Микроорганизмы-возбудители болезней растений

Справочник
Микроорганизмы-возбудители болезней растений

Справочник

Под редакцией
члена-корреспондента
АН УССР В. И. БИЛАЙ

КИЕВ НАУКОВА ДУМКА 1988
Авторы:
В. И. БИЛАЙ, Р. И. ГВОЗДЯК, И. Г. СКРИПАЛЬ,
В. Г. КРАЕВ, И. А. ЭЛЛАНСКАЯ, Т. И. ЗИРКА,
В. А. МУРАС

УДК 579. 64 : 632
Микроорганизмы — возбудители болезней растений / Билай В. И.,
Гвоздяк Р. И., Скрипаль И. Г. и др.; Под ред. Билай В. И. — Киев:

В справочнике обобщены и систематизированы основные сведения о
биологии грибов, бактерий, микоплазм, вирусов и вирионов, вызываю­
щих заболевания растений. Описаны методы диагностики заболеваний
и идентификации возбудителей, симптомы, способы распространения
и вредоносность заболеваний, даны рекомендации по профилактике и мерам
комплексной защиты растений от поражения этими возбудителями.
Издание иллюстрировано и снабжено библиографией основных работ по
каждой группе фитопатогенных микроорганизмов.
Для научных работников, специалистов по защите растений, агрономов,
селекционеров, преподавателей и студентов сельскохозяйственных вузов
и всех, кто интересуется проблемой выращивания здоровых растений.

Ответственный редактор В. И. Билай

Печатается по постановлению ученого совета
Института микробиологии и вирусологии
им. Д. К. Заболотного АН УССР
и решению редакционной коллегии
справочной литературы АН УССР

Редакция справочной литературы
Заведующий редакцией В. В. Панинок
Редакторы: И. М. Дюканова, А. В. Янковская

ISBN 5-12-000298-6 (© Издательство «Наукова думка», 1988)
ОГЛАВЛЕНИЕ

Предисловие .......................................................... 6
Общие сведения о фитопатогенных микроорганизмах .......... 8
Принятые сокращения ............................................. 13

Глава 1
ГРИБЫ ................................................................. 14

Класс Plasmodiophoromycetes — Плазмодиофоромицеты ........ 14
Порядок Plasmodiophorales — Плазмодиофоральные ........ 14
Семейство Plasmodiophoraceae — Плазмодиофовые ........... 14

Класс Chytridiomycetes — хитридиомицеты ..................... 19
Порядок Chytridiales — Хитридиальные ....................... 20
Семейство Olpidiaceae — Ольпидиевые ....................... 20
Семейство Synchytriaceae — Синхитриевые ................. 21
Порядок Mycochytriales — Микохитридиальные ............. 22
Семейство Physodermales — Физодермиевые ................. 22

Класс Oomycetes — Оомицеты ..................................... 23
Порядок Saprolegniales — Сапролегниальные ................. 23
Семейство Saprolegniaceae — Сапролегниевые ............... 23
Порядок Peronosporales — Пероноспоральные ............... 25
Семейство Pythiaceae — Питиевые ............................. 25
Семейство Phytophthoraceae — Фитофторовые ............... 28
Семейство Peronosporaceae — Пероноспоровые .............. 30
Семейство Albuginaceae — Альбуговые ....................... 39

Класс Zygomycetes — Зигомицеты ................................. 40
Порядок Mucorales — Мукоральные ............................ 41
Семейство Mucoraceae — Мукоровые .......................... 41

Класс Ascomycetes — Аскомицеты или сумчатые грибы ........ 43
Подкласс Euascomycetidae — Еуаскомицеты .................... 46
Группа порядков Pyrenomycetes — Пиреномицеты .......... 46
Порядок Erysiphales — Эризифальные, или Мучнисто- 
росые ................................................................. 46
Семейство Erysiphaceae — Мучнисторосые .................... 46
Порядок Clavicipitales — Клавицепитальные ................. 50
Семейство Clavicipitaceae — Клавицепитовые ............... 50
Подкласс Euascomycetidae — Эуаскомицеты ......................................... 51
Группа порядков Discomycetes — Дискомицеты ...................................... 51
Порядок Helotiales — Гелоциальные .......................................................... 51
Семейство Sclerotiniaceae — Склеротиниевые ........................................... 51
Подкласс Loculoascomycetidae — Асколокулярные, или Локулоаскомицеты ................................................................. 53
Порядок Dothideales — Дотидейальные ....................................................... 53
Семейство Pleosporaceae — Плеоспоровые .............................................. 53
Семейство Venturiaceae — Вентуриевые ..................................................... 54
Семейство Mycosphaerellaceae — Микосферелловые ................................... 55

Класс Basidiomycetes — Базидиомицеты ......................................................... 58
Подкласс Holobasidiomycetes — Холобазидиомицеты .................................. 61
Группа порядков Hymenomycetes — Гименомицеты ................................... 61
Порядок Aphyllophorales — Афиллофоральные ............................................ 61
Семейство Clavariaceae — Рогатиковые, или Булавники .................................... 61
Подкласс Teliosporomycetidae — Телиоспоромицеты .................................... 62
Порядок Ustilaginales — Головневые ............................................................. 62
Семейство Ustilaginaceae — Головневые ....................................................... 62
Семейство Tilletiaceae — Тиллециевые .......................................................... 69
Порядок Uredinales — Ржавчинные ................................................................. 73
Семейство Melampsoraceae — Мелампсоровые ........................................... 73
Семейство Pucciniaceae — Пукциниевые ....................................................... 76

Класс Deuteromycetes — Дейтеромицеты ......................................................... 83
Порядок Mycelia sterilia (Agomycetales) — Стерильные мицелии ......................... 85
Порядок Moniliales — Монилиальные ............................................................. 88
Семейство Moniliaceae — Монилиальные ....................................................... 88
Семейство Dematiaceae — Дематиевые .......................................................... 113
Семейство Stylbellaceae — Коремиевые ......................................................... 145
Семейство Tuberculariaceae — Туберкуляриевые ......................................... 147
Порядок Melanconiales — Меланкониальные ............................................... 187
Семейство Melanconiaceae — Меланкониевые .............................................. 187
Порядок Sphaeropsidales — Сферопсидальные .............................................. 200
Семейство Sphaeropsidaceae — Сферопсидные ............................................. 200

Г л а в а 2

ФИТОПАТОГЕННЫЕ БАКТЕРИИ ......................................................... 224
Секция 4 ................................................................. 226
Семейство Acetobacteriaceae ................................................................. 226
Семейство Pseudomonadaceae Winslou, Broadhurst, Buchanan Krumwiede, Rogers and Smith 1917 ......................................................... 227
Семейство Rhizobiaceae Conn 1938 ............................................................. 284
Секция 5 ................................................................. 289
Семейство Enterobacteriaceae Rahn 1937 ....................................................... 289
Секция 9 ................................................................. 308
Риккетсиеподобные бактерии (РПБ) ............................................................. 308
Секция 13 ................................................................. 308
Секция 15 ................................................................. 316
Секция 17 ................................................................. 323
Меры борьбы против бактериальных болезней растений, Карантинные объекты ................................................................. 323
Глава 3
МИКОПЛАЗМЫ
Общая характеристика микоплазмозов. Признаки поражения
Локализация в растениях
Особенности морфологии, структуры и репродукции микоплазм — возбудителей желтух растений
Систематика микоплазм
Диагностика микоплазмозов и идентификация их возбудителей
Определение патогенных свойств микоплазм, выделенных из растений
Развитие инфекционного процесса
Факторы патогенности
Способы распространения микоплазмозов растений
Профилактика и защита сельскохозяйственных культур от микоплазмозов и микоплазмозоподобных заболеваний
Агротехнические мероприятия
Борьба с насекомыми-переносчиками
Химические мероприятия
Селекция устойчивых сортов
Физические меры воздействия на возбудителей микоплазмозов
Другие методы борьбы

Глава 4
ВИРУСЫ И ВИРОИДЫ
Общая характеристика фитопатогенных вирусов
Классификация и номенклатура вирусов растений
ДНК-содержащие вирусы
Вирусы, содержащие двухнитевую ДНК
Вирусы, содержащие однонитевую ДНК
РНК-содержащие вирусы
Вирусы, содержащие двухнитевую РНК
Семейство Reoviridae — Реовирусы
Вирусы, содержащие однонитевую РНК
Семейство Rhabdoviridae — Рабдовирусы
Семейство Togaviridae — Тогавирусы
Вирусы с непрерывным геномом
Вирусы с разделенным двухкомпонентным геномом
Вирусы с разделенным трехкомпонентным геномом
Вироиды
Приложения
Список литературы
Указатель латинских названий грибов
Указатель латинских названий бактерий
Указатель русских названий вирусов и вироидов
Указатель международных названий вирусов и вироидов
Указатель русских и латинских названий растений
ПРЕДИСЛОВИЕ

Борьба с болезнями растений, вызываемыми различными микроорганизмами, относится к важнейшим мероприятиям по их защите и охране. Что же касается сельскохозяйственных растений, то их защита от действия микрофитопатогенов представляет собой одно из основных звеньев комплекса мероприятий по повышению их урожайности. Следует заметить, что заболевания микробиогенного происхождения наносят значительный, а иногда и катастрофический ущерб урожаю сельскохозяйственных культур.

Знание возбудителей заболеваний, особенностей их биологии, закономерностей развития и патологического действия составляет научный фундамент защиты растений от болезней. Возбудителями заболеваний растений являются представители различных групп микроорганизмов — низших грибов, бактерий, микоплазм, а также вирусов и вироидов — своеобразных групп, отличающихся простотой строения и особым типом взаимоотношений с клеткой растения-хозяина.

Несмотря на то, что в последние годы опубликованы фундаментальные работы по общей и частной фитопатологии, в отечественной и зарубежной литературе отсутствует справочник, охватывающий представителей всех групп фитопатогенных микроорганизмов. Этот пробел, возможно, восполнит публикация данного справочника.

Предлагаемая работа состоит из четырех глав, каждая из которых посвящена определенной группе возбудителей болезней растений — грибам, бактериям, микоплазмам и вирусам. Структура глав в основном однотипна: название возбудителя на латинском и русском языках, описание его биологии и вызываемых им болезней растений, развития патологического процесса, сведения о распространении вида и основных мерах борьбы с болезнью. Некоторые отклонения от указанной схемы связаны с разной степенью изученности отдельных видов и особенностями систематики разных групп микроорганизмов. В частности в гл. 3 особенности изложения материала связаны с тем, что описываемая в ней группа фитопатогенных организмов — микоплазмы — открыта лишь 20 лет назад, а ее систематика находится сейчас в стадии разработки. Сведения о микоплазмах, наносящих ощутимый вред сельскохозяйственным растениям, публиковались и обобщались в изданиях, вышедших незначительным тиражом (не более 500 экз.) и доступных лишь узкому кругу специалистов. Даже не всем преподавателям вузов,
готовящим биологов, микробиологов, фитопатологов и агрономов, практически известны свойства этих возбудителей, болезни ими вызываемые и меры борьбы с ними. Желанием ликвидировать этот недостаток и обусловлено своеобразие изложения материала в этой главе.

Справочник иллюстрирован большим количеством рисунков, в том числе оригинальных, каждая глава снабжена списком литературы по данной группе микроорганизмов. Кроме указателей названий микроорганизмов — возбудителей болезней на русском и латинском языках, в справочнике помещен указатель растений, поражаемых грибами, бактериями, микоплазмами и вирусами.

Авторы выражают надежду, что справочник будет полезен многим специалистам, работающим в сельском хозяйстве и в области защиты растений, и с благодарностью примут замечания и пожелания читателей.
Фитопатогенные микроорганизмы (бактерии, вирусы, микоплазмы, грибы) весьма многочисленны — описано свыше 40000 видов, различных по систематическому положению, степени паразитизма, патогенности, специализации и другим признакам.

Фитопатогенные микроорганизмы характеризуются патогенностью (т. е. способность вызывать заболевание растения, приводящее к снижению его продуктивности или гибели) и вирулентностью (т. е. степенью проявления патогенности, быстротой и характером течения заболевания). По степени паразитизма их подразделяют на облигатные и факультативные паразиты.

Жизненный цикл облигатных паразитов протекает в живом растении. Факультативные паразиты способны паразитировать на живом растении, либо вести сапрофитный образ жизни. Между этими двумя группами существуют многочисленные переходные формы. Так, некоторые виды микроорганизмов паразитируют на определенных видах растений, но часть жизненного цикла проводят как сапротрофы, другие — большую часть жизненного цикла проводят как сапротрофы, но определенный период паразитируют. Узкоспециализированные облигатные паразиты поражают обычно определенные виды (или даже сорта) растений.

Фитопатогенные микроорганизмы поражают различные растения: однолетние, многолетние, травянистые, древесные; они паразитируют в различных органах и тканях наземной и корневой систем растений в период вегетации, а также повреждают зерно, овощи, фрукты при их хранении.

Виды растений, вызываемые фитопатогенами.

Увядание — поражение проводящей и корневой систем. Возбудитель локализуется и развивается в проводящих сосудах, вызывает их механическую закупорку, а также вызывает некрозы, растение увядает.

Гнили — разрушение тканей растений под воздействием различных ферментов микроорганизмов.

Пятнистость, или некрозы — отмирание части тканей растений, вызываемое фитопатогенами.

Увеличения, или антракнозы — увеличение тканей растений, вызываемое фитопатогенами.

Налеты — наложения на поверхности пораженных органов растений, вызываемые фитопатогенами.

Пузыри — выпуклые поражения растений, вызываемые фитопатогенами.
Мумификации — затвердевание и почернение пораженного органа, густо пронизанного мицелием (склероциями) возбудителя темного цвета.

К перечисленным типам болезней растений, вызываемых фитопатогенами, можно добавить разрушение органов растений, их чрезмерное разрастание (кустистость), образование наростов и разнообразных деформаций (скручивания, морщинистости, курчавости, нитевидности листьев и т. п.).

Фитопатогенные микроорганизмы широко распространены в природе и в условиях, благоприятных для их развития, наносят значительный ущерб урожаю сельскохозяйственных культур. Они могут распространяться разными путями: током воздуха, водой, пылью, семенами, клубнями, луковицами и другими органами растений, растительными остатками, насекомыми, животными, транспортными средствами.

Пути проникновения фитопатогенов в растения различны. В основном они проходят через раневую полость, структурные отверстия (устыца), либо через интактную поверхность растения.

Раны на растениях возникают под действием физических (колебание температуры), механических, биологических (животные, насекомые, микроорганизмы) факторов. В зависимости от вида растения и его биологических особенностей, типа раневой поверхности преимущественное развитие получают разные виды микроорганизмов. Поселяясь на ране как сапротрофы, они могут убивать близлежащие живые клетки продуктами своей жизнедеятельности и проникать в живые ткани растений как паразиты. Степень проникновения зависит от устойчивости растения, быстроты образования коркового слоя, состава его компонентов, активности ряда окислительных ферментов (фенолоксидазы, других, имеющих важное значение в устойчивости растений). Раневые инфекции приводят обычно к развитию гнилей.

Поражения через устьица и другие отверстия листьев и органов растений типичны для облигатных паразитов — видов родов Puccinia, Plasmopara и некоторых факультативных паразитов — видов родов Alternaria, Penicillium. Обычно споры этих грибов-паразитов прорастают на поверхности листьев около устьица, или других отверстий точкой гифой, которая внедряется через устьице в околоустичные клетки, а оттуда распространяется в клетки и межклетники. Для начальной стадии прорастания спор на поверхности растительной ткани необходима вода (т. е. споры проявляют положительный гидротропизм). Предполагают, что прорастание спор этих паразитов вблизи устьица или других естественных отверстий растений и внедрение гифы в устьица при их открытых обусловлено также другими тропизмами (так как через устьица выделяются вещества, возможно, вызывающие хемотропизм спор гриба).

Вирулентность разных видов облигатных фитопатогенных микроорганизмов различна. В одних случаях паразит легко внедряется в ткани растения и вызывает его быструю гибель, в других — длительно существует вместе с растением и угнетает его рост лишь при определенных условиях.

Некоторые виды фитопатогенов поражают множество растений, другие — только виды, принадлежащие к определенным семействам (например, Phytophthora infestans поражает виды семейства Solanaceae, ржавчинные грибы рода Phragmidium поражают виды семейства Rosaceae). Наконец, внутри некоторых видов микроорганизмов имеются расы, поражающие определенные виды или сорта растений. Так, Ergotiphe graminis поражает до 100 видов из 34 родов семейства Gramineae, но некоторые специализированные расы этого вида поражают...
только пшеницу. Цикл развития ржавчинных грибов (например, пукциии) проходит на нескольких растениях, принадлежащих к разным семействам, что свидетельствует о еще более выраженной специализации.

Расы облигатных паразитов, проявляющие различную вирулентность к определенным сортам высших растений, морфологически неразличимы, поэтому их называют «физиологическими расами». Отдельные расы фитопатогенов характеризуются большой изменчивостью; они могут утрачивать или приобретать патогенные свойства, адаптируясь к определенным условиям, в том числе переходить к узкой специализации, к определенным тканям и органам растений.

В патогенезе некоторых заболеваний растений значительную роль играют фитотоксины — вещества различной химической природы, выделяемые микроорганизмами и оказывающие узкоспецифическое токсическое действие.

Вирулентность факультативных паразитов обычно хорошо выражена: они быстро разрушают клетку в месте инфекции за счет выделения ферментов и токсинов. Мертвые клетки растений представляют собой субстрат, благоприятный для быстрого развития факультативных паразитов, интенсивно образующих токсины. Это вызывает гибель еще большего числа клеток и увеличение пораженной поверхности растительной ткани.

Развитие инфекционного процесса в растении зависит от его устойчивости к данному виду микроорганизма, а также от так называемой инфекционной нагрузки (числа клеток возбудителя). Максимальная инфекционная нагрузка — число клеток возбудителя, которое вызывает в наиболее короткий срок развитие инфекционного процесса, минимальная — число клеток возбудителя, способное инфицировать растение. Инфекционная нагрузка для разных видов фитопатогенных микроорганизмов неодинакова и колеблется от единиц до нескольких десятков и сотен клеток.

Для возникновения фитопатологического процесса при поражении почвенными микроорганизмами имеет значение плотность популяции возбудителя — число зародышей в 1 г почвы или 1 г заселяемого субстрата — органа растения. Увеличение плотности популяции фитопатогенов в почве обычно связано с увеличением потенциала инокуляма (для факультативных микроорганизмов). Потенциал инокуляма — число изолятов в популяции, обладающих фитопатогенными свойствами по отношению к одному или нескольким видам или сортам растений; связан с формированием специализированных рас возбудителя. Плотность популяции и потенциал инокуляма в почве зависят от многих факторов — корневых выделений растений, их устойчивости или чувствительности к возбудителю, длительности культивирования растения, фунгистазиса почвы, наличия в ней растительных остатков, общей си- стемы агротехнических мероприятий.

Растения обладают неспецифическим и специфическим иммунитетом к инфекционным болезням. Виды и сорта растений подразделяют на относительно устойчивые и относительно восприимчивые к возбудителям ряда заболеваний или к возбудителю одного заболевания. Существует понятие сортовой устойчивости и восприимчивости. Абсолютной устойчивости к определенным фитопатогенным микроорганизмам не существует, так как при инфекционном процессе у возбудителя, и у питающего растения возникают морфологические и физиологические адаптации, в результате которых патогенный микроорганизм либо интенсивно развивается, либо, если защитные механизмы растения настолько сильны, что препятствуют распространению возбудителя, локализуется.
Фитопатогены могут распространяться по всему растению или за­
селять отдельные его органы, ткани и клетки. Есть виды, распростра­
nяющиеся главным образом на поверхности тканей, незначительно проникая вглубь. Например, у мучнисторосляных и некоторых видов грибов, поражающих корни растений, мицелий развивается на поверх­nости питающего растения и распространяется в эпидермальные клет­nки с помощью гаусторий. При этом мицелий одних видов грибов лока­
lлизуется на ограниченной площади, других — неограниченно.

Рост мицелия многих видов облигатных паразитов тесно связан
с ростом и развитием растения. Проникая в растение в ранней фазе
развития, паразит локализуется в определенной точке, и дальнейший
рост мицелия связан с ростом этой ткани или органа. Например, мицел­nий Tilletia caries первоначально проникает через колеоптиле про­
ростка в основание первого листа, затем — в точку роста. При цвете­
nии растения гриб поражает колос и обычно образует хламидоспоры.
В тканях растения паразитный гриб может распространяться в меж­nклетниках или в клетках.

Во многих случаях в растении, пораженном патогенными микро­nорганизмами, повышается активность пероксидазы, полифенолокси­nдаз, оксидаз ряда аминокислот, цитохромоксидаз, аскорбиноксидаз
и других ферментов. Уровень и активность окислительных ферментов
в пораженной ткани зависит от чувствительности растения к паразиту.
При поражении растения факультативными паразитами активность
окислительных процессов в клетках растения идет на убыль вследствие
их быстрой гибели под воздействием метаболитов патогена. При пора­nжении растения облигатными паразитами изменение активности окис­nлительных процессов связано с определенными процессами метаболиз­
ма растений, направленными на синтез метаболитов, губительно дей­nствующих на паразита (у устойчивых растений), или способствующих-
его развитию в тканях растения (у чувствительных растений).

Среди метаболитов растений, подавляющих или тормозящих рост
фитопатогенов, наиболее активны фенолы. Это группа реактивных сое­nдинений, основой которых являются циклические ароматические и гид­nроароматические вещества (моно- и полифенолы). В тканях растений
они обычно встречаются в виде связанных эфиров и глюкозидов. К ним
относятся пирокатехин, гидрохинон, пирогалол, флюрогалол, флавоноиды, сложные эфиры фенолкарбоновых кислот (хлорогеновая
кислота), а также фенольные спирты, альдегиды и кислоты. Феноль­nные соединения легко окисляются соответствующими фенолоксидазами
и ингибируют или стимулируют ростовые процессы в растении, а
также подавляют развитие многих видов фитопатогенов. Фенольные
соединения ингибируют прорастание спор, рост мицелия и отдельные
биохимические процессы в микробной клетке.

Сохранение жизнеспособности фитопатогенов обеспечивается пул­nтем образования у облигатных и факультативных фитопатогенных па­nразитов спор — телиоспор, хламидоспор и других их морфологиче­nских разновидностей, способных переносить неблагоприятные усло­nвия и длительное время не терять жизнеспособность. Поэтому инфици­nрование факультативными паразитами, образующими споры, хламидоспоры, гемы, осуществляется главным образом через почву, растительные остатки, реже — через семена. Инфицирование
облигатными паразитами происходит обычно через семена, плоды,
отмершие части растений, живые ткани.

Споры многих видов грибов первоначально прорастают в так на­nзываемой инфекционной капле, представляющей капельно-жидкую
влагу с растворенными в ней веществами, поступающими с транспира­nционными токами или диффундирующими из поверхностных клеток
растения. Содержащиеся в инфекционной капле вещества либо ингибируют прорастание спор определенных видов фитопатогенных грибов, либо стимулируют их прорастание. На первом этапе прорастания споры образуется ростковая трубка, на втором этапе гифы паразита проникают внутрь ткани растения и заражают его. При соприкосовении с кутикулой растения гифа образует аппрессорий, с помощью которого плотно прикрепляется к поверхности растения.

Заболевание растения — сложный процесс взаимодействия питанияющегося растения и патогенного микроорганизма, сопровождающийся разнообразными изменениями в метаболизме растения, его росте и урожае. Внедряясь в растение, патоген может увеличивать проницаемость пограничных слоев протоплазмы (что вызывает приток в клетку токсических метаболитов), изменять структуру и размеры клеточных органелл (ядер, митохондрий и др.), влиять на многие биохимические процессы — дыхание на разных его этапах, обмен углеводов, белков, аминокислот и витаминов, водный режим, фотосинтетическую активность.

Считают, что существует определенная связь между патогенностью микроорганизма и активностью ферментов, расщепляющих сложные полимеры оболочки растительной клетки (целлюлаз, пектиназ, гемицеллюлаз и др.). Действие этих ферментов облегчает проникновение паразита в ткани растения и обеспечивает его источниками питания.

Важное значение в устойчивости растений к поражению патогенами имеют фитонциды — вещества различной химической природы, летучие или растворенные в цитоплазме клеток растения, обладающие широким антибиотическим действием. Содержание алкалоидов, эфирных масел в органах растений также часто определяет их устойчивость к поражению. В развитии устойчивости растений к заболеваниям, в том числе и вызываемым патогенными грибами, имеют фитоалексины, которые образуются в растении только в процессе заболевания, т. е. при внедрении или контакте микроорганизма с клетками растения; они ингибитируют рост микроорганизма на сверхчувствительной ткани.

Изложенный материал свидетельствует о существовании естественных тонких механизмов регуляции метаболизма пораженных растений. Меры по защите растений от поражения патогенными микроорганизмами, принимаемые человеком, в основном заключаются в выведении сортов растений, устойчивых к одному или более, желательно нескольким, возбудителям, и применении комплекса агroteхнических мероприятий, способствующих уменьшению численности популяции и снижению вирулентности патогенов.
ПРИНЯТИЕ СОКРАЩЕНИЯ

выс. — высота
Г — гуанин
dиам. — диаметр
dl. — длина
ДНК — дезоксисеронуклеиновая кислота
dмДНК — двунитевая ДНК
ДНОК — динитроортокрезол
ИФА — иммуноферментный анализ
КА — картофельный агар
КДО — 2-кето-3-диоксиоктановая кислота
к. т. — комнатная температура
ЛПС — липополисахарид
мол. — молекулярный
МПА — мясо-пептонный агар
МПБ — мясо-пептонный бульон
нед. — неделя
онДНК — однонитевая ДНК
ПВС — продолжительность выстаивания сока
ПРС — предельное разведение сока
ПСИ — продолжительность сохранения инфекционности
РНК — рибонуклеиновая кислота
РПБ — риккетсиеподобные бактерии
РС — реакция сверхчувствительности
син. — синоним
ТМТД — 80%-ный раствор тетраметилтиурамдисульфита
tолщ. — толщина
ТТИ — точка температурной инактивации
ТТФ — тетразолий хлорид
УА — уранил ацетат
УТ — ультратонкий
Ц — цитозин
шир. — ширина
ЭДТА — этилендиамиинететрауксусная кислота
РВ. — патовар
ГЛАВА 1

ГРИБЫ

КЛАСС PLASMODIOPHOROMYCETES — ПЛАЗМОДИОФОРМИЦЕТЫ

Вегетативное тело в виде плазмодия — голой сетчатой бесформенной массы протоплазмы, лишенной оболочки и содержащей многочисленные ядра. Плазмодий распадается на несколько зооспорангий, в которых после многократного деления ядер образуются гаплоидные зооспоры. Они копулируют, превращаясь в диплоидные амебоиды, распространяющиеся по клеткам тканей растения. Амебоиды, слившись, образуют многоядерный плазмодий, в котором происходит двухкратное деление ядер и образование покоящихся спор (цист).

