA</td>
<td></td>
</tr>
<tr>
<td>Branchiostoma lanceolatum (Pallas, 1774)</td>
<td>7</td>
<td>1,4</td>
<td>0,043</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Анализ сравнимости фаун 1973 г. и 1998 г. был проведен на основании индекса общности Чекановского-Съеренсена, (Ss). Индекс общности составил 0,21 в целом по полигону, с диапазоном изменения от 0,06–0,51 (табл. 2).

Таблица 2.

Индекс сходства (Ss) в сообществе Ch. gallina б. Лисья

<table>
<thead>
<tr>
<th>Глубина (м)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Индекс сходства 1973–1998 гг.</td>
<td>0,06</td>
<td>0,14</td>
<td>0,14</td>
<td>0,51</td>
<td>0,26</td>
<td>0,14</td>
<td>0,14</td>
<td>0,3</td>
<td>0,21</td>
<td>0,23</td>
</tr>
</tbody>
</table>

Рис. 1. Сравнительное видовое обилие бентоса в б. Лисья в 1973 и 1998 гг.

Существенно отличаются показатели количественного развития макробентоса в исследованные периоды (табл. 3).

<table>
<thead>
<tr>
<th>Годы</th>
<th>Число видов</th>
<th>N, экз./м²</th>
<th>B, г/м²</th>
<th>Ch. gallina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N, экз./м²</td>
</tr>
<tr>
<td>1973</td>
<td>56</td>
<td>395</td>
<td>35,66</td>
<td>32</td>
</tr>
<tr>
<td>1998</td>
<td>93</td>
<td>7066</td>
<td>778,44</td>
<td>907</td>
</tr>
</tbody>
</table>

Существенную разницу в значениях численности (рис. 2) бентоса можно отчасти объяснить, по-видимому, сезонными различиями в сроках сбора материала: в 1973 г. пробы отобраны в начале июля, в 1998 г. – в конце августа. Как раз в июле происходит размножение таких массовых видов, как *M. lineatus*, *D. pugilator*, *Ch. gallina*. Однако сезонные колебания биомассы макробентоса на рыхлых грунтах в Черном море не выражены (Киселёва, 1981). Для сопоставления приведем данные, полученные для биотопа песка в районе Карадага в 1938–1939 гг. и в 1957 г. М. Ю. Бекман (1952) и в 1957 г. Г. И. Лосовской (1960). Средние значения численности бентоса в эти годы составляли соответственно 955 и 223 экз./м², средние значения биомассы бентоса равнялись соответственно 74 и 27 г/м². Средние значения биомассы бентоса, полученные в б. Лисья в 1973 г., вполне укладываются в диапазоны значений, указанных для биотопа песка в районе Карадага в 1938–1939 гг. и в 1957 г. В 1998 г. средние значения биомассы (778,4 г/м²) отличаются от этих величин не менее, чем в 10 раз. При анализе количественных показателей массовых видов обнаруживается, что основной вклад в общую биомассу вносят *Ch. gallina* (см. раздел 3.1.3.) Этот вид доминирует по биомассе на глубинах 2–10 м в 1998 г. и на глубинах 3–10 м – в 1973 г. Таким образом, с формальной точки зрения, в оба исследованных периода в б. Лисье на глубине от 3 до 10 м обитало сообщество *Ch. gallina*. Верхняя граница обитания *Ch. gallina* сместилась с глубины 3 м в 1973 г. до 2 м – в 1998 г.
Сопоставление количественных показателей бентоса, а также числа видов на разных глубинах в исследованные периоды, показало, что в 1998 г. почти на всех глубинах наблюдается значительное увеличение числа видов (рис.1), средней численности и средней биомассы бентоса по сравнению с 1973 г. (рис. 2, 3).
Для исследования сравнительного биоразнообразия был применен метод сравнения к-домinantных кривых, построенных по данным о численности видов. Кривые доминирования-разнообразия пересекаются на графиках, построенных для всех глубин, кроме глубин 4, 6, 8 м, где сообщество Ch. gallina в 1973 г. было более разнообразно, и глубин 2 и 9 м, где сообщество того же вида более разнообразно в 1998 г. Анализ кривых показал картину резкого доминирования (Мазлумян и др., 2004).

Как говорилось выше, в изученном биотопе средняя биомасса доминирующего вида Ch. gallina достигает значительного уровня в 1998 г., потому целесообразным представляется исследование динамики и особенностей доминирования в сообществе. В 1973 г. диапазон изменения индекса Симпсона составляет 0,1–0,5 и имеет два максимума — на 2 м, где отмечено резкое доминирование Pseudocuma longicornis и на 6 м, где доминирует L. divaricata. В 1998 г. диапазон индекса 0,2–0,3, максимумы отмечены на 4, 6 и 8 м. Резкое увеличение численности Ch. gallina на этих глубинах соответствует пиковым значениям индекса Симпсона (рис. 4 а).

Рис. 4. Изменение индексов доминирования: (а) – Симпсона (D) и (b) – Берджер-Паркер (d) в сообществе Ch. gallina в б. Лисья в 1973 и 1998 гг.

Доминирование по численности изучали также с помощью индекса доминирования Берджер-Паркер, (d). По индексу доминирования Берджер-Паркер в 1973 г. добавляется еще один
пик на глубине 6 м за счет доминирования *L. divaricata*. Картина доминирования в 1998 г. по этому индексу совпадает с картиной доминирования по Симпсону. Необходимо обратить внимание на то, что в 1973 г. в диапазоне глубин от 4 до 9 м по численности преобладает *L. divaricata*, а в 1998 г. на этих глубинах 3–8 м – *Ch. gallina*. На 9 и на 10 м доминирует *P. kefersteini* (рис. 4 b).

Продолжая анализ сравнительного разнообразия сообщества *Ch. gallina*, логичным представляется перейти к анализу, на основании индекса Хилла, который представляет собой меру разнообразия, измеренную в отношении к видовому богатству. Более высокий уровень разнообразия отличает сообщество в 1973 г. на всех глубинах, за исключением 2 и 9 м, где выше уровень биоразнообразия сообщества в 1998 г. (рис. 5 а).

Анализ разнообразия по индексу Шеннона провели по численности и по биомассе. Разнообразие численности для сообщества *Ch. gallina* 1973 г. выше на всех глубинах, кроме 2 и 9 м (рис. 6 а), что полностью согласуется с предыдущими результатами. Разнообразие сообщества по биомассе в 1973 г. также выше, чем в 1998 г., за исключением глубины 2 м (рис. 6 b). H'_w.

Рис. 5. Изменение индексов: (а) – разнообразия (1/D) и (б) – выровненности (E1/D) в сообществе *Ch. gallina* в б. Лисья в 1973 и 1998 гг.
Рис. 6. Изменение индекса разнообразия: (a) – Шеннона, по численности (H’N) и (b) – по биомассе (H’B) в сообществе Ch. gallina в б. Лисья в 1973 и 1998 гг.

Обсуждая биоразнообразие, необходимо оценить второй его компонент – выровненность. В 1998 г. в б. Лисья отмечен низкий уровень видовой выровненности, (E1/D) что свидетельствует о нестабильности внутренней структуры сообщества в период наблюдения (рис. 5 б). Выровненность по численности и биомассе были выше в 1973 г. (кроме глубины 2 м), причем значение выровненности по численности, (eN) близко к верхнему пределу (глубины 3,7 м) (рис. 7).

Подводя итоги исследованию биоразнообразия в сообществе хамелеи в 1998 г., можно констатировать увеличение уровня относительного доминирования и значительного снижения разнообразия и выровненности (John et al., 1980). Кривые K – доминирования численности и биомассы для сообщества *Ch. gallina* показали, что сообщество более разнообразно по численности, чем по биомассе, следовательно, в биотопе не наблюдается преобладания г-стратегов (Мазлумян и др., 2003). Наличие домирирующих K-стратегов в сообществе проявляется в том, что сестонофа́ги *Ch. gallina* и *G. minima* и другие виды с относительно большой биомассой доминируют, определяя структурный характер сообщества песчаного биотопа. Одним из последствий нарушений в среде обитания сообществ является сокращение числа домирирующих видов и увеличение численности ограниченно при- способленных г-стратегов (Pianka, 1970, 1974, 1978). В нашем случае о резком преобладании г-стратегов в сообществе *Ch. gallina*, говорить не приходится. По-видимому, в 1998 г., мы наблюдали начальный этап трансформаций в структуре сообщества, связанный с изменением качества среды обитания. Об этом свидетельствует и матрица общности видов, построенная на основании индекса Чекановского-Съёренсена (рис. 9).
Рис. 8. Изменение индекса Маргалефа (D_{Mg}) и Менхиника (D_{Mn}) в сообществе Ch. gallina в б. Лисья в 1973 и 1998 гг.

<table>
<thead>
<tr>
<th>Глубина (м)</th>
<th>1973</th>
<th>1998</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,56</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0,55</td>
<td>0,58</td>
</tr>
<tr>
<td>4</td>
<td>0,14</td>
<td>0,38</td>
</tr>
<tr>
<td>5</td>
<td>0,27</td>
<td>0,38</td>
</tr>
<tr>
<td>6</td>
<td>0,2</td>
<td>0,36</td>
</tr>
<tr>
<td>7</td>
<td>0,25</td>
<td>0,38</td>
</tr>
<tr>
<td>8</td>
<td>0,35</td>
<td>0,48</td>
</tr>
<tr>
<td>9</td>
<td>0,36</td>
<td>0,37</td>
</tr>
<tr>
<td>10</td>
<td>0,27</td>
<td>0,29</td>
</tr>
</tbody>
</table>

Рис. 9. Значение индекса общности видов, (S_s) для проб с глубин 1–10 м в сообществе Ch. gallina в б. Лисье в 1973 и 1998 гг.

В 1998 г. индексы общности менее 0,25 обнаружены в 4 % случаев (13 % – 1973 г.), от 0,25 до 0,50 – 73 % (64 % – 1973 г.), от 0,50 и выше – 22 % (23 % – 1973 г.). Обнаруженное на исследуемом полигоне распределение индексов сходства означает, что бентос разнороден по глубинам. Следовательно, нет оснований говорить о высоком уровне загрязнения в
исследуемом биотопе, при наличии которого, по наблюдениям М.И.Киселевой, индекс общности 0,5 отмечается более чем в 50 % сравниваемых проб (Киселева, 1992 б).

![Diagram](image.png)

Абсолютная численность макрозообентоса всех трофических групп возрастает (рис. 11 а). Относительное распределение плотности существенно изменяется: в 1973 г. доли детритофагов (38 %) и сестонофагов (36 %) были приблизительно одинаковы, тогда как в 2008 г. детритофаги доминируют (48 %), а сестонофаги составляют 30 %, и доля фитофагов в общей численности сокращается (1973 г. – 19 %; 2008 г. – 3 %) (рис. 11 б).

В б. Лисья в 1998 г. по сравнению с 1981 г., увеличилась численность гильдии, более мелкого, чем хамелея вида. По численности в 1998 г. на глубинах 3–8 м доминирует Ch. gallina, на 9 м и 10 м – P. kefersteinii. Следует отметить снижение количественных показателей развития L. divaricata, а также исчезновение D. semistriatus, являющихся видами-индикаторами чистых песков. Появление на полигоне ульвы, значительное увеличение числа видов, увеличение количественного развития Ch. gallina, могут свидетельствовать о повышении трофности данного района. По-видимому, происходившая в сообществе Ch. gallina перестройка является отчасти результатом некоторого повышения уровня эвтрофирования, а отчасти связана с изменением субстрата.

В биотопах песка по биомассе преобладают сестонофаги (рис. 12). В б. Лисья доминирующим по биомассе видом в 1973 г. на глубине 3–10 м, и в 1998 г. на глубине 2–10 м является Chamelea gallina. В группе сестонофагов в 1973 г. хамелея составляла 76 %, Donax semistriatus – 10 %, Pitar rudis – 6,5 %, губки – 3 %, Lucinella divaricata и Gouldia minima по 1,4 %. В 1998 г. вклад хамелеи в биомассу сестонофагов увеличился до 98,4 %, D. semistriatus не встречен вовсе, P. rudis, L. divaricata и G. minima обнаружены в незначительных количествах. Заметный вклад дает лишь митилестер – 1,2 % и Balanus improvisus, обрастающий раковины хамелии, – 0,3 %.

В Карадагском природном заповеднике наибольший вклад в биомассу в оба периода исследований вносили сестонофаги, однако их доля уменьшилась с 77 % до 63 %, при этом доля плотоядных увеличилась с 21 % до 31 % (рис. 12 б).

Возросшая в 1998 г. роль сестонофагов в биотопе песка б. Лисья объясняется как возросшим количественным развитием *Ch. gallina*, так и увеличением степени доминирования этого вида. Следует отметить, что при увеличении числа видов и плотности сестонофагов и детритофагов, биомасса сестонофагов не изменяется, а у детритофагов возрастает примерно в 3 раза (рис. 12 а). В группу детритофагов объединяют организмы, собирающие детрит с поверхности грунта, и питающиеся в толще грунта (безвыборочные детритофаги или грунтоеды). Анализ структуры группы детритофагов показал, что в 2008 г. существенно увеличилась численность грунтоедов и уменьшилась численность собирающих детритофагов (Мазлумян и др., 2009). Наблюдаемые трансформации трофической структуры, по-видимому, в значительной степени связаны с изменением, в целом, размерной структуры популяций сообществ: произошло измельчение видов сестонофагов и детритофагов и увеличение размеров плотоядных, фитофагов и эврифагов (рис. 13).

![Diagram](image1)

Так, средняя масса особи-сестонофага уменьшилась в 3,3 раза, детритофага – в 1,6 раз, в то время как средняя индивидуальная масса плотоядных и фитофагов увеличилась приблизительно в 4 раза. Сестонофаги были представлены, в основном, двустворчатыми моллюсками. В 2008 г. популяцию *Ch. gallina* составляют мелкие особи (рис. 13).

Динамика разнообразия макрозообентоса в биотопах песка прибрежья Карадага (1973–2008 гг.). В 90-х гг. прошлого столетия в мелководных районах юго-западного Крыма отмечено существенное увеличение количественного развития бентоса в сообществе *Ch. gallina*, происходящего в значительной степени за счет увеличения плотности популяции самой хамелеи. Это связывают с повышением уровня трофности прибрежных вод вследствие антропогенного воздействия (Ревков и др., 1999; Мазлумян и др., 2009, Заика, 2011 б). Вероятно, сходные процессы имели место и в б. Лисья. О повышении уровня эвтрофирования вод в этом районе косвенно может свидетельствовать обнаружение здесь в 1998 г. значительного количества ульвы, относимой к видам-мезосапробам.

Антропогенное воздействие коснулось также и осадков б. Лисья. В изученном районе уменьшилась толщина песчаного слоя, появились выходы коренных пород. Возможно, это связано с выборкой песка в прибрежной зоне и постройкой небольшого берегозащитного волнолома в пгт Курортное (на расстоянии около 0,5 км от места исследований (Багнюкова, 1999 а, 1999 б). Увеличение количества видов в 1998 г. может быть отчасти связано с изменением биотопических условий, а именно, с выходом коренных пород и появлением макрофитов. Из 16 видов ракообразных, появившихся в районе исследований в 1998 г. и не отмеченных в 1973 г., 13 являются фитофильными.

Для макрозообентоса акватории прибрежья Карадага отмечено стабильное значение средней выровненности численности (0,7), возможно характерное для песчаных биотопов. Было показано, что для высокого уровня биоразнообразия характерна выровненность численности, составляющая ~ 0,8 (Odum, 1975). Нами отмечается и стабильный средний уровень выровненности биомассы ~ 0,4 (рис. 15 а). Отклонения в средних величинах выровненности в 1998 г. можно расценивать как отражение флуктуаций структуры сообщества хамелеи в б. Лисья, связанных с изменениями условий обитания. В то же время, средний уровень вида богатства неуклонно снижается во всех биотопах песка акватории Карадага, свидетельствуя об изменении качества местообитания (рис. 15 б).
Анализ связи биоразнообразия и устойчивости сообществ биотопов песка может внести некоторую ясность в наблюдаемые структурные трансформации макрообентоса. По мере увеличения разнообразия изменчивость отдельных популяций может увеличиваться в результате дестабилизирующего влияния сильных видовых взаимодействий, внутренних по отношению к сообществу, но изменчивость совокупных свойств экосистемы часто уменьшается из-за стабилизирующего влияния ответов асинхронных видов на внутреннюю или внешнюю среду (Loreau et al., 2001).

Существует мнение, что стрессовое воздействие является фактором, снижающим видовое разнообразие (Odum & Barrett, 2004). Принято считать, что разнообразие и сложность трофической организации повышают устойчивость сообщества (Margalef, 1969). Однако, вопрос о связи стабильности сообщества и его биоразнообразия, до сих пор не имеет однозначного ответа (Peterson et al., 1998). Механизмы, лежащие в основе стабилизирующего воздействия биоразнообразия на экосистему могут проявляться за счёт следующих механизмов: асинхронность собственных реакций видов на флуктуации среды (i), различия в скорости, с которой виды реагируют на возмущения (ii), снижение силы конкуренции (iii) (Loreau & de Mazancourt, 2013). Проявление механизма асинхронности можно
проследить на противоположной реакции моллюсков *Chamelea gallina* и *Lucinella divaricata* на изменение среды обитания. На изменение трофности в 1990-х годах хамелея отреагировала быстрым увеличением количественных показателей: её численность увеличилась в 28 раз, а биомасса ~ в 40 раз, в то время как численность *L. divaricata* уменьшилась ~ в 17 раз, а биомасса ~ в 13 раз. Аналогичная тенденция зафиксирована в акватории Карадагского природного заповедника: биомасса хамелеи уменьшается, а биомасса *L. divaricata* увеличивается.

В сообществах биотопов песка акватории заповедника отмечен более стабильный уровень биоразнообразия по сравнению с сообществом хамелеи в б. Лисья. При наличии стабилизирующего эффекта биоразнообразия в акватории заповедника наблюдается высокий уровень выраженности численности видов при доминировании К-стратегов. Видовое богатство в 2008 г. снижается по сравнению с 1973 г., а трофическая структура характеризуется доминированием детритофагов (48 %), в том числе безъяйцевых грунтоедов, тогда как сестонофаги составляют 30 %, а доля фитофааг в общей численности значительно сокращается. Происходит измельчание сестонофагов и детритофагов и увеличение размеров плотоядных, фитофаагов и эврифааг, что может являться ответной биотической реакцией на возросшую залежность грунтов, свидетельствующей о деградации качества среды.

4.4.2.4. МАКРОЗООБЕНТОС РЫХЛЫХ СУБСТРАТОВ НИЖНЕЙ ЗОНЫ СУБЛИТОРАЛИ

На основе материалов экспедиций (1957, 1988 и 1990 гг.) с разрывом во времени 33 года составили списки видов макробентоса в биоценозах из различных биотопов Судакско-Карадагского шельфа. Нами использован принцип выделения доминирующего вида по максимальной величине удельной биомассы. Исключение составляют сообщества мелких видов, имеющих большую численность. В этом случае доминант определяли по максимальной величине удельной численности. В нашем описании это сообщества с преобладанием полихет Ariclea (Strelzovia) claudiae Laubier, 1967 и Terebellides stroemii Sars, 1835, а также двустворчатого моллюска Gouldia minima (Montagu, 1803). Таксономический состав макрозообентоса, приведённый в таблицах (табл. 2–4, 6–10, 12–14) сверен с «Всемирным реестром морских видов» (WoRMS) (Costello et al., 2013).

Рис. 1. Схема бентосных станций в акватории Судакского шельфа (апрель, 1957 г.)

Таблица 1. Глубина и координаты станций макробентоса акватории Судакского шельфа (апрель, 1957 г.)

<table>
<thead>
<tr>
<th>Станция*</th>
<th>Координаты</th>
<th>Глубина, м</th>
<th>Грунт</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Широта</td>
<td>Долгота</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>44.80000</td>
<td>34.89167</td>
<td>46</td>
</tr>
<tr>
<td>76</td>
<td>44.81000</td>
<td>34.89667</td>
<td>19</td>
</tr>
<tr>
<td>77</td>
<td>44.81500</td>
<td>34.88334</td>
<td>9</td>
</tr>
<tr>
<td>78</td>
<td>44.78833</td>
<td>34.78333</td>
<td>50</td>
</tr>
<tr>
<td>79</td>
<td>44.81333</td>
<td>34.77666</td>
<td>25</td>
</tr>
<tr>
<td>80</td>
<td>44.81333</td>
<td>34.78333</td>
<td>10</td>
</tr>
<tr>
<td>81</td>
<td>44.77000</td>
<td>34.67833</td>
<td>50</td>
</tr>
</tbody>
</table>
Продолжение табл. 1

<table>
<thead>
<tr>
<th>№</th>
<th>Глубина, м</th>
<th>Таксоны</th>
<th>N</th>
<th>B</th>
<th>N</th>
<th>B</th>
<th>N</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>34.67000</td>
<td>25</td>
<td>ил коричневый мягкий</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>34.66667</td>
<td>10</td>
<td>мелкая галька темного цвета</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>34.56333</td>
<td>50</td>
<td>фазеолиновый ил</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>34.55667</td>
<td>25</td>
<td>ил синеватый</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>34.55000</td>
<td>10</td>
<td>песчанистый ил полужидкой консистенции</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>44.72667</td>
<td>100</td>
<td>мелкий песок</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>44.72667</td>
<td>100</td>
<td>песок мелкий</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>44.81500</td>
<td>25</td>
<td>песок мелкий, сероватый</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание: *Двузначная нумерация станций приведена по (Киселёва, Славина, 1963)

Таблица 2.

Видовой состав и количественные показатели (N – численность, экз./м², B – биомасса, г/м²) макрозообентоса в сообществе *Chamelea gallina* (L., 1758)
акватории Судакского шельфа (апрель, 1957 г.)

<table>
<thead>
<tr>
<th>Станции</th>
<th>Глубина, м</th>
<th>Таксоны</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>87</td>
<td>83</td>
</tr>
<tr>
<td>N</td>
<td>B</td>
<td>N</td>
</tr>
</tbody>
</table>

Annelida (Polychaeta)

<table>
<thead>
<tr>
<th>Таксоны</th>
<th>Номер станции</th>
<th>Глубина, м</th>
<th>N</th>
<th>B</th>
<th>N</th>
<th>B</th>
<th>N</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aricidea (Strelzovia) claudiae Laubier, 1967</td>
<td>25</td>
<td>10</td>
<td>0,08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorvillea rubrovittata (Grube, 1855)</td>
<td>8,5</td>
<td>850</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogone naidina Orsted, 1845</td>
<td>0,092</td>
<td>4000</td>
<td>0,118</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galathowenia sp.</td>
<td>10</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyceria tridactyla Schmarda, 1861</td>
<td>10</td>
<td>0,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goniadella bobrezkii (Annenkova, 1929)</td>
<td>640</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micronephys stammeri (Augener, 1932)</td>
<td>10</td>
<td>0,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nephtys hombergii Savigny, 1818</td>
<td>30</td>
<td>0,32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nereididae g. sp.</td>
<td>1120</td>
<td>0,04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notomastus profundus (Eisig, 1887)</td>
<td>30</td>
<td>0,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pholoe inornata Johnson, 1839</td>
<td>1920</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polygordius neapolitanus Fraipont, 1887</td>
<td>320</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prionospio dubia Day, 1961</td>
<td>40</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sabellidae g. sp.</td>
<td>160</td>
<td>0,003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spionidae g. sp.</td>
<td>10</td>
<td>0,001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arthropoda

Crustacea

CUMACEA

<table>
<thead>
<tr>
<th>Таксоны</th>
<th>Номер станции</th>
<th>Глубина, м</th>
<th>N</th>
<th>B</th>
<th>N</th>
<th>B</th>
<th>N</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iphinoe sp.</td>
<td>10</td>
<td>0,005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumella (Cumella) limicola Sars, 1879</td>
<td>10</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DECAPODA

<table>
<thead>
<tr>
<th>Таксоны</th>
<th>Номер станции</th>
<th>Глубина, м</th>
<th>N</th>
<th>B</th>
<th>N</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Necallianassa truncata (Giard & Bonnier, 1890)</td>
<td>20</td>
<td>8,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMPHIPODA

<table>
<thead>
<tr>
<th>Таксоны</th>
<th>Номер станции</th>
<th>Глубина, м</th>
<th>N</th>
<th>B</th>
<th>N</th>
<th>B</th>
<th>N</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphipoda g.sp.</td>
<td>320</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicorophium runcicorne (Della Valle, 1893)</td>
<td>850</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicorophium sp.</td>
<td>190</td>
<td>0,01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mollusca

BIVALVIA

<table>
<thead>
<tr>
<th>Таксоны</th>
<th>Номер станции</th>
<th>Глубина, м</th>
<th>N</th>
<th>B</th>
<th>N</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chamelea gallina (L., 1758)</td>
<td>880</td>
<td>18,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gibbomodiola adriatica (Lamarck, 1819)</td>
<td>50</td>
<td>18,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Вид</td>
<td>Численность (экз./м²)</td>
<td>Биомасса (г/м²)</td>
<td>Численность (экз./м²)</td>
<td>Биомасса (г/м²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gouldia minima (Montagu, 1803)</td>
<td>740</td>
<td>9,34</td>
<td>160</td>
<td>0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucinella divaricata (Linnaeus, 1758)</td>
<td>0,85</td>
<td>850</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macomangulus tenuis (da Costa, 1778)</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>6,43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parvicardium exiguum (Gmelin, 1791)</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>6,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitar rudis (Poli, 1795)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>13,2</td>
<td></td>
</tr>
<tr>
<td>Politiitapes aureus (Gmelin, 1791)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>30,2</td>
<td></td>
</tr>
<tr>
<td>Spisula subtruncata (da Costa, 1778)</td>
<td>—</td>
<td>—</td>
<td>20</td>
<td>2,82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bittium reticulatum (Da Costa, 1778)</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>0,42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caecum trachea (Montagu, 1803)</td>
<td>—</td>
<td>—</td>
<td>5120</td>
<td>0,02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calyptraeas chinensis (Linnaeus, 1758)</td>
<td>—</td>
<td>—</td>
<td>200</td>
<td>4,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retusa sp.</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>160</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>Tritia neritea (L., 1758)</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>1,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritia reticulata (L., 1758)</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>4,47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 2 (продолжение).

Видовой состав и количественные показатели
(N – численность, экз./м², B – биомасса, г/м²) макрозообентоса в сообществе Chamelea gallina (L., 1758) акватории Судакского шельфа (апрель, 1957 г.)

<table>
<thead>
<tr>
<th>Станция</th>
<th>Глубина (м)</th>
<th>Таксон</th>
<th>N</th>
<th>B</th>
<th>N</th>
<th>B</th>
<th>N</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>10</td>
<td>Cnidaria</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>0,05</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>79</td>
<td>25</td>
<td>Actiniaria g. sp.</td>
<td>180</td>
<td>2,415</td>
<td>500</td>
<td>7,72</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>77</td>
<td>9</td>
<td>Sagartiogeton undatus (Müller, 1778)</td>
<td>—</td>
<td>—</td>
<td>40</td>
<td>0,01</td>
<td>10</td>
<td>0,01</td>
</tr>
<tr>
<td>76</td>
<td>19</td>
<td>Aricinea claudiae (Laubier, 1967)</td>
<td>—</td>
<td>—</td>
<td>5250</td>
<td>0,4</td>
<td>20</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annelida (Polychaeta)</td>
<td>2160</td>
<td>0,64</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capitella capitata (Fabricius, 1780)</td>
<td>—</td>
<td>—</td>
<td>40</td>
<td>0,01</td>
<td>10</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Magelona rosea Moore, 1907</td>
<td>—</td>
<td>—</td>
<td>40</td>
<td>0,01</td>
<td>30</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nephtys cirrosa Ehlers, 1868</td>
<td>—</td>
<td>—</td>
<td>2260</td>
<td>1,33</td>
<td>40</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nephtys hombergii Savigny, 1818</td>
<td>—</td>
<td>—</td>
<td>2260</td>
<td>1,33</td>
<td>40</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nephtyidae g.sp.</td>
<td>—</td>
<td>—</td>
<td>920</td>
<td>0,01</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notomastus profundus (Eisig, 1887)</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>0,17</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pholoe inornata Johnson, 1839</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>0,01</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prionospio sp.</td>
<td>—</td>
<td>—</td>
<td>40</td>
<td>0,01</td>
<td>20</td>
<td>0,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prionospio dubia Day, 1961</td>
<td>—</td>
<td>—</td>
<td>90</td>
<td>0,01</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sabellaria sp.</td>
<td>—</td>
<td>—</td>
<td>120</td>
<td>0,01</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arthropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CUMACEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cumella (Cumella) limicola Sars, 1879</td>
<td>120</td>
<td>0,02</td>
<td>70</td>
<td>0,01</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DECAPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diogenes pugilator (Roux, 1829)</td>
<td>45</td>
<td>3,065</td>
<td>40</td>
<td>3,61</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upogebia pusilla (Petagna, 1792)</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>7,7</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TANAIDACEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>------</td>
</tr>
<tr>
<td>Chondrochelia savignyi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Kroyer, 1842)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPHIPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampelisca diadema (Costa, 1853)</td>
<td>15</td>
<td>0,15</td>
<td>40</td>
<td>0,03</td>
<td>30</td>
<td>0,12</td>
<td>10</td>
<td>0,05</td>
</tr>
<tr>
<td>Amphipoda g.sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apherusa bispinosa (Spence Bate, 1857)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathyporeia guilliamsoniana (Spence Bate, 1857)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160</td>
</tr>
<tr>
<td>Medicorophium runcicornne (Della Valle, 1893)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>330</td>
</tr>
<tr>
<td>Periculodes longimanus ongimanus (Spence Bate & Westwood, 1868)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bivalvia g.sp.</td>
<td>720</td>
<td>0,005</td>
<td>10</td>
<td>0,04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abra nitida milachewichii Nevesskaja, 1963</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abra sp.</td>
<td></td>
<td></td>
<td>20</td>
<td>0,03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acanthocardia paucicostata (G. B. Sowerby II, 1834)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamelea gallina (L., 1758)</td>
<td>250</td>
<td>297,75</td>
<td>20</td>
<td>25,6</td>
<td>230</td>
<td>540</td>
<td>125</td>
<td>357,6</td>
</tr>
<tr>
<td>Gouldia minima (Montagu, 1803)</td>
<td></td>
<td></td>
<td>110</td>
<td>0,13</td>
<td></td>
<td></td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Fabulina fabula (Gmelin, 1791)</td>
<td>80</td>
<td>4,9</td>
<td></td>
<td></td>
<td>410</td>
<td>0,34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucinella divaricata (Linnaeus, 1758)</td>
<td>845</td>
<td>0,035</td>
<td></td>
<td></td>
<td>710</td>
<td>1,27</td>
<td>530</td>
<td>1,1</td>
</tr>
<tr>
<td>Moerella donacina (Linnaeus, 1758)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>270</td>
<td>0,06</td>
<td>105</td>
<td>0,06</td>
</tr>
<tr>
<td>Mytilus galloprovincialis Lamarck, 1819</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitar rudis (Poli, 1795)</td>
<td>5</td>
<td>8,25</td>
<td>70</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polititapes aureus (Gmelin, 1791)</td>
<td></td>
<td></td>
<td>10</td>
<td>13,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spisula subtruncata (da Costa, 1778)</td>
<td>10</td>
<td>0,15</td>
<td>230</td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retusa sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritia neritea (L., 1758)</td>
<td>15</td>
<td>3,135</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritia reticulata (L., 1758)</td>
<td>5</td>
<td>2,115</td>
<td>20</td>
<td>6,22</td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Phoronida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoronis psammophila Cori, 1889</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Таблица 3.

(Н – численность, экз./м², В – биомасса, г/м²) макрозообентоса в сообществе Aricidea (Strelzovia) claudiae Laubier, 1967 акватории Судакского шельфа (апрель, 1957 г.)