Порядок Plasmodiophorales — Плазмодиофоральные

Семейство Plasmodiophoraceae — Плазмодиофоровые

Род Plasmodiophora Woron.— Плазмодиофора

Шиповидные, щетинистые цисты разных размеров и формы находятся в клетке хозяина в свободном состоянии. В цисте образуется одна первичная зооспора, которая заражает растение и развивается в нем в спорангийных плазмодиях больших размеров. Плазмодии делятся на мелкие спорангии, в которых образуются вторичные зооспоры. Спорангийные плазмодии заполняют частично или полностью клетку растения-хозяина. При созревании они распадаются на цисты.

Plasmodiophora brassicae Woron.— Плазмодиофора капусты (рис. 1.1)

Возбудитель килы крестоцветных.

Цисты шаровидные, эллиптические, яйцевидные, продолговатые или неправильной формы, 1,6—6,9 мкм в диам., с бесцветной, тонкой мелкошиповатой оболочкой, находятся в клетке хозяина в свободном состоянии (не объединены в цистосорусы). В цисте образуется одна первичная зооспора, грушевидной, почти шаровидной или яйцевидной формы, 2,5—3,5 мкм в диам., с коротким жгутиком, которая заражает растение и развивается в нем в спорангийных плазмодиях больших размеров. Плазмодии делятся на мелкие спорангии, яйцевидно-шаровидной формы, 6—6,5 мкм в диам., в которых образуется 4—8 вторичных зооспор, 1,9—3,1 мкм в диам., с двумя жгутиками — один — короткий и тупой, второй — длинный, извилистый. Инфицируя растение, вторичные зооспоры образуют цистогенный плазмодий, частично или полностью заполняющий клетку растения-хозяина, размером 100—200 мкм. Жизнеспособность спор — 6—7 лет.

Поражает капусту. У больных растений листья становятся хлоротичными и в жаркую погоду увядают, на корнях образуются наросты и вздутия, достигающие больших размеров. Растения отстают в росте, качан не развивается. Нарости к концу вегетации или весной разру-
Рис. 1.1. Plasmodiophora brassicae:
а — циста; б, в — амебоиды проросшей цисты; г — проникновение амебоида в корневой волосок; д — спорангиальный плазмодий в расширенной части волоска; е — спорангиосорус; ж — спорангиям, делящийся на четыре сегмента; з — выход вторичных зооспор из спорангия; к, л — проникновение молодых плазмодиев через оболочку клетки [44]
шаются и служат источником инфекции. Развитию болезни способствует температура 18—25 °C, влажность почвы 50—97 % (оптимальная 75—90 %).

Болезнь приводит к значительной потере урожая крестоцветных.

Распространение: повсеместно в районах возделывания.

Меры борьбы: соблюдение севооборота с возвращением крестоцветных на прежнее место не ранее чем через 5 лет; использование здоровой рассады; уничтожение растительных остатков после сбора урожая; известкование кислых почв в очагах болезни; обработка рассады во время посадки водной суспензией серы (30—40 кг/га) или бенлата (12 кг/га).

**Род Spongospora Brunch. — Спонгоспора**

Вегетативное гено — плазмодией. Первичные зооспоры амебоидные, инфицируют растение и развиваются в нем в спорангиальные плазмодии, делящиеся на спорангии в форме спорангиосорусов. Спорангии мелкие или крупные, изменчивой формы, в них образуются вторичные зооспоры. Цистогенные плазмодии отличаются от спорангиальных более темной окраской и плотной оболочкой; созревая, они делятся на губчатые или полые цистосорусы разнообразной формы: шаровидной, яйцевидной, продолговатой, неправильной.

Спонгоспора подземная разновидность подземная (рис. 1.2)

Син.: Spongospora solani Brunch

Возбудитель порошистой парши картофеля.

Цисты рыхлые или компактные, 3,5—4,5 мкм в диам., с гладкой, тонкой, желтовато-зеленой оболочкой. В них образуется одна амебоидная зооспора, которая инфицирует растение и развивается в нем в спорангиальные плазмодии, делящийся на спорангии в форме спорангиосорусов. Спорангии шаровидные, яйцевидные, продолговатые, с маленьким выводным отверстием. В них образуются вторичные споры — шаровидные, яйцевидные, продолговатые, 2,5—4,6 мкм в диам., с неравными жгутиками, 4,35 и 13,7 мкм дл Цистогенные плазмодии, созревая, делятся на губчатые или полые цистосорусы разнообразной формы — шаровидной, продолговатой неправильной, 19—85 мкм в диам.

Поражается вся подземная часть растения: столоны, клубни, чаще корни. Наиболее характерным признаком болезни является образование на клубнях пустул, развитие которых проходит через ряд стадий: а) стадия «закрытой пустулы» — пустула увеличивается в объеме и становится более выпуклой; б) стадия «открытой пустулы» — пустула разрывается с обнаружением ее содержимого; в) стадия «пустой пустулы» — пустула высыхает и ее содержимое высыпается. Пустулы на клубнях имеют весьма характерный вид вследствие звездчато разрывающейся перидермы, лопасти которой некоторое время сохраняются вокруг пустулы. Корневая форма болезни характеризуется образованием желвачков (наростов) единичных или сидящих группами, чаще всего односторонних: диаметр их не превышает диаметра корня, на котором они образуются. Наросты сначала белые, с буристой поверхностью, твердые, затем темнеют и одновременно с изменением окраски сгибают Развитию болезни способствует высокая влажность почвы и умеренная температура (12—18 °C).

Распространение: все страны умеренного пояса.

Меры борьбы: протравливание пораженных клубней 3—3,5 %-ной суспензий ТМТД (2,1—2,5 кг/т), поликарбацином (2,6—2,7 кг/т) или раствором формалина (30 л/т) с последующим томлением в течение 4 ч (только не проросшие клубни!). [17, 41, 44]
Рис. 1.2. Spongospora subterranea:
а — е — первичные двух- и четырех жгутиковые зооспоры; д, е — плазмогамия и кариогамия амебоидов из поросших цист; з — цистосорусы в корневом волоске; и — амебоид внутри волоска; к — инфицирование корневого волоска; л — вторичная зооспора; м — деление амебоида; н — цистосорусы в клетке растения; о — цистосорус [44]
Род Polymyxa Legingham — Полимикса

Вегетативное тело — спорангийный плазмодий, развивающийся в клетке, продолговатый, трубковидный, при созревании с тонкой оболочкой. Спорангий не объединяется в спорангиосорусы, с одной или несколькими выводными трубками, через которые выходят вторичные зооспоры. Цистогенные плазмодии амебоидные, при созревании превращаются в цисты и соединяются в цистосорусы, изменчивые по форме, размерам и структуре.

**Polymyxa betae Keskin** — Полимикса свеклы (рис. 1.3)
Переносчик возбудителя ризомании сахарной свеклы.
Цисты в виде самостоятельных клеток, шаровидные, полиэдринеские, 4,2—5 мкм в диам., с бесцветной гладкой оболочкой. Циста прорастая, образует одну первичную зооспору. Спорангиальные плазмодии по 2—3 в клетке. Цистосорусов 4—300 в клетке, они изменчивы по форме и размерам.
Пораженные растения имеют мелкие, недоразвитые корнеплоды, в нижней части сильно укороченные и деформированные, с большим количеством мелких, переплетающихся корешков. Периодически отмирая и нараста, корешки пронизывают почву на глубине 10—15 см и придают ей торфянистую структуру. Пораженные корнеплоды твердые, волокнистые, с одревесенными сосудами, имеют некоторые симптомы фузариозной гнили. Они загнивают во время вегетации. При-
знаки болезни проявляются в июне. В сухую и жаркую погоду растения погибают. Развитию болезни способствуют высокие температура и влажность воздуха.

Болезнь приводит к снижению урожая корнеплодов в 10—15 раз. уменьшению их сахаристости.

Распространение: Киргизская ССР, Казахская ССР.

Меры борьбы: соблюдение правильного севооборота (возврат свеклы на прежнее место не ранее чем через 4—5 лет); пространственная изоляция полей; обработка посевов в первой фазе первой пары настоящих листьев фосфамидом БИ-58 (0,5—1 кг/га).

КЛАСС CHYTRIDIOMYCETES — ХИТРИДИОМИЦЕТЫ

Вегетативное тело слабо развитое, у примитивных видов — это одноклеточный амебонд (цитоплазматическая масса, покрывающаяся оболочкой только перед спорообразованием), который, разрастаясь, превращается в многоядерный плазмодий; у высокоразвитых — многоядерный разветвленный неклеточный мицелий. В течение вегетационного периода амебонд находится внутри клеток растения-хозяина Из него развиваются органы бесполого размножения — зооспоранги с зооспорами, несущими один жгутик. У примитивных форм весь таллом превращается в зооспоранги. У более высокоорганизованных — зооспорангии образуются из таллома и иногда отделяются от него перегородками. Зооспоры выходят из зооспоранги через специальное отверстие или инцистируются внутри него и прорастают ростковыми трубками. Зооспора, прикрепляясь к субстрату или к клетке растения-хозяина, теряет жгутик и превращается в вегетативное тело.

Половой процесс разнообразен: слияние одножгутиковых подвижных клеток или образовавшихся из них вегетативных тел, слияние более или менее дифференцированных половых клеток (изогамия, гетерогамия, оогамия). В результате полового процесса к концу вегетации в пораженных клетках растения формируются покоящиеся диплоидные споры (цисты) с утолщенной бугорчатой, шиповатой, реже гладкой оболочкой, в которых после периода покоя образуются первичные гаплоидные зооспоры в одном или в группе зооспорангиев — спорангисорусе.

Первичные зооспоры инфицируют растение и развиваются в нем в спорангийных плазмодиях больших размеров, делящийся на споры в форме спорангисорусов. В спорангиях образуются вторичные зооспоры, которые повторно инфицируют растение и образуют дополнительные плазмодии и спорангии, заполняющие клетку растения-хозяина, последние при созревании делятся на цисты. Покоящиеся — цистогенные плазмодии — отличаются от спорангийных более плотной и темной оболочкой, при созревании они делятся на цисты, объединяющиеся в цистосорусы различной формы и размеров.

Большинство хитридиомицетов обитают в воде и почве, среди них есть паразиты водорослей, высших водных растений и беспозвоночных, а также сапрофиты на растительных и животных остатках. Класс делится на три порядка: Chytridiales, Blastocladiales, Monoblepharidales. Виды, паразитирующие на растениях, относятся к порядку Chytridiales, который характеризуется тем, что одноклеточное вегетативное тело полностью превращается в спорангий (семейства Olpidiaceae и Synchytriaceae).

В классе насчитывается около 1 тыс. видов.
ПОРЯДОК CHYTRIDIALES — ХИТРИДНАЛЬНЫЕ
Семейство Olpidiaceae — Ольпидиевые
Род Olpidium A. Br.— Ольпидий

Вегетативное тело — амебоид, из которого развивается один зооспоранген или цистогенный плазмодий. Зооспоранги шаровидные или эллиптические, с порообразной или удлиненной выводной трубкой, часто выступающей из субстрата. Зооспоры шаровидные или яйцевидные, с длинной ресничкой. Цистогенные плазмодии шаровидные, с утолщенной гладкой или бородавчатой оболочкой.

Olpidium brassicae (Woron.) Dang.— Ольпидий капустный (рис 1.4)

Возбудитель «черной ножки» капусты.

Рис. 1.4. Olpidium brassicae:
а — плазмодий; б — зооспоранги в клетке растения; в — гаплоидные зооспоры; г — зооспора, потерявшая жгутик; д — зооспора диплоидная [44]

Вегетативное тело — амебоид, который в клетках питающего растения превращается в зооспоранген с тонкой бесцветной оболочкой. Зооспоранги шаровидные, 12—120 мкм в диам. В клетке растения может находиться от одного до 12 зооспорангев. Весной зооспоры выходят через аэроботропический каналец на поверхность питающего растения. Зооспоры шаровидные, 3 мкм в диам., с одним жгутиком около 17 мкм дл. Втягивая жгутик, зооспора покрывается оболочкой и переливает свое содержимое в виде комочки протоплазмы с одним ядром в эпидермальную клетку растения, либо в более глубоко расположенную клетку первичной коры. Таким образом происходит новое заражение растений.

Этот цикл бесполого размножения занимает несколько дней.
При половом размножении выходящие из разных зооспорангев зооспоры попарно сливаются, образуя двурукутниковую зиготу, которая после периода покоя прикрепляется к поверхности клетки хозяина, покрывается оболочкой и превращается в цисту. Цисты бесцветные или светло-желтые, 8—25 мкм в диам., с толстой бородавчатой оболочкой и густой протоплазмой. После периода покоя циста прорастает многочисленными первичными зооспорами, которые являются источником инфекции.

Поражает капусту и другие виды семейства крестоцветных, а также лен, огурцы, овес, томаты, салат, табак и другие виды растений. У капусты заражение происходит после появления семядолей или первых листьев, в основном в парниках при избыточной влажности. Растение теряет тургор, желтеет и обычно гибнет. Корневая шейка размягчается, чернеет, резко утончается и загнивает.
Болезнь приводит к гибели значительного количества рассады.
Распространение: повсеместно в зонах с повышенной влажностью.
Меры борьбы: опрыскивание рассады 1 %-ным раствором бордоской жидкости; протравливание семян ТМТД (8 кг/кг); обработка рассады ТМТД (1—1,5 г/м²); внесение в почу за три дня до посева серы, цинеба или поликарбацина (5 г/м²). [41]

Семейство Synchytriaceae — Синхитриевые

Род Synchytrium D. B. et Woron. — Синхитрий

Вегетативное тело — амебоид желтого или красноватого цвета, заполняющий всю пораженную клетку. Часто амебоид покрывается толстой оболочкой, образуя покоящийся спорангий шаровидной или эллипсоидальной формы прорастающий лишь после периода покоя.

Виды рода вызывают образование вздутий, наростов, деформации у различных растений.

Рис. 1.5. Жизненный цикл Synchytrium endobioticum:
а — первичные зооспоры; б — амебоид; в — спорангносорус; г — вторичные зооспоры; д — цисты [44]

Synchytrium endobioticum (Schilb). Perc. — Синхитрий внутриживущий (рис. 1.5)

Син.: Chrysophlyctis endobiotica Schilb.
Возбудитель рака картофеля.

Вегетативное тело — амебоид, развивающийся в клетке растения-хозяина из зооспоры. Амебоид, разрастаясь, покрывается оболочкой и превращается в зооспорангии, которые объединяются часто в группы — сорусы. В одном из углов каждого зооспорантия образуется сосочковидное отверстие, через которое выходят зооспоры с одной ресничкой 2—2,5 мкм в диам., которые повторно заражают растения. Такой процесс происходит многочисленные раз. Осенью наблюдается слияние зооспор, образуя цисты 40—80 мкм в диам., которые обитают в почве около 20 лет. Оптимальная температура развития гриба 16,6—17,7 °C, максимальная 21,1 °C. Грибы относятся к влаголюбивым организмам.

Болезнь проявляется в образовании на клубневых почках раковых наростов, сначала белых, затем желтоватых и в конце коричнево-черных. Созревая, наросты перевраиваются в бурую слизистую массу с сильным неприятным запахом. Известны другие формы заболевания: листовая, при которой глазковые чешуи клубня разрастаются и приобретают вид мясистых листков; паршеобразная — в виде язв и коро-
бочек на поверхности клубней; гофрированная, характеризующаяся сильно сморщенными клубнями. Источник инфекции — зараженные клубни картофеля и почва.

Известны агрессивные расы патогена.

Кроме картофеля заболеванию подвержены томаты, некоторые виды семейства пасленовых: паслен, физалис, табак, дурман и др.

Болезнь приводит к потере 40—60 % урожая картофеля.

Распространение: Центральная Европа, Италия, Индия, Канада.

Меры борьбы: карантинные мероприятия и дезинфекция почвы в очагах развития болезни нитрафеном (400—440 г/м²). [17, 41, 44]

ПОРЯДОК MYCOCHYTRIDIALES — МИКОХИТРИДИАЛЬНЫЕ

Семейство Physodermiaceae — Физодермиевые

Род Physoderma Wall.— Физодерма

Цисты шаровидные или эллипсоидальные, с гладкой коричневой оболочкой, расположены группами. Зооспорангии встречаются крайне редко, у многих видов рода они неизвестны. Иногда в гифах перед началом образования цист возникают перегородки, отделяющие участки, которые наполняются протоплазмой и разбухают. По-видимому, происходит накопление питательных веществ для спораобразования. Эти участки гиф сохраняются в виде пустых придатков цист после исчезновения мицелия. Цисты прорастают обычно в воде, скапливающейся в пазухах листьев. Из них выходят зооспоры, вновь заражающие растение.

Physoderma maydis Miy.— Физодерма кукурузы

Син.: Cladosporium maydis Miy.; Physoderma zeae-maydis Shav.

Возбудитель физодермоза, или бурой пятнистости кукурузы. Вегетативное тело — мицелий, состоящий из разветвленных гиф до 1 мкм в диам. В клетках питающего растения в результате расщепления отдельных участков гиф перегородками образуются цисты. Цисты эллиптическо-овальные или шаровидные, густо-коричневые, с толстой, гладкой оболочкой, слегка приплюснутые с одной стороны, 20—30 × 18 — 24 мкм. Они имеют круглый колпачок, открывавшийся после перезимовки. Выходящие из цист зооспоры имеют одну длинную ресничку, их размер — 5—7 × 3—4 мкм. При прорастании зооспоры образуют тонкую гифу, проникающую в клетку паренхимы листа или стебля. Зооспорангии встречаются крайне редко, формируются на верхней стороне листьев; они туфельковидные, их очертания и размеры изменчивы. Зооспорангии прикрепляются к клетке растения-хозяина хорошо развитой ризоидальной ветвистой системой, отходящей от базальной клетки. Из них через широкую пору выходят многочисленные (более 300) зооспоры, которые меньше зооспор, выходящих из цист. Поражает листья, листовые влагалища, стебли, иногда внешние листья обвертки початка кукурузы, а также сорго.

Болезнь проявляется в образовании темно-бурых пятен, частично сливающихся на влагалищах листьев и на стеблях около узлов. На пораженных участках находится масса бурых крупных цист, очень похожих на споры головневых грибов. Пораженные ткани постепенно засыхают и разрушаются, от них остаются лишь сосудисто-волокнистые пучки. Восприимчивы только ткани меристемы (очень ограниченное время).

Болезнь приводит к незначительным потерям урожая.
Распространение: зоны с теплым и влажным климатом, в СССР — только в Грузии.
Меры борьбы: уничтожение зараженных растительных остатков.

КЛАСС OOMYCETES — ООМИЦЕТЫ

Вегетативное тело — хорошо развитый неклеточный мицелий, у некоторых наиболее примитивных представителей — плазмодий. Характерной особенностью рода является наличие целлюлозы в оболочках гиф мицелия.

Бесполое размножение осуществляется в основном двужгутиковыми зооспорами, жгутики которых различаются по длине и строению: направленный вперед жгутик — перистый, назад — бичевидный.

Исключение составляют представители порядка Peronosporales, у которых вегетативное размножение осуществляется также зооспорангиями (семейство Phytophthoraceae) и экзогенными конидиями (семейство Peronosporaceae).

Половой процесс — оогамия, при котором часть цитоплазмы антитрития переходит через оплодотворяющий отрог в неподвижную яйцеклетку, находящуюся в оогонии, и оплодотворяет ее. Оплодотворенная яйцеклетка превращается в ооспору с утолщенной оболочкой, наполненной тонкозернистой протоплазмой с многочисленными включениями капель масла. После периода покоя ооспоры прорастают ростковой трубкой, дающей начало новому таллу. Иногда на конце ростковой трубки образуется зооспорангий.

Оомицеты — один из наиболее гетерогенных классов, в его пределах наблюдаются различные стадии перехода от облигатного сапрофизма к облигатному паразитизму, от водной среды обитания — к на-земной.

Класс объединяет четыре порядка: Lagenidiales, Leptomitales, Saprolegniales и Peronosporales. Возбудители опасных заболеваний относятся к двум последним порядкам.

Основное место в порядке Saprolegniales занимает семейство Saprolegniaceae, к которому относятся грибы с хорошо выраженным неклеточным мицелием. В оогонии формируется одна или несколько яйцеклеток (ооспор), сначала они многоядерные, затем — одноядерные.

Антеридии, в отличие от оогониев, не дифференцированы на гаметы и представляют собой цилиндрические, нитевидные, прямые и изогнутые выросты пор.

У представителей порядка Peronosporales вегетативное тело представлено хорошо развитым бесцветным многоядерным мицелием, состоящим из нитевидных развитленных гиф.

Известно около 800 видов оомицетов. [4, 21, 44]

ПОРЯДОК SAPROLEIGNIALES — САПРОЛЕГНИАЛЬНЫЕ

Семейство Saprolegniaceae — СапROLEГНИЕВЫЕ

Род Aphanomyces dBy — Афаномицес

Вегетативное тело хорошо развито и состоит из обильно развитленных ценоцистических гиф, которые образуют на субстрате пустулы или войлочные налеты. Зооспорангии нитевидные, одинаковой толщины или реже суживающиеся к вершине, отходя от недифференцирован-
ных вегетативных гиф. Первичные зооспоры образуются в один ряд в зооспорангии и инцистируются после выхода из отверстия спорангия. Цисты первичных зооспор шаровидные. Вторичные зооспоры, выходящие из цист, почковидные, с двумя жгутиками по бокам. Оогонии верхушечные на коротких или длинных ответвлениях, гладкие, шиповатые, бородавчатые. Ооспоры одиночные, реже по две, бесцветные или темноокрашенные. Антеридии по одному или несколько на оогонии, продолговато-цилиндрические, булавовидные, с простой или ветвистой ножкой.

Виды рода паразитируют на корнях проростков сосудистых растений [4, 8, 21, 44, 46]

*Aphanomyces cochlioides* Drechs.— Афаномицес улитковидный

Возбудитель гнили; один из возбудителей корнееда сахарной свеклы.

Вегетативное тело в виде толстых разветвлённых бесцветных гиф. Зооспорангии длинные, извилистые, неравномерной толщины, суженные к верхушке, с многочисленными боковыми ответвлениями. Первичные зооспоры почковидные, с двумя боковыми ресничками. Оогонии верхушечные, на коротких боковых веточках, почти шаровидные, 20—29 мкм в диам., с оболочкой неравномерной толщины, с извилистым внутренним конуэром. Ооспоры от бесцветных до желтых, 16—24 мкм в диам., с зернистым содержимым Антеридии по 1—5 на оогонии, согнутобулавовидные, 6,5 — 10 X 9 — 18 мкм, с ветвистой ножкой и короткой оплодотворяющей клеткой.

Поражает всходы сахарной свеклы. Повреждается в основном только надземная часть растения — корневая шейка, подсемядольное колено, иногда семядоля и черешки. Пораженные участки буреют и утончаются; растение поникает и увядает. Источник инфекции — цисты находящиеся в зараженных семенах и почве. Болезнь приводит к изрезживанию всходов, ослаблению растений, деформации корнеплодов, снижению сахаристости и др.

- Распространение: повсеместно в районах возделывания сахарной свеклы.

Меры борьбы: соблюдение правильного севооборота; обработка семян перед посевом защитно-стимулирующими веществами; протравливание семян перед посевом гранозаном с красителем (2—4 кг/т), тигаром (5—6 кг/т), тачигареном или фентиуром (1,5—6 кг/т); возделывание устойчивых сортов. [41]

*Aphanomyces euteiches* Drechs.— Афаномицес эвтейхес (рис. 1.6)

Возбудитель водянстой гнили зернобобовых культур.

Гифы 4—10 мкм в диам., бесцветные, умеренно ветвистые. Зооспорангии вытянутые, отходят от расширенных сегментов вегетативных
гиф, на концах суженные. Первичные зооспоры (до 300 и более) продольговатые, 30—50 × 3,5 мкм, инцистируются после выхода из зооспорангия. Цисты первичных зооспор 8—11 мкм в диам. Вторичные зооспоры почковидные, с двумя ресничками. Оогонии верхушечные, на коротких веточках, почти шаровидные, 25—35 мкм в диам., с толстой гладкой оболочкой неравномерной толщины. Ооспоры бесцветные, 18—25 мкм в диам., с толстой оболочкой, зернистым содержимым. Антеридии по 1—5 на оогоний, с длинной ножкой, простой или веерной, с заметной оплодотворяющей трубкой. Ооспоры прорастают сразу же с образованием одной или нескольких ростковых трубок.

Поражает горох, вику, клевер, фасоль, люпин, чину в комплексе с другими возбудителями — видами родов Fusarium и Pythium.

На корнях и боковых корешках пораженных растений появляется мягкая водянистая гниль, кора корня размачивается. Заболевание определяют по появлению водянной гнили в основании стебля (1—2 см над поверхностью почвы). В засушливую погоду пораженная ткань стебля подсыхает, уточняется, образуется перетяжка, изменяется цвет — от светло-зеленого до темно-бурого; растение полегает, нижние листья отмирают. Характерным диагностическим признаком этой гнили является обильное образование ооспор в пораженных тканях корней и основания стебля.

Источник инфекции — ооспоры, сохраняющиеся в почве длительное время.

Болезнь приводит к нарушениям водного режима и нормального снабжения питательными веществами растения и к его гибели.

Распространение: повсеместно в зонах с избыточным увлажнением.

Меры борьбы: соблюдение севооборота (размещение гороха с 7—8-летней ротацией); мелиорация и известкование почвы; обработка семян перед посевом растворами солей, содержащих микроэлементы — молибденовокислым аммонием (40—50 г/ц), или медным купоросом (23—30 г/ц), а также тачигареном или фундазолом (2 кг); внесение в почву серы (3 кг/га). [41]

Другие вредоносные виды: A. cladogamus Drechs.; — клядогаммовый, поражает салат, томаты, редис, картофель; A. campostylus Drechs.— афаномицес кампостильный, поражает овес; A. raphani Kendr.— а. редьковый, поражает редис. [44]

ПОРЯДОК PERONOSPORALES — ПЕРОНОСПОРАЛЬНЫЕ

Семейство Pythiaceae — Литиевые

Род Pythium Pringsh. — Питий

Вегетативное тело — хорошо разветвленный мицелий с целлюлозной оболочкой и многочисленными ядрами. Развивается внутри субстрата или на его поверхности в виде белого налета. На мицелии развиваются верхушечные нитевидные, обычно одиночные, реже в цепочках зооспорангий 15—25 мкм в диам. Они представляют собой лишь конечные отвествления гиф, которые нередко даже не отделяются от гиф и иногда расположены посередине гиф. В зооспорангиях образуются зооспоры, или их содержимое переходит, обычно, через боковые отростки в проростковый пузырек, в нем образуются почковидные зооспоры с двумя ресничками. В некоторых случаях зооспорангий отделяется от гифы и затем прорастает подобно конидиям, образуя зооспоры или росток. Оогонии шаровидные, расположенные на концах гиф, редко
интеркалярно. Антеридии булавовидные. Ооспоры с гладкой, сетчатой или щетинистой бесцветной или коричневой оболочкой, шаровидные, одиночные. Прорастают обычно после 4—5 мес. покоя.

Развитие зооспор после выхода из зооспорангия протекает в три этапа: движение, инцистирование и прорастание. Движение обеспечивают два жгутика. Зооспоры активно движутся с током воды в направлении корней, заряжая растение, после чего жгутики отпадают, зооспоры округляются и покрываются тонкой оболочкой (т. е. инцистируются), затем начинают прорастать.

Род включает несколько широко распространенных видов высоко-специализированных паразитов высших растений.

*Pythium debarianum* Hesse — Питий де-барийановый (рис. 1.7)

Возбудитель гнили различных растений; одни из возбудителей корневая сахарной свеклы.

Гифы ветвистые, обычно 5 мкм в диам., в старых культурах с пере-городками. Зооспорангии шаровидно-яйцевидные, верхушечные или интеркалярные, 15—26 мкм, в среднем 19 мкм в диам., прорастающие ростковыми трубками или зооспорами. Оогонии гладкие, верхушечные или интеркалярные, обычно шаровидные, 15—28 мкм, в среднем 21 мкм в диам. Антеридии по 1—6 на оогонии, моноклинные или диклинные. Ооспоры гладкие, аплеротические, 12—20 мкм, в среднем 17 мкм в диам., прорастающие ростковой трубкой.

Поражает сеянцы свеклы, капусть, гороха, тыквенных, хлопчатника, сои, сорго, люпина, табака, фасоли, картофеля, клевера, вики, томатов, кукурузы и многих других растений.

Болезнь наносит значительный ущерб посевам свеклы: масса корнеплода снижается на 10—40 % по сравнению со здоровыми, они плохо хранятся и нередко являются очагами загнивания свеклы в кагатах.

Распространение: повсеместно.

Меры борьбы: уничтожение очагов болезни, их обработка 0,1 %ным раствором бордоской жидкости, 0,5 %ным раствором формалина, 0,3—0,5 %ным перманганатом калия, тиокарбамидами и другими противогрибковыми средствами; обработка семян ТМТД (1,5—4,0 кг/т), фентиурамом и тигамом (по 2 кг/т). [41, 42]
**spernum Pringsh** — питий односеменной, поражает ячмень, рис, салат, шпинат, табак и др.; **P. aphanidermatum (Edson.) Fitzp.** — питий афанидермовый, поражает картофель, морковь, кукурузу, вику, лен, томаты, хлопчатник, огурцы и многие др.; **P. pulchrum Mind.** — питий красивый, поражает кукурузу, капусту, горох, фасоль и др.; **P. paroecandrum Dresch.** — питий пароэкандровый, поражает хлопчатник, пшеницу, люцерну; **P. irregulare Buis.** — питий нерегулярный, поражает ячмень, огурцы, лен, люпин, горох, вику, пшеницу, свеклу (черный сосудистый некроз свеклы); **P. artotrogus (Mont.) dBy** — питий артотрог, поражает горох, томаты, капусту, редис, фасоль; **P. vitis Serb.** — питий виноградный, поражает сеянцы винограда, **P. ultimum Trow** — питий последний, поражает кукурузу, сорго, диккие злаки. [44]
Семейство Phytophthoraceae — Фитофторовые

Род Phytophthora dBy — Фитофтора

Вегетативное тело — белый, паутинистый, многодерновый неклеточный мицелий с редкими гаусториями (присосками) в виде боковых выростов, проникающих в полость прилегающих клеток. Распространяется в растении эндофитно.

Цикл развития гриба включает шесть стадий со сменой гаплоидной фазы диплоидной: мицелий, зооспорангеноносы в зооспорангиях, хламидоспоры, зооспоры, оогонии с антеридиями и ооспоры.

Зооспорангеноносы прямые или неправильно разветвленные, похожи на вегетативные гифы, выходит из устьица либо поодиночке, либо пучками. Зооспорангии, расположенные на концах ответвлениями гиф, яйцевидные или лимоновидные, на верхушке с бугорком; прорастают в воде, дают две зооспоры с двумя боковыми ресничками, иногда росток, переходящий в мицелий или образующий на конце вторичную конидию. Оогонии с бесцветной гладкой оболочкой, шаровидные. Антеридии булавовидные. Ооспоры шаровидные, по одной в оогонии, с толстой, гладкой оболочкой; прорастают, дают росток, превращающийся в конидиеносец с нормальными конидиями.

Половой процесс разнообразный. У одних видов антеридий и оогоний находятся на конце одной гифы. Соприкасаюсь с оогонием белком, антеридий проникает в него полинодием (трубочкой), через который содержимое антеридия переходит в оогоний и происходит оплодотворение. У других видов гифы, на которой должен образоваться оогоний, врастает в антеридий, затем на ней образуется оогоний, соединяющийся с антеридием полинодием. У некоторых видов ооспоры образуются партеногенетически из-за отсутствия антеридиев. [4, 21, 46]

Phytophthora infestans dBy A.— Фитофтора картофельная (рис. 1.8)

Возбудитель фитофтороза картофеля и томатов.

Мицелий с редкими гаусториями распространяется в межклетниках или внутри клеток растения-хозяина. Зооспорангеноносы появляются в концах с гладкими конидиями или выходят из устьиц пучками по 2—5. Зооспорангии яйцевидные или лимоновидные, 25—30 X 15—20 мкм, бесцветные, с тонкой гладкой оболочкой, с хорошо заметным бугорком на вершине. Прорастают в воде, образуют 6—16 двуужгутиковых зооспор, иногда просто росток. Оогонии врастают в антеридий, образуются крайне редко. Ооспоры шаровидные, 30 мкм в диам., бесцветные, с оболочкой 3—4 мкм толщ.

Поражаются листья, стебли, клубни, ростки картофеля. Болезнь проявляется обычно во второй половине лета в фазе цветения картофеля в виде бурых, расплывчатых пятен на листьях. Во влажную погоду на нижней стороне листьев образуется белый налет. Пораженные листья и стебли буреют, загнивают, и растение отмирает. На клубнях образуются сероватые вдавленные пятна с металлическим блеском, под которыми ткань буреет. Сначала поражаются периферические части клубня, затем более глубокие слои. На разрезе поврежденного клубня видна бурая ткань, часто заходящая в глубь клубня отдельными выступами. На плодах томатов также образуются бурые пятна. Пораженные плоды твердые, не дозрев.

Источник инфекции — оооспоры, сохраняющиеся в пораженных клубнях и почве. Болезнь приводит к потере 50—70 % урожая при эпифитотиях.

Распространение: повсеместно в районах возделывания.

Меры борьбы: обработка посевного материала 3,5 %-ной суспен-
вией ТМТД (70 л/т), трех-, четырехкратное опрыскивание растений 1 %-ным раствором бордоской жидкости или ее заменителями: купрозаном, полихолом, полимарцинном, цинебом, хлорокисью меди (2,4—3,2 кг/га), 0,5 %-ным раствором каптана (3 кг/га).

Другие вредоносные виды этого рода, вызывающие гниль корней, стеблей, коры, сердцевины, почек и плодов: P. fragaria Hickman — фитофтора земляничная, поражает корни земляники, вызывая по- краснение проводящей ткани; P. phaseoli Thaxt. — фитофтора фасоли, поражает разные виды фасоли; P. capsici Leonian — фитофтора стручкового перца, поражает красный перец; P. citrophthora (Sm. et Sn.) Leonian — фитофтора цитрусоядная, поражает цитрусовые (листья и плоды), тюльпаны (цветоножки); P. citricola Saw. — фитофтора ли-

Рис. 1.8. Phytophthora infestans: 
а — формирование зооспорангия; б—формирование зооспор: в — зооспоранги (x1000) [44]

монов поражает лимоны и апельсины наряду с другими видами фи- тофоры; P. parasitica Dastur — фитофтора паразитная, поражает ра- тения 72 родов из 42 семейств (8 видов пасленовых, в частности карто- фель и томаты); P. cinnamomi Rands — фитофтора циннамомовая, пора- жает 212 видов, относящихся к 117 родам из 48 семейств (папорот- ники, голосеменные и покрытосеменные растения; в Грузии поражает пробковый дуб, греческий орех и хинное дерево); P. cactorum (Leb. et Cohn.) Schroet.— фитофтора кактусовая, поражает высшие растения
83 родов из 44 семейств (13 видов розоцветных, 11 видов бобовых, многие древесные породы), вызывая корневые гнили, гнили основания стебля, коры и плодов, сердцевины и почек.

Семейство Peronosporaceae — Пероноспоровые
Род Peronospora Cda — Пероноспора
Мицелий с гаусториями разного типа распространяется по межклетникам. Конидиеносцы дихотомически разветвленные с конечными прямыми или согнутыми ветвями, на концах заостренные, отходящие под прямым или острым углом, несущие одиночные споры (рис. 1.9) Споры овальные или эллиптические, бесцветные или бледно-серовато-фиолетовые, на верхушке без бугорка. Половые органы (оогонии и антеридии) образуются внутри тканей растений. Оогонии круглые с тонкой, бесцветной или желтоватой оболочкой. Антеридии булавовидные или округлые. Ооспоры шаровидные, с толстой складчатой, бородавчатой оболочкой желтовато-коричневого цвета.

Виды этого рода паразитируют только на травянистых растениях из многих семейств: лютиковых, бобовых, лилейных, маковых, тыквенных, пасленовых, губоцветных и др. Целый ряд видов — опасные для культурных растений паразиты, вызывающие болезнь и гибель растений. Симптомы поражения — местные и общие пятнистости, налеты, деформации, карликовость. В основном поражаются листья всходов и взрослых растений. [4, 10, 21, 44, 46, 56, 58]

Peronospora tabacina Adam — Пероноспора табака
Возбудитель пероноспороза, или ложной мучнистой росы («голубой плесени») табака.
Мицелий интеркалярный, развитвленный, распространяется внутри тканей питающего растения, проникает в клетки с помощью гаусторий. Конидиеносцы выступают из устьиц на нижней стороне листа, одиночные или мелкими группами, дихотомически развитвленные, 350—800 × 10—12 мкм (у основания), с конечными ответвлениями, ровными или слегка согнутыми. Конидии эллиптические бесцветные или с фиолетовым оттенком, 15—28 × 12—21 мкм. Оогонии интеркалярные, шаровидные, красновато- или темнокоричневые, гладкие,
созревают после 2—4 перезимовок и прорастают 1—3 ростковыми трубками.

Поражается как рассада, так и взрослые растения. Рассада погибает, приобретая запах гнилой капусты. Заболевание проявляется в двух формах: 1) поражаются листья или все растение, покрывающиеся спороношениями гриба в виде беловато-серого налета, пораженные ганни отмирают. 2) клетки внутренних тканей стебля, корня, листьев подвергаются некрозу.

На нижних, а затем и на верхних листьях появляются сначала одиночные, затем многочисленные желтоватые, округлые или угловатые, ограниченные жилками, буреющие пятна, края листьев становятся волнистыми и заворачиваются книзу, листв деформируется, становится гофрированным и складчатым. Бурье пятна возникают и на жилках черешках, стебле, корнях. При влажной погоде на нижней стороне пораженных листьев появляется спороношение гриба голубоватого цвета (отсюда и название болезни «голубая плесень»), потом становится сероватым. На стеблях появляются язвы, в результате которых они изгибаются и ломаются. В зоне корневой шейки образуются продольговатые пятна в виде язв: корни приобретают неправильную округлую форму, боковые корешки не развиваются, кора растрескивается и шелушиется. Листья у таких растений мелкие, хлоротичные, с легкой гофрировкой по всей поверхности, стебель у основания утолщенный, ребристый. Растения угнетенные, преждевременно зацветают.

Оптимальные условия для заражения растений — температура 12—22 °С и наличие капельной влаги на растении. Развитию болезни способствуют обильные дожди и туманы. Источник инфекции — ооспоры, сохраняющиеся в растительных остатках и семенах. В годы эпифитотий болезнь приводит к потере 50—75 % урожая.

Распространение: повсеместно в районах возделывания. Меры борьбы: профилактические еженедельные опрыскивания всходов 0,4 %-ной суспензии цинеба (2,4—4 кг/га) с момента появления всходов до выборки рассады, в дальнейшем в течение всего вегетационного периода. Помимо цинеба можно применять и суспензию поликарбацина (2,4—3,2 кг/га). Peronospora destructor (Berk) — Пероноспора разрушающая (рис. 1.10)

Рис. 1.10. Peronospora destructor:
спорангиеносцы с зооспорангиями [44]

Син.: Peronospora schleideniana Cornu, Botrytis destructor Berk. Возбудитель пероноспороза, или ложной мучнистой росы, лука и чеснока.

Мицелий с разветвленными бугорчатыми гаусториями. Конидиеносцы одиночные или собраны в пучки, трех-, семикраторазветвленные, выступают из устьиц, 300—750 × 12 мкм, с короткими, конечными, коническими, дуговидно согнутыми веточками. Конидиеносцы скручены в фиолетовые дерновинки. Конидии яйцевидные, серовато-фиолетовые, 35—60 × 22—35 мкм. Оогонии крупные, с тонкой оболочкой, кольцом. Ооспоры шаровидные или эллиптические, 25—35 мкм в диам. с гладкой или складчатой оболочкой.

На пораженных луковицах и листьях образуются неправильной формы хлоротичные пятна, постепенно сливающиеся. Листья засыхают
и опадают. На пятнах образуется рыхлый грязно-белый налет спороношения гриба. Пораженные стрелки становятся хрупкими, ломаются, семена не развиваются.

Болезнь проявляется через 3—4 недели после посева. Поражение растений может быть общим и локальным. При первом микелии, перезимовавший в луковицах, прорастает одновременно с луковицей и диффузно распространяется по растению. Позже на листьях во влажную погоду образуется спороношение гриба, которое распространяется и поражает здоровые растения, вызывая локальное поражение листьев, из которых инфекция переходит на здоровые луковицы.

Источник инфекции — микелий, сохраняющийся в больных луковицах.

Болезнь приводит к 15—20 % потере урожая.

Меры борьбы: прогрев маточного лука в сушильнях при температуре 41—42 °C (8—24 ч) осенью перед закладкой на хранение, луковицей — весной перед высевом. Обработка посевов 1 %-ным раствором бордосской жидкости или 0,5 %-ным раствором каптана или цинеба, 0,4 %-ными растворами полимарцина и поликарбацина через 10 сут после появления первых признаков болезни [41].

**Peronospora brassicae** Gäum. — Пероноспора капусты

Возбудитель пероноспороза или ложной мучнистой росы капусты.

Конидиеносцы по 1—2, 250—450 X 6—9 мкм, дихотомически разветвленные, выходят из устьиц, с конечными веточками, отходящими под прямым углом, сильно согнутыми. Конидии эллиптические, 12—28 X 11—23 мкм, с тонкой, бесцветной оболочкой. Оогонии с толстой оболочкой, 35—50 мкм в диам., оспоры шаровидные, 25—30 мкм в диам.

Поражает крестоцветные разного возраста, но наиболее опасна болезнь для рассады, выращиваемой в парниках.

На листьях, стеблях, стручках и семядолях образуются расплывчатые желтые пятна, на нижней стороне которых развивается сероватый, мучнистый налет спороношения гриба. При сильном поражении растений образуются щуплые семена, или они вовсе не развиваются. В период хранения на внешних листьях пораженных головок появляются желтоватые сухие пятна; головки загнивают. Развитию болезни благоприятствуют чрезмерная влажность воздуха и почвы в парниках и теплицах, а также густота посева.

Источник инфекции — инфицированные ооспорами растительные остатки и семена.

Болезнь приводит к гибели рассады и значительной потере урожая.

Меры борьбы: такие же, как против ложной мучнистой росы лука и чеснока. [41]

**Peronospora manschurica** (N. Naum.) Syd. — Пероноспорая сои.

Возбудитель пероноспороза, или ложной мучнистой росы, сои.

Конидиеносцы выходят из устьиц по одному или собраны в пучки трех-пятикратно дихотомически разветвленные, 240—900 X 7—9 мкм, о короткими прямыми конечными веточками, отходящими под прямым углом. Конидии коричневые, шаровидные или эллипсоидальные, 14—30 X 14—29 мкм. Ооспоры желтоватые, неправильно сетчатые или гладкие, 25—48 мкм в диам.

Поражаются все органы растения. На семядолях с обеих сторон образуется серовато-фиолетовый войлочный налет, обильный на свежих пятнах и почти исчезающий на старых. С верхней стороны листьев ткань сначала светло-зеленая, затем буреет и разрывается. На бобах налет спороношений развивается чаще внутри, чем на поверхности. При локальной форме пероноспороза происходит некротизация тканей листовой поверхности в местах поражения, при диффузной —
все листья и черешки покрываются сплошным войлочным налетом. Для диффузной формы характерно обильное спороношение на обеих сторонах листа. Бобы на таких растениях деформируются, семена, как правило, не образуются. Развитию болезни благоприятствуют высокая температура воздуха (не ниже 25 °C) и повышенная влажность (95—100 %).

Источник инфекции — ооспоры, сохраняющиеся в растительных остатках и семенах.

Болезнь приводит к снижению всхожести семян и потере урожая. Распространение: Дальний Восток, Средняя Азия, Украинская ССР, Северный Кавказ, Центральные районы РСФСР.

Меры борьбы: соблюдение правильного севооборота (возврат сои на прежнее место не ранее чем через год); протравливание семян 80 %-ным раствором ТМТД (2—2,5 кг/т) или фентиурамом (4—6 кг/т); опрыскивание растений 1 %-ной бордоской жидкостью при появлении первых признаков болезни.

**Peronospora farinosa** (Fr.) Fr. — Пероноспора свеклы
Син.: *Peronospora schachtii* Fuck.
Возбудитель пероноспороза, или ложной мучнистой росы свеклы. Конидиеносцы выходят из устьиц по 2—3, шести-восьмикратно дихотомически разветвленные, образуются на нижней стороне листа. Конидии эллиптически-яйцевидные, 21—27 × 16—20 мкм, с тонкой серовато-фиолетовой оболочкой и лимоновидным заострением в месте прикрепления к конидиеносцу. Ооспоры образуются на более молодых листьях и клубочках семян, шаровидные, светло-желтые, по мере созревания становятся коричневыми, с толстой двухслойной обо­лочкой.

Поражаются наиболее молодые器官ы свеклы первого года жизни и семенники, верхушки цветоносных побегов, прицветники, клубочки. Листья скручиваются краями вниз, утолщаются, желтеют, становятся хрупкими. На нижней стороне их, а во влажную погоду и на верхней стороне, образуется серый с фиолетовым оттенком налет. Пораженные листья через 15—30 дней отмирают. Иногда болезнь развивается локально в виде пятен в местах заражения листьев. Развитию болезни способствуют температура около 16 °C и относительная влажность воздуха выше 70 %. Инкубационный период 5—20 дней. На прямом солнечном свете споры погибают через 4 ч. Оптимальная температура для прорастания конидий 15—17 °C, минимальная 10, максимальная 30 °C. Оптимальная температура для заражения растений 13—17 °C, максимальная 25, минимальная 8 °C.

Источник инфекции — мицелий гриба, развивающийся в живых тканях головок корнеплодов зимующей свеклы.

Болезнь приводит к деформации корнеплодов, снижению урожая и качества корнеплодов и семян (масса корнеплодов снижается на 50 %), их плохой сохранности при хранении.

Распространение: повсеместно в районах возделывания.

Меры борьбы: соблюдение пространственной изоляции между посевами маточной и семенной свеклы (не менее 1 км); химические меры борьбы такие же, как против возбудителей корнееда сахарной свеклы; выведение устойчивых сортов. [41, 42, 51]

Другие вредоносные виды этого рода, вызывающие пероноспороз: *P. lentis* Gäum. — пероноспора чечевицы, поражает листья чечевицы; *P. aestivatis* Syd. — пероноспора летняя, поражает листья люцерны; *P. pisí Syd.— пероноспора гороха, поражает листья гороха посевного и другие виды; *P. rumicis* Cda.— пероноспора щавеля, поражает виды щавеля; *P. effusa* (Grev.-Tul.) — пероноспора шпината,
поражает шпинат; P. trifolia-hybridi Gäum. — пероноспора клевера гибридного, поражает разные виды клевера; P. fabae Jacz. et Serg.— пероноспора конских бобов, поражает листья конских бобов; P. viciae-sativae Gäum. — пероноспора вики посевной, поражает листья вики посевной; P. ruegeriae Gäum. — пероноспора эспарцета, поражает эспарцет.

Род Bremia Regel — Бремия

Мицелий межклеточный, развитвленный, одноклеточный, с прямыми или развевленными гаусториями, проникающими в клетки. Конидиеносцы выходят из устьиц пучком, дихотомически симметрично реже односторонне, развевленные, ветви расположены под прямым углом, конечные ветви заканчиваются воронкообразным, дланевидным расширением, несущим по краям стеригмы с коротким тупым концом на каждой, на котором образуется по одной конидии. Конидии шаровидные или почти шаровидные, широкоэллипсоидальные, с тонкой оболочкой, сосковидным бугорком, на вершине прорастают ростком. Оогонии шаровидные, с тонкой, желтовато-оболочкой (см. рис. 1.9, д).

Антеридии булавовидные. Ооспоры шаровидные, с желтовато-бу­рой, гладкой, бугорчатой или неясно бугорчатой оболочкой.

Виды рода являются облигатными паразитами растений. [10, 21, 44, 46, 50, 58]

Bremia lactucae Regel — Бремия латуковая

Возбудитель ложной мучнистой росы сложноцветных.

Конидиеносцы выходят из устьиц по 1—3; 250—600 × 8—12 мкм, в верхней части двух-трехкратно дихотомически развевленные, на концах веточек с плоскими пластинками, на краях которых находится, по 2—8 зубчиков с конидиями. Конидии почти шаровидные, 16—27,7 × 13—21 мкм, на верхушке с маленьким бугорком. Ооспоры шаровидные, с тонкой, желтовато-коричневой, гладкой или слегка бородавчатой оболочкой, 25—40 мкм в диам. Размер конидий зависит от расте­ния-хозяина и влажности воздуха.

Поражает салат, артишок, цикорий. На нижней стороне листьев между жилками образуется угловатый, рыхлый, затем более или менее плотный налет. Заражение происходит через устьица. Инккупационный период длится 6—8 дней, при большой влажности воздуха — 5 дней.

Оптимальная температура для прорастания спор 20—25 °С. [10, 56, 58]

Источник инфекции — ооспоры, сохраняющиеся на растительных остатках.

Болезнь приводит к незначительным потерям урожая.

Распространение: Закавказье, Средняя Азия.

Меры борьбы: такие же, как против возбудителя пероноспороза лука и чеснока. [10, 56, 58]

Род Pseudoperonospora Rostow. — Псевдопероноспора

Мицелий одноклеточный, развитвленный, с гаусториями. Развив­тие в межклеточном пространстве. Конидиеносцы пучками вкапывают через устьица; тонкие, короткие, с прямым, постепенно расширяющим­ся к низу стволом, на вершине симподиально или дихотомически развива­вленные. Конечные ветви короткие, прямые или слабо изогнутые, су­женные к тупым или острым концам, двойные или тройные. Кони­дии эллипсоидальные, лимоновидные, яйцевидные, с хорошо выражен­ным плоским сосочком, серо-бурые, дымчатые или коричневые. Оогонии шаровидные, с тонкой или утолщенной оболочкой, бесцветные. Антеридии бесцветные, цилиндрические, с закругленной вершиной на
тонкой ножке. Ооспоры шаровидные или угловато-шаровидные, 14—43 мкм в диам., светло-золотистые, коричневые. В зооспорангиях образуются многочисленные зооспоры.

Виды рода — возбудители ложной мучнистой росы различных растений.

**Pseudoperonospora cubensis** Rostow.— Псевдопероноспора кубинская

Син.: Peronoplasmopara cubensis (Berk. et Curt.) Clint. Возбудитель ложной мучнистой росы тыквенных.

Мицелий развителенный, с яйцевидными, грушевидными или лапчатыми гаусториями. Зооспорангеносцы собраны в пучки по 2—7, реже одиночные, выходят через разорванную кутикулу, 150—25 × 7—9 мкм, с конечными веточками, отходящими под прямым углом. Зооспорангии эллипсоидальные, яйцевидные, на верхушке с сосочковидным бугорком, сероватые или фиолетовые, иногда коричневые, 20—28 × 16—20 мкм. Оогонии округлые. Ооспоры шаровидные, желтоватые, 36—42 мкм в диам.

Поражает листья огурцов, дынь, тыкв, арбузов. На нижней стороне листовой пластинки вдоль жилок образуются желтоватые или коричневые пятна, покрытые сероватым или фиолетовым налетом.

Источник инфекции — ооспоры, сохраняющиеся на растительных остатках. Болезнь приводит к значительным потерям урожая (иногда до 100%).

Распространение: повсеместно в районах возделывания. Меры борьбы: соблюдение севооборота; возвращение тыквенных культур на прежнее место не ранее чем через 2—3 года; опрыскивание растений 1%-ной бордоской жидкостью и фунгицидами. [44, 56, 58]

**Pseudoperonospora humuli** (Miy. et Tak.) Wils.— Псевдопероноспора хмеля

Син.: Peronoplasmopara humuli (Miy. et Tak.). Возбудитель ложной мучнистой росы хмеля.

Мицелий обильно развит. Зооспорангеносцы выходят из устьиц пучками по 2—6, трех-четырехкратно развителенные. Зооспорангии яйцевидные, 15—20 × 10—16 мкм, на верхушке с бугорком, в них развивается 5—12 эллипсоидных, яйцевидных зооспор с боковыми ресничками. Ооспоры шаровидные или продолговатые, 23—54 мкм в диам.

Листья и стебли пораженного растения покрываются бурыми, палевыми, неправильно округлыми или угловатыми, с широкой каймой темно-бурового цвета или расплывчатыми пятнами. На листьях пятна располагаются вдоль жилок, мелкие (1 мм в диам.) или крупные (40 × 10 мм), покрыты темно-серым, войлочным, прижатым к субстрату налетом.

Оптимальная влажность воздуха для развития мицеля и спорангонии 95—100 %; при влажности 55—60 % и температуре 30 °С он не развивается. Оптимальная температура для прорастания зооспорангий 18—20 °C.