<table>
<thead>
<tr>
<th>Станция</th>
<th>86</th>
<th>85</th>
<th>81</th>
</tr>
</thead>
<tbody>
<tr>
<td>Глубина (м)</td>
<td>25</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Таксон</td>
<td>N</td>
<td>В</td>
<td>N</td>
</tr>
<tr>
<td>Cnidaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actiniaria g. sp.</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Edwardsia claparedii (Panceri, 1869)</td>
<td>–</td>
<td>–</td>
<td>30</td>
</tr>
<tr>
<td>Sagartiogeton undatus (Мüller, 1778)</td>
<td>–</td>
<td>–</td>
<td>110</td>
</tr>
<tr>
<td>Annelida (Polychaeta)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aricidea (Strelzovia) claudiae Laubier, 1967</td>
<td>6640</td>
<td>0,14</td>
<td>2120</td>
</tr>
<tr>
<td>Capitella capitata (Fabricius, 1780)</td>
<td>170</td>
<td>0,01</td>
<td>–</td>
</tr>
<tr>
<td>Exogone naidina Orsted, 1845</td>
<td>160</td>
<td>0,001</td>
<td>–</td>
</tr>
<tr>
<td>Genetyllis tuberculata (Bobretzky, 1868)</td>
<td>10</td>
<td>0,01</td>
<td>–</td>
</tr>
<tr>
<td>Glyceria sp.</td>
<td>80</td>
<td>0,01</td>
<td>20</td>
</tr>
<tr>
<td>Nephtys cirrosa Ehlers, 1868</td>
<td>–</td>
<td>–</td>
<td>210</td>
</tr>
<tr>
<td>Nephtys hombergii Savigny, 1818</td>
<td>4060</td>
<td>0,74</td>
<td>–</td>
</tr>
<tr>
<td>Notomastus profundus (Eisig, 1887)</td>
<td>120</td>
<td>0,02</td>
<td>–</td>
</tr>
<tr>
<td>Sabellaria sp.</td>
<td>320</td>
<td>0,001</td>
<td>–</td>
</tr>
<tr>
<td>Spio sp.</td>
<td>80</td>
<td>0,01</td>
<td>–</td>
</tr>
<tr>
<td>Terebellides stroemi Sars, 1835</td>
<td>–</td>
<td>–</td>
<td>500</td>
</tr>
<tr>
<td>Nemertea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>10</td>
<td>0,77</td>
</tr>
<tr>
<td>Arthropoda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUMACEA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iphinoe maeotica Sowinskyi, 1893</td>
<td>120</td>
<td>0,01</td>
<td>10</td>
</tr>
<tr>
<td>Cumella (Cumella) limicola Sars, 1879</td>
<td>10</td>
<td>0,01</td>
<td>–</td>
</tr>
<tr>
<td>DECAPODA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upogebia pusilla (Petagna, 1792)</td>
<td>20</td>
<td>3,82</td>
<td>–</td>
</tr>
<tr>
<td>TANAIIDACEA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apseudopsis ostroumovi Bacescu & Carausu, 1947</td>
<td>10</td>
<td>0,01</td>
<td>50</td>
</tr>
<tr>
<td>Chondrochelia savignyi (Kroyer, 1842)</td>
<td>80</td>
<td>0,001</td>
<td>–</td>
</tr>
<tr>
<td>AMPHIPODA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampelisca diadema (Costa, 1853)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Caprella sp.</td>
<td>10</td>
<td>0,01</td>
<td>–</td>
</tr>
<tr>
<td>Medicorophium runcicorne (Della Valle, 1893)</td>
<td>340</td>
<td>0,15</td>
<td>10</td>
</tr>
<tr>
<td>Microdeutopus versicillatus (Spence Bate, 1857)</td>
<td>–</td>
<td>–</td>
<td>40</td>
</tr>
<tr>
<td>Microdeutopus anomalus (Rathke, 1843)</td>
<td>–</td>
<td>–</td>
<td>10</td>
</tr>
<tr>
<td>Perioiculodes longimanus Spence Bate & Westwood, 1868</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abra nitida milachewich Neveskaaja, 1963</td>
<td>153</td>
<td>0,97</td>
<td>–</td>
</tr>
<tr>
<td>Acanthocardia paucicostata (G, B, Sowerby II, 1834)</td>
<td>110</td>
<td>0,1</td>
<td>–</td>
</tr>
<tr>
<td>Gibbomodiola adriatica (Lamarck, 1819)</td>
<td>180</td>
<td>0,01</td>
<td>–</td>
</tr>
</tbody>
</table>
Таблица 3 (продолжение).

(Н – численность, экз./м², В – биомасса, г/м²) макрозообентоса в сообществе Aricidea (Strelzovia) claudiae Laubier, 1967 акватории Судакского шельфа (апрель, 1957 г.)

<table>
<thead>
<tr>
<th>Таксон</th>
<th>станция</th>
<th>78</th>
<th>75</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Глубина (м)</td>
<td></td>
<td>50</td>
<td>46</td>
<td>25</td>
</tr>
<tr>
<td>Таксон</td>
<td>N</td>
<td>B</td>
<td>N</td>
<td>B</td>
</tr>
<tr>
<td>Cnidaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actiniaria g.sp.</td>
<td>30</td>
<td>0,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sagartiogeton undatus (Müller, 1778)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annelida (Polychaeta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aricidea (Strelzovia) claudiae Laubier, 1967</td>
<td>10040</td>
<td>0,12</td>
<td>5600</td>
<td>0,08</td>
</tr>
<tr>
<td>Capitella capitata (Fabricius, 1780)</td>
<td>1280</td>
<td>0,02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exogone naidina Orsted, 1845</td>
<td></td>
<td></td>
<td>40</td>
<td>0,001</td>
</tr>
<tr>
<td>Nephtys cirrosa Ehlers, 1868</td>
<td>860</td>
<td>1,61</td>
<td>1460</td>
<td>2,46</td>
</tr>
<tr>
<td>Notomastus profundus (Eisig, 1887)</td>
<td>30</td>
<td>0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prionospiu dubia Day, 1961</td>
<td></td>
<td></td>
<td>20</td>
<td>0,02</td>
</tr>
<tr>
<td>Sabellaria sp.</td>
<td>3160</td>
<td>0,04</td>
<td>1840</td>
<td>0,035</td>
</tr>
<tr>
<td>Sphaerosyllis bulbosa Southern, 1914</td>
<td>280</td>
<td>0,006</td>
<td>360</td>
<td>0,008</td>
</tr>
<tr>
<td>Terebellides stroemii Sars, 1835</td>
<td>880</td>
<td>2,64</td>
<td>830</td>
<td>1,51</td>
</tr>
<tr>
<td>Nemertea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUMACEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iphinoe maeotica Sowinskyi, 1893</td>
<td>200</td>
<td>0,03</td>
<td>90</td>
<td>0,05</td>
</tr>
<tr>
<td>Iphinoe sp.</td>
<td>10</td>
<td>0,01</td>
<td>10</td>
<td>0,01</td>
</tr>
<tr>
<td>Cumella (Cumella) limicola Sars, 1879</td>
<td>290</td>
<td>0,02</td>
<td>320</td>
<td>0,01</td>
</tr>
<tr>
<td>TANAIDACEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apseudopsis ostroumovi Bacescu & Carausu, 1947</td>
<td>30</td>
<td>0,01</td>
<td>10</td>
<td>0,01</td>
</tr>
<tr>
<td>Amphipoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampelisca diadema (Costa, 1853)</td>
<td>20</td>
<td>0,01</td>
<td>30</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Видовой состав и количественные показатели
<table>
<thead>
<tr>
<th>Вид</th>
<th>Тематика</th>
<th>Численность</th>
<th>Биомасса</th>
<th>Численность</th>
<th>Биомасса</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apherusa bispinosa</td>
<td>(Spence Bate, 1857)</td>
<td>100</td>
<td>0,03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicorophium runcicorne</td>
<td>(Della Valle, 1893)</td>
<td>280</td>
<td>0,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monocorophium sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perioculodes longimanus</td>
<td>(Spence Bate & Westwood, 1868)</td>
<td>290</td>
<td>0,18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenothis monoculoides</td>
<td>(Montagu, 1815)</td>
<td>10</td>
<td>0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abra alba (W. Wood, 1802)</td>
<td></td>
<td>240</td>
<td>0,02</td>
<td>2720</td>
<td>0,28</td>
</tr>
<tr>
<td>Abra nitida milachewichii</td>
<td>Nevesskaja, 1963</td>
<td>510</td>
<td>0,8</td>
<td>40</td>
<td>0,04</td>
</tr>
<tr>
<td>Acanthocardia paucicostata</td>
<td>(G. B. Sowerby II, 1834)</td>
<td>10</td>
<td>0,05</td>
<td>10</td>
<td>0,03</td>
</tr>
<tr>
<td>Chamelea gallina (L., 1758)</td>
<td></td>
<td>30</td>
<td>0,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donax trunculus Linnaeus, 1758</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gibbomodiola adriatica</td>
<td>(Lamarck, 1819)</td>
<td>10</td>
<td>0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gouldia minima (Montagu, 1803)</td>
<td></td>
<td>10</td>
<td>0,01</td>
<td>80</td>
<td>0,01</td>
</tr>
<tr>
<td>Lucinella divaricata</td>
<td>(Linnaeus, 1758)</td>
<td>10</td>
<td>0,02</td>
<td>210</td>
<td>0,32</td>
</tr>
<tr>
<td>Mytilus galloprovincialis</td>
<td>(Lamarck, 1819)</td>
<td>360</td>
<td>0,28</td>
<td>20</td>
<td>0,51</td>
</tr>
<tr>
<td>Parvicardium exiguum</td>
<td>(Gmelin, 1791)</td>
<td>140</td>
<td>0,63</td>
<td>90</td>
<td>0,28</td>
</tr>
<tr>
<td>Pitar rudis (Poli, 1795)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polittapes aureus</td>
<td>(Gmelin, 1791)</td>
<td>30</td>
<td>0,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spisula subtruncata</td>
<td>(da Costa, 1778)</td>
<td>50</td>
<td>0,81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retusa sp.</td>
<td></td>
<td>760</td>
<td>0,01</td>
<td>280</td>
<td>0,01</td>
</tr>
<tr>
<td>Chordata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tunicata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eugyra adriatica Drasche, 1884</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalochordata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branchiostoma lanceolatum</td>
<td>(Pallas, 1774)</td>
<td>10</td>
<td>0,34</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 4.

Видовой состав и количественные показатели (N – численность, экз./м², B – биомасса, г/м²) макрозообентоса в сообществе Modiolula phaseolina (Philippi, 1844) акватории Судакского шельфа (апрель, 1957 г.)

<table>
<thead>
<tr>
<th>Станция</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Глубина (м)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Annelida (Polychaeta)</td>
<td>N</td>
<td>B</td>
</tr>
<tr>
<td>Polychaeta g.sp.</td>
<td>5</td>
<td>0,21</td>
</tr>
<tr>
<td>Aricidea (Strelzovia) claudiae</td>
<td>1230</td>
<td>0,25</td>
</tr>
<tr>
<td>Glycera sp.</td>
<td>85</td>
<td>0,008</td>
</tr>
<tr>
<td>Harmothoe sp.</td>
<td>85</td>
<td>0,008</td>
</tr>
<tr>
<td>Heteromastus filiformis</td>
<td>980</td>
<td>0,12</td>
</tr>
<tr>
<td>Nephtys hombergii Savigny, 1818</td>
<td>300</td>
<td>1,18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Название</th>
<th>Количество</th>
<th>Процент</th>
<th>Количество</th>
<th>Процент</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nephtys sp.</td>
<td>85</td>
<td>0,008</td>
<td>10</td>
<td>0,03</td>
</tr>
<tr>
<td>Nereidae gen. sp.</td>
<td>640</td>
<td>0,012</td>
<td>10</td>
<td>0,004</td>
</tr>
<tr>
<td>Oriopsis sp.</td>
<td>640</td>
<td>0,012</td>
<td>10</td>
<td>0,004</td>
</tr>
<tr>
<td>Phyllodocidae gen.sp.</td>
<td>40</td>
<td>0,001</td>
<td>320</td>
<td>0,16</td>
</tr>
<tr>
<td>Prionospio dubia</td>
<td>40</td>
<td>0,016</td>
<td>10</td>
<td>0,01</td>
</tr>
<tr>
<td>Prionospio sp.</td>
<td>160</td>
<td>0,04</td>
<td>10</td>
<td>0,006</td>
</tr>
<tr>
<td>Sphaerosyllis bulbosa Southern, 1914</td>
<td>40</td>
<td>0,001</td>
<td>90</td>
<td>0,02</td>
</tr>
<tr>
<td>Syllidae g. sp.</td>
<td>160</td>
<td>0,04</td>
<td>10</td>
<td>0,006</td>
</tr>
<tr>
<td>Terebellides stroemii Sars, 1835</td>
<td>290</td>
<td>0,004</td>
<td>10</td>
<td>0,006</td>
</tr>
<tr>
<td>Nemertea</td>
<td>5</td>
<td>0,09</td>
<td>5</td>
<td>0,009</td>
</tr>
</tbody>
</table>

Arthropoda

Crustacea

CUMACEA

Iphinoe sp. | 160 | 0,04 | 10 | 0,006 |

TANAIDACEA

Apseudopsis ostroumovi Bacescu & Carausu, 1947 | 40 | 0,004 | 10 | 0,006 |

AMPHIPODA

Ampelisca diadema (Costa, 1853) | 210 | 0,21 | 10 | 0,06 |

CAPRELLIDA

Caprella acantifera Leach, 1814 | 300 | 0,16 | 10 | 0,06 |

Caprella sp. | 160 | 0,04 | 10 | 0,006 |

MEDICORPHIUM

Medicorophium runcicorne (Della Valle, 1893) | 170 | 0,18 | 10 | 0,06 |

MICRODEUTOPSIS

Microdeutopus damnoniensis (Spence Bate, 1856) | 85 | 0,08 | 10 | 0,06 |

Nototropis guttatus Costa, 1853 | 170 | 0,08 | 10 | 0,06 |

Mollusca

BIVALVIA

Modiolula phaseolina (Philippi, 1844) | 3630 | 0,62 | 4210 | 17,59 |

GASTROPODA

Retusa truncatula (Bruguière, 1792) | 50 | 0,05 | 10 | 0,03 |

ECHINODERMATA

Amphiura stepanovi Djakonov, 1954 | 100 | 0,07 | 170 | 0,24 |
Рис. 2. Схема комплексных станций в акватории Судакско-Карадагского шельфа (27-й рейс НИС «Профессор Водянницкий», 1988 г.)

Таблица 5.
Глубина и координаты станций макробентоса в акватории Судакско-Карадагского шельфа, 1988 г.

<table>
<thead>
<tr>
<th>Станция</th>
<th>Координаты</th>
<th>Глубина, м</th>
<th>Грунт</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Широта</td>
<td>Долгота</td>
<td></td>
</tr>
<tr>
<td>3777</td>
<td>44.93472</td>
<td>35.26861</td>
<td>28</td>
</tr>
<tr>
<td>3778</td>
<td>44.88472</td>
<td>35.20055</td>
<td>28</td>
</tr>
<tr>
<td>3779</td>
<td>44.83555</td>
<td>35.23388</td>
<td>48</td>
</tr>
<tr>
<td>3781</td>
<td>44.78388</td>
<td>35.11805</td>
<td>86</td>
</tr>
<tr>
<td>3782</td>
<td>44.78388</td>
<td>35.11805</td>
<td>48</td>
</tr>
<tr>
<td>3783</td>
<td>44.80000</td>
<td>35.11666</td>
<td>25</td>
</tr>
<tr>
<td>3784</td>
<td>44.78333</td>
<td>35.0688</td>
<td>40</td>
</tr>
<tr>
<td>3785</td>
<td>44.76805</td>
<td>35.08333</td>
<td>54</td>
</tr>
<tr>
<td>3786</td>
<td>44.73555</td>
<td>35.08333</td>
<td>75</td>
</tr>
<tr>
<td>3788</td>
<td>44.76666</td>
<td>35.01805</td>
<td>53</td>
</tr>
<tr>
<td>3790</td>
<td>4.81805</td>
<td>35.00027</td>
<td>20</td>
</tr>
<tr>
<td>3791</td>
<td>44.78555</td>
<td>35.00000</td>
<td>42</td>
</tr>
<tr>
<td>3792</td>
<td>44.76805</td>
<td>35.00000</td>
<td>49</td>
</tr>
<tr>
<td>3793</td>
<td>44.75000</td>
<td>35.00000</td>
<td>78</td>
</tr>
<tr>
<td>3797</td>
<td>44.76805</td>
<td>34.93333</td>
<td>50</td>
</tr>
<tr>
<td>3798</td>
<td>44.80027</td>
<td>34.9333</td>
<td>43</td>
</tr>
<tr>
<td>3799</td>
<td>44.81805</td>
<td>44.81805</td>
<td>27</td>
</tr>
</tbody>
</table>
Таблица 6.

Видовой состав и количественные показатели (N – численность, экз./м²,
B – биомасса, г/м²) макрозообентоса в сообществах *Gouldia minima* (ст. 3790)
и *Gibbomodiola adriatica* (ст. 3778) акватории Судакско-Карадагского шельфа, 1988 г.