Источник инфекции — ооспоры, зимующие на опавших листьях и шишках. Болезнь приводит к снижению урожая шишек в 4 раза, ухудшению пивоваренных качеств хмеля.

Распространение: повсеместно в районах возделывания. Меры борьбы: соблюдение агротехнических мероприятий; опрыскивание 1 %-ной бордоской жидкостью или ее заменителями: купрозаном (8 кг/га), поликарбацином (6—8 кг/га) и др. [42]
Род Plasmopara Schroet. — Плазмопара

Мицелий хорошо развит, с короткими и эллипсоидальными гаусториями. Развивается в межклеточном пространстве. Зооспорангисцы выходят по одному или пучками из устьиц, простые или разветвленные, с беспорядочно расположенными веточками, с конечными веточками в виде коротких отростков, несущих по одной конидии (см. рис. 9, в). Зооспорангисцы бесцветные, шаровидно-эллиптические, на верхушке с сосочкацидным бугорком. В зооспорангиях развиваются либо почковидные зооспоры с двумя ресничками, либо их содержимое выходит наружу, покрывается оболочкой, а затем дает начало зооспорам, либо из него вырастает гифа. Ооспоры шаровидные, с гладкой, реже с бородавчатой, желтоватой или коричневатой оболочкой; из них образуются зооспорангисцы или зооспоранги, в которых развивается 8—10 зооспор с двумя ресничками с вогнутой стороны.

Виды рода паразитируют на различных видах растений, преимущественно на травянистых.

Plasmopara viticola Berl. et de Toni — Плазмопара винограда

Возбудитель ложной мучнистой росы, или «милды», винограда. Мицелий разветвленный с мелкими гаусториями. Зооспорангисцы выходят пучками из устьиц, у основания слегка вздутые, 250—850 × 8—12 мкм, у вершины разветвленные, с конечными зубчатыми короткими веточками. Зооспорангисцы яйцевидные, на верхушке без бугорка, 12—30 × 8—17 мкм. Ооспоры желтоватые или коричневые, 30—35 мкм в диам., с гладкой или складчатой оболочкой, развиваются в макро зооспорангиях, из которого выходят зооспоры (до 160) либо образуются разветвленные зооспорангисцы, или просто гифы. Ооспоры сохраняют жизнеспособность несколько лет. При созревании зооспорангисця из него выходят через устьица на верхушке 4—8 зооспор с двумя ресничками. При повышенной влажности зооспорангисцы прораставают непосредственно гифой.

Поражаются все неодревесневшие надземные части растения и плоды. Заражение происходит через устьица. Весной на поверхности молодых листьев появляются бледно-зеленые или желтоватые пятна, до 2—3 мм в диам., приобретающие со временем маслянистый вид. Во влажную погоду на нижней поверхности листа в местах пятен появляется обильный налет, состоящий из зооспорангисцев. Пораженные ягоды сморщиваются, засыхают или буреют, чрезмерно наливаются и загнивают; в данном случае зооспорангисцы не образуются.

Источник инфекции — ооспоры или зимующий мицелий, сохраняющиеся в растительных остатках.

Распространение: повсеместно в местах произрастания.

Меры борьбы: уборка и сжигание листьев осенью; весной и летом — опрыскивание растений 1 %-ным раствором бордосской жидкости или ее заменителями: купрозаном (4—6 кг/га), цинебом (6 кг/га), фталаном (5—6 кг/га) и др.; возделывание устойчивых сортов. [41]

Plasmopara halstedtii Berl. de Toni.— Плазмопара Галштедта (рис. 1.11)


Встречается на многих видах семейства сложноцветных.
Различают пять форм заболевания на подсолнечнике: 1) растение резко отстает в росте, стебли утончаются, корни слабо развиваются, листья хлоротичные, с беловатым налетом на нижней стороне; 2) растения отстают в росте, стебли укороченные или утолщенные, междоузлия недоразвитые, верхняя сторона покрыты хлоротичными пятнами, с нижней — белым налетом; 3) растения хорошо развиты, карлик ность не наблюдается, на верхней стороне листьев образуются крупные угловатые пятна светло-зеленого цвета, а на нижней — белый налет; 4) растения не растут, но кора звенья развиваются, зародыш отмирает, вследствие чего семена остаются пустыми; 5) поражается подземная часть растения.

Источник инфекции — ооспоры, сохраняющиеся в зараженных семенах, растительных остатках, почве, всходах падалицы. Болезнь приводит к нарушению углекислого обмена растений, изреживанию посевов.

Распространение: повсеместно в районах возделывания.

Меры борьбы: перед уборкой, выбраковка и удаление растений, пораженных болезнью; десикация растений на корню 42%-ным хлоратхлоридом кальция (40—50 кг/га) или хлоратом магния (20 кг/га); уничтожение всходов падалицы гербицидами группы 2,4-Д. [41]

Род Plasmopara Schröet. — Сплючевица. — Склероспора

Мицелий ветвистый, иногда с пузыревидными гаусториями, развивается в межклеточном пространстве. Зооспорангионы короткие, выступающие из устьиц по одному или в пучках, с беспорядочно расположенными толстыми короткими ответвлениями, на которых образуются небольшие отростки с единичными спорами без верхушечного буторка (см. рис. 1.9, a). У отдельных видов зооспоранги не образуются, поэтому основное значение в жизненном цикле имеет половая стадия развития гриба. Ооспоры формируются внутри тканей растения-хозяина в большом количестве. Они золотисто-коричневые, угловато-шаровидные или широкоэллипсоидальные, с многослойной гладкой или шиповатой оболочкой.

Виды этого рода распространены, в основном, в тропиках и субтропиках. Вызывают ложную мучнистую росу злаковых культур. [10, 14, 21, 44, 46]

Plasmopara halstedtii (Sacc.) Schröet. — Plasmopara ribicola Schroet. — Sclerospora graminicola (Sacc). Schröet. — Sclerospora graminicola (Schoet.) var. setariae-italicae Traverso.

Род Sclerospora Schröet. — Склероспора

Син.: Sclerospora graminicola (Schroet.) var. setariae-italicae Traverso.

Возбудитель ложной мучнистой росы злаков.
Мицелий бесцветный, тонкий, ветвистый, проникает в клетки пузыревидными присосками. Конидиеносцы выходят из устьиц по одному или пучками на нижней поверхности листа. Они имеют немногие короткие ответвления, плотно прилегающие к главной оси, и 2—3 короткие конечные веточки. Зооспоранги бесцветные, шаровидные, 18—22 × 12—18 мкм, с гладкой оболочкой. Оогонии округлые, с толстой оболочкой, сросшейся с ооспорой. Ооспоры угловато-шаровидные, 33—45 мкм в диам., с прозрачной оболочкой, золотисто-коричневые.
Болезнь проявляется в образовании на листьях бледно-зеленых хлоротичных или темно-бурых пятен, расположенных между листовыми жилками и со временем покрывающих всю верхнюю поверхность листьев. На нижней поверхности листьев налет молочно-белый, обильный, сплошной, затем войлочный. Пораженные листья желтеют, засыхают, рассыпаются, остаются только сосудистые пучки, между которыми через прорванную кутикулу видна порошистая масса ооспор.
Источник инфекции — ооспоры, сохраняющиеся на пораженных растительных остатках. Болезнь приводит к преждевременному отмиранию листьев и потере (5—10 %) урожая.
Распространение: повсеместно в районах возделывания.
Меры борьбы: при первых признаках болезни обработка и опрыскивание посевов 80 %-ным цинебом (2,4—3,2 кг/га), 90 %-ным хлороксидом меди (1,8—2,4 кг/га), 75 %-ным поликарбацином (1,8—2,4 кг/га), купрозаном (3—4 кг/га).
*Склероспора кукурузы* (*Sclerospora maydis* (Racib.) Butl.) — возбудитель склероспороза кукурузы.
Zoosporangienosцы утолщенные и короткие, верхушки разветвленные. Зооспорангии шаровидно-эллипсоидальные, 28—45 × 16—23 мкм, в них образуется до четырех зооспор.
На листьях и стеблях пораженных растений появляются беловато-желтые или грязно-зеленые полосы со слабозаметным беловатым налетом, преимущественно на нижней поверхности листа. Пораженные листья, а часто и верхушка стебля, буреют и деформируются. Стебель обычно размочаливается, волокна проводящих сосудов скручиваются. Метелки утолшаются и превращаются в большое количество недоразвитых, густо растущих листочков. Развитию болезни способствует наличие капельной влаги в период обильных дождей и рос.
Источник инфекции — ооспоры, сохраняющиеся на пораженных растительных остатках и в почве.
Болезнь приводит к незначительным потерям урожая.
Распространение: Северный Кавказ.
Меры борьбы: такие же, как против возбудителя ложной мучнистой росы элаковых.
*Склероспора ржи* (*Sclerospora secalina* N. Naum) — возбудитель склероспороза ржи.
Zoosporangienosцы не развиваются. Цикл развития сокращен. Ооспоры образуются в листьях растений, на которых он паразитирует. Вид ограниченно распространен.
Поражает только листья ржи, при этом они не размочаливаются. Источник инфекции — ооспоры, сохраняющиеся на пораженных остатках растений.
Болезнь приводит к незначительным потерям урожая.
Распространение: повсеместно в районах возделывания.
Меры борьбы: такие же, как против возбудителя ложной мучнистой росы подсолнечника.
Другие вредоносные виды: *S. macrospora* Sacc.— склероспора макроспоровая, которая поражает овес, ячмень, овес, рожь, сор-
го, пшеницу, кукурузу и некоторые виды диких злаков; вызывает гипертрофию и скручивание пораженных органов, позеленение метелок.

Семейство Albuginaceae — Альбуговые

Род Albugo Gray — Альбуго

Мицелий развителенный межклеточный, без перегородок, с гаусториями. Зооспорангеноносы булавовидные, образуются большей частью на нижней поверхности листа, сначала под эпидермисом, затем прорываются и порошат. Зооспорангии яйцевидные, эллипсоидальные, с бесцветной оболочкой, образуются в базипетальных цепочках с дизьюнторами, в них образуются зооспоры с двумя боковыми ресничками. Спорангии шаровидные, с тонкой оболочкой. Антеридии булавовидные. Ооспоры шаровидные, бородавчатые, с желто-бурой толстой оболочкой.

Виды этого рода являются облигатными паразитами растений.

Albugo candida (Gmel: Pers.) O. Kuntze — Альбуго белоснежный

Синоним: Cystopus candidus Pers.

Возбудитель белой ржавчины крестоцветных. Мицелий распространяется по межклеточному пространству всего растения. Зооспорангеноносы 30—40 мкм дл. Зооспорангии одинаковой формы, округлые или слегка угловатые, 12—18 мкм в диам., с толстой оболочкой. Спорангии шаровидные, 30—50 мкм в диам., темно-коричневые, с толстой оболочкой, покрытой широкими, иногда сливающимися бородавками неправильной формы. Поражает капусту, хрен, горчицу, редьку, репу и др.

Болезнь проявляется в образовании на листьях и стеблях пораженных растений хлоротических пятен различной величины и формы, часто сливающихся. Пораженные участки покрываются пустулами, со временем порошаются. Пустулы выпуклые, гладкие, блестящие, белого или слегка желтоватого цвета, разной величины и формы, одиночные или расположенные по кругу, часто сливающиеся в сплошные корки. Источник инфекции — пораженные ооспорами растительные остатки.

Болезнь приводит к значительному снижению урожая. Распространение: повсеместно в районах возделывания. Меры борьбы: такие же, как против возбудителей ложной мучнистой росы злаковых.

Albugo tragopogonis (Pers.) Schröet. — Альбуго козлобородниковый (рис. 1.12)

Возбудитель белой ржавчины сложноцветных. Выпуклые, овальные, часто многочисленные пустулы расположены сначала под эпидермисом на нижней поверхности листа, затем они прорываются и порошат. Зооспорангии булавовидные, тесно скученные. Zооспорангии двух видов: верхушечные, бесплодные, шаровидные, бородавчатые, с желто-коричневой толстой оболочкой. Поражает капусту, хрен, горчицу и др. Болезнь проявляется в образовании на листьях и стеблях пораженных растений хлоротических пятен различной величины и формы, часто сливающихся. Пораженные участки покрываются пустулами, со временем порошатся. Пустулы выпуклые, блестящие, белого цвета, с толстой оболочкой, покрытой широкими бородавками неправильной формы. Источник инфекции — пораженные ооспорами растительные остатки. Болезнь приводит к значительному снижению урожая. Распространение: повсеместно в районах возделывания. Меры борьбы: такие же, как против возбудителей ложной мучнистой росы злаковых.

Рис. 1.12. Albugo tragopogonis: a — спорангии (конидии) в цепочках; b — ооспора в ткани растения (кусочек листа, пораженный грибом) [44]
гладкие, с толстой оболочкой и кубические или короткоцилиндрические, 10—27 × 10—21 мкм, с гладкой бесцветной тонкой оболочкой. Оогонии округлые, 50—70 мкм в диам. Ооспоры шаровидные, 37—66 мкм в диам., с желтой или коричневой сетчатой оболочкой.

На наземных органах пораженных растений проявляются хлоротичные пятна разных форм и размеров, которые затем некротизируются.

Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у A. candida.

КЛАСС ZYGOMYCETES — ЗИГОМИЦЕТЫ

Вегетативное тело, как правило, представлено хорошо развитым неклеточным разветвленным (ценоцитным) мицелием. Мицелий прикрепляется к субстрату с помощью ризоидов, при их отсутствии он распространяется внутри субстрата (питающий, или субстратный мицелий).

У некоторых видов мицелий разделен регулярными перегородками. Длина гиф колеблется от нескольких миллиметров до нескольких сантиметров. По мере старения отмершие части гиф отделяются от живых перегородками. В зрелом возрасте мицелий иногда распадается на отдельные клетки (порядки Mucorales и Entomophthorales).

Главный признак класса — особый тип полового процесса — зигогамия, которая заключается в слиянии двух физиологически разных участков мицелия или недифференцированных гиф, представленных так называемыми гаметангиями, внешне различимыми только размерами. Гаметангии представляют собой вздутия на вершине гиф, напоминающие такие же вздутия на концах сегментов тела. Гаметангии гиф, находящихся на вершине тела, распадаются на две части: верхнюю и нижнюю. При контакте стенки между гаметангиями растворяется и их содержимое соединяется, а ядра сливаются (кариогамия). Образующиеся зигоспора (зигота) покрывается толстой оболочкой и прорастает после периода покоя.

Бесполое размножение осуществляется неподвижными, лишенными жгутиксов спорангиоспорами (эндогенный тип размножения) или конидиями (экзогенный тип размножения). При эндогенном образовании споры формируются в спорангиях, обраzuющихся на вершине спороносцев (боковых ветвей), которые бывают трех типов: спорангии, стилоспорангии и мероспорангии.

Спорангии — мелкие примитивные споровместилища до 80—120 мкм в диам., содержащие от одной до нескольких тысяч спор. Споры заполняют всю внутреннюю полость спорангия. Стилоспорангии — споровместилища до 1,5 мм в диам., снабженные колонкой, представляющей собой стерильную часть, отграниченную оболочкой, которая является как бы продолжением вершины спороносца в полости спорангия. По форме колонки бывают шаровидные, цилиндрические, конические или обратно-грушевидные. Мероспорангии — спорангии цилиндрической формы, расширяющиеся по поперечным перегородкам (перетяжкам) на «цепочку» спор. Иногда спорангисомеосец у основания спорангия расширяется в так называемую апофизу.

Спорангиспоры одноядерные, разнообразные по форме: шаровидные, яйцевидные, эллиптические, продолговатые или неправильной формы. [4, 21, 45]

Большинство зигомицетов ведут наземный образ жизни и являются сапротрофами в почве, на растительных и животных остатках; среди них известны паразиты грибов, высших растений, насекомых, человека и животных.

В классе насчитывается свыше 500 видов.
ПОРЯДОК MUCORALES — МУКОРАЛЬНЫЕ

Семейство Mucoraceae — Мукоровые

Род Mucor Mich. emend. Ehreb. — Мукор

Колонии быстрорастущие, хорошо спороносящие, пушистые или войлочные. Гифы обычно неокрашенные. Грибы этого рода характеризуются одиночными бесцветными стилоспорангениосцами, отходящими от морфологически недифференцированных вегетативных гиф воздушного или субстратного мицелия. Стилоспорангениосцы бывают простыми или разветвленными, прямыми, извилистыми или с поникающей верхушкой, неокрашеными или бледно-коричневыми.

Стилоспоранги шаровидные или слегка приплоснутые, прямо-стоячие, часто свисающие, желтые, бурые, темно-коричневые, серые, с гладкой или шероховатой, растворяющейся или разрывающейся оболочкой. Спорангоспоры различной формы, гладкие, коричневые. Конидиальное спороношение отсутствует.

Представители рода — возбудители гнилей различных растений. Mucor mucedo Fres. emend. Bref.—Мукор головчатый (рис. 1.13)

Возбудитель головчатой пlesenи. Колонии с тонким, плотновойлочным золотисто-желтым основанием, вначале неокрашенные или бледно-желтоватые, затем коричневато-бледно-серые. Стилоспорангениосцы прямые, цилиндрические до 2.5 (3) см дл., 20—60 мкм в диам. Стилоспоранги шаровидные или слегка приплоснутые (80) 120 — 350 (400) мкм в диам. Колонка эллиптически-цилиндрическая, (50 — 200 (225) X X 40 — 150 (180) мкм, с оранжевым или рыжеватым содержимым. Спорангоспоры эллиптическо-цилиндрические, на концах закругленные, часто неравнобокие, (7 (8) — 14 (15) X (5) 6 — 8 (9)) мкм в диам. Зигоспоры шаровидные, с боков сжатые, 100—250 мкм в диам.

Болезнь проявляется в образовании серо-зеленого или темно-бурого налета на зерне; развивается в период уборки урожая, при хранении зерна и в период прорастания семян. Ее развитию способствуют высокие температура (24—26 °С) и влажность (17—19%) при хранении зерна. В период прорастания головчатая пlesenь может развиваться при низкой температуре воздуха и почвы.

Болезнь приводит к потере до 5 % урожая.

Распространение: повсеместно в зонах с умеренным климатом.
Меры борьбы: уборка зерновых культур в оптимальные сроки; быстрая просушка зерна до 13—14 %-ной влажности; протравливание семян ТМТД (1,5—2 кг/т), тигамом или фентиурамом (2 кг/т), гексатиурамом (3 кг/т).

Род Rhizopus Ehrenb. — Ризопус

Колонии быстрорастущие, войлочные, окрашенные в серые или буровато-серые тона. Мицелий прикрепляется к субстрату с помощью ризоидов. Стилоспорангениосцы прямые или извитые, отходят по 1 — 5 (7)

Представители рода — в основном сапротрофы; некоторые вызывают мокрую гниль клубней и плодов при хранении.

**Rhizopus nigricans** Ehrenb.— Ризопус черный (рис. 1.14)


Возбудитель мягкой гнили.


Поражает клубни картофеля, плоды томата, ягоды земляники, клубники, маракуя в период вегетации и при хранении, а также завязи многих растений.

У картофеля болезнь проявляется в размягчении тканей клубней, образовании на поверхности пораженных участков войлочного налета, сначала светлого, затем темнеющего в результате развития темных спорангий. Ягоды земляники и маракуи становятся бурыми, серыми, быстро покрываются обильным, вначале белым, затем чернеющим войлочным налетом, который порошит черными, видимыми простым глазом спорангиями гриба. У томатов пораженная ткань становится войлочной, покрывается серым налетом с черными спорангиями. Болезнь приводит к значительным потерям урожая.

Распространение: повсеместно, особенно в зонах с повышенной влажностью и температурой.

Меры борьбы: такие же, как против возбудителя головчатой пlesenи.

**Rhizopus oryzae** Went et Pringle — Ризопус рисовый


Возбудитель гнили.

Колонии войлочные, темно-буровато-серые. Ризоиды слабо разветвленные. Стилоспорангиеносцы прямые и извилистые, 10—20 мкм в диам., часто с раздвоенной, тройчато- или неправильно мутовчато-разветвленной верхушкой, буроватые. Стилоспоранги 50—150 (200) мкм
в диам. Колонка — эллиптически-шаровидная, 40 — 80 (100) × 35 — 70 (90) мкм.

Спорангiosпоры эллиптически-шаровидные, (4) 5,5—8 (10) × (4) 5—6 (7) мкм. Хламидоспоры многочисленные. Зигоспоры 120—140 (180) мкм в диам. Конидиальное спороношение отсутствует.

Поражает корнеплоды сахарной свеклы, клубни картофеля, зерно кукурузы при хранении; вызывает сухую гниль кукурузы и подсолнечника.

На кукурузе болезнь проявляется в начале молочно-восковой спелости в виде густого серого налета между рядами зерновок, обычно в верхней части початка. Затем болезнь распространяется на остальную часть початка. Зерновки становятся бурыми, отмирают и легко крошатся. При раннем поражении кукурузные початки недоразвиваются, семена плесневеют и теряют всхожесть.

На подсолнечнике болезнь проявляется в виде белых пятен неправильной формы на всей корзинке. Ткань при этом твердеет, ячейки легко отделяются от основной ткани. Семянки слипаются и не дозревают. Развитию болезни способствует повышенная влажность воздуха и температура 30—35 °С.

Источник инфекции — хламидоспоры, находящиеся в растительных остатках.

Болезнь приводит к потере 3—4 % урожая.

Распространение: южные районы УССР и РСФСР.

Меры борьбы: такие же, как против возбудителя головчатой плесени. [45, 46]

**КЛАСС ASCOMYCETES — АСКОМИЦЕТЫ, ИЛИ СУМЧАТЫЕ ГРИБЫ**

Мицелий разветвленный, многоклеточный, состоящий из многоядерных и одноядерных клеток. Перегородки (септы) в мицелии образуются синхронно с делением ядер. У некоторых видов вегетативное тело представлено поочередными клетками. В цикле развития аскомицетов имеется две стадии — анаморфа и телеоморфа.

Характерным признаком класса являются сумки (аски), образующиеся в результате полового процесса, в которых развиваются споры. Одновременно с образованием сумок происходит их оплетение мицелием, формируется плодовое тело — аскокарп, сложенное из псевдопаренхиматической, или истинной, ткани.

У ряда видов наблюдается дифференциация гиф на оидии и хламидоспоры. Гифы могут иметь различные выросты — ризоиды и гаустории, или образовывать скопления и сплетения — аппрессории, тяжи, склероции. Оидии образуются обычно на концах гиф, они круглые или овальные, неокрашенные. Хламидоспоры, образующиеся в результате распада многоклеточного мицелия на отдельные участки, содержат большое количество питательных веществ и имеют утолщенную темноокрашенную оболочку. Ризоиды — нитевидные отростки гиф, чаще расположенные у основания плодовых тел. Гаустории — круглые, мешковидные, нитевидные, иногда разветвленные выросты мицелия, которые проникают в клетки растения-хозяина. Аппрессории — небольшие скопления узлов гиф, образующиеся не на главной гифе, а на боковых ее ответвлениях. Тяжи — параллельно расположенные сплетения гиф. Склероции состоят из наружного темнookрашенного плотного (коркового) слоя гиф и внутреннего неокрашенного или светлоказрашенного, более рыхлого (медуллярного). Они имеют круглую или неправильно-округлую форму.
Половой процесс — гаметангиогамия, т. е. слияние гаметангцев — специализированных клеток, не дифференцированных на гаметы. У низших аскомицетов гаметанги могут быть морфологически одинаковыми или разными. В результате их копуляции происходит плазмогамия — слияние их цитоплазмы без слияния ядер, затем ядра сливаются (кариогамия) и образуется зигота, из которой развивается одна сумка со спорами. У высших аскомицетов половой процесс заключается в копуляции морфологически различных образований: аскогона или архикарпа (женские клетки), антеридии (мужская клетка).

Аскогон имеет круглую, овальную или булавовидную форму, состоит из одной или нескольких клеток, от одной из которых отходит трихотигина, по которой содержимое антеридия переходит в аскогон. Антеридий состоит из одной клетки. В результате копуляции антеридия и аскогона происходит плазмогамия — протопласт антеридия сливается с протопластом одной из клеток аскогона и образуется дикарион. Аскогон дает начало одной или нескольким аскогенным дикарийотическим гифам. Во время деления клеток аскогенных гиф происходит и деление ядер дикариона.

Сумки развиваются на терминальных клетках аскогенных гиф. Они расположены на мицеллии или погружены в специальное сплетение вегетативных гиф — строму. Сумки бывают круглые, овальные, мешковидные, цилиндрические. У многих аскомицетов сумки имеют у основания ножку и содержат разное, но обычно стабильное, количество аскоспор — 2, 4, чаще 8, иногда 16, 32 и больше — до нескольких тысяч. У некоторых низших сумчатых грибов количество спор в сумке непостоянно вследствие повторных делений ядер (ядра). Иногда их количество увеличивается в связи с повторным почкованием.

Сумки бывают трех типов: прототуникатные, унитуникатные (однооболочковые) и битуникатные (двухоболочковые). Прототуникатные сумки имеют однослойную оболочку и лишены каких-либо приспособлений для открывания и выхода аскоспор. Последние освобождаются при ослизнении оболочки. Унитуникатные сумки имеют оболочку из двух тонких слоев одинаковой толщины на всем протяжении, кроме более утолщенной верхушки.

На верхушке сумки есть специальные приспособления для освобождения аскоспор — поры, щели, крышки. Аскоспоры из унитуникатных сумок освобождаются обычно одновременно. Битуникатные сумки состоят из двух морфологически различных слоев: наружного (эктоаскуса), тонкого, не растягивающегося, и внутреннего (эндоаскуса) — толстого, эластичного, растягивающегося. Перед освобождением спор наружный слой оболочки на верхушке сумки растрескивается, а внутренний впитывает воду, вытягивается и выходит из наружного. Из битуникатных сумок споры выбрасываются по одной или небольшими порциями, быстро либо с длительными интервалами.

Аскоспоры могут быть одноклеточными и многоклеточными, они имеют разнообразную форму — круглую, овальную, яйцевидную, эллипсоидальную, веретеновидную, цилиндрическую, звездчатую, извилистую. Оболочка аскоспор гладкая или шиповатая, бугорчатая или бороздчатая с гребневидными выростами. Она либо неокрашена либо светло-коричневая или темно-коричневая, черная (у зрелых аскоспор).

Основные типы плодовых тел аскомицетов: клейстотеции, перитеции и апотеции (рис. 1.15).

Клейстотеции — полностью замкнутые плодовые тела, внутри которых беспорядочно расположены сумки; перитеции — полузамкнутые плодовые тела, имеющие на верхушке отверстия кувшиновидной формы, сумки в них собраны в пучок, обычно с парафизами (бесплодными гифами); апотеции — открытые плодовые тела чашевидной формы,
на верхней стороне которых расположен слой сумок и парафиз. Все эти споровместилища относят к настоящим плодовым телам, так как их развитие происходит одновременно с развитием аскогенных гиф и сумок, а также имеют собственный перидий (оболочку).

У примитивно организованных представителей класса сумки образуются в стромах (или аскостромах) или псевдотециях (сплетениях гиф), локулах (полостях), лишенных собственной оболочки (их оболочкой служит пlectенхима стромы).

В цикле развития высших аскомицетов чередуются три стадии длительная — гаплоидная, в течение которой происходит бесполое размножение, непродолжительная — дикариотическая (аскогенные гифы) и очень короткая — диплоидная (молодая сумка с диплоидным ядром).

Бесполое размножение сумчатых грибов происходит конидиями, имеющими разнообразную морфологию и образующимися разными развивающимися на дифференцированных в разной степени ответвлениях гиф или конидиеносцах.

Многие виды аскомицетов паразитируют на различных растениях, вызывая опасные заболевания.

Аскомицеты делят на три подкласса: Hemiascomycetidae — плодовые тела отсутствуют, аски образуются на мицелии;
Euascomycetidae — аски образуются на плодовых телях типа клейстотеции, перитеции или апотеции; Loculoascomycetidae — аски образуются в аскостромах. В классе насчитывается около 30 тыс. видов. [4, 8, 14, 16, 20, 21, 25]

Рис. 1.15. Типы плодовых тел аскомицетов:
а, б — клейстотеции; в — перитеций; а, д — апотеции: 1 — сумка; 2 — парафизы; 3 — перифизы [21]
Подкласс Euascomycetidae — Эуаскомицеты

ГРУППА ПОРЯДКОВ PYRENUMYCETES — ПИРЕНОМИЦЕТЫ
ПОРЯДОК ERYSIHALES — ЭРИЗИФАЛЬНЫЕ,
или МУЧНИСТРОСЯНЫЕ

Семейство Erysiphaceae — Мучнистоносые

Род Erysiphe Link — Эризифе

Мицелий паутинистый, белый, исчезающий, иногда сохраняющийся в виде густого коричневого налета. Клейстотеции шаровидные, с нитевидными, извилистыми, простыми или разветвленными придатками (выростами) в верхней части клейстотеции. При высыхании в клейстотециях образуются сверху вдавления. Сумки яйцевидные или грушевидные, выходят из плодового тела пучком. [12, 44]

Erysiphe graminis DC.— Эризифе злаковая
Возбудитель мучнистой росы злаков.


Известны следующие формы эризифе злаковой:

Erysiphe graminis DC. f. tritici Em. Marchal — Эризифе злаковая ф. пшеничая
Поражает стебли, листья, влагалища, иногда колосья озимой и яровой пшеницы. На влагалищах листьев появляются матовые пятна, затем на верхней стороне листовой пластинки или на обеих сторонах образуется белый налет спороношений гриба. Болезнь распространяется сверху на вновь образующиеся листья, налет уплотняется, приобретает желто-серую окраску, на нем образуются клейстотеции в виде черных точек. В период вегетации гриб распространяется конидиями. Заражение происходит при температуре 3—30 °С и относительной влажности воздуха 50—100 %. Инкубационный период — 3—11 дней. Телеоморфа формируется в период колошения и цветения пшеницы, аскоспоры созревают во время уборки и в течение некоторого времени после уборки урожая.

Источник инфекции — аскоспоры, сохраняющиеся в зерне и растительных остатках.

Болезнь приводит к уменьшению ассимиляционной поверхности листьев, разрушению хлорофилла и других пигментов, преждевременному отмиранию листьев, снижению кустистости, позднему колошению, ускорению созревания и в итоге — к пустоколосости и щуплости зерна; потери урожая достигают 10—15 %.

Распространение: повсеместно в районах возделывания пшеницы; наибольший вред приносит на юге и юго-востоке СССР.

Меры борьбы: соблюдение севооборота; проведение агротехнических мероприятий; подкормка растений калийными и фосфорными удобрениями; опрыскивание посевов 1 %-ной суспензией коллоидной серы или порошка (3—6 кг/га); опыливание молотой серой (15—30 кг/га). [41]

Erysiphe graminis DC. f. secalis Em. Marchal.— Эризифе злаковая ф. ржаная
Поражает всходы в период до восковой спелости зерна.
На листьях и нижней части стебля сначала появляется белый паутинистый, мучнистый налет, уплотняющийся со временем и покрывающийся клейстотециями. Пораженные листья желтеют и отмирают.

Источник инфекции — мицелий гриба, зимующий на озимой ржи, из которого весной образуется конидиальное спороношение. Болезнь приводит к потере 10—15 % урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: внесение минеральных удобрений с повышенными дозами калия и фосфора. [41]

*Erysiphe graminis* DC. f. *avenae* Em. Marchal — Эризифе злаковая ф. овсяная

Поражает листья, стебли, листовые влагалища овса.

Источник инфекции — мицелий, развивающийся на всходах падалицы и многолетних злаковых трав, на которых весной образуется конидиальное спороношение.

Болезнь приводит к потере 10 % и более урожая.

Распространение: повсеместно в районах возделывания, особенно вредоносна в степных и лесостепных районах СССР.

Меры борьбы: соблюдение правильного севооборота; уничтожение падалицы до появления всходов овса; выведение устойчивых сортов.

*Erysiphe graminis* DC. f. *hordei* Em. Marchal — Эризифе злаковая ф. ячменная

Поражает стебли, листья, листовые влагалища культурных видов ячменя.

Проявляется так же, как и на пшенице.

Источник инфекции — клейстотеции на пораженных остатках растений и мицелий на озимом ячмене. Заражение происходит весной при температуре 0—20 °C и относительной влажности воздуха 50—100 %. Инкубационный период — 3—11 дней. Развитию болезни способствуют загущенные посевы.

Болезнь приводит к потере 10—15 % урожая.

Распространение: повсеместно; наиболее вредоносна в южных районах СССР.

Меры борьбы: такие же, как против возбудителей мучнистой росы других злаковых. [41, 51]

*Erysiphe communis* (Wallr.) Grev. — Эризифе обычная

Возбудитель мучнистой росы.

Клейстотеции 56—180 (90) мкм в диам., блюдцевидные, с придатками разной формы и в разном количестве, Сумки соединены в пучки, яйцевидные, округлые, 46—72 × 30—45 мкм. Аскоспоры эллиптические, 19 — 35 × 9 — 14 мкм, по 3—6, реже по 8 и редко по 2 в сумке.

Анаморфа типа *Pseudooolidium*. Конидии образуются одиночно на удлиненных конидиеносцах.

Поражает многие виды растений.

На верхней поверхности листьев среднего и нижнего ярусов появляется белый мучнистый, порошащий налет. Впоследствии он появляется и на нижней поверхности листьев. К концу вегетации и перед отмиранием пораженных листьев на них образуются клейстотеции: сначала золотисто-желтые, затем бурье и, наконец, черные.

Источник инфекции — клейстотеции, сохраняющиеся на пораженных растительных остатках.

Болезнь приводит к потерям 30—45 % урожая.

Распространение: повсеместно в районах возделывания культур.
Меры борьбы: соблюдение правильного севооборота, уничтожение растительных остатков; обработка семенных посевов 1 %-ной суспензий коллоидной серы или порошком (3—6 кг/га), опыливание молотой серой (15—30 кг/га). [41]

Известно 130 биологических форм, некоторые из них опасные паразиты:

Erysiphe communis (Wallr.) Grev. f. lini Jacz.— Эризифе обычная ф. льняная

Поражает лен.

Развитию болезни способствуют низкая относительная влажность воздуха, яркое освещение, высокая температура, поэтому болезнь проявляется в жаркие засушливые годы в конце лета. На нижней и верхней поверхности листьев образуется белый порошистый налет. Пораженные части растения со временем приобретают буровато-сероватый оттенок и на них появляются темные шарообразные плодовые тела. Ткани отмирают, стебли приобретают бурый оттенок. При раннем поражении в коробочках образуются щуплые недоразвитые семена.

Источник инфекции — клейстотеции, сохраняющиеся на пораженных растительных остатках.

Болезнь приводит к потере до 5 % урожая, ухудшению качества льна.

Распространение: повсеместно в районах возделывания.

Рис. 1.16. Erysiphe communis f. betae: клейстотеций [44]

Erysiphe communis (Wallr.) Grev. f. gossypii Zaprom.— Эризифе обычная ф. хлопчатниковая

Поражает хлопчатник.

Болезнь развивается во второй половине вегетации. Сначала на нижних листьях, а позже на верхних появляется слабый беловатый налет в виде пятен неправильной формы, ограниченных жилками листа. Со временем налет охватывает весь лист, который становится грязновато-серым или бурым.

Источник инфекции — клейстотеции, сохраняющиеся на пораженных растительных остатках.

Болезнь приводит к потере до 5 % урожая.

Распространение: повсеместно в районе возделывания.

Меры борьбы: такие же, как против возбудителя мучнистой росы льна.

Erysiphe communis (Wallr.) Grev. f. betae Jacz.— Эризифе обычная ф. свекольная (рис. 1.16)

Поражает сахарную свеклу.

Болезнь проявляется в образовании белого мучнистого порошкообразного налета на листьях розетки среднего и нижнего ярусов. В конце июня — июле на верхней поверхности листьев образуются пятна в виде нежной паутины, затем они сливаются в сплошной белый налет, развивающийся не только на верхней, но и нижней стороне листьев. К концу вегетации свеклы на листьях формируются плодовые тела в виде мелких шарообразных золотисто-желтых сумок, постепенно
бурующих. Развитию болезни способствует сухая жаркая погода, чередование длительных засушливых периодов с кратковременными увлажнениями.

Источник инфекции — клейстотеции, сохраняющиеся на поверхности почвы, на семенах и корнеплодах.

Болезнь приводит к преждевременному отмиранию растений, снижению массы корнеплодов на 10—40 %, уменьшению сахаристости на 0,5—1,5 %, плохой сохранности их при хранении.

Распространение: повсеместно в районах возделывания.

Меры борьбы: уничтожение растительных остатков; агротехнические мероприятия, направленные на улучшение режима водного питания растений; обработка посевов системными фунгицидами: тридемор-фом и его 75 %-ным раствором — калистином (500 г/га), 2 %-ным раствором каптана (2—3 кг/га), опыливание порошком серы (15—20 кг/га).

Другие вредоносные формы: f. brassicae Hamar.— ф. капустная, поражает капусту, репу, брюкву; f. fagopyri Jacz.— ф. гречишная, поражает гречиху; f. glycine Jacz.— ф. соевая, поражает сою; f. pisi Diet.— ф. гороховая, поражает горох; f. trifolii Rabh.— ф. клеверная, поражает клевер; f. medicaginis Dietr.— ф. люцерновая, поражает люцерну; f. solani-lycopersici Jacz.— ф. томатная, поражает томаты.

**Erysiphe cichoracearum** DC.— Эризифе цикориевая

Возбудитель мучнистой росы.

Клейстотеции шаровидные, при высыхании слегка вдавленные, 80—150 мкм в диам., с простыми или разветвленными у вершины придатками. Сумки по 5—15 в клейстотеции, 58—90 X 30—50 мкм, с короткой ножкой. Споры обычно по 2 в сумке (редко по 3—4), эллипсоидальные или округлые, 20 — 30 X 10 — 20 мкм, образуются осенью. Анаморфа типа **Euoidium**. Конидии образуют цепочки.

Поражает виды растений различных семейств, преимущественно семейства сложноцветных.

Болезнь проявляется в образовании на пораженных органах вначале белого, иногда с розовым оттенком, налета, со временем темнеющего и приобретающего бурый оттенок.

Источник инфекции — аскоспоры в клейстотециях.

Болезнь приводит к значительным потерям урожая культурных растений.

Распространение: повсеместно в местах произрастания.

Меры борьбы: такие же, как против других возбудителей мучнистой росы.

**Erysiphe cicohoracearum** DC. f. cucurbitacearum Poteb.— Эризифе цикориевая ф. огурцовая

Поражает листья и стебли растений семейства тыквенных (огурцов, дынь, тыкв). Большую опасность представляет для огурцов в закрытом грунте. При сильном поражении листья засыхают. Гриб развивается в стадии анаморфы в течение вегетации, а в стадии телеоморфы — в период хранения. Клейстотеции образуются после сбора урожая и часто не обнаруживаются.

Источник инфекции — клейстотеции, сохраняющиеся на растительных остатках.

Болезнь приводит к значительным потерям урожая (до 100 % в закрытом грунте)

Меры борьбы: такие же, как против других возбудителей мучнистой росы.
Семейство Clavicipitaceae (Lindau) Earle — Клавицепитовые

Род Claviceps Tul. — Клавицепс

Стромы формируются на перезимовавших склероциях. Они яркие, оранжево-красные, мясистые, дифференцированы на плодушную часть (головку) и стерильную ножку. Перитеции располагаются по окружности периферической части головки, бутылчатые или эллиптическо-конические. Аски удлиненно-цилиндрические, в каждой по 8 аскоспор. Аскоспоры нитевидные, сначала без перегородок, затем септируются и распадаются на бесцветные, расположенные параллельно, клетки. Склероции образуются в завязи злаков. Снаружи они темно-фиолетовые, внутри белье, плотные. Анаморфа образуется в завязи до заложения склероции. Конидии эпизитические, маленькие.

Claviceps purpurea (Fr.) Tul.— Спорынь обыкновенная
Синонимы: Sphaeria purpurea Fr., Claviceps microcephala (Wallr.) Tul. Возбудитель спорыньи, или рожков злаковых.

Стромы на склероциях многочисленные, 1—8 см выс., красновато-оранжевые, при отмирании — фиолетово-бурые, состоят из плодущей части, до 0,5 см в диам., и тонкой стерильной ножки, 0,5—0,8 см выс. Перитеции бутылчатые, 275 — 300 × 82 — 110 мкм.

Аски узкобулавовидно-цилиндрические, 60 — 90 × 2 — 4,5 мкм, с полушаровидной головкой, 3—4 мкм выс. Аскоспоры нитевидные, 50 — 84 × 1 — 1,5 мкм. В природных условиях образуются редко. Гриб заметен ранней весной в стадии анаморфы — Sphacelia segetum Lev. Конидиеносцы простые или неправильно разветвленные, до 20 мкм выс. Конидии эллипсоидально-яйцевидные, 4—8 × 1 — 2 мкм. Они покрыты клейкой жидкостью («медвяной росой») с неприятным запахом, привлекающей насекомых, которые способствуют распространению гриба. Склероции варьируют по размерам и окраске, 0,5—5 см дл., черновато-фиолетовые.

Часто поражает рожь, пшеницу, особенно твердую, ячмень, реже — осоковые.

В соцветиях пораженных растений появляются склероции в виде рожков черно-фиолетового цвета, представляющие собой зимующую стадию гриба. Прорастают они при температуре от — 3 до 5 °C в течение длительного периода. Образующиеся в результате этого стромы имеют вид бугорков, которые удлиняются и превращаются в шаровидные головки, 1—1,5 мм в диам. По периферии головок развиваются перитеции. Аскоспоры заражают злаки в период цветения, особенно при высокой влажности и низкой температуре воздуха. Заражение происходит через рыльце или меристематические ткани у основания завязи, где развивается конидиальная стадия гриба — Sphacelia.

Первые склероции обнаруживаются при влажной погоде спустя неделю после появления «медвяной росы», а при сухой — через две недели. Созревают склероции во время созревания зерна. Завязи полностью разрушаются и заполняются мицелием гриба.

Болезнь приводит к снижению урожая, ухудшению качества семян в результате токсического действия алкалоидов, содержащихся в склероциях.

Спорынья — один из наиболее известных и распространенных токсических грибов. Склероции спорыньи содержат две группы алкалоидов: алкалоиды лиозигиновых кислот (пептидные) — эргозин (эргозинин), эргокриптин (эргокриптинин), эрготамин (эрготаминин) и клавиновые алкалоиды — хеноклавин, аргоклавин, элиномоклавин, пенниклавин. Их содержание в склероциях составляет 0,0001—0,75 %.
Биологическое действие алкалоидов многообразно: они вызывают сокращение сосудов и других органов с гладкими мышцами, оказывают нейрогуморальное действие; являясь антагонистами адреналина, влияют на деятельность нервной системы.

Применяются в современной медицине для лечения сердечно-сосудистых и нервных заболеваний.

Распространение: повсеместно в районах возделывания злаков.

Меры борьбы: тщательная зерновая вспашка, приводящая к заделке склероций на большую глубину; подбор сортов, устойчивых к заболеванию; своевременная уборка урожая; тщательная очистка зерна от склероций; соблюдение севооборота (возвращение поражаемых культур не ранее, чем через 2 года). Зерно с примесью рожков выше 0,5% непригодно для изготовления муки и скармливания животным. [4, 9, 14, 21, 26, 41, 42, 44]

Подкласс Euascomycetidae — Эуаскомицеты

Группа порядков DISCOMYCETES — Дискомицеты

Порядок Helotiales — Гелоциальные

Семейство Sclerotiniaceae — Склеротиниевые

Род Whetzelinia (Lib.) dBv — Ветцелиния

Плодовые тела — блюдцевидные апотеции. Они образуются на склероциях весной. Спороносят одновременно с цветением растений-хозяев. Апотеции обладают позитивным фототропизмом: на свету аскоспоры выбрасываются из сумок силой осмотического давления в результате разрыва пор в утолщенных верхушках сумок. Они рассеиваются на большие расстояния от плодового тела. Сумки булавовидно-цилиндрические, в каждой по 8 спор. Аскоспоры одноклеточные, продолговатые или эллиптические, бесцветные. Парафизы нитевидные, бесцветные. Конидиальное спороношение у видов рода отсутствует. Склероции развиваются в стеблях растений-хозяев. Сначала напоминают кусочки ваты, затем затвердевают, у них образуется черный наружный слой и розовый внутренний, позднее белеющий. При созревании склероции выступают из разложившихся пораженных тканей растения или остаются внутри них.

Многие виды рода строго специализированы к определенным растениям, другие обладают широким физиологическим спектром. Представители рода являются возбудителями различного рода гнилей. [21, 44]

Whetzelinia sclerotiorum (Lib.) dBv — Ветцелиния склероциальная (рис. 1.17)

Син.: Sclerotinia sclerotiorum (Lib.) dBv, S. libertiana Fuck., S. compactum DC.

Возбудитель белой гнили.

Апотеции воронкообразные, светло-бурые, с углублением посередине, 4—8 мм в диам., на цилиндрических ножках, одиночные или группами. Сумки цилиндрические, 130—135 × 8 — 10 мкм. Аскоспоры эллиптические, 9 — 13 × 4, 6, 5 мкм, однорядные. Парафизы нитевидные. Поражает растения различных семейств, но особенно вредоносен для подсолнечника. Болезнь проявляется в виде прикорневой или стеблевой гнили в течение всего вегетационного периода. Основанием стебля, корней, стебель, боковые ветки, черешки буреют, поражен-
ная ткань размягчается. Растения увядают и засыхают. У всходов по­
ражается проросток, загнивает подсемядольное колено и основание
стебля, которые покрываются белым рыхлым налетом грибницы.
У взрослых растений поражаются стебли и корзинки. На стеблях по­
являются мокнущие пятна, которые покрываются хлопьевидным на­
летом грибницы, проникающей и внутрь стебля, стебли размягчаются
и надламываются. На корзинках заболевание начинает проявляться
с тыльной стороны в виде коричневых пятен, ткань которых становится
мокрой и покрывается налетом грибницы, которая пронизывает кор­
зинку и переходит на лицевую сторону, где распространяется между

Рис. 1.17. Whetzelinia sclerotiorum:
а — склероции (1) с апотециями (2); б — сумки (1) и парафизы (2); в — часть склеро­
ции (1 — корковая ткань; 2 — медулярная ткань) [44]

зерновками. Корзинки загнивают и разрушаются. Мицелий проникает
в семена. Семена в корзинках или не образуются, или недоразвиваются.

В цикле развития гриба большую роль играют склероции, форма
и размеры которых зависят от места их формирования. Сначала зача­
tок склероция медленно развивается на мицелии в виде бугорка, поз­
же он окружается и превращается в склероций белого цвета, на кото­
ром появляются прозрачные капли экссудата. Затем склероций тем­
неет, становится серовато-черным или черным, и экссудат высыхает.
Склероции образуются в большом количестве, группами или рассеян­
но. Оптимальная температура для развития склероциев 20—25 °С,
мнимальная 5 °С (при этом склероции образуются на 20—24-е сутки,
но они более крупные).

При благоприятных условиях после периода покоя на склероции
образуются апотеции. Сначала появляется ножка, которая, удлиняясь,
постепенно расширяется, образует своеобразную воронку. Диам.
диска 9—10 мм.

Мицелий гриба распространяется в растение между кутикулой
и эпидермисом, параллельно оси стебля и строго межклеточно. Мице­

52
лий проникает также в колленхиму и паренхиму первичной коры и центрального цилиндра. В сосудах гриб не обнаруживается. Стебель пораженных растений теряет прочность, легко расщепляется продольно (ухудшается связь между сосудами) и обламывается.

Развитию болезни способствует влажная теплая погода; оптимальная для заражения температура воздуха 15—18 °C (при 30 °C заражение не происходит) и влажность 60—80 %.

Болезнь приводит при заражении в раннем возрасте к гибели растений, а при заражении в более позднем возрасте — к образованию шуплых легковесных семян. Масло, полученное из семян со склероциами, имеет горький привкус.

Распространение: повсеместно в районах возделывания.

Меры борьбы: соблюдение севооборота с возвратом подсолнечника на поле не ранее чем через 5—6 лет; пространственная изоляция семейных и товарных участков не менее чем 1000 м; десикация растений в начале побурения корзинок на корню 60 %-ным раствором хлорита магния (20—30 кг/га) или 20 %-ным водным раствором реглона (2—3 кг/га); очистка семян и протравливание ТМДТ (2—3 кг/т), фентиурамом (2—3 кг/т) или апроном 35 (6 кг/т). [41, 42]

Подкласс Loculoascomycetes — Асколокулярные, или Локулоаскомицеты

Порядок Dothideales — Дотидеальные

Семейство Pleosporaceae — Плеоспоровые

Род Gaeumannomyces Riess — Гайманомицес

Псевдотеции вначале погруженные, выступают устьицем, затем обнаруживаются. Сумки цилиндрические, окруженные парафилами. Аскоспоры нитевидные, с перегородками, бесцветные или желтоватые.

Большинство видов рода — сапрофиты, развивающиеся на отмерших стеблях и листьях травянистых растений, некоторые из них паразиты-полифаги, т. е. малоспецифичны в отношении субстрата, на котором они развиваются, хотя среди них имеются и специализированные виды.

Gaeumannomyces graminis (Sacc.) v. Arx et H. Oliviner — Гайманомицес злаковый

Син.: Ophiobolus graminis Sacc.

Один из главных возбудителей офиоболезной прикорневой гнили злаковых.

Псевдотеции шаровидные, 330—500 мкм в диам. Сумки 80 — 115 × 9 — 13 мкм, собраны в пучки, продолговато-булавовидные, прямые или согнутые, с псевдопарафилами, в каждой по 8 спор. Аскоспоры собраны в пучки или почти двурядные, бесцветные, 60—90 (обычно 70—80) × 3 мкм, при созревании разделяются 5—7 перегородками.

Болезнь проявляется в отмирании растений. Во время колошения появляются группы растений, прекращающих рост. Их листья, стебли и колосья засыхают, белеют. Гриб поражает корневую шейку и корни, которые чернеют, их кора отмирает и отторгается. Пораженные части покрываются коричневым, почти черным, толстым мицелием. Зараженные растения, как правило, слабо кустятся. При раннем заражении зерно не образуется, при более позднем оно становится щуплым.

Оптимальная температура для роста гриба 22—25 °C, минимальная 3, максимальная 28 °C.
Источник инфекции — отмершие растительные остатки. Болезнь приводит к значительному снижению урожая злаков (до 40 %).
Распространение: повсеместно в районах возделывания.
Меры борьбы: соблюдение севооборота; протравливание семян гранозаном с красителем (1—2 кг/т) или ТМТД, пентатиурамом, меркурбензолом (1,5—2 кг/т), бенлатом (2—3 кг/т), витаваксом (2,5—8 кг/т); обработка посевов бенлатом или фундазолом (0,3—0,6 кг/га).

Род Cochliobolus Drechs. — Кохлиобол
Отличается от Ophiobolus спирально закрученными аскоспорами и более толстыми сумками.

Cochliobolus heterostrophus Drechs. — Кохлиобол гетеротрофный
Син.: Ophiobolus heterostrophus Drechs. Возбудитель гнили кукурузы.
Псевдотеции 0,4—0,6 мм в диам., черные, часто покрыты конидиеносцами. Сумки цилиндрические, 160—180 × 24—28 мкм, обычно с четырьмя спорами. Аскоспоры нитевидные, спирально согнутые (закрученные), с 5—9 перегородками, 130—340 × 6—7 мкм.
Анаморфа — Drechiera maydis*.

Cochliobolus sativus (Ito et Kuribay.) Drechs. et Dastur. — Кохлиобол посевной
Возбудитель гнили и пятнистости.
Анаморфа — Drechslera sorokiniana (Sacc.) Subram*.

Семейство Venturiaceae — Вентуриевые

Род Venturia Ces. et de Not. — Вентурия
Псевдотеции округлые, погрязенные, вступающие устьицем, окруженные щетинами. Сумки восьмиспоровые, сидячие или на коротких ножках, окружены парафизоидами, со временем исчезающими. Аскоспоры продолговатые, двухклеточные, бесцветные или оливковые с неравными клетками.
Venturia pirina Aderh. — Вентурия грушевая (рис. 1. 18)
Возбудитель парши груши.
Псевдотеции расположены преимущественно на нижней стороне листьев, группами. Они прорываются сосочковидным устьицем, окруженным щетинками. Сумки цилиндрические, почти сидячие, 50—70 × 10 мкм. Аскоспоры неправильнооднорядные, иногда частично двурядные, эллиптические, яйцевидные, на концах закругленные, слегка перетянутые, 14—20 × 5—8 мкм, с обычно более длинной верхней клеткой.
Анаморфа — Fusicladium pirinum (Lib.) Fuck.
Поражает листья, плоды и побеги. На листьях образуются оливковые пятна, на плодах — темные с налетом пятна, мякоть деревенеет, трескается. На побегах кора покрывается мелкими пузыреподобными вздутиями.