<table>
<thead>
<tr>
<th>Станция</th>
<th>Глубина, м</th>
<th>3790</th>
<th>3778</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>B</td>
<td>N</td>
</tr>
<tr>
<td>Таксон</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cnidaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinothoe clavata (Ilmoni, 1830)</td>
<td>44</td>
<td>0,44</td>
<td>2</td>
</tr>
<tr>
<td>Annelida (Polychaeta)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polychaeta g.sp.</td>
<td>–</td>
<td>–</td>
<td>72</td>
</tr>
<tr>
<td>Nephtyidae g.sp.</td>
<td>–</td>
<td>–</td>
<td>16</td>
</tr>
<tr>
<td>Nereididae g.sp.</td>
<td>–</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPHIPODA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampelisca diadema (Costa, 1853)</td>
<td>20</td>
<td>0,08</td>
<td>–</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abra renieri (Brom, 1831)</td>
<td>60</td>
<td>1,8</td>
<td>4</td>
</tr>
<tr>
<td>Chamelea gallina (L., 1758)</td>
<td>76</td>
<td>50,0</td>
<td>–</td>
</tr>
<tr>
<td>Gibbomodiola adriatica (Lamarck, 1819)</td>
<td>12</td>
<td>7,64</td>
<td>78</td>
</tr>
<tr>
<td>Gouldia minima (Montagu, 1803)</td>
<td>204</td>
<td>9,4</td>
<td>4</td>
</tr>
<tr>
<td>Lucinella divaricata (Linnaeus, 1758)</td>
<td>216</td>
<td>1,4</td>
<td>–</td>
</tr>
<tr>
<td>Modiolula phaseolina (Philippi, 1844)</td>
<td>8</td>
<td>0,04</td>
<td>–</td>
</tr>
<tr>
<td>Macomangulus tenuis (da Costa, 1778)</td>
<td>12</td>
<td>1,8</td>
<td>–</td>
</tr>
<tr>
<td>Mytilus galloprovincialis (Lamarck, 1819)</td>
<td>28</td>
<td>3,24</td>
<td>–</td>
</tr>
<tr>
<td>Parvicardium exiguum (Gmelin, 1791)</td>
<td>12</td>
<td>0,64</td>
<td>6</td>
</tr>
<tr>
<td>Mytilaster lineatus (Gmelin, 1791)</td>
<td>–</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>Pitar rudis (Poli, 1795)</td>
<td>36</td>
<td>10,8</td>
<td>44</td>
</tr>
<tr>
<td>Polititapes petalina (Gmelin, 1791)</td>
<td>24</td>
<td>20,04</td>
<td>2</td>
</tr>
<tr>
<td>Polititapes aureus (Gmelin, 1791)</td>
<td>4</td>
<td>11,2</td>
<td>2</td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bittium reticulatum (Da Costa, 1778)</td>
<td>4</td>
<td>0,04</td>
<td>–</td>
</tr>
<tr>
<td>Calyptraea chinensis (Linnaeus, 1758)</td>
<td>4</td>
<td>0,4</td>
<td>52</td>
</tr>
<tr>
<td>Tritia reticulata (L., 1758)</td>
<td>4</td>
<td>2,0</td>
<td>2</td>
</tr>
<tr>
<td>Tritia pellucida (Risso, 1826)</td>
<td>4</td>
<td>1,2</td>
<td>–</td>
</tr>
<tr>
<td>Echinodermata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphiura stepanovi Djakonov, 1954</td>
<td>–</td>
<td>–</td>
<td>76</td>
</tr>
<tr>
<td>Phoronida</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoronis psammophila Cori, 1889</td>
<td>8</td>
<td>0,08</td>
<td>–</td>
</tr>
</tbody>
</table>
Таблица 7.
Видовой состав и количественные показатели
(Н – численность, экз./м², В – биомасса, г/м²) макрозообентоса в сообществе
Mytilus galloprovincialis акватории Судакско-Карадагского шельфа, 1988 г.

<table>
<thead>
<tr>
<th>Станция</th>
<th>3777</th>
<th>3779</th>
<th>3783</th>
<th>3784</th>
<th>3788</th>
</tr>
</thead>
<tbody>
<tr>
<td>Глубина, м</td>
<td>28</td>
<td>48</td>
<td>25</td>
<td>40</td>
<td>53</td>
</tr>
<tr>
<td>Таксон</td>
<td>N</td>
<td>B</td>
<td>N</td>
<td>B</td>
<td>N</td>
</tr>
<tr>
<td>Porifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suberites carnosus (Johnston, 1842)</td>
<td>8</td>
<td>0,4</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Porifera g.sp.</td>
<td>2</td>
<td>2,0</td>
<td>─</td>
<td>─</td>
<td>1</td>
</tr>
<tr>
<td>Cnidaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pachycerianthus solitarius (Rapp, 1829)</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Annelida (Polychaeta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polychaeta g.sp.</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Nephtyidae g.sp.</td>
<td>12</td>
<td>0,7</td>
<td>─</td>
<td>─</td>
<td>8</td>
</tr>
<tr>
<td>Nereididae g.sp.</td>
<td>10</td>
<td>2,0</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Phyllodoce sp.</td>
<td>─</td>
<td>─</td>
<td>8</td>
<td>0,24</td>
<td>76</td>
</tr>
<tr>
<td>Terebellides stroemii Sars, 1835</td>
<td>14</td>
<td>1,6</td>
<td>─</td>
<td>─</td>
<td>44</td>
</tr>
<tr>
<td>Polychaeta g.sp</td>
<td>─</td>
<td>─</td>
<td>84</td>
<td>0,28</td>
<td>4</td>
</tr>
<tr>
<td>Nemertea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nemertea g.sp</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>4</td>
</tr>
<tr>
<td>Arthropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pantopoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pantopoda g.sp.</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUMACEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumacea g.sp</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>AMPHIPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda g.sp</td>
<td>2</td>
<td>0,02</td>
<td>─</td>
<td>─</td>
<td>4</td>
</tr>
<tr>
<td>Ampelisca diadema (Costa, 1853)</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Caprella sp</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Stenosoma capitata (Rathke, 1837)</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abra nitida milachewichi Nevesskaja, 1963</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Abra renieri (Brönn, 1831)</td>
<td>4</td>
<td>0,4</td>
<td>─</td>
<td>─</td>
<td>4</td>
</tr>
<tr>
<td>Abra segmentum (Récluz, 1843)</td>
<td>44</td>
<td>24,0</td>
<td>─</td>
<td>─</td>
<td>4</td>
</tr>
<tr>
<td>Calyptroidea chinensis (Linnaeus, 1758)</td>
<td>16</td>
<td>1,0</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Gibbomodiola adriatica (Lamarck, 1819)</td>
<td>78</td>
<td>66,0</td>
<td>─</td>
<td>─</td>
<td>12</td>
</tr>
</tbody>
</table>
Таблица 7

<table>
<thead>
<tr>
<th>Название</th>
<th>Видовой состав и количественные показатели</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gouldia minima (Montagu, 1803)</td>
<td>4</td>
</tr>
<tr>
<td>Modiolula phaseolina (Philippi, 1844)</td>
<td>—</td>
</tr>
<tr>
<td>Mytilaster lineatus (Gmelin, 1791)</td>
<td>2</td>
</tr>
<tr>
<td>Mytilus galloprovincialis Lamarck, 1819</td>
<td>84</td>
</tr>
<tr>
<td>Parvicardium exiguum (Gmelin, 1791)</td>
<td>6</td>
</tr>
<tr>
<td>Parvicardium simile (Milaschewitsch, 1909)</td>
<td>—</td>
</tr>
<tr>
<td>Pitar rudis (Poli, 1795)</td>
<td>44</td>
</tr>
<tr>
<td>Polititapes aureus (Gmelin, 1791)</td>
<td>4</td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
</tr>
<tr>
<td>Brachystomia eu-limoides (Hanley, 1844)</td>
<td>—</td>
</tr>
<tr>
<td>Tritia reticulate (L., 1758)</td>
<td>2</td>
</tr>
<tr>
<td>Trophonopsis breviatus (Jeffreys, 1882)</td>
<td>—</td>
</tr>
<tr>
<td>Echinodermata</td>
<td></td>
</tr>
<tr>
<td>Amphipura stepanovi Djakonov, 1954</td>
<td>6</td>
</tr>
</tbody>
</table>

Таблица 8.

<table>
<thead>
<tr>
<th>Видовой состав и количественные показатели</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N – численность, экз./м², B – биомасса, г/м²) макрозообентоса в сообществах Mytilus galloprovincialis (ст. 3797 и 3798) и M. galloprovincialis – M. phaseolina (ст. 3782 и 3785) акватории Судакско-Карадагского шельфа, 1988 г.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Станция</th>
<th>3797</th>
<th>3798</th>
<th>3782</th>
<th>3785</th>
</tr>
</thead>
<tbody>
<tr>
<td>Глубина, м</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>43</td>
<td>48</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Таксон</td>
<td>N</td>
<td>B</td>
<td>N</td>
<td>B</td>
</tr>
<tr>
<td>Porifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suberites prototypus Czerniavsky, 1880</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>0,4</td>
</tr>
<tr>
<td>Halichondria sp.</td>
<td>—</td>
<td>—</td>
<td>12</td>
<td>4,0</td>
</tr>
<tr>
<td>Cnidaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinothoe clavata (Ilmoni, 1830)</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>0,04</td>
</tr>
<tr>
<td>Edwardsia claparedii (Panceri, 1869)</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>Pachycerianthus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>solitarius (Rapp, 1829)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annelida (Polychaeta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nephtyidae g. sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phyllodoce sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terebellides stroemii Sars, 1835</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polychaeta g. sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nemertea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPHIPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphipoda g. sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caprella sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenosoma capito (Rathke, 1837)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abra nitida milachewich</td>
<td>8</td>
<td>0,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nevesskaja, 1963</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abra renieri (Bronn, 1831)</td>
<td>24</td>
<td>0,2</td>
<td>4</td>
<td>0,02</td>
</tr>
<tr>
<td>Acanthocardia paucicoastata (G. B. Sowerby II, 1834)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calyptraea chinensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Linnaeus, 1758)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modiolula phaseolina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Philippi, 1844)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mytilus galloprovincialis</td>
<td>24</td>
<td>252</td>
<td>56</td>
<td>142</td>
</tr>
<tr>
<td>(Lamarck, 1819)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parvicardium simile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Milaschewitsch, 1909)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polititapes aureus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Gmelin, 1791)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritia reticulata (L., 1758)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trophonopsis brevius</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Jeffreys, 1882)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinodermata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphiura stepanovi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Djakonov, 1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoronis psammophila</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cori, 1889</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chordata</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUNICATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molgula euprocta (Drasche, 1884)</td>
<td></td>
<td>4</td>
<td>0,4</td>
<td></td>
</tr>
</tbody>
</table>
Таблица 9.

Видовой состав и количественные показатели
(N – численность, экз./м², B – биомасса, г/м²) макрозообентоса в сообществе *M. phaseolina* акватории Судакско-Карадагского шельфа, 1988 г.

<table>
<thead>
<tr>
<th>Станции</th>
<th>3781</th>
<th>3786</th>
<th>3793</th>
</tr>
</thead>
<tbody>
<tr>
<td>Глубина, м</td>
<td>86</td>
<td>75</td>
<td>78</td>
</tr>
<tr>
<td>Таксон</td>
<td>N</td>
<td>B</td>
<td>N</td>
</tr>
<tr>
<td>Cnidaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pachycerianthus solitarius (Rapp, 1829)</td>
<td>28</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>Annelida (Polychaeta)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nereididae g.sp.</td>
<td>—</td>
<td>—</td>
<td>20</td>
</tr>
<tr>
<td>Terebellides stroemii Sars, 1835</td>
<td>20</td>
<td>1,2</td>
<td>4</td>
</tr>
<tr>
<td>Polychaeta g. sp 1</td>
<td>—</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td>Polychaeta g. sp 2</td>
<td>76</td>
<td>1,5</td>
<td>—</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abra nitida milachewichi Nevesskaja, 1963</td>
<td>—</td>
<td>—</td>
<td>24</td>
</tr>
<tr>
<td>Calyptaea chinensis (Linnaeus, 1758)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Modiolula phaseolina (Philippi, 1844)</td>
<td>536</td>
<td>33,2</td>
<td>136</td>
</tr>
<tr>
<td>Parvicardium simile (Milaschewitsch, 1909)</td>
<td>72</td>
<td>1,4</td>
<td>—</td>
</tr>
<tr>
<td>Echinodermata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphitrite stepanovi Djakonov, 1954</td>
<td>20</td>
<td>0,8</td>
<td>72</td>
</tr>
</tbody>
</table>

Таблица 10.

Видовой состав и количественные показатели (N – численность, экз./м², B – биомасса, г/м²) макрозообентоса в сообществе *Terebellides stroemii* акватории Судакско-Карадагского шельфа, 1988 г.

<table>
<thead>
<tr>
<th>Станция</th>
<th>3791</th>
<th>3792</th>
<th>3799</th>
</tr>
</thead>
<tbody>
<tr>
<td>Глубина, м</td>
<td>42</td>
<td>49</td>
<td>27</td>
</tr>
<tr>
<td>Таксон</td>
<td>N</td>
<td>B</td>
<td>N</td>
</tr>
<tr>
<td>Cnidaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinotricha clavata (Ilmoni, 1830)</td>
<td>—</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>Edwardsia claparedia (Panceri, 1869)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Annelida (Polychaeta)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nephtyidae g.sp.</td>
<td>8</td>
<td>0,12</td>
<td>12</td>
</tr>
<tr>
<td>Phyllodoce sp.</td>
<td>4</td>
<td>0,04</td>
<td>—</td>
</tr>
<tr>
<td>Terebellides stroemii Sars, 1835</td>
<td>124</td>
<td>18,0</td>
<td>72</td>
</tr>
<tr>
<td>Polychaeta g. sp 2</td>
<td>—</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td>Nemertea</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abra nitida milachewichi Nevesskaja, 1963</td>
<td>—</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td>Abra renieri (Bronn, 1831)</td>
<td>8</td>
<td>0,4</td>
<td>8</td>
</tr>
<tr>
<td>Acanthocardia paucicostata (G. B. Sowerby II, 1834)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Вид</th>
<th>Станций</th>
<th>Глубина</th>
<th>Процент</th>
<th>Глубина</th>
<th>Процент</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gouldia minima ((Montagu, 1803))</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>72</td>
</tr>
<tr>
<td>Modiolula phaseolina (Philippi, 1844)</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>0,08</td>
<td>—</td>
</tr>
<tr>
<td>Mytilus galloprovincialis Lamarck, 1819</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>16</td>
</tr>
<tr>
<td>Parvicardium simile (Milaschewitsch, 1909)</td>
<td>8</td>
<td>1,6</td>
<td>16</td>
<td>3,8</td>
<td>—</td>
</tr>
<tr>
<td>Pitar rudis (Poli, 1795)</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>3,2</td>
<td>12</td>
</tr>
<tr>
<td>Polititapes aureus (Gmelin, 1791)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>12</td>
</tr>
<tr>
<td>Spisula subtruncata (da Costa, 1778)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>4</td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bittium reticulatum (Da Costa, 1778)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8</td>
</tr>
<tr>
<td>Calyptraea chinensis (Linnaeus, 1758)</td>
<td>4</td>
<td>0,8</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Tritia reticulata (L., 1758)</td>
<td>—</td>
<td>—</td>
<td>4</td>
<td>6,0</td>
<td>—</td>
</tr>
<tr>
<td>Echinodermata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphiura stepanovi Djakonov, 1954</td>
<td>16</td>
<td>0,24</td>
<td>12</td>
<td>0,2</td>
<td>—</td>
</tr>
<tr>
<td>Phoronida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoronis psammophila Cori, 1889</td>
<td>32</td>
<td>0,02</td>
<td>16</td>
<td>0,16</td>
<td>104</td>
</tr>
<tr>
<td>Chordata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TUNICATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eugyra adriatica Drasche, 1884</td>
<td>8</td>
<td>0,2</td>
<td>—</td>
<td>—</td>
<td>16</td>
</tr>
</tbody>
</table>

Рис. 3. Схема комплексных станций Судакская бухта 1990 г. (32-й рейс НИС «Профессор Водяницкий»)
Таблица 11.

Глубина и координаты станций макробентоса в акватории Судакского шельфа, 1990 г.

<table>
<thead>
<tr>
<th>Станция</th>
<th>Координаты</th>
<th>Глубина, м</th>
<th>Грунт</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Широта</td>
<td>Долгота</td>
<td></td>
</tr>
<tr>
<td>4646</td>
<td>44.78805</td>
<td>34.93333</td>
<td>60</td>
</tr>
<tr>
<td>4647</td>
<td>44.78388</td>
<td>34.93335</td>
<td>70</td>
</tr>
<tr>
<td>4648</td>
<td>44.76665</td>
<td>34.93338</td>
<td>50</td>
</tr>
<tr>
<td>4649</td>
<td>44.73000</td>
<td>34.93339</td>
<td>90</td>
</tr>
<tr>
<td>4650</td>
<td>44.75000</td>
<td>34.93339</td>
<td>80</td>
</tr>
<tr>
<td>4651</td>
<td>44.73000</td>
<td>35.00083</td>
<td>90</td>
</tr>
<tr>
<td>4652</td>
<td>44.78388</td>
<td>35.000083</td>
<td>70</td>
</tr>
<tr>
<td>4653</td>
<td>44.75005</td>
<td>35.000833</td>
<td>80</td>
</tr>
<tr>
<td>4654</td>
<td>44.78805</td>
<td>35.000083</td>
<td>60</td>
</tr>
<tr>
<td>4655</td>
<td>44.76666</td>
<td>35.000833</td>
<td>50</td>
</tr>
</tbody>
</table>

Таблица 12.

Видовой состав и количественные показатели (N – численность, экз./м², B – биомасса, г/м²) макробентоса в сообществе Terebellides stroemii, Судакский шельф, 1990 г.

<table>
<thead>
<tr>
<th>Станция</th>
<th>Глубина, м</th>
<th>Разрез</th>
<th>1разрез</th>
<th>2 разрез</th>
<th>1разрез</th>
<th>2 разрез</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Таксон</td>
<td>N</td>
<td>B</td>
<td>N</td>
<td>B</td>
</tr>
<tr>
<td>4648</td>
<td>50</td>
<td>Porifera</td>
<td>5</td>
<td>1,2</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>4655</td>
<td>60</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>4654</td>
<td>60</td>
<td>Cnidaria</td>
<td>Edwardsia claparedii (Panceri, 1869)</td>
<td>5</td>
<td>0,03</td>
<td>5</td>
</tr>
<tr>
<td>4653</td>
<td>60</td>
<td>Annelida (Polychaeta)</td>
<td>Alitta succinea (Frey et Leucart, 1847)</td>
<td>─</td>
<td>─</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>4652</td>
<td>60</td>
<td>Nereididae g.sp.</td>
<td>5</td>
<td>0,03</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>4651</td>
<td>60</td>
<td>Eunereis longissima (Johnston, 1840)</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harmothoe imbricata (Linnaeus, 1767)</td>
<td>3</td>
<td>0,01</td>
<td>11</td>
<td>0,14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Heteromastus filiformis (Claparède, 1864)</td>
<td>13</td>
<td>0,03</td>
<td>13</td>
<td>0,07</td>
</tr>
<tr>
<td>4650</td>
<td>60</td>
<td>Melinna palmata Grube, 1870</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nephtys hombergii Savigny, 1818</td>
<td>107</td>
<td>1,78</td>
<td>80</td>
<td>0,85</td>
</tr>
<tr>
<td>4655</td>
<td>60</td>
<td>Nereididae g.sp. juv.</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>4649</td>
<td>60</td>
<td>Nereis zonata Malmgren, 1867</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>4652</td>
<td>60</td>
<td>Phyllodoce maculata (Linnaeus, 1767)</td>
<td>13</td>
<td>0,06</td>
<td>8</td>
<td>0,02</td>
</tr>
<tr>
<td>4651</td>
<td>60</td>
<td>Prionospio cirrifera Witen, 1883</td>
<td>61</td>
<td>0,05</td>
<td>56</td>
<td>0,09</td>
</tr>
<tr>
<td>4650</td>
<td>60</td>
<td>Terebellides stroemii Sars, 1835</td>
<td>103</td>
<td>1,54</td>
<td>69</td>
<td>1,55</td>
</tr>
<tr>
<td>4648</td>
<td>60</td>
<td>Arthropoda</td>
<td>Crustacea</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
</tbody>
</table>

307
<table>
<thead>
<tr>
<th>Класс</th>
<th>Отряд</th>
<th>Род</th>
<th>Семейство</th>
<th>Тип</th>
<th>Вид</th>
<th>Длина</th>
<th>Численность Экз</th>
<th>%</th>
<th>Удельный вес</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUMACEA</td>
<td></td>
</tr>
<tr>
<td>Eudorella truncatula (Bate, 1856)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>0,01</td>
<td>5</td>
<td>0,27</td>
</tr>
<tr>
<td>Iphinoe elisae Băcescu, 1950</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0,01</td>
<td>5</td>
<td>0,01</td>
</tr>
<tr>
<td>TANAIDACEA</td>
<td></td>
</tr>
<tr>
<td>Apseudopsis ostroumovi Băcescu & Carausu, 1947</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0,01</td>
<td>5</td>
<td>0,01</td>
</tr>
<tr>
<td>AMPHIPODA</td>
<td></td>
</tr>
<tr>
<td>Ampelisca diadema (Costa, 1853)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0,01</td>
<td>5</td>
<td>0,01</td>
</tr>
<tr>
<td>Cymadusa crassicornis (Costa, 1853)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0,13</td>
<td>5</td>
<td>0,01</td>
</tr>
<tr>
<td>Medicorophium runcicorne (Della Valle, 1893)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0,26</td>
<td>5</td>
<td>0,01</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
</tr>
<tr>
<td>Acanthocardia paucicostata (G. B. Sowerby II, 1834)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1,33</td>
<td>5</td>
<td>66,6</td>
</tr>
<tr>
<td>Modiolula phaseolina Philippi, 1844</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0,26</td>
<td>5</td>
<td>66,6</td>
</tr>
<tr>
<td>Mytilus galloprovincialis Lamarck, 1819</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0,26</td>
<td>5</td>
<td>66,6</td>
</tr>
<tr>
<td>Parvicardium simile (Milaschewitsch, 1909)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>0,26</td>
<td>5</td>
<td>66,6</td>
</tr>
<tr>
<td>Pitar rudis (Poli, 1795)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0,13</td>
<td>5</td>
<td>66,6</td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
</tr>
<tr>
<td>Bittium reticulatum (Da Costa, 1778)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0,01</td>
<td>5</td>
<td>0,01</td>
</tr>
<tr>
<td>Calyptraea chinensis (Linnaeus, 1758)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0,27</td>
<td>5</td>
<td>2,87</td>
</tr>
<tr>
<td>Retusa truncatula (Bruguière, 1792)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0,13</td>
<td>5</td>
<td>0,13</td>
</tr>
<tr>
<td>Tritia reticulata (L., 1758)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0,13</td>
<td>5</td>
<td>0,13</td>
</tr>
<tr>
<td>Trophonopsis breviatus (Jeffreys, 1882)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0,13</td>
<td>5</td>
<td>0,13</td>
</tr>
<tr>
<td>Echinodermata</td>
<td></td>
</tr>
<tr>
<td>Amphiura stepanovi Djakonov, 1954</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
<td>1,76</td>
<td>54</td>
<td>0,91</td>
</tr>
<tr>
<td>Stereoderma kirschbergi (Heller, 1868) Panning, 1949</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0,01</td>
<td>5</td>
<td>0,24</td>
</tr>
<tr>
<td>Phoronida</td>
<td></td>
</tr>
<tr>
<td>Phoronis psammophila Cori, 1889</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0,27</td>
<td>5</td>
<td>0,27</td>
</tr>
<tr>
<td>Chordata</td>
<td></td>
</tr>
<tr>
<td>TUNICATA</td>
<td></td>
</tr>
<tr>
<td>Ciona intestinalis (Linnaeus, 1767)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0,4</td>
<td>5</td>
<td>0,01</td>
</tr>
</tbody>
</table>
Таблица 13.

Видовой состав и количественные показатели (N – численность, экз./м², B – биомасса, г/м²) макрозообентоса в сообществе в сообществе *Modiolula phaseolina*, Судакский шельф, 1990 г.

<table>
<thead>
<tr>
<th>Станция</th>
<th>4647</th>
<th>4652</th>
<th>4650</th>
<th>4653</th>
</tr>
</thead>
<tbody>
<tr>
<td>Глубина, м</td>
<td>70</td>
<td></td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>Разрез</td>
<td>1разрез</td>
<td>2 разрез</td>
<td>1разрез</td>
<td>2 разрез</td>
</tr>
<tr>
<td>Таксон</td>
<td>N</td>
<td>B</td>
<td>N</td>
<td>B</td>
</tr>
<tr>
<td>Cnidaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinothoe clavata (Ilmoni, 1830)</td>
<td>─</td>
<td>─</td>
<td>19</td>
<td>0,02</td>
</tr>
<tr>
<td>Pachycerianthus solitarius (Rapp, 1829)</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Annelida (Polychaeta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eunereis longissima (Johnston, 1840)</td>
<td>─</td>
<td>─</td>
<td>3</td>
<td>0,8</td>
</tr>
<tr>
<td>Heteromastus filiformis (Claparède, 1864)</td>
<td>3</td>
<td>0,01</td>
<td>56</td>
<td>0,39</td>
</tr>
<tr>
<td>Melinna palmata Grube, 1870</td>
<td>─</td>
<td>─</td>
<td>3</td>
<td>0,11</td>
</tr>
<tr>
<td>Nephtys hombergii Savigny, 1818</td>
<td>72</td>
<td>0,99</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Nereididae g. sp. juv.</td>
<td>5</td>
<td>0,01</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Notomastus profundus (Eisig, 1887)</td>
<td>13</td>
<td>0,01</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Oriopsis armandi (Claparède, 1864)</td>
<td>─</td>
<td>─</td>
<td>19</td>
<td>0,01</td>
</tr>
<tr>
<td>Phyllodoce maculata (Linnaeus, 1767)</td>
<td>16</td>
<td>0,27</td>
<td>19</td>
<td>0,19</td>
</tr>
<tr>
<td>Prionospio cirrifer (Wiren, 1883)</td>
<td>24</td>
<td>0,02</td>
<td>120</td>
<td>0,16</td>
</tr>
<tr>
<td>Terebellides stroemii Sars, 1835</td>
<td>283</td>
<td>2,75</td>
<td>35</td>
<td>0,35</td>
</tr>
<tr>
<td>Nemertea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>─</td>
<td>─</td>
<td>19</td>
<td>0,19</td>
<td>─</td>
</tr>
<tr>
<td>Arthropoda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUMACEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iphinoe elisae Băcescu, 1950</td>
<td>16</td>
<td>0,01</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>AMPHIPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampelisca diadema (Costa, 1853)</td>
<td>3</td>
<td>0,01</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Medicorophium runcicorne (Della Valle, 1893)</td>
<td>27</td>
<td>0,01</td>
<td>21</td>
<td>0,02</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIVALVIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abra alba (W. Wood, 1802)</td>
<td>3</td>
<td>0,06</td>
<td>35</td>
<td>0,69</td>
</tr>
<tr>
<td>Abra nitida milachewichii Nevesskaia, 1963</td>
<td>3</td>
<td>0,01</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>Acanthocardia paucicostata (G. B. Sowerby II, 1834)</td>
<td>32</td>
<td>0,67</td>
<td>16</td>
<td>0,8</td>
</tr>
<tr>
<td>Modiolula phaseolina Philippi, 1844</td>
<td>─</td>
<td>─</td>
<td>1196</td>
<td>11,7</td>
</tr>
<tr>
<td>Mytilus galloprovincialis Lamarck, 1819</td>
<td>3</td>
<td>3,2</td>
<td>13</td>
<td>22,9</td>
</tr>
<tr>
<td>Parvicardium simile (Milaschewitsch, 1909)</td>
<td>─</td>
<td>─</td>
<td>─</td>
<td>─</td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retusa truncatula (Bruguière, 1792)</td>
<td>8</td>
<td>0,08</td>
<td>─</td>
<td>─</td>
</tr>
</tbody>
</table>
Cnidaria
- *Actinothoe clavata* (Ilmoni, 1830)
- *Heteromastus filiformis* (Claparède, 1864)
- *Melinna palmata* Grube, 1870
- *Nephtys hombergii* Savigny, 1818
- *Nereididae g. sp. juv.*
- *Phyllodoce maculata* (Linnaeus, 1767)
- *Prionospio cirrifera* Wiren, 1883
- *Terebellides stroemii* Sars, 1835

Arthropoda
Crustacea
- *Apseudopsis ostroumovi* Bacescu & Carausu, 1947
- *Cymadusa crassicornis* (Costa, 1853)
- *Phtisica marina* Slabber, 1769

Mollusca
- *Abra alba* (W. Wood, 1802)
- *Modiolula phaseolina* Philippi, 1844
- *Parvicardium simile* (Milaschewitsch, 1909)
- *GASTROPODA*
- *Retusa truncatula* (Bruguière, 1792)

Echinodermata
- *Amphiura stepanovi* Djakonov, 1954
- *Stereoderma kirschbergi* (Heller, 1868) Panning, 1949

Сравнение динамики одноимённых доминирующих видов в сообществах макро-бентоса рыхлых субстратов нижней зоны сублиторали. В 90-х годах в акватории Судак – Карадаг существенным образом изменился характер доминирования в сообществах бентоса. Если в 1957 г. на разных глубинах зарегистрированы сообщества *Chamelea gallina* (L., 1758), *Aricidea (Strelzovia) claudiae*, *Laubier, 1966*, *Modiolula phaseolina* Philippi, 1844, то в сборах

Сравнительный анализ столь разнородных данных представляется затруднительным. Однако, в представляемых массивах данных по макробентосу обнаружены однотипные сообщества *M. phaseolina* и полихеты *T. stroemii*. Динамику доминирующих видов в этих сообществах можно проследить, анализируя количественные показатели их развития: численность и биомассу (рис. 4, 5).

Рис. 4. Изменение численности (а) и биомассы (б) *T. stroemii* по глубине в акватории Судак – Карадаг (глубины индексированы по годам сбора 1988, 1990 гг.)
В 1988 и в 1990 гг. на глубинах от 27 до 60 м обитало сообщество полихет Terebellides stroemii, относящейся к собирающим детритофагам и обитающей на заиленных грунтах на глубине 7–150 м. Для T. stroemii М. И. Киселёва (1981) отмечала максимальные величины численности и биомассы на глубине 100 м – 690 экз./м² и 26 г/м².

Рис. 5. Изменение численности (а) и биомассы (б) M. phaseolina по глубине в акватории Судак – Карадаг (глубины индексированы по годам сбора 1957*, 1988**, 1990 гг.)

Благодарности. Автор выражает глубокую благодарность своим коллегам по экспедиционным исследованиям Т. В. Михайловой, Н. А. Болтачёвой, Н. К. Ревкову, А. А. Субботину за помощь и поддержку в работе над материалом, а также В. В. Мельникову за безграничное терпение.

В зависимости от выбранного параметра значимости (численность, биомасса, продукция, проективное покрытие) изменяется состав доминирующих видов (Berger, Parker, 1970; Odum, Barrett, 2004). На практике, при выборе «ролевого фактора» каждый исследователь руководствуется индивидуальными задачами и предпочтениями. Использование комплексных оценок доминирования (индексов) приводит к определённым сложностям в последующие периоды исследований. При часто существующих различиях в объёме собранного материала и площади выборки, расчётные показатели доминирования сложно сравнивать с текущими исследованиями, в то время как прямые оценки доминирования по одному доминирующему признаку (численности, биомассе, покрытию, встречаемости) более прозрачны и легко интерпретируются в сравнительных исследованиях (Калугина-Гутник, 1975; Костенко, 1990).

М. И. Кишелёва, разграничивая биоценозы рыхлых грунтов на три зоны – верхнюю, основную и нижнюю краевую, исходила из того, что скопления животных одного вида создают «эдификаторную среду», обусловленную функционированием доминирующего вида. Для характеристик градиента изменения доминирования использовался индекс плотности (√bp). Вдоль градиента изменения плотности постепенно...
пенно изменяются специфические черты биоценоза. Нижняя краевая граница биоценоза проводилась там, где биомасса этого вида резко уменьшается, но индекс плотности выше, чем у прочих видов (Киселёва, 1981).

Связь доминирования видов с абиотическими и биотическими факторами характерного для них биотопа позволяет значительно глубже понять биоценотические «предпочтения» наблюдаемых компонентов сообщества (Dannovaro et al., 1999). Такие попытки были предприняты в условиях полевого эксперимента, когда одновременно изучали соотношение обилия видов в сообществе и изменение гидрологических и гидрохимических факторов среды. Задачей данного исследования явилась оценка роли и характера воздействия основных факторов, определяющих пространственно-временную изменчивость характеристик термохалинской структуры поверхностных вод на Судакско-Карадагском шельфе на особенности доминирования в сообществах бентоса (Повчун, Субботин, 1991; Friedrich, et al., 2014). Оценена также роль и характер воздействия некоторых гидролого-гидрохимических характеристик в придонном слое вод на особенности доминирования в сообществах бентоса (Повчун, Субботин, 1991).

В прибрежной зоне, до глубин 20–30 м на заиленных песках доминировали Chamelea gallina (L., 1758), Gouldia minima (Montagu, 1803), и Pitar rudis (Poli, 1795) (численность: 76, 204, 36 экз./м² и биомасса: 50, 9, 11 г/м², соответственно) (рис. 1).

Рис.1. Распределение донных сообществ в районе Коктебель – Судак:

На глубинах от 20–30 м до 40–60 м на заиленных ракушечниках и песчанистых илах преобладала мидия – Mytilus galloprovincialis Lamarch, 1819. Её численность колебалась в пределах 24–8144 экз./м² и биомасса: 16–4388 г/м². На указанных глубинах, на черных илах с запахом сероводорода обнаружена полихета Terebellides stroemii (Sars, 1835), численность которой колебалась в пределах 40–124 экз./м²; биомасса: 4,4–18 г/м². На глубинах более 50–60 м на заиленных ракушечниках начинает доминировать фазелина – Modiolula phaseolina.
(Philippi, 1844) (рис. 1). Наиболее плотные её поселения численностью 2272 экз./м² и биомассой 16–268 г/м² сосредоточены на глубине 78 м. Границы между поселениями мидии и фазеолины проходят вблизи изобаты 50 м и колеблются от 45 до 65 м. В этой зоне наблюдается смещенный биоценоз. Выше преобладающим видом является мидия, а ниже – фазеолина. При этом фазеолина образует плотные поселения внутри мидийных друз (рис. 1).