* Описание болезни приведено в стадии анаморфы, как более вредоносной.
Источник инфекции — аскоспоры, сохраняющиеся на опавших листьях, в плодах, пораженных побегах. Болезнь приводит к снижению урожая, ухудшению качества плодов, а также к уменьшению стойкости к низким температурам и гнилям. Распространение: повсеместно в местах произрастания. Меры борьбы: сжигание опавших листьев; обрезка пораженных ветвей; уничтожение мумифицированных плодов; опрыскивание растений 1 %-ным раствором бордоской жидкости или ее заменителями: 0,1 %-ным бенлатом (1—2 кг/га), 0,5 %-ным каптаном (7,5—10 кг/га), 0,4 %-ным поликарбацином или полихлором (4—8 кг/га), 0,1 %-ным топсином-М (1—2 кг/га), 0,5 %-ным фталаном (7,5—10 кг/га), 0,4 %-ным цинебом (4—8 кг/га). [23, 41, 44]

Рис. 1.18. *Venturia pirina*:

- a — псевдотеций с аскопорами; b — пораженные листья; в — пораженные плоды

Семейство *Mycosphaerellaceae* — Микофераелловые

Род *Mycosphaerella* Johans. — Микофераела

Псевдотеции черные, шаровидно-приплюснутые, развиваются под эпидермисом растения-хозяина. Сумки цилиндрические или буллово-видные, соединенные основанием в пучки, 8—16-споровые. Аскоспоры двухклеточные, бесцветные или желтовато-зеленые, расположены в два-три ряда или скучены в беспорядке. В стадии телеоморфы — обычно сапротрофы, а в стадии анаморфы — опасные паразиты растений. К настоящим паразитам относится 21 вид. Их делят на две группы. К первой относятся виды, поражающие растения в стадии телеоморфы, ко второй — в стадии анаморфы; телеоморфа развивается на отмерших
частих растений. Анаморфа из родов Ramularia, Cercospora, Cercosporella, Phoma, Ascochyta, Phyllosticta, Septoria, Marssonina и Cylin-drosporium.

Виды рода — возбудители пурпурной пятнистости, которая отличается от других пятнистостей наличием пурпурного ободка и выпадением центра пятна. [21]

**Mycosphaerella allicina** Auersw.— Микосферелла луковая
Возбудитель пятнистости лука.
Псевдотеции шаровидные, черные, 80—100 мкм в диам., прорывающиеся. Сумки булавовидные, сидячие, 50—50 × 14—15 мкм. Аскоспоры неправильнovo двуриядные, продолговато-эллиптические, закругленные, бесцветные. 15—16 × 4—5 мкм.
Поражает также чеснок.
На листьях и стрелках растений возникают пятна сначала белые или коричневые без ободка, затем с пурпурным ободком.
Источник инфекции — псевдотеции, находящиеся на растительных остатках.
Болезнь не оказывает существенного влияния на урожай.
Распространение: повсеместно.
Меры борьбы: уничтожение растительных остатков (при сильном развитии болезни скашивание и сжигание надземных частей растений); опрыскивание растений 1 %-ным раствором бордоской жидкости, 0,5 %-ным раствором каптана (2,5 кг/га) и другими фунгицидами.

**Mycosphaerella brassicicola** (Duby) Catt.— Микосферелла капустная
Возбудитель пятнистости капусты.
Псевдотеции тесно скученные, шаровидно-чечевицеобразные, 80—115 мкм в диам., выступающие, охряно-бурые; сумки цилиндрические, 50—15 мкм, с 8 аскоспорами; аскоспоры в 2—3 ряда, продолговатые или булавовидные, 18 × 3,5 мкм, чаще согнутые, с одной перегородкой, слегка перешнурованные, бесцветные.
Поражаются разные виды капусты.
На всех надземных органах, кроме семядольных листьев и внутренних листьев кочана, образуются серовато-бурые пятна. Сильнее всего поражаются нижние листья, на которых образуются нечетко отграниченные пятна 0,5—2 см в диам. различной формы.
Источник инфекции — псевдотеции, сохраняющиеся на растительных остатках.
Болезнь приводит к отмиранию листьев.
Распространение: повсеместно в районах возделывания.
Меры борьбы: такие же, как против возбудителя пятнистости лука. [44]

**Mycosphaerella linorum** (Wr.) Carsia-Rada — Микосферелла льна
Возбудитель пятнистости льна.
Псевдотеции разбросанные, одиночные, около 200 мкм в диам. Сумки 58—67 × 10 мкм. Аскоспоры 16,6 × 3,4 мкм, бесцветные.
Анаморфа — Septoria liniola (Speg.) Yarassini.*

Mycosphaerella circumvaga Mig.— Микосферелла крутящаяся
Возбудитель пятнистости люцерны.
Псевдотеции мелкие, шаровидные, черные, погруженные. Сумки булавовидные. Аскоспоры грушевидно-булавовидные, бесцветные, 8—10 × 4 мкм.
Характер проявления болезни, источник инфекции, вредоносность, распространение и меры борьбы, как у микосфереллы луковой.

Mycosphaerella phaseolorum Simaschko — Микосферелла фасоли мелкоспоровая
Возбудитель пятнистости фасоли.
Псевдотеции расположены на верхней стороне листьев, 70—120 мкм в диам., с широким устьицем. Сумки булавовидные, 35—60 × 14—16 мкм. Аскоспоры 10—12 × 6—7 мкм.
Поражают сою и фасоль.
Характер проявления болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у микосфереллы луковой. [44]

Mycosphaerella vitis (Rabenh.) Schroet.— Микосферелла винограда
Возбудитель буровой пятнистости побегов винограда.
Псевдотеции погруженные, шаровидные, черные, 60—80 мкм в диам. Сумки булавовидные, 25—85 × 3—9 мкм, собраны в пучки. Аскоспоры двухклеточные, бесцветные, эллипсоидальные, 11×5 мкм.
Поражает живые и отмирающие однолетние побеги.
На верхней стороне листьев, и на побегах образуются буровато-коричневые, матовые, мелкие пятна.
Источник инфекции и вредоносность такие же, как у M. allicina.
Распространение: Закавказье.
Меры борьбы: такие же, как против пятнистости лука.

Род Didymella Sacc. — Дидимелла
Псевдотеции одиночные или в группах, погруженные, черные, шаровидно-приплюснутые, с выступающим устьицем. Сумки восьмиспоровые, цилиндрически-яйцевидные, мешковидные. Есть парафизоиды. Аскоспоры бесцветные, эллиптические, яйцевидные, с одной перегородкой.
Некоторые представители этого рода — паразиты (главным образом в конидиальной стадии).
Didymella bryoniae (Auersw.) Rehm.— Дидимелла переступня
Возбудитель черной гнили огурцов.
Псевдотеции темноокрашенные, 94—140 × 94—129 мкм. Аскоспоры бесцветные, двухклеточные, слегка перетянутые посредине, 11,5—14 × 3—4,6 мкм.
Анаморфа — Ascochyta cucumis Fautr. et Roum.
Заболевают растения, выращиваемые в закрытом грунте (преимущественно под пленочными укрытиями). У края листьев появляются грязно-серо-коричневые пятна, распространяющиеся постепенно к центру. Ткань пятна высыхает, становится тонкой и ломкой. На пятнах развиваются пикниды, расположенные концентрически. Псевдотеции образуются редко. Черешки загнивают. Скопление пикнид и псевдотеций вызывает почернение ткани. Поражаются отрастающие от стебля боковые побеги и плоды. Переходная зона к здоровой ткани часто желтеет. Растения увядают и отмирают. Характерный признак

* Описание болезни приведено в стадии анаморфы, как более вредоносной.
заболевания — плотное расположение перитециев у основания стебля. По этому признаку черную гниль отличают от увядания. Источник заражения — почва, в которой гриб сохраняется больше года, а также семена. Болезнь приводит к значительной потере урожая. Распространение: повсеместно в районах возделывания (особенно в закрытом грунте). Меры борьбы: уничтожение растительных остатков; опрыскивание растений при появлении первых признаков заболевания 1 %-ным раствором бордоской жидкости или ее заменителями — цинебом (3,2—4 кг/га), каптаном или фталаном (3—3,5 кг/га). [41, 44] Didymella applanata Niesl. — Дидимелла сплющенная Возбудитель нурпунной пятнистости малины. Псевдотеции погружены в кору, черные, приплюснутые. Сумки — цилиндрически-булавовидные, 60—70 × 10—12 мкм. Аскоспоры двуярядные, эллиптическо-обратнояйцевидные, на концах закругленные, слегка перетянутые, 13—16 × 5—6 мкм, бесцветные, с верхней более широкой клеткой. Вызывает отмирание побегов малины. На однолетних побегах и листьях возникают лилово-коричневые расплывчатые пятна. На листьях ткань усыхает, черешки, охлажденные пятнами, усыхают вместе с листьями. Поражается и стебель; он покрывается светло-бурыми пятнами спороношений гриба, в то время как здоровая кора имеет светло-коричневый цвет. Осенью кора растрескивается. Развитию болезни способствует высокая влажность воздуха (до 100 %) и температура 15—20 °С. Продолжительность инкубационного периода 20—25 дней. Источник инфекции — мицелий и аскоспоры, находящиеся в почве и растительных остатках. Болезнь приводит к гибели 30 % побегов. Распространение: Ленинградская, Московская области, Прибалтика, Сибирь. Меры борьбы: такие же, как против возбудителя черной гнили огурцов. [41, 44]

**КЛАСС BASIDIOMYCETES — БАЗИОДИОМИЦЕТЫ**

Высшие грибы с многоклеточным мицелием. Мицелий хорошо развит, состоит из очень тонких ветвящихся гиф. Последние могут образовывать плотные сплетения — склероции предназначенные для сохранения вида в неблагоприятных условиях. Для этой же цели служат толстостенные бесформенные клетки — геммы, с густым протоплазматическим содержимым, напоминающие хламидоспоры. Morphологической особенностью гиф базидиальных грибов является наличие пряжек, которые представляют собой небольшие, дугообразной формы клетки, расположенные против поперечной перегородки гиф. Пряжки появляются только в результате диплоидизации мицелия, так как первичный гаплоидный мицелий, образующийся после прорастания спор, пряжек не имеет. Для базидиомицетов характерна полная утрата специализированных половых клеток, и половой процесс у них осуществляется путем слияния двух вегетативных клеток гаплоидного мицелия, вырастающего из базидиоспор. У гомоталлических видов могут сливаться гифы одного и того же мицелия, у гетероталлических, к которым принадлежит большинство базидиомицетов, слизиваются клетки гиф, берущих начало от спор противоположных половых знаков.
Базидиоспоры (т. е. экзогенные споры) располагаются на особых выростах базидий — стеригмах. Базидиоспоры одноклеточные, чаще всего шаровидной или эллипсоидальной формы, с гладкой и тонкой оболочкой, бесцветные или темно- или яркоокрашенные.

Одноклеточная булавовидная базidia называется холобазидией. Если базidia состоит из двух частей (нижней, расширенной гипобазидии и верхней эпобазидии, являющейся выростом гипобазидии), а эпбазидия состоит из двух или четырех частей и отделена у группы видов от гипобазидий перегородкой, то такая сложная базidia называется гетеробазидией. Третий тип базидии — фрагмобазидия. Это базidia, разделенная поперечными перегородками на четыре клетки, по бокам которых формируются базидиоспоры. Особенностью фраг-мобазидии является также то, что она обычно образуется из толстостенной покоящейся клетки — склеробазидии (рис. 1.20).

Базидии одноклеточные или многоклеточные, с поперечными, короткими и продольными перегородками, булавовидные, веретеновидные, цилиндрические, удлиненно-овальные, широковоаные, прямые, изогнутые, бесцветные или слегка окрашенные. На базидиях обычно образуются четыре базидиоспоры, реже две, шесть, восемь. Базидиоспоры разнообразны по форме, размерам, окраске. Конец, которым базidia прикрепляется к стеригме, называют апиккулем, на противоположном конце обычно находится пора прорастания. Оболочка базидиоспор состоит из нескольких слоев: экзоспория, наружного слоя, часто орнаментированного; эписпория, среднего слоя; эндоспория, состоящего из толстого слоя (у окрашенных форм — окрашенного) и тонкого бесцветного слоя.

Базидиомицеты делят на три подкласса: Holobasidiomycetidae — виды с одноклеточными базидиями; Heterobasidiomycetidae — виды с базидиями, разделенными на две части; Teliosporomycetidae — виды, у которых базidia вырастает из толстостенной покоящейся клетки — телиоспоры.

Рис. 1.20. Типы базидий:
а — холобазидия; б — в — гетеробазидии;  де — фрагмобазидия, или склеробазидия [21]
Паразиты высших растений относятся к подклассу Teliosporomycetidae, подразделяющемуся на два порядка — Ustilaginales, Uredinales. Для представителей этого подкласса характерно то, что базидия вырастает из толстостенной покоящейся споры — телиоспоры, которая является зимующей стадией. Плодовых тел телиоспоромицеты не имеют, они утрачены вследствие паразитического образа жизни. Телиоспоры одно-, двухклеточные, одиночные или соединены в сосузы, или спорокучки. Сосузы бывают пятыми, склеенными, зернистыми. Структура их разнообразна; часто они состоят из различных сплетений гиф — тяжей, стром, покрытых перидием.

К порядку Ustilaginales относятся облигатные паразиты высших растений, возбудители опасных заболеваний злаковых культур. Способ прорастания телиоспор представителей этого порядка является основой для разделения его на два семейства: Ustilaginaeae, Tilletiaeae.

Для первого характерно прорастание телиоспор с образованием многоклеточного промицелия — ростковой трубки с базидиоспорами по бокам, для второго — прорастание телиоспор с образованием одноклеточного промицелия — ростковой трубки с базидиоспорой на ее вершине.

К порядку Uredinales относятся облигатные паразиты высших растений. Весной в результате полового процесса на каждой клетке телиоспоры образуется базидия с стеригмами, несущими базидиоспоры. Базидиоспора заражает растение и развивает на нем последовательно следующие спороношения: спермогонии со спермациями, эции с эциоспорами, урединии с урединиоспорами, телии с телиоспорами, базидии с базидиоспорами.

Спермогонии, или пикниды — бутылковидные споровместилища, возникают на гаплоидном мицелии, погруженном в ткани листа; в их полости образуются спермации, или пикноспоры. Спермации и образующий их мицелий имеют разные половые знаки, и при слиянии спермациев с мицелием образуется двухядерный мицелий (слияние ядер не происходит). Аналогичный процесс происходит и при слиянии двух спермациев, имеющих разные половые знаки.

Эции — споровместилища, развивающиеся на двухядерном мицелии, расположенном под спермогониями. От оснований эции образуется слой цилиндрических клеток, от которого отдельяются цепочки эциоспор, окрашенных в ярко-желтый цвет. Эциоспоры прорастают вегетативной гифой, проникающей в растение через устьице.

Спермогонии и эции развиваются на растениях — промежуточных хозяевах, следующие стадии — урединии, телии — на основном растении-хозяине.

Урединии — летние споровместилища, формирующиеся под эпидермисом. Они окружены парафизами, расширенными к вершине в цилиндрическую, булавовидную или яйцевидную головку. На урединиях на коротких мелких ножках развиваются урединиоспоры. Урединиоспоры бывают двух видов — в начале лета — вытянутые, тонкостенные, с двумя рядами пальчковидных бородавок, в конце лета — толстостенные, эллипсоидальные, покрытые по всей поверхности бородавками. Последние иногда напоминают телиоспоры и их называют амфиспорами. Они также являются зимующими стадиями. Некоторые виды порядка Uredinales могут развиваться только урединиоспорами, не образуя других спороношений.

К концу лета из урединиоспор образуются зимующие споры — телиоспоры с толстой темной оболочкой. Обычно они расположены под эпидермисом в полостях под устьицами, реже — под кутикулой или в клетках эпидермиса, образуя споровместилища — телии. После периода покоя, весной, в телиоспорах происходит слияние ядер и обра-
вуются четыре гаплоидные клетки. Из каждой такой клетки развивает­ся базидия — бесцветная клетка, разделенная перегородками на четы­ре части. От каждой части отходит бесцветный, утончающийся к кон­цу вырост — стеригма, на кончике которого развивается базидиоспо­ра. Две образующиеся из одной телиоспоры базидиоспоры имеют один половой знак, а две другие — противоположный.

Виды, у которых развиваются все типы спороношений, относятся к видам с полным циклом развития; виды, у которых некоторые типы спороношений отсутствуют, относятся к формам с неполным циклом развития.

У многих видов цикл развития проходит на одном растении. Это однодомные виды. У других — на двух растениях. Это двудомные виды. Известно около 30 тыс. видов базидиомицетов. [21, 32, 44]

Подкласс Holobasidiomycetes — Холобазидиомицеты

Группа порядков Hymenomycetes — Гименомицеты

Порядок Aphyllophorales — Афиллофоральные

Семейство Clavariaceae — Рогатиковые, или Булавницы

Род Typhula Fr. et Karst. — Тифула

Плодовое тело развивается из склероция. Оно тонкое, с нитевид­ной ножкой, 0,1—10 см выс. Ткань плотная, в ножке иногда роговид­ная. Гифы обычно с пряжками, вздутые. Базидии с четырьмя, реже с двумя или шестью—восьмью стеригмами. Базидиоспоры бесцветные, эллипсоидально-цилиндрические, гладкие. Склероции 0,5—6 мм в диам., шаровидные или сплющенные, желтые, красноватые или бу­рые, поверхностные или погруженные.

Представители рода являются возбудителями гнилей различных растений.

Typhula incarnata Jasch.: Fr.— Тифула мясо-красная
Син.: Т. graminum Karst., Т. itiana Imai

Возбудитель выпревания зерновых культур.

Склероции 0,5—4 × 0,3—3 мм в диам., приплюснутые, непра­вильно округлые, с гладкой или шероховатой поверхностью, темно­коричневые. Плодовые тела развиваются по одному на склероции, реже по нескольку, 5—30 мм дл., состоят из ножки и розовой цилиндриче­ской плодущей части. Базидии с эллипсоидными базидиоспорами, 7—11 × 2,5—6 мкм.

Образование плодовых тел происходит только под влиянием уль­трафиолетовых лучей. Без доступа света в почве вместо плодовых тел образуются ватообразные тяжи.

Гриб весьма морозоустойчив. Повышение интенсивности света, температуры, понижение относительной влажности воздуха стимули­руют образование склероциев. Оптимальная температура для развития гриба 9—12 °С, минимальная 0, максимальная 18 °С.

Поражает озимый ячмень, озимую рожь, реже озимую пшеницу и озимый овес.

Очаги болезни проявляются на всходах злаков осенью и весной, особенно в годы с резкими изменениями погоды. Пораженные растения осенью становятся темно-зелеными. Весной нижние листья у них опа­дают (часто они бывают покрыты грязно-серым налетом мицелия). Верхние листья желтеют и отмирают. Новые листья растут вертикаль­но и имеют узкую желтую пластинку. В их пазухах часто образуется
плотный белый мицелий. Уzel кущения измочаленный, надземная часть его легко отделяется от корней. Между здоровой и мертвой тканью появляется красно-коричневая кайма. В пазухах листьев и на корнях образуются одиночные или расположенные группами склероции. Тифулез чаще всего развивается на тяжелых пойменных почвах на участках, соседствующих с пыреем, который является резерватором инфекции.

Источник инфекции — склероции, сохраняющиеся на пораженных растительных остатках. Болезнь приводит к снижению продуктивности растений на 30—40 % и изреживанию посевов.

Распространение: северо-западные и центральные районы Нечерноземной зоны РСФСР, Прибалтийские республики, Украинское Полесье.

Меры борьбы: уничтожение растительных остатков и особенно сорняков; при запоздалых сроках сева — подкормка растений аммиачной селитрой (0,75 ц/га); весной в начале отрастания растений — подкормка фосфорно-калийным или полным удобрением, при кислых почвах — гипсование. [39, 41, 44]

Подкласс Teliosporomycetidae — Телиоспоромицеты
Порядок Ustilaginales — Головневые
Семейство Ustilaginaceae — Головневые
Род Ustilago (Rers.) Roussel — Устиляго

Мицелий развивается в межклеточном пространстве. Телиоспоры одиночные, образуют в тканях питающего растения крупные сорусы, часто выступающие в виде вздутий или наростов. Гемибазидии с перегородками; базидиоспоры образуются на их верхушке и по бокам. Иногда мицелий развивается непосредственно из гемибазидии.

Паразиты злаковых культур.

Ustilago tritici (Pers.) Jens.— Пыльная головня пшеницы
Возбудитель пыльной головни пшеницы.
Телиоспоры шаровидные, иногда яйцевидные или угловатые, светло- или оливково-коричневые, 6—9 × 5—7 мкм, с мелкобородчатой коричневой оболочкой, неравномерно окрашенной — с одной стороны 1/3—1/4 поверхности более светлой или почти бесцветной. Созревшие телиоспоры легко распыляются и попадают на цветущие растения. Оседая на рыльце пестика и прорастая, они дают начало фрагмобазидии, из которой развиваются мицеллярные отростки. Последние попарно копулируют и из них развиваются диаплодные гифы, которые, достигнув завязи, сохраняются в латентной стадии в семенах.
Болезнь поражает все части колоса, кроме главного стержня, еще до выхода его из влагалища листа. Колос полностью превращается в пылевидную спороносную массу черного цвета. В зерне гриб сохраняется жизнеспособность более трех лет. При прорастании зерна гифы гриба сохраняют в активное состояние и поражают проростки. Грибница распространяется по стеблю, иногда поражает и листья. В период формирования колоса мицелий интенсивно разрастается и утолщается, превращается в бесформенную массу, на которой развиваются телиоспоры, сохраняющие патогенность в течение всего периода цветения пшеницы.

62
Оптимальная температура для прорастания спор 20—25 °С, минимальная 0—5, максимальная 30—35 °С. Низкая относительная влажность воздуха ингибирует прорастание спор.

Источник инфекции — телиоспоры, сохраняющиеся в пораженном зерне.

Болезнь приводит к уменьшению массы зерна на 30—40 %, резкому снижению качества урожая, уменьшению зеленой массы за счет низкорослости посевов.

Распространение: повсеместно в районах возделывания.
Меры борьбы: протравливание семян витаваксом (2,5—3 кг/т), витаваксом 200 (3 кг/т), беномилом (3 кг/т), байтаном (2 кг/т), байтан-универсалом (2 кг/т); однофазная или двухфазная термическая обработка семян перед посевом (3—4 ч при 45 °С с последующим просушиванием). [24, 39, 44]

Ustilago nuda (Jens.) Rostr. — Пыльная головня ячменя

Возбудитель пыльной головни ячменя.
Телиоспоры округлые или неправильно угловатые, 5—7 мкм в диам., светло-коричневые, с буро-оливковой мелкобородавчатой оболочкой около 0,5 мкм толщ. Базидия не образует базидиоспор, а развивается в мицелий.

Болезнь проявляется в фазе колошения или начале цветения. В пораженном растении все части колоса, кроме стержня, превращаются в оливково-коричневую массу телиоспор, которая сначала покрыта тонким прозрачным перидием, исчезающим вскоре после выколачивания. С этого момента телиоспоры начинают реплицироваться. От пораженного колоса к концу вегетации сохраняется только голый стержень.

Заражение, как и у пыльной головни пшеницы, происходит во время цветения растений. Телиоспоры, попадая на рыльце пестика, прорастают короткой базидией, которая развивается в мицелий, проникающий в завязь. Зараженное зерно внешне почти не отличается от здорового. При прорастании зерна растет и мицелий. Он проникает в точку роста, распространяется по всему растению, достигает колоса и полностью его разрушает. Оптимальная температура воздуха для развития заболевания 15—21 °С.

Источник инфекции — телиоспоры, сохраняющиеся в пораженном зерне.

Болезнь приводит к уменьшению массы зерна, высоты стеблей и значительным потерям урожая.
Меры борьбы: такие же, как против возбудителя пыльной головни пшеницы.

Ustilago hordei (Pers.) Lagerh. — Твердая головня ячменя

Возбудитель твердой, или каменистой головни ячменя.
Телиоспоры шаровидные или угловатые, обычно 4,5 мкм в диам. (иногда до 9 мкм), с очень тонкой светло-коричневой или оливковой гладкой оболочкой, сначала склеенные; распыляются во время уборки урожая, обмолота и очистки семян.

Болезнь проявляется в период выколачивания. Колос сохраняет свою форму, но становится трехзубчатым и превращается в чернобурую массу телиоспор, покрытую свинцово-серой тонкой пленкой. Телиоспоры склеены в твердые комочки. Ткани зараженных зерновок не лопаются, споры сохраняются в них.

Оптимальная температура для развития гриба 20 °С, минимальная 5, максимальная 35 °С. Оптимальная влажность почвы для прорастания телиоспор 60—70 %.

Источник инфекции — телиоспоры, сохраняющиеся в пораженном зерне.
Болезнь приводит к сокращению урожая на 10—15 % (при сильном поражении).

Распространение: повсеместно в районах возделывания.

Меры борьбы: уничтожение очагов заболевания; протравливание семян не позже чем за 2—3 недели до посева 1,25 %-ным раствором формалина ((0,5 % по действующему веществу) (15—20 л/т) (номление в течение 4 ч)). [24, 39, 44, 54, 57]

_Ustilago maydis_ (DC.) Cda — Пузырчатая головня кукурузы (рис. 1.21)

Син.: _Ustilago zeae_ (Beckm.) Ung.

Возбудитель пузырчатой головни кукурузы. Телиоспоры шаровидные, 7—12 мкм в диам., или эллипсоидальные, 8—15 × 7—10 мкм, с желто-бурой мелкошиповатой оболочкой, в массе оливкового цвета.

Поражаются все органы растения. Заражение происходит в течение всего вегетационного периода. На больных участках возникают пузыревидные взвлаживания и желваки различной величины (до 15 см) и формы, покрытые сероватой пленкой. Развитие взвлажнения начинается с появления бледного, слегка припухшего пятна, которое, разрастаясь, превращается в большую желвак, заполненный сначала белой, а затем серовато-белой или розовой слизистой мякотью, преобразующейся со временем в черно-оливковую пылящую массу телиоспор.

Первые признаки поражения обнаруживаются на молодых листьях и влагалищах, которые превращаются в наросты и сильно разрастаются. В фазе 5—8-ми листьев поражаются листовые влагалища и стебли, затем метелки (преимущественно верхние цветки), в начале цветения и появления рыхлых початков и пазушных почек, находящихся под влагалищами листьев, ниже початков. При растрескивании оболочки нароста телиоспоры разлетаются и заражают молодые растения. Прорастают они в течение нескольких часов при наличии капельной влаги в базидии, по бокам и на конце которой развиваются овальные базидиоспоры, 3 × 12 мкм. Почкуясь, они дают множество спор. Ростки проросших спор проникают в молодые меристематические ткани, на которых через 20—24 дня появляются взвлажнения с телиоспорами. Найболее подвержены заражению проростки дл. 3 мм. За период вегетации гриб может дать 3—4 (5) генераций.