Особенности термохалинной и гидрохимической структуры вод на Судакско-Карадагском в период выполнения бентосной съёмки определялись интенсивным прогревом (до 25,8 °С) верхнего слоя моря и активным смещением трансформированных азовоморских и прибрежных черноморских вод. Вертикальное распределение температуры характеризовалось наличием верхнего квазиоднородного слоя (ВКС), резко выраженного сезонного термоклина (СТ) с максимальными градиентами до 6,6 °С/м и холодного промежуточного слоя (ХПС) (рис. 2).

Рис. 2. Типичное вертикальное распределение температуры и растворённого кислорода на глубоководной и мелководной станциях полигона Судак – Карадаг

Положение верхней границы СТ колебалось от 4 до 10 м, нижней – от 14 до 29 м. На мелководных станциях с глубинами до 30 м слой термоклина достигал дна. Глубина залегания верхней границы ХПС изменялась от 35 до 57 м, причём на мелководном шельфе в районе Карадага положение изотермы 8 °С (верхняя граница ХПС) было более стабильным (35–40 м) в отличие от Судакского шельфа, где оно колебалось от 30 до 57 м. Минимальные температуры в ядре ХПС были приурочены к свалу глубин.

В рассматриваемый период во всей толще вод от поверхности до дна отмечалось достаточно высокое содержание растворённого кислорода. На всех станциях полигона вертикальное распределение кислорода имело трёхслойную структуру, отражающую особенности летнего периода (Скопинцев, 1975). Диапазон изменчивости концентраций кислорода в поверхностном слое моря составлял 5,32–5,74 мл/л. В пределах ВКС концентрация кислорода не значительно увеличивалась. Резкое увеличение содержания кислорода наблюдалось в пределах СТ, а слой кислородного максимума с концентрациями от 7,00 до 7,76 мл/л располагался в нижней части термоклина на горизонтах от 20 до 30–40 м. На мелководных станциях, где СТ «упирался» в дно, кислородный максимум располагался непосредственно в придонном слое. На глубоководных станциях вертикальные профили содержания кислорода характеризовались плавным уменьшением концентраций с глубиной, а её минимальные значение 5,16–5,34 мл/л соответствовали горизонту 100 м.

Хамелея, гульдия и питар – обитатели заиленных песков и их распределения в изучаемом районе не отличаются от других районов Чёрного моря. Мидия ведёт прикреплённый образ жизни, поэтому в прибрежных районах на песчанистых грунтах, где до глубин 15–20 м возможны подвижки грунта во время штормового волнения, встречается единично. Мидия размножается при температуре выше 8 °С (Киселёва, 1972), возможно поэтому нижняя граница её обитания проходит в районе 50-метровой изобаты и связана с максимальной глубиной залегания изотермы 8 °С в летний пе-
риод. На основании экспериментальных данных о потреблении кислорода мидиями и динамики экскреции РОВ M. galloprovincialis было показано, что в результате жизнедеятельности мидии возникают условия, неблагоприятные для оседания и дальнейшего существования сопутствующей фауны (Брайко, 1979). Так же известно, что изменение биомассы мидии на два-три порядка, как доминирующего вида, может вызвать коренное преобразование биоценоза (Ло-совская, 1988). На глубинах более 50 м начинаются поселения фазеолины – вида более холодолюбивого по сравнению с мидией (Остроумов, 1891; Паули, 1927).

Сопоставление границы между поселениями мидии и фазеолины с характеристиками термохалинной и гидрохимической структур водных масс в исследуемом районе показало их тесное соответствие (рис. 3).

Положение зоны сосуществования мидии и фазеолины хорошо коррелирует с июльской глубиной залегания изотермы 8 °С и изооккисгенны 6,5 мл/л. Однако глубина залегания изотермы 8 °С имеет значительную сезонную изменчивость в зависимости от интенсивности весенне-летнего прогрева и осенне-зимнего охлаждения, а также от проявления некоторых синоптических процессов (прибрежных апвеллингов, неустойчивости струи основного черноморского течения, внутренних волн и др.), вызывающих активное вертикальное перемещение водных масс в шельфовой зоне моря.

Так, по данным экспедиционных исследований в Судакско-Карадагском районе в январе 1988 г., вся толща вод до 80 м имела квазиоднородную структуру, а значения температуры колебались от 8,0 до 9,5 °С, в конце апреля – первой половине мая этого года поверхностный слой толщиной до 20–25 м прогревался до 10,0–13,0 °С, а изотерма 8 °С располагалась на горизонтах 35–45 м. Во второй половине июля 1988 г. на фоне устойчивой летней стратификации с развитыми ВКС и СТ глубина её залегания увеличивалась до 45–55 м. В другом случае (первая половина августа 1987 г.) активные
восходящие движения в результате проявления прибрежного апвеллинга привели к подъёму изотермы 8 °С до горизонтов в 25–35 м.

Наиболее консервативной характеристикой на глубинах более 40–50 м является содержание растворённого кислорода. Гидролого-гидрохимические исследования на Судакско-Карадагском взморье, выполненные в период с августа 1986 г. по август 1990 г. показали достаточно стабильное положение изооксигены 6,5 мл/л по всему району в слое от 45–50 м до 60–70 м. При этом температура воды в слое колебания изооксигены 6,5 мл/л составляла 7–8 °С. Аналогичные результаты были получены нами в период с июня 1983 г. по август 1987 г. на акватории б. Ласпи – Батилимана. Здесь в различные сезоны года преобладающие горизонты залегания изооксигены 6,5 мл/л соответствовали глубинам 60–70 м.

В апреле – мае 2010 г. на черноморском шельфе изучали связь распределения макробентоса с содержанием кислорода в придонном слое. Было установлено, что в диапазоне глубин 70–146 м в сообществе M. phaseolina структура существенно изменялась в зависимости от градиента изменения кислорода (Friedrich et al., 2014). На глубинах 70–90 м при содержании кислорода около 6,5 мл/л доминировала (77 %) M. phaseolina. На глубинах 100–150 м содержание кислорода уменьшилось до 3,3 мл/л. При этом доминирующей группой видов стали аннелиды, на долю которых приходится 42 %, тогда как доля фазеолины составила лишь 29 % в структуре бентического сообщества. На глубинах более 160 м при концентрациях кислорода около 0,27 мл/л живые организмы макробентоса не были обнаружены (Mazlumyan & Boltashova, 2017).

Недостаток кислорода препятствует сообществу M. phaseolina существовать в Черном море глубже, чем в других морях. Батиметрические границы ареалов для M. phaseolina в других морях намного шире, чем в Черном море. Это происходит на глубинах от 0 до 5500 м (Якубова, 1948). Наши результаты подтверждают, что доступность кислорода ограничивает распределение донных видов по глубине в Черном море (Никитин, 1938, 1950; Якубова, 1948). Фазеолина, очевидно, вселилась в Черное море из бореальной области Атлантики, где обитает от верхних горизонтов литорали до глубин нескольких сотен и даже тысячи метров (Паули, 1927). В пределах атлантического ареала фазеолины содержание кислорода довольно стабильно (5,0–6,5 мл/л), тогда как колебания температуры достигают 10 °С (Блатов и др., 1984).

Таким образом, границы распределения M. phaseolina определяются содержанием кислорода в придонном слое и свидетельствуют о том, что истощение кислорода на больших глубинах является ограничивающим фактором для сообщества M. phaseolina. При содержании кислорода около 6,5 мл/л популяция доминирующего вида M. phaseolina стабильна, а его недостаток депрессивно влияет на её состояние. По-видимому, существенное значение, определяющее массовое развитие фазеолины в Чёрном море на глубине 70–90 м имеет наличие пищи в эвтрофном водоёме в виде оседающего детрита, а также свойства осадков, многие параметры которых на Крымском шельфе заметно меняются на глубинах более 50 м (Бабинец и др., 1981).

Таким образом, связанное с гиброморфным биотопом доминирование является важным механизмом организации сообщества в природе. Важным фактором, определяющим доминирование, является доступность кислорода в придонном слое, что влияет на распределение макробентоса в Черном море.

Доминирующие виды могут адаптироваться к изменяющимся условиям биотопа, что позволяет им сохранять свое преобладание в сообществе. Однако, при значительных изменениях в экологических условиях, доминанты могут изменяться, что приводит к смене доминирования в сообществе.

Важно отметить, что доминирование в сообществах является результатом сложного взаимодействия различных факторов, включая биотические и антропогенные. В настоящее время актуальным направлением исследований является изучение механизмов доминирования и его роли в экосистемах, что позволяет лучше понимать их функционирование и взаимодействие в природных сообществах.
сивности), происходящие в биотопах Чёрного моря (ii).

Распределение доминирующих видов в изучаемом районе определяется совместным влиянием таких факторов, как состав осадков, температурный режим и концентрация кислорода. На рыхлых осадках прибрежной зоны до глубины 15–20 м, где ещё сказывается влияние волнения, преобладают представители инфуны (хамелея, гульдия, питар и др.). С увеличением глубины, где волнение уже не оказывает существенного воздействия, начинает доминировать мидия. Поэтому верхняя граница её распространения при отсутствии неподвижных субстратов в конечном итоге определяется волнением. В то время как, нижняя граница расположена в районе 50-метровой изобаты, и локализована по среднемноголетней глубине залегания изотермы 8 °С. Границы распространения фазелины определяются сочетанием кислородного и температурного режимов, а массовое развитие на глубинах 70–90 м помимо указанных факторов, по-видимому, объясняется условиями трофности биотопа.

4.5.2. БИОНОМИЯ ВЕРХНЕЙ СУБЛИТОРАЛИ ПРИБРЕЖЬЯ КАРАДАГА

Исследования были продолжены в период с 27 июня по 1 июля 2009 г. Проведено более детальное обследование разрезов с целью ландшафтного описания прибрежной зоны акватории заповедника (рис. 1). Водолаз передвигался вдоль фала и описывал ландшафт, характер биотопа, макрофиты, наличие массовых и характерных видов крупных бентосных животных, проводил фотосъемку. Также исследовали бентос на скальных участках. Для этого в 19-ти точках в диапазоне глубин от 0 до 12 м на ск. Кузьминов камень, Иван-Разбойник, Золотые Ворота, Маяк и скальной стенке в Южной Сердоликовой бухте отобрали пробы макрообентоса (макрообилифита). Материал собирался бентосными рамками, площадью захвата 0,04 и 0,06 м², обитыми мельчайшим газом. На каждом участке, на различных глубинах было взято по 2 пробы. Всего отобрано 37 проб.
Затем они были промыты через сито 0,5 мм и зафиксированы 4% раствором формальдегида. Дальнейшая обработка материала проводилась в лаборатории Института биологии южных морей (ИнБЮМ). До вида идентифицированы все группы макрофауны, за исключением Chironomidae и Acari. При описании количественного развития фауны использованы стандартные показатели численности (N, экз./м²) и биомассы (B, г/м²). Ландшафтное описание прибрежной зоны Карадагского природного заповедника проводили по методике Е. И. Блиновой (Блинова и др., 2005). Для проведения сравнения полученных данных с ландшафтным описанием, выполненным по этим же разрезам в 1981 г., использовали архивные данные отдела экологии бентоса ИнБЮМ.

Визуальные подводные наблюдения по разрезам.

Актинометрическая станция. От уреза воды до глубины 0,7 м дно покрыто крупной галькой и мелкими валунами. На расстоянии 8 м от берега галька покрыта микроводорослями с налетом ила. От 0,9 до 2,5 м глубины (14–90 м от берега) расположены камни и валуны, обросшие водорослями, преимущественно цистозирой (*Cystoseira* C. Agardh, 1820), между ними находятся прогалины, покрытые галькой. Пояс валунов, обросших цистозирой, тянется до глубины 4 м (158 м от берега). На цистозири развиты многочисленные эпифиты. В 170 м от берега на дне расположены камни, присыпанные песком, покрытые мелкими водорослями. Отмечены крабы *Eriphia verrucosa*, *Xanthon poressa*, *Pachygrapsus marmoratus*.

Бухта Карадагская. На этом разрезе от уреза воды до 3 м от берега — мелкая галька, редкие камни и валуны с растительностью начинаются с глубины 1 м. Вода мутная, водоросли «присыпаны» мелкими частицами. Среди водорослей в заметном количестве отмечена падина (*Padina pavonica*). В 34 м от берега (глубина 1,8 м) дно покрыто крупной галькой. С глубины 3,7 м (на расстоянии 115 м от берега) до глубины 4,7 м расположены прогалины песка, которые увеличиваются по мере удаления от берега. Далее, до 180 м от берега (глубина 5 м) — камни и валуны, сильно обросшие водорослями. На камнях отмечены рапаны (*Rapana venosa*) и их многочисленные кладки. В 98 м от берега и далее песок образует рифели, обнаружено множество раков-отшельников (*Diogenes pugilator*). Отмечены каменные крабы (*E. verrucosa*).

Скала Кузьмичев Камень. Глубина у подножия скалы 3 м. На глубине от трех до пяти метров дно покрыто галькой и разноразмерными валунами диаметром 30–70 см с налетом ила и мелкими водорослями. Среди водорослей многочисленны кладофора (*Cladophora Kützing, 1843*), ульва (*Ulva intestinalis* и *Ulva rigida*). Начиная с 14 м от берега встречается цистозира. На валунах обнаружены митилястеры *Mytilaster lineatus* и мелкие мидии *Mytilus galloprovincialis*. Далее до глубины 10 м глыбы
со сплошным покровом из водорослей расположены на расстоянии 1–5 м друг от друга. На удалении 16 м от берега среди валунов встречаются прогалины гальки. Отмечено большое количество каменных крабов (E. verrucosa), примерно 5 экземпляров на 10 м². На расстоянии 42 м от берега (на глубине 9 м) обнаружена филлофора (Phyllophora crispa). Ирреда встречаются рапаны. В 64 м от берега начинаются прогалины песка. На глубине 10 м на расстоянии 72 м от берега валуны заканчиваются, дно покрыто мелким гравием и песком, образующими рифели. С глубины 11 м начинается равнинный рельеф, грунт представлен разнозернистым гравием, песком и ракушкой. Отмечена кладофора, единично встречаются рапаны, в большом количестве их кладки и ракоотшельники (более 30 экз./м²).

Макрозообентос в обрастании этой скалы в 2009 г. был представлен 29 видами, средняя численность составляла 6476 экз./м², биомасса – 32,6 г/м² (табл. 1). Особенно многочисленны были гастроподы Rissoa splendidia, также молодь M. lineatus. У уреза воды велика численность таановидных раков Chondrochela savignyi, а на глубине 2 м, кроме Ch. savignyi было много бокоплавов Amphitoe ramondi. Мидии (M. galloprovincialis), представленные ювенильными особями, в небольшом количестве (125 экз./м², 12,4 г/м²) обнаружены лишь у уреза воды.

<table>
<thead>
<tr>
<th>Скалы</th>
<th>Глубина, м</th>
<th>0</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кузьмицев Камень</td>
<td></td>
<td>4317</td>
<td>36</td>
<td>3531</td>
<td>29,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Иван-Разбойник</td>
<td></td>
<td>4665</td>
<td>2803,8</td>
<td>1588</td>
<td>239,7</td>
<td>8144</td>
<td>1144,6</td>
<td>6623</td>
<td>312,5</td>
<td>2007</td>
</tr>
<tr>
<td>Золотые ворота (восточная экспозиция)</td>
<td>18297</td>
<td>2813,1</td>
<td>9201</td>
<td>2612</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Золотые ворота (западная экспозиция)</td>
<td>2161</td>
<td>476,4</td>
<td>1060</td>
<td>137,6</td>
<td>3994</td>
<td>233,2</td>
<td>2493</td>
<td>98,2</td>
<td>1095</td>
<td>258,5</td>
</tr>
<tr>
<td>Маяк</td>
<td></td>
<td>7081</td>
<td>1924,5</td>
<td>12059</td>
<td>2576,7</td>
<td>3313</td>
<td>183,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Скала в б. Сердоликовой</td>
<td>1023</td>
<td>55,9</td>
<td>15519</td>
<td>686,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Скала Иван Разбойник. У подножия скалы глубина 9,5 м. На скальной стенке от уреза воды до глубины 3 м, сплошной покров из водорослей (много ульвы и цистозиры) и митилястеров, рапаны не многочисленны, менее 1 экз./м². Ниже (от 3 до 9 м глубины) встречаемость рапаны увеличивается до 2–3 экз./м², появляются баланусы (Amphibalanus improvisus), оброста в виде ульвы и цистозиры меньше. Дно у подножия скалы покрыто валунами, гравием и крупной галькой. Численность рапан на грунте достигала 10 экз./м². На расстоянии 20 м от берега на гальке видны морские блюдечки (Patella caerulea). В настоящее время эти моллюски практически не встречаются на Карадаге (Болтачева и др., 2015). Так же была отмечена популяция краба P. marmoratus с высокой плотностью 20–25 экз./м². Наибольшая плотность этих раков, зарегистрированная нами в 2009 г. – 8 экз./м².

Макрозообентос в обрастании этой скалы в 2009 г. был представлен 29 видами, средняя численность составляла 6476 экз./м², биомасса – 32,6 г/м² (табл. 1). Особенно многочисленны были гастроподы Rissoa splendidia, также молодь M. lineatus. У уреза воды велика численность таановидных раков Chondrochela savignyi, а на глубине 2 м, кроме Ch. savignyi было много бокоплавов Amphitoe ramondi. Мидии (M. galloprovincialis), представленные ювенильными особями, в небольшом количестве (125 экз./м², 12,4 г/м²) обнаружены лишь у уреза воды.

Таблица 1.

<table>
<thead>
<tr>
<th>Скалы</th>
<th>Глубина, м</th>
<th>0</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кузьмицев Камень</td>
<td></td>
<td>4317</td>
<td>36</td>
<td>3531</td>
<td>29,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Иван-Разбойник</td>
<td></td>
<td>4665</td>
<td>2803,8</td>
<td>1588</td>
<td>239,7</td>
<td>8144</td>
<td>1144,6</td>
<td>6623</td>
<td>312,5</td>
<td>2007</td>
</tr>
<tr>
<td>Золотые ворота (восточная экспозиция)</td>
<td>18297</td>
<td>2813,1</td>
<td>9201</td>
<td>2612</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Золотые ворота (западная экспозиция)</td>
<td>2161</td>
<td>476,4</td>
<td>1060</td>
<td>137,6</td>
<td>3994</td>
<td>233,2</td>
<td>2493</td>
<td>98,2</td>
<td>1095</td>
<td>258,5</td>
</tr>
<tr>
<td>Маяк</td>
<td></td>
<td>7081</td>
<td>1924,5</td>
<td>12059</td>
<td>2576,7</td>
<td>3313</td>
<td>183,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Скала в б. Сердоликовой</td>
<td>1023</td>
<td>55,9</td>
<td>15519</td>
<td>686,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
зием и высокой плотностью популяций отличались амфиоды, отмечены морские пауки Tanyostylum controstre (до 38 экз./м²), крабы Pilumnus hirtellus (42 экз./м²), крабоиды Pisidia longimana (58 экз./м²). Представляет интерес обнаружение на глубине 3–9 м брюхоногих моллюсков Gibbula adriatica (до 63 экз./м²).

Скала Золотые ворота. От уреза воды до глубины 1,3 м дно покрыто галькой и небольшими камнями с микроборщом и слоем ила. От глубины 1,7 м до 7,3 м (расстояние от берега около 80 м) присутствуют валуны, увеличивающиеся в размерах по мере удаления от берега. Отдельные глыбы возвышаются над дном на 3–4 м. Они обильно покрыты водорослями (в том числе цистозирой) и митилястерами. На глубине 9–11 м рельеф дна равнинный. Грунт представлен песком с раковинами моллюсков (мидий, устриц, гребешков), изредка встречаются валуны. На глубине 12 м дно покрыто галькой, песком, валуны встречаются редко, цистозира отсутствует. С глубины 14 м (расстояние от берега около 170 м) наблюдается мелкая галька с песком, в виде рифелей, направленных с юго-запада на северо-восток. На глубине более 15 м – рифели, начинается заиленный песок. В значительном количестве обнаружены рапаны, единично рако-отшельники Cribanarius erythropus и крабы X. poressa.

Обследование самой ск. Золотые ворота показало, что на наружных стенках от уреза воды до глубины 2 м расположен сплошной покров из митилястеров с вкраеплениями мелких мидий, из макрофитов массово цистозира, филлофоры. Филлофора отмечена начиная с глубины 2,8 м, ее количество возрастает с увеличением глубины. Крупные валуны обросли митилястера, много рапан. На глубине 7–9 м – полянки песка и гальки (1–5 см), изредка – гальбы, обросшие водорослями. На глубине 10,5 м (расстояние от берега 104 м) валуны заканчиваются, дно покрыто галькой, переходящей в песок. На песке также попадаются рапаны, крабы, рако-отшельники. На глубине 11 м – крупный песок и галька, обнаружены рапаны (5–7 экз./м²). Численность рако-отшельников (D. pugilator и C. erythropus) составляет около 10 экз./м², встречаются крабы X. poressa. На глубине 13 м дно покрыто крупным песком, рапана встречается редко. Численность рако-отшельников – более 50 экз./м², крабов X. poressa – 3 экз./м².

Скала Маяк. Вертикальная скальная стена простирется до глубины 16 м. От уреза воды до глубины 9 м скала обросла цистозирой, среди которой довольно много ульвы, массово встречаются рапаны и каменные крабы (более 5 экз./м²). На глубине 5 м появляется филлофора, с увеличением глубины (до 15 м) ее становится все больше, ульва встречается на всех глубинах. Сплошной покров из мидий и митилястер простирается от уреза воды и почти до дна – до 15 м, однако мидии встречаются только до глубины 2–2,5 м, наибольшая их плотность наблюдается у самой поверхности. Рапа-
ны встречаются на всем протяжении скалы, на глубине 3 м их плотность – около 2–3 экз./м², на глубине 8 м – 5 экз./м². На грунте у подножия скалы отмечены валуны, гравий, крупная галька, изредка встречается цистозира. Рапаны отмечены в количестве до 1 экз./м². Несколько видов крабов обнаружены в единичных экземплярах.

Макрозообентос в обрастании представлен 43 видами, больше половины из которых (25 видов) – ракообразные. Средние для всех глубин на этой скале численность и биомасса бентоса составляли 6237 экз./м² и 1196 г/м² соответственно. На всем протяжении скалы митилестер отмечен в количестве до 1 экз./м². Несколько видов крабов обнаружены в единичных экземплярах.

Макрозообентос в обрастании представлен 43 видами, больше половины из которых (25 видов) – ракообразные. Средние для всех глубин на этой скале численность и биомасса бентоса составляли 6237 экз./м² и 1196 г/м² соответственно. На всем протяжении скалы митилестер отмечен в количестве до 1 экз./м². Несколько видов крабов обнаружены в единичных экземплярах.

Бухта Барахты. От уреза воды до глубины 0,6 м (на расстоянии до 10 м от берега) дно покрыто крупной галькой. Редкие крупные плоские камни обросли падиной. На глубинах от 1 м до 5 м – крупная галька, валуны и огромные скальные плиты, обросшие водорослями: цистозира, покрытая эпифитами, ульва, кладофора. Единично встречается рапана и ее кладки. В прогалинах между валунами – значительное количество полихет спирорбисов (Spirorbidae). Зона валунов заканчивается на глубине 2 м. Большой разнообразием и высокой плотностью популяций отличались амфиподы C. liparotensis (до 350 экз./м³), A. ramondi (до 267 экз./м³), Stenothoe monoculoides (до 138 экз./м³). Гастроподы были особенно многочисленны на глубине 5 м: B. reticulatum (492 экз./м³), R. splendida (279 экз./м³). Почти на всех глубинах в небольшом количестве обнаружены брюхоногие моллюски G. adriatica.

Бухта Сердоликовая. От уреза воды до глубины 8 м дно покрыто галькой и валунами. На гальке микрооброст покрыты филлофорой, ульвой, кладофорой, много митилестеров. Встречены разноразмерные перемычки песка и гальки, вокруг которых обрастают бараньи уши, грудку, морской краб. Начиная с глубины 11–13 м дно покрыто грязью, разнообразной затопленной галькой, а затем песком, образующим рифели. Встречаются рапаны, гастроподы тритии (Tritia reticulata), а также мно- го раков-отшельников (более 20 экз./м³).

Бухта Лягушачья и мыс Мальчий. От уреза воды до глубины 3 м располагается пояс крупных валунов, обильно обросших водорослями, в том числе цистозирой, покрытой эпифитами. Отмечены филлофора, ульва, кладофора, митилестер, в прогалинах между валунами – значительное количество раков-отшельников. Начиная с глубины 10 м, на дне обнаружены глыбы с большими вальунами, покрытыми моллюсками. Единично попадались рапаны и крабы. На глубине 11–13 м дно покрыто грязью, разнообразной затопленной галькой, а затем песком, образующим рифели. Встречаются рапаны, гастроподы тритии (Tritia reticulata), а также много раков-отшельников (более 20 экз./м³).
большое количество норок и шкурки рака-крота *U. pusilla*, есть рапаны. На глубине 15 м рифели переходят в равнинный рельеф, грунт представлен разноразмерным гравием, обломками раковин. Встречаются кладофора и единичные экземпляры крабов.

Количественное распределение макрозообентоса на скалах. По данным выполненной съёмки в бентосе скалистых субстратов Караđара отмечено 69 видов макрозообентоса. Из них представителей Annelida – 14 видов, Mollusca – 15, Arthropoda – 35 видов (Ковалева и др., 2014). Преобладающей по численности и биомассе группой макрозообентоса были моллюски, на втором месте ракообразные. Наиболее богато представлена фауна Crustacea – 32 вида и Polyseta – 15 видов. Обнаружено 3 вида двустворчатых моллюсков, 2 – хитонов и 11 – гастропод. Идентифицированные полиэты относятся к 6 семействам. Наибольшее число видов обихено на восточной экспозиции Золотых ворот. На ск. Кузьмичёв камень зарегистрировано наименьшее количество видов. На ск. Иван-Разбойник на глубине 6 м был обнаружен единичный экземпляр *Haplosyllis spongicola*, который обычно обитает в обрастаниях камней среди мелких мидий и водорослей и встречается редко. Полиэта *Namanereis pontica* найдена только в районе Золотых ворот у уреза воды в единичном экземпляре. Данный вид интересен тем, что в течение длительного времени не был зарегистрирован вдоль крымского побережья. М. И. Киселева связывала его отсутствие с загрязнением прибрежных участков. Группа Crustacea включала 32 вида. Наибольшее количество видов выявлено в перифитоне ск. Маяк (28), далее, в порядке убывания, следует ск. Иван-Разбойник (24), Золотые ворота (20), Кузьмичёв камень (14) и скала в б. Сердолико-гоне. Отмечено два вида хитонов Polyplacophora: *Lepidochitona cinerea*, *Acanthochitona fascicularis*, а также 11 видов Gastropoda, относящихся к восьми родам. На восточной экспозиции Золотых ворот отмечено максимальное число видов гастропод (8), в большинстве количественно обнаружен *Odostomia eulimoides* – мальчиковый в других биотопах. В целом, по численности преобладает *R. splendida* (средняя численность 295 экз./м²), по биомассе – *T. pullus* (средняя биомасса 2,98 г/м²).

Распределение макрозообентоса на скалах отличается неравномерностью. Численность макробентосных организмов колебалась в пределах 102–18 297 экз./м², биомасса изменялась от 36 до 2 084 г/м². Анализ различий численности макрозообентоса на разных глубинах показал, что в целом, с увеличением глубины от 2 до 12 м происходит плавное снижение плотности бентоса (рис. 2). Лишь у уреза воды наблюдается относительно низкое значение этого показателя. Это может быть связано с высокой степенью прибойности в этой зоне и, вследствие этого, трудности удержания на субстрате для неприкрепленных животных, которые преобладают по численности в этом биотопе. Биомassa макрозообентоса также снижается с увеличением глубины, однако наиболее высокие значения ее отмечены у уреза воды (рис. 3). Основной вклад в биомассу вносят двухстворчатые моллюски, в особенности, мидии. Именно у уреза воды были отмечены наибольшие скопления этого вида, в то время как митилестр встречался на всех глубинах.

323
На всех разрезах водолаз наблюдал многочисленных представителей ихтиофауны. Ее состав был определен в целом для биотопа рыхлых грунтов и биотопа скал и камней.

Структура ихтиоценов акватории Карадагского заповедника (по визуальным наблюдениям, 27.06–03.07.2009 г.).

Ихтиоцен твёрдых грунтов:

второстепенные виды II порядка: Dicentrarchus labrax (L.) – лаврак, Diplodus annularis (L.) – ласкирь, Punta zo puntazzo (Gmelin) – обычный зубарик, Spicara flexuosa Rafinesque – спикара, Sarpa salpa (L.) – сальпа, Coryphoblennius galerita (L.) – хохлатая морская собачка, Lipophrys pavo (Riso) – собачка-павлин;

случайные виды: Hippocampus ramulosus Leach – длиннорылый морской конек.

Ихтиоцен мягких грунтов:

характерные виды II порядка: Psetta maxima (Pallas) – камбала-калан, Raja clavata L. - скат, морская лисица, Dasyatis pastinaca (L.) – морской кот; Syngnathus sp. – игла-рыба;

второстепенные виды: Platichthys flesus luscus (Pallas) – глюssa, Pomatoschistus marmoratus – бычок-ущук, Mugil soiuy Basilevsky – пилингас, Trigla lucerna L. – морской петух;

Результаты визуального обследования донных ландшафтов, выполненные в 2008–2009 гг. В акватории Карадагского природного заповедника, свидетельствуют о значительных изменениях в донных сообществах, произошедших за период с 1981 г. В пределах обследованных территорий уменьшились площади дна, занятые песком, усилилось занятие грунта. Сократились площади донного субстрата, занятого цистозирой. На цистозире обильно развиты эпифиты. Практически на всех разрезах и на всех глубинах встречена ульва. Отмечено резкое сокращение численности поселений скаловой мидии Mytilus galloprovincialis, фактически мидии обитают лишь на глубине 0–1 м. На остальных глубинах мидию сменил митилястер Mytilaster lineatus. Встречаемость и плотность популяции рапаны Rapana venosa возросла. Так если в 1981 г. рапаны были отмечены лишь на половине разрезов и только на песчаном грунте, то в 2009 г. они обнаружены на всех разрезах и на всех скальных субстратах (даже на вертикальных стенках), их численность достигала 10 экз./м². В настоящее время не обнаружены, отмеченные в 1981 г. (как и в более ранних исследованиях) двустворчатый моллюск Flexopecten glaber, а также морское блюдечко Patella caerulea и брюхоногий моллюск Melarhaphe (Littorina) neritoides. Уменьшилась частота встречаемости и плотность популяции усного рака Amphibalanus improvisus, а многочисленный ранее вид равноногих раков Idotea balthica не обнаружен. Наряду с обычным ранее для акватории Карадагского природного заповедника видом рака-отшельника Diogenes pugi lator, отмечено присутствие в массовом количестве рака-отшельника Clibanarius erythropus.

Результаты выполненного обследования свидетельствуют о существенных изменениях в акватории, произошедших за последние 20–30 лет, что подтверждает необходимость проведения регулярных ландшафтных исследований в заповеднике.

Благодарности. Выражаем благодарность В. В. Чернышевой за обеспечение водолазных работ, и руководству Карадагского природного заповедника за предоставление плавсредств для проведения исследований.
ЗАКЛЮЧЕНИЕ

Акватория юго-восточной части Крымского полуострова является одним из важнейших очагов сохранения биологического разнообразия шельфовой зоны Черного моря. Трудно переоценить рекреационную ценность и насущность береговой зоны особо охраняемыми территориями (и акваториями), свидетельствующими о его высокой природоохранный значимости.

Материалы, изложенные в настоящей монографии, показывают многоплановую, хотя и неравномерную степень изученности данного региона в гидробиологическом отношении. История изучения морской фауны района Карадага насчитывает более века, что было связано с деятельностью Карадагской научной станции им. Т. И. Вяземского, а впоследствии – Карадагской биологической станции. Целенаправленные и многоплановые биологические исследования у берегов Юго-Восточного Крыма, начатые еще 70 лет назад, позволили отнести этот район к одному из самых изученных на Черном море. Благодаря имеющемуся, и наиболее длительному для Черного моря ряду наблюдений о флоте и фауне в акватории Карадагского природного заповедника, удалось проследить тонкие механизмы изменений структуры прибрежных сообществ.

Данные гидролого-гидрохимических исследований позволили выявить основные процессы, формирующие гидрологический режим прибрежных вод, оценить многолетнюю и межгодовую изменчивость параметров термохалинной структуры в различные сезоны года. Выявлена устойчивая тенденция повышения температуры поверхностных вод, связанная с «глобальным» потеплением, а также изменение влияния азовоморских вод на формирование поля солености в прибрежной зоне Карадага, наблюдаемое с 2011-2012 гг. – смена «пресной» фазы на «соленную». Отмечено снижение повторяемости и интенсивности активных прибрежных апвеллингов.

Установлено влияние стенно-нагонных явлений, азово-морских вод, и антропогенного фактора на видовой состав и количественное распределение фитопланктона.

На сегодняшний день, с учетом полученных новых знаний, известно, что 42 % водорослей-макрофитов Черного моря распространены у юго-восточных берегов Крыма. На основе полученных данных проведены основательные ревизии видового состава гидробионтов и их сообществ, показаны многолетние сукцессионные изменения отдельных компонентов прибрежной экосистемы региона. Впервые получены интересные данные для многих ООПТ, составляющих прибрежные аквальные комплексы, характеризующие состав фауны и сообществ, образуемых ею на данных охраняемых акваториях.