Оптимальная температура для прорастания телиоспор 23—25 °C, минимальная 12, максимальная 35—40 °C. Низкая влажность почвы (40 %) и высокая (80 %) способствуют развитию болезни.

Источник инфекции — телиоспоры, сохраняющиеся в пораженных зернах.

Болезнь приводит к значительным потерям урожая (до 60 %). По мнению многих авторов, старые взвлажнения с телиоспорами токсичны для человека.

Распространение: повсеместно в районах возделывания.

Меры борьбы: соблюдение севооборота; своевременная уборка пораженных растений; протравливание семян за 2—3 мес. до посева 80 %-ным раствором ТМТД (1,5 кг/т), 65 %-ным раствором фентиурата (2 кг/т), или 70 %-ным раствором тигама (2 кг/т). [24, 39, 44, 54, 57]
Ustilago avenae (Pers.) Jens.— Пыльная головня овса (рис. 1.22)
Возбудитель пыльной головны овса и диких злаков.
Телиоспоры шаровидные или неправильной формы, 6 — 9 ×
5 — 8 мкм, в массе черные с бурым оттенком, оболочка с одной сто­
роны бурая, с другой — более светлая, мелкошиповатая. Гемибазидия
с тремя поперечными перегородками, на ней образуются боковые 
и верхушечные яйцевидные споры, которые копулируют и образуют 
почкующиеся скопления или мицелий.
Гриб известен в двух формах: в пылящей (телиоспоры свободно 
распылляются) и твердой (телиоспоры сначала склеены, а потом кро­
шатся). Телиоспоры попадают на рыльце пестика или завязь и, прора­
стая, образуют базидию с четырьмя базидиоспорами, которые, почку­
вясь, дают обильные споры. Последние копулируют и дают инфекцион­
ные гифы, проникающие в перикарпий зерна, где распадаются на гем­
мы, сохраняющиеся до посева зерна. В почве при прорастании зерна
из гемм развиваются гифы, которые проникают в проросток и достигают 
точки роста растения; в период формирования метелки они обильно 
разрастаются, превращая метелки в споровую массу.
Известны два типа заражения растений. При первом — заражают­
ся молодые проростки овса в почве. Из базидиоспор, находящихся на 
поверхности семян или; в почве, развиваются гифы, которые попарно 
копулируют, образуя диплоидный мицелий, который проникает в про­
росток овса и заражает его. Заражение особенно опасно в ранней ста­
дии прорастания зерновок. Ростки, достигшие 8 см, как правило, не 
заражаются. При втором — источником заражения являются перези­
mовавшие под цветковыми пленками зерновок геммы и мицелий. Телио­
споры, попав на рыльце пестика, дают начало фрагмобазидиям с почку­
ющимися эллипсоидным базидиоспорами. Базидиоспоры и конидии 
после копуляции развиваются в диплоидный мицелий, который не про­
никает в завязь, а образует геммы на внутренней поверхности крыющих 
чешуек. Такое зерно нормально созревает, но при посеве весной сле­
дующего года вместе с проростком развивается и мицелий гриба.
Оптимальная температура для прорастания телиоспор 22—25 °С, 
минимальная 0—5, максимальная 30—35 °С.
Источник инфекции — мицелий и геммы, сохраняющиеся в пора­
женном зерне.
Болезнь приводит к значительным потерям урожая.
Распространение: повсеместно в районах возделывания.
Меры борьбы: такие же, как против возбудителя твердой головны 
пшеницы. [24, 39, 41, 44, 51, 54, 57]
Ustilago kelleri Wille — Твердая головня овса
Син.: Ustilago levis (Kell. et Sw.) Magn.
Возбудитель твердой, или покрытой, головны овса.
Телиоспоры шаровидные, слегка удлиненные или угловатые, 6—10 × 5—8,5 мкм, склеенные, потом порошащие, с темно-коричневой оболочкой, в массе черно-бурые, плотные, прикрытые колосковыми чешуйками. Базидии четырех-шестиклеточные, с удлиненными базидиоспорами.

Поражает не только зерновки, но и цветочные чешуйки, часто базальные части колосковых чешуй. Болезнь проявляется в поражении метелок, которые превращаются в темную споровую массу. Отличается от пыльной головки тем, что колосковые чешуи сохраняются и прикрывают собой черные плотные комочки, состоящие из склеенных между собой порошковидных спор.

Споры прорастают при 6—10 °С, в связи с чем заражение может происходить во время хранения зерна.

Источник инфекции — телиоспоры, сохраняющиеся в пораженном зерне.

Болезнь приводит к значительным потерям урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: такие же, как против пыльной головки овса. [24, 39, 54, 57]

**Ustilago vavilovi Jacz. — Головня Вавилова**

Возбудитель пыльной головки ржи.

Телиоспоры округлые, изредка эллипсоидальные, 4,6—6,4 мкм в диам., с коричневой оболочкой, покрытой немногочисленными слабозаметными щетинками.

Болезнь проявляется в поражении преимущественно нижней части колоса с образованием рыхлой, плохо распыляющейся споровой массы. Верхняя часть колоса обычно внешне выглядит здоровой, но семена на ней не образуются. Растения поражаются во время цветения.

Источник инфекции — телиоспоры, сохраняющиеся в зараженном зерне.

Болезнь приводит к значительным потерям урожая.

Распространение: Узбекская ССР, Казахская ССР, республики Закавказья, Куйбышевская и Оренбургская области.

Меры борьбы: протравливание семян гранозаном (1 кг/т), гексатиурамом (2 кг/т) или пентатиурамом (2 кг/т). [24, 39, 44, 54, 57]

**Rod Sphacelotheca dBy — Сфацелотека**

Сorusы образуются в разных органах растения-хозяина, но чаще — в цветке. Они как бы заключены в своеобразную оболочку (перидий), из стерильных гиф и остатков отмерших тканей растения-хозяина, переплетенных друг с другом. Телиоспоры шаровидные или эллипсоидальные, покрытые мелкими шипами, порошащие. Они расположены рядами и почти до созревания соединены в цепочки, позже распадающиеся на одиночные споры. Представители рода паразитируют на злаках, в основном на сорго.

На территории СССР обнаружены три вида головни: пыльная, покрытая и мелкопузырчатая.

**Sphacelotheca reiliana Clint. — Сфацелотека реилиана**

Возбудитель пыльной головки сорго.

Телиоспоры собраны в округлые или продолговатые клубочки, 70—150 мкм в диам. Споры 9—14 мкм в диам., с темно-коричневой оболочкой, густо покрытой шипиками.

На соцветиях пораженных растений появляются вздутия, прикрытые беловатой оболочкой, внутри которой находится черная споровая масса и остатки веточек соцветия. Разрушение соцветий с превращением их в споровую массу происходит еще во влагалищах верхнего
листа. Заражение растений происходит в период от прорастания зерна до появления двух листвьев. Повышенная температура почвы способствует распространению болезни. Споры сохраняют жизнеспособность в почве в течение 2—3 лет и являются источниками заражения.

Sphacelotheca sorghi (Lk) Clint — Сфацелотека сорго (рис. 1.23)
Син.: Sorosporium sorghi Lk., Ustilago sorghi Pass., Sphacelotheca sorokiniana Cif.
Возбудитель покрытой головни сорго.
Телиоспоры красновато-бурые, шаровидные, гладкие или слабо-точечные, 5—7,5 (обычно 5) мкм в диам., с красновато- или оливково-коричневой оболочкой 1,5—2 мкм толщ.
Гриб поражает отдельные завязи, в которых образуется телиоспоры. Оптимальная температура для развития гриба 20—23 ºС.
Телиоспоры сохраняют жизнеспособность в почве до 6 лет.
Источник инфекции — телиоспоры, сохраняющиеся в почве.
Болезнь приводит к значительным потерям урожая.
Распространение: повсеместно в районах возделывания.
Меры борьбы: протравливание семян гранозаном с красителем (1 кг/т) или меркурбензолом (1—1,5 кг/т). [24, 39, 41, 51]
Sphacelotheca cruenta (Kuhn) Potter — Сфацелотека кроваво-красная
Син.: Ustilago cruenta Kuhn.
Возбудитель мелкопузырчатой головни завязи сорго.
Телиоспоры гладкие, шаровидные, бледно-красно-бурые, 5—8 мкм в диам.
Гемибазидии нитевидные; базидиоспоры эллипсоидально-веретеновидные.
На завязи больных растений появляются шишковидные, мелкие красно- или светло-коричневые вздутия, заполненные черно-оливковой массой телиоспор. Пораженные завязи крупнее здоровых. Чешуи метелки часто увеличенные и окрашенные в темно-зеленый цвет.
Отличается от покрытой головни тем, что поражает все завязи и части соцветия и имеет более крупные споры.
Оптимальная температура для прорастания телиоспор 23 ºС, максимальная 40, минимальная 16 ºС. Споры сохраняют жизнеспособность в почве до 13 лет.
Источник инфекции — телиоспоры, сохраняющиеся на пораженных растительных остатках и в почве.
Болезнь приводит к значительным потерям урожая.
Распространение: повсеместно в районах возделывания.
Меры борьбы: такие же, как против возбудителя, покрытой головни сорго.

Род Sorosporium Rudolph — Сороспорий
Телиоспоры собраны в рыхлые темноокрашенные, порошащие телии. Из них развиваются гифы или базидии с боковыми и верхушечными базидиоспорами. Телии образуются на разных органах растений.
Sorosporium panici-miliacei (Pers.) Tak. — Сороспорий проса, головня проса
Возбудитель головни соцветий проса.
Телиоспоры шаровидные или угловатые, 9—13 × 8—10 мкм, с темно-коричневой гладкой или слабощетинистой двухконтуранной оболочкой.
Поражает соцветия проса. Болезнь проявляется в период выбрасывания метелок. На влагалище верхнего листа метелки образуется продольговатое вздутие в виде желвака дл. 3—5 см, покрытое сначала розовой, позже серовато-грязноватой тонкой, легко разрывающейся пленкой, состоящей из гиф. Содержимое его состоит из черно-буровой массы телиоспор и остатков осевых веточек соцветия.
Источник заражения — телиоспоры, сохраняющиеся в семенах.
Болезнь приводит к потере 20—30 % и более урожая.
Распространение: повсеместно в районах возделывания.
Меры борьбы: такие же, как против покрытой головни сорго.

Sorosporium reilianum (Kuhn.) McAlp.— Пыльная головня кукурузы (рис. 1.24)
Син.: Ustilago reiliana Kuhn., Sphacelotheca reiliana (Kuhn.) Clint. Sorosporium holci-sorgmi (Riv.) Noecz.
Возбудитель пыльной головни кукурузы.
Телиоспоры красновато-бурые, шаровидные, слегка угловатые, толстостенные, мелкошиповатые, 9—14 мкм в диам., или эллипсоидальные, 8—15 × 7—13 мкм. Созревают к началу появления рылец кукурузы. Телии темно-красновато-бурые, легко распадаются.
Имеет две специализированные формы: f. zeae Gesch.— форма кукурузная — паразитирует на кукурузе; f. sorghi Gesch.— форма сорго — на сорго.
Поражаются мужские соцветия, початки, листья, обертки початков, которые превращаются в черную пылящую массу, а вместо початка образуется овально-конусовидный желвак, состоящий из остатков проводящих пучков и телиоспор. Больные растения отстают в росте, сильно кустятся, листья разрастаются, появляются уродства. Заражение растений происходит в период от начала прорастания семян до появления всходов, иногда и двух-трех листьев.
Телиоспоры сохраняют жизнеспособность в почве до 8 лет.
Источник инфекции — телиоспоры, сохраняющиеся в пораженном зерне и почве.
Болезнь приводит к потере 15—20 % урожая.
Распространение: повсеместно в районах возделывания.
Меры борьбы: термическая обработка и протравливание семян ТМТД (1,5 —2 кг/т) или фентиурамом (2 кг/т). [24, 39, 41]
Род Tilletia Tul. — Тиллеция

Тиллеции образуются в завязях злаков. Телиоспоры одноклеточные, одиночные, о лимонной или коричневой гладкой или бородавчатой оболочкой, с сетчатыми утолщениями. Иногда они окружены студенистой оболочкой. Споровая масса рыхлая, поросящая или склеенная.

Для видов этого рода характерен запах триметиламина (селедочный), из-за которого болезнь называют «вонючей головней». [21, 24]

T. caries (DC.) Tul.— Твердая головня пшеницы (рис. 1.25)
Син.: Tilletia tritici (Bierk.) W. nt.
Возбудитель твердой головни пшеницы.
Телиоспоры шаровидные, 14—25 × 12,6—21 мкм, с желто-вато-коричневой оболочкой до 2 мкм толщ., с сетчатым утолщением. Запах триметиламина обнаруживается в молодом возрасте и свежем состоянии.
Болезнь проявляется в начале молочной зрелости зерна. Пораженные колосья слегка сплюснутые, колоски расплощенные, интенсивно зеленого цвета с синим оттенком. При раздавливании пораженных колосков вместо «молочка» выделяется сероватая жидкость с характерным запахом. В период полной спелости зерна в больном колосе формируются черные плотные овальные мешочки, наполненные телиоспорами. Они легко раздавливаются и издают запах триметиламина. Телиоспоры, распыляясь, попадают на поверхность здорового зерна и, попадая вместе с ним в почву, прорастают в базидию с 4—12 базидиоспорами, которые копулируют, образуя инфекционные гифы, заражающие проросток.
Телиоспоры прорастают при 2—7 °С, оптимальная температура для роста 16—20, максимальная 27—29 °С. Имеются сведения о длительном сохранении жизнеспособности их при комнатной температуре (до 18—22 лет), в почве они сохраняются недолго.
Источник инфекции — телиоспоры, сохраняющиеся в зараженном зерне, почве и на сельскохозяйственном инвентаре.
Болезнь приводит к потере 10—15 % урожая.
Распространение: повсеместно в районах возделывания.
Меры борьбы: протравливание семян пентатиуратом (2 кг/т), гексатиуратом (2 кг/т), витаваксом (2,5—3 кг/т), фундазолом (2—3 кг/т); соблюдение севооборота; выращивание устойчивых сортов; при проявлении болезни — обработка семян гаммагексаном (2 кг/т).
На пшеницах паразитируют и другие виды рода Tilletia: T. intermedia (Gassner), T. triticoides Savul., T. levis, телиоспоры которых отличаются от телиоспор T. caries морфологическими признаками (табл. 1.1). [24, 39]

Tilletia secalis (Corda) Kuhn — Тиллеция ржи
Син.: Tilletia separata Kze
Возбудитель твердой головни завязи ржи.
Телиоспоры шаровидные, 21—25 мкм в диам., или широкоэллипсоидальные, 22—26 × 20—23 мкм, с темно-коричневой оболочкой, покрытой сетчатым утолщением, обычно с пятиугольными ячейками,
<table>
<thead>
<tr>
<th>Возбудитель</th>
<th>Форма</th>
<th>Размер, мкм</th>
<th>Окраска оболочки</th>
<th>Поверхность оболочки</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. caries</td>
<td>Шаровидная или почти шаровидная</td>
<td>18,9 × 18 (реже 12,6 — 21 × 14 — 25)</td>
<td>Светло- или темно-коричневая</td>
<td>Сетчатая, ячейки обычно пятиугольные, ребристые, выс. 1,4—2,1 мкм</td>
</tr>
<tr>
<td>T. levis</td>
<td>Эллипсоидальная или продолговатая</td>
<td>17×14 (реже 12,6 — 18 × 13,5 — 22,5)</td>
<td>Темно-коричневая</td>
<td>Гладкая</td>
</tr>
<tr>
<td>T. triticoides</td>
<td>Шаровидная или почти шаровидная</td>
<td>днам. 18 (реже 14 — 19,8 × 14,4 — 21,6)</td>
<td>Светло- или темно-коричневая</td>
<td>Сетчатая, ячейки обычно пятиугольные, ребристые, выс. 0,4—0,6 мкм</td>
</tr>
<tr>
<td>T. intermedia</td>
<td>Почти шаровидная, эллипсоидальная, овальная</td>
<td>16,7×15,3 (реже 14 — 18 × 15 — 20)</td>
<td>Светло- или темно-коричневая</td>
<td>Сетчатая, ячейки небольшие с широкими ребрами, выс. 0,2—0,3 мкм</td>
</tr>
</tbody>
</table>
2,5—3 мкм в дим. Споровая масса оливково-коричневая, трудносма­
чиваемая, в массе — с запахом триметиламина. Из телиоспоры разви­
вается базидия в виде трубочки, на которой образуется 4—12 бази­
диоспор.
Поражаются завязи ржи. Сначала больные колосья имеют зелено­
sиную окраску, затем приобретают естественный цвет, но у больных
растений колосья прямостоячие, колосовые чешуи раздвинуты, из них
выступают продольговатые мешочки, заполненные оливково-коричне­
вой споровой массой. Оболочка мешочек матовая, Болезнь проявля­
ется в период молочной или в начале восковой спелости зерна. Наи­
большего развития достигает во время созревания зерна.
Телиоспоры прорастают на свету при температуре воздуха 10 °С,
влажности 25—30 % (оптимум 40—60 %). Споры сохраняются в почве
до 1 года.
Источник инфекции — телиоспоры, сохраняющиеся в зараженном
зерне и почве.
Болезнь приводит к значительным потерям урожая зерна.
Распространение: повсеместно в районах возделывания.
Меры борьбы: такие же, как против возбудителя твердой головни
пшеницы. [24, 39, 41]

Род Urocystis Rabenh.— Уроцистис

Одна или несколько телиоспор образуют клубочки, в центре которых
находятся телиоспоры, а внешний слой образован светлоокрашенными
бесплодными периферическими клетками, которые при созревании те­
лиоспор оказываются заполненными воздухом. Из телиоспор разви­
ваются либо базидия с базидиоспорами, либо мицелий.
Многие виды этого рода паразитируют на злаках, являясь возбу­
dителями стеблевой головни. [21]

Urocystis tritici Koern.— Стеблевая головня пшеницы
Син. Tubercularia tritici (Koern.) Liro
Возбудитель стеблевой головни пшеницы.
Телиоспоры в округлых, эллипсоидальных клубочках, 20—45 ×
X 12—38 мкм, коричнево-бурые, с 2—8 плодовыми спорами, окру­
женными многочисленными периферическими клетками с желтоватой
гладкой оболочкой, 6—12 × 3—7 мкм, образующими сплошной
слой. Споровая масса черная, пылящая. Из телиоспоры после месяч­
ного покоя развивается базидия, на вершине которой образуется две —
четыре цилиндрические базидиоспоры.
На стеблях, листьях и влагалищах пораженных растений появ­
ляются выпуклые полосы дл. от 2—3 мм до нескольких сантиметров.
Сначала они светлее здоровых тканей, затем темнеют и приобретают
свинцово-серую окраску. При растрескивании эпидермиса обнажается
tемная масса телиоспор. Растения отстают в росте, часто вместо колоса
образуется скученная масса пораженных тканей, или колос исхрив­
ляется.
Оптимальные условия для прорастания телиоспор — температура
18—24 °С, влажность 60 %; минимальная температура 5, максимальная
32 °С. Телиоспоры сохраняют жизнеспособность в почве не более года,
в гербарии — до 5 лет.
Источник инфекции — телиоспоры, сохраняющиеся в пораженном
зерне.
Болезнь приводит к потере до 20 % урожая.
Распространение: южные районы СССР.
Меры борьбы: такие же, как против твердой головни пшеницы.
[24, 39, 41, 44]
**Urocystis occulta (Wallr.) Rabh.** — Стеблевая головня ржи, уроцистис скрытый

Возбудитель стеблевой головни ржи.

Клубочки телиоспор округлые или неправильной формы, 18—33 × 15—28 мкм, с 1—2 (реже 3—4) центральными плодущими телиоспорами, 12—18 мкм в диам., чаще приплюснутыми, редко округлыми, с 1—9 (чаще 5) периферическими желто-коричневыми полушаровидными или слегка приплюснутыми клетками, 4 — 10 × 2—5 мкм. Телиоспоры, прорастая без периода покоя, образуют цилиндрическую базидию с 4—16 базидиоспорами.

На верхней части стебля, реже на листьях, в их влагалищах и нижней части колоса образуются продольные полосы. Сначала они покрыты эпидермисом свинцово-серого цвета, потом обнажаются, становятся черными, пылящими. При поражении нижней части колоса цветочные чешуи и завязи разрушаются, колос частично выступает из влагалища верхнего листа и почти не образует семян. Пораженный стебель теряет упругость, изгибается и повисает в виде петель. Болезнь проявляется в период трубкования — начале молочной спелости зерна. Телиоспоры сохраняют жизнеспособность в почве не более года.

Источник инфекции — телиоспоры, сохраняющиеся в пораженных семенах и почве.

Болезнь приводит к потере 30% урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: соблюдение севооборота; обработка семян гранозаном с красителем (1—2 кг/т), пентатиурамом (1,5—2 кг/т), гаммагексаном и др. [24, 39, 44]

---

**Urocystis hordei (Cif.) Pidpl.** — Уроцистис ячменя

Син.: Tuburcinia hordei Cif.

Возбудитель стеблевой головни ячменя.

Клубочки телиоспор округлые с 1—3 плодущими спорами, 10—18 (14) мкм в диам., периферические клетки часто отсутствуют, или их 1—3, диам. 8—3 мкм.

Поражает листья и стебли, образуя линейные продольные полоски, заполненные споровой массой. Пораженный стебель изгибается. При раннем заражении растения не выколаживаются, в колосовых влагалищах наблюдаются разрушенные чешуи и завязи; при поражении в период цветения колоса слабо развиваются, преждевременно желтеют и не образуют семян.

Источник инфекции, вредоносность, распространение и меры борьбы такие же, как и у U. occulta. [44]

**Urocystis cepulae Frost.** — Головня лука, уроцистис лука (рис. 1.26)

Возбудитель головни лука.

Клубочки телиоспор шаровидные или эллипсоидальные, 12—40 мкм в диам., с одной, редко 2—3 плодущими спорами, чаще с 9 периферическими клетками, 2—8 мкм в диам. Телиоспоры 7,2—16,2 мкм в диам., прорастают без периода покоя, образуя гемибазидию, которая развивается непосредственно в мицелии.
Поражает также чеснок. На листьях и чешуйках луковиц больных растений появляются выпуклые свинцово-серые вздутия, сначала прикрыты эпидермисом. После разрыва эпидермиса обнажается черная масса спор и вздутия приобретают вид продольных трещин. Поражаются всходы лука до появления первых листочков. Болезнь обнаруживается через 15 дней после заражения. Оптимальная температура для прорастания телиоспор 13—22 °C.

Источник инфекции — телиоспоры и мицелий, сохраняющиеся в почве много лет.

Болезнь приводит к выпадению всходов и к уменьшению густоты посадок.

Распространение: повсеместно в районах возделывания.

Меры борьбы: соблюдение севооборота с возвращением лука на прежнее место не ранее чем через 5—6 лет; протравливание семян ТМТД (4,5 кг/т) или фентиурамом (3—4 кг/т); при первых признаках болезни опрыскивание бордоской жидкостью или 0,4 %-ной суспензией цинеба (2,4 кг/т); уничтожение растительных остатков. [44]

ПОРЯДОК UREDINALES — РЖАВЧИННЫЕ
Семейство Melampsoraceae — Мелампсоровые
Род Melampsora Cast. — Мелампсора

Спермогонии плоские, полушаровидные или притупленно-конусовидные, расположены под эпидермисом или между кутикулой и эпидермисом. Эции плоские, немного выступающие в виде округлых подушек, без периода и парафиз, оранжево-желтые. Эциоспоры в цепочках. Урединии расположены на нижней поверхности листьев, выступают из-под эпидермиса, без периода, с головчатыми парафиями. Урединиоспоры одиночные, шаровидные или продолговатые, с бесцветной оболочкой, бородавчатой или шиповатой, иногда у вершины гладкой. Телии находятся обычно на нижней поверхности листьев в виде однослоинных или многослойных корочек. Телиоспоры одноклеточные, с буровой тонкой оболочкой. Базидиоспоры шаровидные, бесцветные или бледно-желтые. Цикл развития проходит на одном растении (однодомные виды) или на разных растениях (двудомные виды).

Melampsora lini (Pers.) Lev.— Мелампсора долгунцовая (рис. 1.27)

Син.: Melampsora liniperda (Koern.) Palm., M. lini (Shum.) Lev. var. liniperda (Koern.).

Возбудитель ржавчины льна.

Спермогонии мелкие, шаровидные, расположены под эпидермисом. Эции находятся на нижней поверхности листьев, не покрыты периодием. Эциоспоры шаровидные, тонкобородавчатые, 21—28 × 10 — 27 мкм. Урединии находятся на обеих сторонах листьев, на стеблях; выступающие из эпидермиса, оранжевые, окруженные периодием. Урединиоспоры шаровидные до эллипсоидальных, тонкобородавчатые, с оранжевым содержимым, 16—27 × 13—18 мкм, парафизы 40—50 мкм дл., головчатые. Телии расположены на обеих сторонах листьев, на стеблях, створках коробочек, сначала красновато-бурые, затем темно-бурые почти черные. Телиоспоры эллипсоидальные, 56—84 × 7—10 мкм, закрученные с обеих концов, соединенные в коробочки с тонкой бледно-желтоватой оболочкой. Однодомный вид.

Поражаются листья, стебли и коробочки. Болезнь проявляется в трех формах: 1) ранней весной на всходах обнаруживаются желтовато-коричневые пятнышки и лимонно-желтые пустулы; 2) в период бутонизации и цветения на листьях, стеблях и чашелистках появляют-
вя мелкие выпуклые ржаво-оранжевые пустулы; 3) после цветения и старения тканей на стеблях, плодоножках и коробочках под эпидермисом образуются продолговатые плотные черные с глянцевым оттенком блестящие коростинки. Оптимальная температура для развития урединиоспор 18—22 °С, для развития телиоспор 11—12,5 °С.

Источник инфекции — телиоспоры, образующиеся на отмерших растительных остатках.

Болезнь приводит к снижению урожая семян на 8—10 %, к снижению качества льноволокна на 4—10 номеров, а если заболевание осложняется фузариозом (фузариозом по ржавчине), то урожай семян уменьшается в 2,6 раза, а выход длинного волокна в 2,7 раза.

Распространение: повсеместно в районах возделывания.

Меры борьбы: уничтожение растительных остатков после уборки урожая; опрыскивание исходов 1 %-ной бордоской жидкостью; протравливание семян перед посевом тигамом или фентиурамом (1,5 кг/т) и др. [27, 28, 42, 44, 55]

Melampsora allii-populina Kleb.— Мелампсора луко-тополевая

Син.: Caemera alliiogram Lk pr. p.