В зоопланктоне района Карадага отмечены структурные изменения и дальнейшая трансформация сообществ. В меропланктоне акватории заповедника обнаружены личинки некоторых редких видов водообных ракообразных и мно гощетинковых червей.

При изучении фаунистического комплекса зарегистрировано три новых вида креветок. Благодаря имеющемуся уникальному ряду наблюдений количественного развития донных сообществ, на примере изучения межгодовой динамики отдельных видов моллюсков, удалось показать, что за последние 70 лет их численность испытывала значительные колебания. Реакцией экосистемы в период наиболее высокого уровня эвтрофирования вод явилось резкое увеличение количественного развития крупных долгоживущих видов Mytilus galloprovincialis и Chamelea gallina.

Установлено, что современный таксономический состав макрообеноса района Карадага практически не изменился, а количественные отношения отдельных групп видов остались на уровне 50-х годов XX века. Новые данные по макрообеносу получены для псевдолиторали. Изучена его трофическая структура. Исследован качественный и количественный состав макрообеноса глин и впервые для Черного моря выделены новые сообщества, с доминирующим по биомассе моллюском-камнеточцем Pholas dactylus. Накоплены уникальные данные по составу обеноса на отдельных акваториях Судакско-Карадагского шельфа, начиная с 1957 г. Оценена роль и характер воздействия основных гидрологических и гидрохимических характеристик в придонном слое вод на особенности доминирования в сообществах бентоса.

Анализ результатов ландшафтных исследований прибрежной акватории Карадагского природного заповедника выявил необходимость регулярного проведения таких исследований в прибрежной зоне. Полученные результаты впоследствии послужат точкой отсчета при оценке состояния экосистемы и выявлении степени их сохранности и ценности, а также для разработки природоохранной стратегии прибрежья Крыма.
СПИСОК ЛИТЕРАТУРЫ

Анистратенко В.В., Анистратенко О.Ю., Костенко Н.С. Семь видов брюхоногих моллюсков новых в фауне Карадагского заповедника (Черное море) // Вестник зоологии. – 2007. – Т. 41. – № 6. – С. 491 – 504.

Арнольди Л.В. Материалы по количественному изучению зообентоса в Черном море. Южный берег Крыма // Труды ЗИН АН СССР. – 1941. – Т. 7. – Вып. 2. – С. 94–113.

Багнюкова Т.В. Ихтиопланктон акватории Карадагского природного заповедника (Черное море) // Заповедная справа в Украині. – 1995. – Т. 1. – С. 57–63.

Багнюкова Т.В. Динамика репродуктивных характеристик и интенсивности нереста массовых видов черноморских рыб в районе Карадага. Автореферат дис… канд. биол. наук. – Севастополь. – 1996. – 24 с.

Бекман М.Ю. Фауна моллюсков Чорного моря коло Карадага // Труди Карадагської біологічної станції. – 1940. – Вип. 6. – С. 6–22.

Белофастова И.П., Корнинчук Ю.М. Новые данные о скребнях черноморских рыб // Экология моря. – 2000. – Вып. 53. – С. 54–58.

Бердова С.Е., Харизоменов Д.А. Некоторые оценки загрязненности донных отложений Карадагского заповедника токсичными металлами // Вклад молодых ученых и специалистов в решение современных проблем океанологии и гидробиологии / Тезисы докладов III научно-технической конференции Крыма. – Севастополь. – 1988. – С. 63.

Болтачев Р.А., Еремеев В.Н. Рыбный промысел в Азово-черноморском бассейне: прошлое, настоящее, будущее // Промысловые биоресурсы Черного и Азовского морей / Ред. В.Н. Еремеев.

Виноградов К.А. Материалы по ихтиофауне района Карадагской биологической станции // Труды Карадагской биологической станции. – 1931. – Вып. 4. – С. 137–144.

Виноградов К.А. Список рыб Черного моря, встречающихся в районе Карадага // Труды Карадагской биологической станции. – 1949 а. – Вып. 7. – С. 76–106.

Виноградова З.А. Материалы по биологии моллюсков Черного моря // Труды Карадагской биологической станции. – 1950. – Вып. 9. – С. 100–159.

Виноградова З.А. Материалы о плодовитости десятиноги раков (Decapoda) Черного моря // Труды Карадагской биологической станции. – 1951. – Вып. 11. – С. 69–91.

Воробьева Л.В., Михайлова Т.В., Повчун А.С. Макро- и мейобентос в районе Карадаг – Судак (Южный берег Крыма) // АН УССР. Ин-т биологии южных морей им. А.О. Ковалевского. – Севастополь. – 1989. – 21 с. Деп. в ВИНИТИ 02.08.89. № 5180 – В 89.

Гожик П.Ф., Шелкопляс В.Н. Рельеф шельфа Горного Крыма и Керченского полуострова // Геологический журнал. – 2003. – № 1. – С. 28–33.

Гринцов В.А. *Parhyale taurica* sp. nov (Amphipoda, Hyalidae) – новый вид бокоплава из прибрежной зоны Крыма (Черное море) // Бюллетень МОИП. – 2009 г. – № 2. – С. 73–76.

Гулин С.Б., Поликарпов И.Г., Гулин М.Б. Общая характеристика интерстициальной экологической системы верхней сублиторали Карадагского госзаповедника (Черное море). – Киев, 1986. – 21 с. – Деп. в ВИНИТИ 13.05.86. – № 2150 – В 86.

Димитров Г. И. Изследоване на хелминти на риби от Българского Чёрноморско Крайбрежия: Автореф. дисс. ... канд. биол. наук. – София, 1989. – 35 с.

Долгопольская М.А. Зоопланктон Чорного моря в районі Карадага // Труды Карадагської біологічної станції. – 1940. – Вип. 6. – С. 57–111.

Дубовский Н.В. Материалы к познанию фауны Ostracoda Черного моря // Труdy Карадагской біологічної станції. – 1939. – Вып. 5. – С. 3–68.

Евстигнеева И.К., Танковская И.Н. Макроводоросли перифитона и бентоса прибрежья бухты Ласпи (Крым, Черное море) // Экология моря. – 2010. – Спец. вып. 81: Биотехнология водорослей. – С. 40–49.

Евстигнеева И.К., Танковская И.Н. Ценопопуляционное разнообразие рода Gelidium (Rhodophyta) в условиях прибрежья Черного моря // Экология: рациональное природопользование и безопасность жизнедеятельности» / Сборник материалов Всероссийской научно-практической

Евстигнеева И.К., Танковская И.Н. Размерно-массовые характеристики слоевища и ценопопуляций Ulva linza L. (Clorophyta) и их динамика в Черном море // Вопросы современной альгологии – 2017 б – № 2 (14) URL: http://algology.ru/1175

Емельяненко П.Г. К вопросу о распределении флоры и фауны у крымских берегов в Черном море. – Киев: Киевское общество любителей природы. – 1911. – 30 с.

Загородняя Ю.А., Павловская Т.В., Морякова В.К. Видовое разнообразие и сезонная динамика зоопланктона в прибрежной акватории Караадагского природного заповедника // Караадаг. Гидробиологические исследования / Сборник научных трудов, посвященный 90-летию Караадагской научной станции им. Т.И. Вяземского и 25-летию Караадагского природного заповедника НАН Украины. Книга 2-я. – Симферополь: СОНАТ. – 2004 а. – С. 104–120.

Заика В.Е. Де-эвтрофикация Черного моря и влияние климатических осцилляций // Состояние экосистем Черного и Азовского морей в условиях антропогенного воздействия / Сборник статей, посвященный 90-летию Новороссийской морской биологической станции им. профессора В.М. Арнольди. – Краснодар. – 2011 б. – С. 88–93.

Зайцев Ю.П. Введение в экологию Черного моря. – Одесса: Эвен. – 2006. – 224 с.

Зернов С.А. К вопросу об изучении жизни Черного моря // Записки Императорской Академии Наук. Сер. 8. – Типография Императорской Академии наук. – 1913. – Т. 2. – № 1. – 300 с.

Иванов В.А., Жуков А.Н., Сизов А.А. Геофизические процессы в зоне сопряжения суши и моря Крыма, их воздействие на биологические поля. Вып. 3. – Севастополь. – 2007. – 52 с. (Серия «Современные проблемы океанологии»).

Киселева Г.А., Костенко Н.С. Тип Губки // Карадаг. Гидробиологические исследования / Сборник научных трудов, посвященный 90-летию Карадагской научной станции им. Т.И. Вяземско-
Киселева Г.А., Костенко Н.С., Дикий Е.А., Ширинская С.Э. Фаунис тическое и флористиче-
ское разнообразие бентосных форм в акватории прибрежно-аквального комплекса пгт Новый Свет
(юго-восточное побережье Крыма) // Биоразнообразие и устойчивое развитие / Материалы докладов
III Международной научно-практической конференции (Симферополь, 15–19 сентября 2014 г.). –

Киселева М.И. Макробентос прибрежной зоны Черного моря после прекращения сброса

Киселева Г.А., Кулик А.С., Гаджиева В.В. Зооценоз цистозиры района Карадагского заповед-
ника // Заповедники Крыма. Биоразнообразие на приоритетных территориях / Материалы II научной

Киселева М.И. Сравнительная характеристика бентоса рыхлых грунтов района Карадага //
Киселева М.И. Развитие бентоса в биотопе песка в Лисьей бухте (юго-восточное побережье

Киселева М.И. Многощетинковые черви (Polychaeta) Черного и Азовского морей. –Апатиты:

Киселева М.И., Валовая Н.А., Новоселов С.Ю. Видовой состав и количественное развитие
бентоса в биотопе песка района Карадагского заповедника // Экология моря. – 1984. – Вып. 17. – С.
70–75.

Киселева М.И., Славина О.Я. Донные биоценозы у Южного берега Крыма // Труды Севасто-

Климова Т.Н., Гордина А.Д., Вдодович И.В. Ихтиоопланктон шельфовых вод Черного моря в
период с 1986 по 2005 гг. // Проблемы гидробиологической океанографии XXI века / Тезисы докладов
междунардной научной конференции, посвященной 135-летию Института биологии южных морей

Ключарев К.В. Материалы для количественной характеристики зоопланктона Черного моря у

Ковалева А.А. Паразитофауна рыб семейства Atherinidae в Черном море в районе Карадага //
Проблемы паразитологии. Труды IV научной конференции Паразитологов Украины. – Киев: Изд-во

Ковалева А.А. Паразитофауна черноморских рыб сем. Atherinidae, обитающих в районе Ка-

Ковалева А.А. Влияние возраста и состава пищи на гельминтофауну ставриды Trachurus

Ковалева М.А. Новые данные о моллюсках-какаметоцах прибрежной зоны Крыма (Черное
море) // Материалы Х міжнародної наукової конференції студентів та молодих науковців. – Київ. –
Ковалева М.А. Макрозообентос скал акватории Карадагского природного заповедника (Юго-Восточный Крым) // Экосистемы, их оптимизация и охрана. – 2012 а. – Вып. 7. – С. 74–78.

Коваль В.П., Царичкова Д.Б. До вивчення риб Чорного моря // Наукові записки Київського державного педагогічного інституту. – 1964. – С. 141–146.

Колова К.А., Молчанова Ю.В., Киселева Г.А. Динамика видового богатства макрозообентоса в ассоциациях водоростей Карадагского природного заповедника // Морской экологический журнал. Отдельный выпуск. – 2011. – № 2. – С. 37–42.

Корнюшин В.В., Солонченко А.И. Переописание цестод Grillotia erinaceus (Beneden, 1858) и Christianella minuta (Beneden, 1849) от черноморских хрящевых рыб // Биология моря. – 1978. – Вып. 45. – С. 26–33.

Костенко Н.С. Картирование фитобентоса акватории Карадагского государственного заповедника АН УССР (Черное море) // Ботанический журнал. – 1988 г. – Т.73. – № 11. – С. 1590–1596.

Костенко Н.С. Экологическое состояние акватории Карадагского заповедника // Заповедная справа в Украине. – 1995. – Т. 1. – С. 72–79.

Ляхов С.М. Decapoda карадагской дельты Черного моря // Труды Карадагской биологической станции. – 1940. – Вып. 6. – С. 57–111.

Макаров М.В. Многолетняя динамика видового состава и численности Mollusca в эпифитоне водорослей рода Cystoseira акватории Карадагского природного заповедника (юго-восточный Крым, Черное море) // Понт Эвксинский VIII: тез. VIII международной научно-практической конференции

Мачкевский В.К. Гельминтофауна лабрида в местах культивирования черноморской Mytilus galloprovincialis // Экология моря. – 1990. – Вып. 36. – С. 75–82.

Милославская Н.М. Дополнение к фауне Amphipoda Gammaroidea Черного моря // Труды Кара
радагской биологической станции. – 1931. – Вып. 4. – С. 49–52.

Мурина В.В., Лисицкая Е.В., Безвушко А.И. Видовой состав и численность зимнего меропланктона Карадагского природного заповедника // Экология моря. – 1999. – Вып. 49. – С. 72–76.

Найденова Н.Н. Паразитофауна рыб семейства бычковых Черного и Азовского морей. – К.: Наук. думка, 1974. – 184 с.

Оскольская О.И., Тимофеев В.А., Моисеев Д.В. Морфологические и биохимические характеристики Mytilus galloprovincialis из различных по экологическим условиям районов акватории Карадага // Еколого-функціональні та фауністичні аспекти дослідження молюсків, їх роль у біоіндикації стану навколишнього середовища / Зб. наук. праць. – Житомір. – 2004 б. – С. 134–137.

Пасынков А.А. Морфоструктурное районирование Азово-Черноморского бассейна и перспективы освоения региона. Автореф. дисс.… докт. геол. наук. – Киев. – 2013. – 40 с.

Пименова М.Е., Шелепова О.В., Костенко Н.С., Сафронова Л.М., Кошкова П.Д. Содержание йода в некоторых видах лекарственных растений Карадагского природного заповедника и водорос-

Полякова Т.А., Корнюшин В.В., Масленникова М.В. Первая регистрация Progrillotia dasyatidis Beveridge, Neifar et Euzet, 2004 (Cestoda: Trypanorhyncha) у рыб Черного моря // Труды Центра паразитологии / Центр паразитологии Ин-та проблем экологии и эволюции им. А.Н.

Пронькина Н.В., Белофастова И.П., Мачкевский В.К. Находки личинок нематод надсемейства Acuarioida (Spirurata) у рыб в Черном море // Вестник зоологии. – 2009. – Т. 43. – № 2. – С. 157–162.

Ревков Н.К. Многолетние изменения зообентоса рыхлых грунтов в районе юго-западного Крыма // Современное состояние биоразнообразия прибрежных вод Крыма (черноморский сектор) /

Ревков Н.К., Костенко Н.С., Киселева Г.А., Анисратенко В.В. Тип Моллюски Mollusca Cuvier, 1797 // Труды Карадагской биологической станции. – 1949. – Вып. 7. – С. 51–75.

Смирнов А.Н. Материалы по биологии рыб Черного моря в районе Карадага // Труды Карадагской биологической станции. – 1959. – Вып. 15. – С. 31–110.

Смирнов А.Н. Возраст и рост некоторых видов черноморских рыб // Труды Карадагской биологической станции. – 1960. – Вып. 16. – С. 70–85.

Шаганов В.В. Рыбы каменистой сублиторали Юго-Восточного Крыма: состав, распределение по биотопам, особенности экологии. Автореферат дисс... канд. биол. наук. – М., 2018. – 24 с.

Шаганов В.В., Кулиш А.В. О встречаемости малоголовой рыбы-присоски Apletodon dentatus (Gobiesocidae) в прибрежной зоне юго-восточного Крыма (Черное море) // Вопросы ихтиологии. – 2018. – Т. 58. – С. 373–375.

Sørensen T.A. A method of establishing groups of equal amplitudes in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons // Biologiske Skrifter/ Kongelige Danske Videnskabernes Selskab (Copenhagen). – 1948. – V.5. – P. 1–34.

Научное издание

БИОЛОГИЯ ЧЕРНОГО МОРЯ
У БЕРЕГОВ ЮГО-ВОСТОЧНОГО КРЫМА

коллективная монография

под редакцией Н. С. Костенко

ФГБУН «Карадагская научная станция им. Т. И. Вяземского – природный заповедник РАН»,
298188, Республика Крым, г. Феодосия,
пгт Курортное, ул. Науки, 24, РФ.

Формат 60х84/8. Усл. печ. л. 43,71. Тираж 300 экз.

ИЗДАТЕЛЬСТВО ТИПОГРАФИЯ «АРИАЛ».
295015, Республика Крым, г. Симферополь, ул. Севастопольская, 31-а/2,
тел.: +7 978 71 72 901, e-mail: it.arial@yandex.ru, www.arial.3652.ru

Отпечатано с оригинала-макета в типографии «ИТ «АРИАЛ».
295015, Республика Крым, г. Симферополь, ул. Севастопольская, 31-а/2,
тел.: +7 978 71 72 901, e-mail: it.arial@yandex.ru, www.arial.3652.ru