Возбудитель ржавчины листьев лука и чеснока.

Спермогонии расположены под эпидермисом, глубоко погруженные. Эциоспоры находятся на листьях и стеблях, на светло-желтых пятнах, обычно в группах, ярко-оранжево-красные. Эциоспоры шаровидные, овально-шаровидные, немного угловатые, 17—23 × 14—19 мкм, оболочка около 2 мкм толщ., покрытая низкими бородавочками. Урединии расположены большей частью на нижней стороне листьев, круглые, выпуклые, ярко-оранжево-красные. Урединиоспоры, обычно булавовидные, реже овальные, 24—38 × 11—18 мкм, с оболочкой 2—4 мкм толщ., с редко расположенными бородавочками. Телии расположены под эпидермисом, преимущественно на нижней стороне листа, одиночные или в группах, черно-бурые. Телиоспоры неправильно призматические, на концах закругленные, 35 — 60 × 6 — 10 мкм, со светло-буруй оболочкой. Эциостадия проходит на луке репчатом и чесноке посевном, уредо- и телиостадия — на тополях.
Источник инфекции — телиоспоры, сохраняющихся на пораженных остатках и луковицах многолетних видов лука. Болезнь приводит к сокращению урожая и снижению товарного качества лука и чеснока.

Распространение: повсеместно в районах возделывания.

Меры борьбы: уничтожение растительных остатков; при появлении первых признаков болезни обработка растений 1 %-ным раствором бордоской жидкости или 0,4 %-ной суспензии цинеба (2,4 кг/т). [41]

Род Cronartium Fr. — Кронарций

Спермогонии плоские, без парафиз, расположены под эпидермисом. Спермация выделяется с капельками жидкости через отверстие в пери дерме. Эции крупные, с пузырьввидным пери дем, состоящим из 2—3 клеток. Эциоспоры в цепочках, с толстой оболочкой. Урединии покрыты полушаровидным пери дем с устьицем у вершины. Урединиоспоры одноклеточные, на ножке, шиповато-бородавчатые. Телии в виде колонок, под поверхностью листа. Телиоспоры одноклеточные, образуют плотно соединенные ряды, прорастают сразу после образования в четырехклеточную базидию. Базидиоспоры шаровидные.

В стадии уредо- и телиоспор виды трудноотличимы, четче — в стадии эциев. Представители этого рода паразитируют на древесных и кустарниковых породах. [21, 27, 28, 44, 55]

Cronartium ribicola Dietr.— Кронарций смородиновый (рис. 1.28)

Син.: Peçidermium strobi Kleb.

Возбудитель ромковидной ржавчины смородины и крыжовника, пузырчатой ржавчины кедра.

Спермогонии плоские, 2—3 мм, неправильной формы, развиваются под пузырьвидно выпуклой перидермой. Спермация выходят через разрыв коры вместе со сладкой жидкостью. Эции находятся на слегка утолщенных частях ветвей и стволов, прорываются из-под коры. Эциоспоры от яйцевидных до эллипсоидальных, 22—29 × 18—20 мкм (в среднем 24 × 18 мкм), с бесцветной оболочкой, частично покрыты палочковидными бородавочками. Урединии расположены группами на нижней стороне листьев, окруженны пери дем и эпидермисом. Урединиоспоры эллипсоидальные, 21—25 × 3—18 мкм, с бесцветной оболочкой, покрыты шипиками, и с оранжево-желтым содержимым. Телии образуются на нижней стороне листьев, цилиндрические, до 2 мм дл., оранжево-желтые, затем желтовато-бурые. Телиоспоры продолговатые или цилиндрические, одноклеточные, 30—60 × 11—16 мкм; прорастают в августе — сентябре.

Урединию-, телио- и базидиоспоры развиваются на смородине и крыжовнике, спермогонии и эции — на сосне Веймутовой и кедре сибирском.

Гриб поражает листья смородины и крыжовника, стволы и ветви сосны. Базидиоспоры заражают молодые ветки сосны. В июле следующего года на зараженных местах выступают спермогонии, выделяя жидкость со спермациями. Эции появляются на смородине на следующий год, весной. Часть веток, расположенных выше поврежденного места, засыхают. Поражаются и отмирают молодые сосны. Эциоспоры разносятся ветром и заражают листья смородины и крыжовника, на которых образуются урединиоспоры. В месте их образования, на верхней стороне листьев, возникают хлоротические пятна с урединиями. Со временем вся нижняя поверхность листа покрывается оранжевыми урединиями и бурыми роговидными выростами — телиоспорами. Листья засыхают и преждевременно опадают.
Источник инфекции — мицелий гриба, который сохраняется в древесине хвойных пород много лет.
Болезнь приводит к незначительным потерям урожая смородины и крыжовника.
Распространение: Дальний Восток, Сибирь, европейская часть СССР.
Меры борьбы: профилактические (не разбивать плантации смородины и крыжовника вблизи насаждений сосны Веймутовой и кедра сибирского). [27, 28, 41, 44, 51]

Семейство Pucciniaceae — Пукциниевые
Род Uromyces Lk. — Уромицес
Спермогонии образуются на верхней стороне листьев, имеют паразиты. Эции большей частью расположены на нижней стороне листьев, с периодом. Эциоспоры шаровидные, овальные. Урединии находятся обычно на нижней стороне листьев, рассеянные или группами, с паразитами или без них. Урединиоспоры по одной на ножке, с шиповатой или бородавчатой оболочкой, имеют ростковые поры. Телиоспоры, в отличие от других родов ржавчинных грибов, одноклеточные, на ножках. Уредино- и телиоспоры собраны в ложе. Телиоспоры освобождаются из лож вместе с ножкой.
Виды рода могут быть однодомными или двудомными паразитами, с полным или неполным циклом развития. Паразитируют чаще всего на растениях семейства бобовых [21, 44]
Uromyces betae (Pers.) Lev. — Уромицес свеклы
Возбудитель ржавчины листьев сахарной свеклы.
Спермогонии образуют мелкие группы, округлые, около 150 мкм в диам. Эции расположены на нижней стороне листьев на желтоватых пятнах. Эциоспоры угловато-шаровидные, 16—25 × 15—20 мкм, оранжево-желтые. Урединии образуются на обеих сторонах листьев, расположены по кругу, покрыты эпидермисом, по мере созревания порошатые, коричневые. Урединиоспоры ржаво-красные, шаровидные, овальные, 21—35 × 16—24 мкм, с шиповатой оболочкой. Телии плотные, темно-бурые. Телиоспоры шаровидные, обратнояйцевидные, на верхушке с ростковой порой, ножка короткая, бесцветная.
Поражает также кормовую свеклу. Заражаются растения первого и второго года жизни. Болезнь проявляется поздней весной или в начале лета на молодых листьях в виде оранжевых округлых пятен 2—6 мм в диам. Затем в местах пятен на верхней стороне листа появляются мелкие светло-коричневые точки (спермогонии), а на нижней — красные точечные черточки, которые с течением времени увеличиваются в размерах и образуют характерные оранжевые пятна на листве. Болезнь может вызывать значительные убытки сельскохозяйственному производству.
шечковидные эции. В июне на листьях формируются мелкие желтовато-бурые урединии. Со временем они появляются также на черешках, стеблях высадков и даже на клубочках семян. К осени в местах поражения образуются коричневые или черные телии.

За период вегетации гриб может давать несколько генераций урединий с урединиоспорами, чему способствует теплая влажная погода. Инкубационный период от заражения до появления нового поколения урединиоспор при температуре 16—22 °C длится 8—17 дней.

Источник инфекции — семена, а также телиоспоры, которые сохраняются на головках маточны, в основания черешков, остающихся не срезанными при очистке корнеплодов.

Болезнь приводит к преждевременному отмиранию листьев, снижению урожая корнеплодов на 5—7 % и семян, уменьшению сахаристости на 0,1—0,3 %.

Распространение: повсеместно, в районах возделывания.

Меры борьбы: уничтожение растительных остатков; соблюдение севооборота; протравливание семян препаратами, применяемыми против корнееда сахарной свеклы; при появлении урединий опрыскивание 1 %-ным раствором бордоской жидкости или суспензиями купрозана (2,4—3,2 кг/га), купроцина (3,2 кг/га), хлорокиси меди (3,2—4 кг/га)

Uromyces pisi (Pess.) Schroet.— Уромицес гороха
Возбудитель ржавчины гороха и чины.
Спермогонии и эции расположены на нижней стороне листьев. Эцииоспоры шаровидные, эллипсоидальные, 16—22 × 14—18 мкм, с оранжевым содержимым. Урединии образуются на обеих сторонах листьев, чаще на нижней, после разрыва эпидермиса порошащие, коричневые. Урединиоспоры шаровидные, эллипсоидные, 21—26 × 18 × 21 мкм, с желто-коричневой оболочкой, с мелкими бородавочками. Телии бурь до черных. Телиоспоры шаровидные, овальные, яйцевидные, 20—30 × 16—22 мкм, густо мелкобородавчатые, на вершине с ростковой порой, ножка бесцветная, короткая, ломкая.

На листьях, стеблях и бобах образуются пустулы различной окраски в виде подушечек. Гриб двудомный. На бобовых развивается урединио- и телиостадии, а на видах молочная — спермогонии и эции.

Источник инфекции — базидиоспоры и мицелий, сохраняющихся на растительных остатках бобовых и промежуточном растении — молочке. Развитию болезни способствуют избыток азота в почве, повышенная влажность воздуха и температура 20—25 °С. В течение вегетации гриб может дать несколько поколений урединиоспор.

Болезнь приводит к потере 30 % и более урожая.
Распространение: повсеместно в районах возделывания.
Меры борьбы: опрыскивание растений коллоидной серой; борьба с сорняками (молочаем); соблюдение севооборота.

Uromyces striatus Schroet.— Уромицес полосчатый

Бледно-коричневые урединиоспоры расположены на обеих сторонах листьев, порошащие, мелкие, шаровидные, 18—23 × 16—20 мкм, покрыты оболочкой с редкими шипиками, имеющей 4 ростковые поры. Телиоспоры эллипсоидальные или обратнояйцевидные, со светлобурой оболочкой, 18—24 × 14—20 мкм, с одной верхушечной ростковой порой, покрыты извилистыми продольными тонкими бороздками, являющимися отличительным видовым признаком.

Гриб двудомный. Урединио- и телиостадии проходят на видах люцерны и клевера, эциостадия — на молочаче. Эции образуются на ниж-
ней стороне листьев в виде ярко-оранжевых подушечек. Эциоспоры распыляются за 2—3 недели до отмирания побегов молочая. Они зи­муют на корневищах молочая. Весной из них развиваются карликовые неразветвленные побеги с утолщенными листьями, на которых вновь образуются эции.

Гриб поражает все виды люцерны. Болезнь проявляется в конце июня — начале июля в виде бурых пылящих урединий на листьях и стеблях, цветоножках, плодах. К концу вегетации образуются чер­ные телии.

Развитию болезни способствует повышенная влажность, особенно в условиях орошения.

Источник инфекции — мицелий на зимующих растительных ос­татках, урединиоспоры (в южных районах).

Болезнь приводит к потере 30—60 % урожая семян.

Распространение: повсеместно в районах возделывания.

Меры борьбы: такие же, как против уромицеса гороха. [39, 41, 44, 51, 54]

Rumyces trifoli-repentis (Cast.) Liro — Уромицес ползучего клевера

Возбудитель ржавчины клевера.

Урединии мелкие, расположены обычно на нижней стороне листьев или на черешках, коричневые. Урединиоспоры шаровидные, 20—26 X X 18—20 мкм, с желтой шиповатой оболочкой, с 2—4 экваториаль­ными ростковыми порами. Телии образуются на нижней стороне лис­тьев и черешках, черно-бурые, сливающиеся в сплошные пятна.

Источник инфекции — телиспоры и урединии, остающиеся на растительных остатках и живых листьях.

Болезнь приводит к потере до 30 % урожая сена, снижению в нем содержа­ния протеина, глюкозы, сахара и крахмала; к снижению урожая семян на 70—85 %.

Распространение: повсеместно в местах произрастания.

Меры борьбы: такие же, как и против других возбудителей ржав­чины. [39, 41, 44, 51, 55]

Род Puccinla Pers. — Пукциния

Самый крупный род в порядке ржавчинных грибов. Включает однодом­ные и двудомные виды, с полным или неполным циклом развития.

Спермогонии погруженные, кувшинковидные, с парафизами. Эции с перидием. Урединиоспоры на одной ножке. Эции развиваются на верхней стороне листьев, темно-желтые. Урединиоспоры на нижней стороне листьев имеют яйцевидную форму, с цилиндрическим или чашечковидным перидием. Эции образуют округлые или продолговатые группы. Эциоспоры шаровидные, 14—16 мкм в диам., с желтым, очень мелкобородавчатой оболочкой, с жел­тым содержимым. Распыляются, эциоспоры попадают на растения и про­растают, преимущественно на влагалищах листьев и на стеблях, образ­уют мицелий, на котором формируются кофейно-желто-коричневые, удлиненные, нередко сливающиеся, до 10 мм дл., пылящие урединии. Урединиоспоры эллипсоидальные или продолговато-яйцевидные, жел­

Весной болезнь сначала развивается на нижних, а позже и на верхних листьях. Во время цветения или в период молочной спелости зерна, особенно опасно поражение колоса, вследствие чего зерно наливается плохо, становится шуплым и легко рассыпается. Особенность P. glumarum — способность развивать диффузный мицелий (т. е. продолжать рост на некотором расстоянии от места внедрения).

Урединиоспоры прорастают при высокой влажности воздуха (около 100 %) и температуре 1—25 °С (оптимум 11—13). Поражает 23 вида растений из семейства злаковых; из культурных видов — пшеницу, ячмень, рожь.
Источник инфекции — урединии, развивающиеся и зимующие на пшенице и диких злаках.
Распространение: повсеместно в районах возделывания; наибольший вред причиняет в нечерноземной зоне.
Меры борьбы: такие же, как против твердой головни пшеницы.

**Puccinia coronata Cda** — Пукциния корончатая
Синонимы: Puccinia lolii Niels, P. coronifera Kleb.
Возбудитель корончатой ржавчины злаковых.
Гриб двудомный. Спермогониальная и эциальная стадии — на крушине слабительной, урединно- и телиостадии образуются на различных видах овса. Урединии расположены большей частью на верхней поверхности листьев, светло-оранжевые, с булавовидными парафизами. Урединиоспоры шаровидные, продолговатые, 24—27 × 17—21 мкм, мелкошиповатые. Телии находятся преимущественно на нижней поверхности листьев. Телиоспоры бурые, двухклеточные, разнообразные по форме, 35—60 × 12—25 мкм, с ножкой. Верхняя клетка сверху имеет 1—8 выростов, напоминающих корону (отсюда и название болезни).
Поражает злаки 253 видов, имеет много биологических форм. Болезнь проявляется во второй половине лета, обычно после колошения или к моменту налива зерна. На верхней стороне листьев образуются рассеянные оранжевые подушечки до 0,5 мм в диам. При сильном поражении они сливаяются в пятна неопределенной формы. Через 7—10 дней после уредостадии вокруг урединий или в других местах образуются черные блестящие телии в виде черных, прикрытых эпидермисом полос. Оптимальная температура воздуха для развития болезни 18—22 °C.

Источник инфекции — эции, развивающиеся на крушине слабительной.
Распространение: повсеместно в районах возделывания.
Меры борьбы: уничтожение растительных остатков и сорняков, особенно овсяг; соблюдение севооборота; выращивание устойчивых сортов злаков и др. [2, 9, 21, 27, 28, 39, 41, 44, 51, 55]

**Puccinia hordei Otth.** — Пукциния ячменя (рис. 1.29)
Синонимы: Puccinia simplex (Koern.) Ericks. et Henn., P. anomala Rostr.
Возбудитель карликовой ржавчины ячменя.
Гриб двудомный. Спермогонии и эции образуются на птицемлечнике, урединно- и телиоспоры — на ячмене.
Поражает только ячмень.
На яровом ячмене болезнь проявляется в начале молочной и даже восковой спелости, на озимом — на всходах. На листьях и их влагалищах образуются мелкие, светло-желтые урединии. В конце лета на нижней стороне листьев проявляются мелкие черные телии. Урединиоспоры прорастают при температуре 10—25 °С (оптимум 15—18). Инкубационный период составляет 4—11 дней. За лето гриб дает несколько поколений урединиоспор.

Источник заражения — урединиоспоры, зимующие на озимом ячмене и всходах.

Болезнь приводит к потере 5—7 % урожая.

Распространение: повсеместно в районах возделывания; в большей степени на Украине, в Белоруссии, на Северном Кавказе, в Казахстане и на Дальнем Востоке.

Меры борьбы: такие же, как против P. graminis. [2, 9, 21, 27, 28, 39, 41, 44, 51, 55]

Рис. 1.30. Puccinia helianthi: вциоспоры [44]

Puccinia maydis Bereng.— Пукциния кукурузы
Син.: Puccinia sorghi Schev.

Возбудитель ржавчины кукурузы.

Двудомный гриб. Спермогонии и эции образуются на кисличке, урединии и телии — на кукурузе. Урединии расположены на обеих поверхностях листьев, покрыты эпидермисом. Урединиоспоры шаровидно-эллипсоидальные, бледно-бурые, мелкошиповатые, 24 — 32 × 10 — 28 мкм, с 3—4 ростковыми порами. Телии расположены вдоль центральной жилки листа, черные, прорывающиеся из-под эпидермиса. Телиоспоры продолговатые, булавовидные, двухклеточные темно-коричневые, 28 — 48 × 13 — 25 мкм, с бурой длинной и толстой ножкой.

На листьях, иногда на стеблях, во второй половине вегетации появляются мелкие округлые желтовато-коричневые или бурые пустулы, прикрытые эпидермисом, при разрыве которого обнажаются урединиоспоры. Они дают 2—3 поколения в сезон. К концу вегетации образуются телии очень темного цвета, сливающиеся и образующие продольные полосы. Урединиоспоры прорастают при температуре 4—34 °С (оптимум 17—18) и высокой влажности воздуха. Инкубационный период составляет 5—8 дней.

Источник заражения — урединиоспоры, зимующие на пораженных листьях кукурузы, и телиоспоры, сохраняющиеся в почве.

Распространение: Закавказье, Черноморское побережье Кавказа, западные районы УССР.

Болезнь приводит к преждевременному усыханию листьев, недоразвитости початков, шуллости зерна.

Меры борьбы: такие же, как против P. graminis. [27, 28, 39, 44, 55]

Puccinia helianthi Schwein. — Пукциния подсолнечника (рис. 1.30)

Возбудитель ржавчины подсолнечника.

Гриб однодомный. Весь цикл развития проходит на подсолнечнике. Спермогонии желтоватые. Эции расположены группами, чаще-

Весной на семядолях и первых настоящих листьях подсолнечника появляются оранжевые выпуклые пятна. Спремогонии развиваются на верхней поверхности листьев, эции — на нижней. Часто вместо эций образуются урединиоспоры. Летом развиваются урединии в виде ржаво-бурых подушечек, покрывающих при сильном развитии болезни почти сплошь молодые стебли и листья, которые засыхают, скручиваются. Растение прекращает рост или погибает. Урединиоспоры дают несколько поколений за сезон. К концу вегетации растений (в середине июля) на месте урединий развиваются телии.

Источник инфекции — телиоспоры, зимующие в почве на растительных остатках или семенах подсолнечника, а также на сорняке — дурнишнике. Болезнь приводит к уменьшению размеров корзинки на 7,5—16%, урожая семян на 14—38%, массы семян на 10—19%, содержания масла на 4—12%.

Распространение: повсеместно в районах возделывания.

Меры борьбы: такие же, как против P. graminis. [39, 41, 51]

**Puccinia allii (DC.) Rudolph. — Пукциния лука**

Возбудитель ржавчины лука репчатого.

Гриб однодомный. Весь цикл развития проходит на одном растении. Урединии находятся на листьях и стеблях. Урединиоспоры шаровидно-эллипсоидальные, мелкошиповатые, 18 — 32 × 18 — 24 мкм, желтые. Телии имеют вид темных, прикрытых эпидермисом полос. Телиоспоры двухкаллеточные, продолговато-булавовидные, с утолщенной оболочкой, слегка перетянутые, гладкие, 36 — 80 × 17 — 30 мкм, на очень короткой ножке.

Поражает также порей и чеснок посевной.

На пораженных листьях образуются светло-желтые, слабовыпуклые подушечки, состоящие из эций с эциоспорами, позже — из урединий с урединиоспорами. В конце вегетации они темнеют вследствие образования телий с телиоспорами. При сильном поражении листья зацветают и скручиваются.

Источник инфекции — телиоспоры, зимующие на пораженных растительных остатках и многолетних видах луков. Болезнь приводит к снижению товарных качеств зеленого лука, уменьшению урожая.

Источник инфекции — телиоспоры, зимующие на растительных остатках в почве, или мицелий в луковицах.

Распространение: повсеместно в районах возделывания.

Меры борьбы: соблюдение агротехники; обработка растений 1%-ной бордоской жидкостью. [39, 41, 44, 55]
КЛАСС DEUTEROMYCETES (FUNGI IMPERFECTI) — ДЕЙТЕРОМИЦЕТЫ

Вегетативное тело в виде разветвленного многоядерного, с перегородками, мицелия. Бесполое размножение осуществляется конидиями или оидиями, образующимися в результате распада гиф на отдельные клетки. У некоторых дейтеромицетов конидиальное спороношение отсутствует, такие виды образуют склероции, или существуют в виде стерильного мицелия. Половой процесс отсутствует; весь жизненный цикл дейтеромицетов проходит в гаплоидной стадии. Мицелий несовершенных грибов гетерокариотичен, т. е. содержит генетически различные ядра. Он образуется либо в результате гетерокариозиса (анастиомозирования гиф мицелия с генетически различными ядрами или мутаций в отдельных ядрах мицелия), либо в результате парасексуального процесса — диплоидные ядра гаплондизируются вследствие утраты ими хромосом. Наличие этих двух процессов приводит к значительной гетерогенности этого класса.

В ряде случаев дейтеромицеты являются конидиальной стадией (анаморфой) совершенных грибов (сумчатых, базидиомицетов).

Способы образования конидиального спороношения у дейтеромицетов разнообразны: конидии формируются непосредственно на вегетативном мицелии путем его деления (фрагментации), или почкованием, но наиболее типичным является образование конидий на специализированных, нередко сложно устроенных ответвлениях гиф вегетативного мицелия — конидиеносцах, морфологически отличающихся от стерильных гиф вегетативного мицелия. Конидии образуются на конидиеносцах одиночно или в виде цепочек, либо головок. У одних видов конидиеносцы развиваются на гифах, у других — на плотном сплетении вегетативных гиф — строме, образуя спородохии, пионноты, спороложи, часто в виде подушечек. Конидиеносцы могут развиваться также в плодовых телах, снабженных оболочкой (перидием), образуя так называемые пикниды или псевдопикниды. Различают следующие типы агрегаций конидиеносцев.

Коремии — соединенные в пучки, вертикально расположенные или тесно сросшиеся (часто вместе со стерильными гифами) конидиеносцы. Конидии образуются на верхушке конидиеносцев или их ответвлений. Иногда конидии в виде головок располагаются на всей поверхности коремий, или только у их вершины.

Спородохии — скопление коротких, часто разветвленных конидиеносцев в виде подушечек на поверхности выпуклого сплетения гиф или на строме.

Пионноты — сплошной слизистый слой слившихся спородохней на поверхности рыхлого мицелия. В спородохиях и пионнотах образуются обычно однотипные конидии, покрытые слизью.

Спороложи (ложа, ацервулы) — плотный слой коротких конидиеносцев, почти не ветвящихся, расположенных на поверхности плоского сплетения гиф. Они напоминают спородохии, но отличаются от них тем, что конидиеносцы образуют плотный слой не на выпуклой строме, а на более или менее плоском сплетении гиф. Обычно спороложи покрыты в ткань растения, прикрыты кутикулой, эпидермисом или перидермой растения-хозяина. После созревания конидий покрытие прорывается и конидии в связи выступают наружу. На поверхности ложа видны слизистые капли розового, кремового, оранжевого, белого или черного цвета (окраска спор).

Пикниды — тесно скученные многочисленные конидиеносцы, формирующиеся сначала на воздушном мицелии, в строме или на строме.
Они развиваются в ткани растения-хозяина под кутикулой или эпидермисом, а затем прорывают ее и выступают наружу.

Пикниды — наиболее сложные конидиальные структуры. Они имеют шаровидную или кувшиновидную форму, окружены плотным светлым или темным перидием с узким отверстием (порусом), которое вытянуто в сосочок или утолщение. Внутри пикниды располагаются в подобной структуре или на растительности листа или ветки. Иногда пикниды располагаются группами и, срастаюсь, образуют сложные многокамерные споровместилища. Пикниды бывают мягкими и твердыми, окрашенными, светлыми или темными. Пикноспоры, или стилоспоры, образованные внутри пикниды, обычно покрыты слизью. Они выходят наружу через устьище или трещинки в перидии. Они одно-, двух- или многоклеточные, некоторые с придатками или ресничками, светлые или окрашенные.

Пикниды имеют шаровидную или кувшиновидную форму, окружены плотным светлым или темным перидием с узким отверстием (порусом), которое вытянуто в сосочок или утолщение. Внутри пикниды располагаются в подобной структуре или на растительности листа или ветки. Иногда пикниды располагаются группами и, срастаюсь, образуют сложные многокамерные споровместилища. Пикниды бывают мягкими и твердыми, окрашенными, светлыми или темными. Пикноспоры, или стилоспоры, образованные внутри пикниды, обычно покрыты слизью. Они выходят наружу через устьище или трещинки в перидии. Они одно-, двух- или многоклеточные, некоторые с придатками или ресничками, светлые или окрашенные.

По форме конидии дейтеромицетов весьма разнообразны: цилиндрические, шаровидные, овальные, яйцевидные, эллипсоидальные, продолговатые, грушевидные, булавовидные, серповидные, нитевидные, спирально изогнутые, звездчатые и т. п. Оболочка их бывает гладкой, шероховатой, шиповатой, бородавчатой, щетинистой.

Различают конидии одноклеточные, двух- и многоклеточные разделяющиеся одной или несколькими перегородками, иного и продолговатыми, перегородчатыми, бесцветными или окрашенными.

По способу образования конидий выделяют следующие их типы. Бластоспоры — конидии, развивающиеся, как почки, на поверхностях спорогенной клетки прямо на гифе или на коротких зубчатых отростках. Конидиеносец при этом или удлиняется или же апикально утолщается и покрывается зубчиками (тип: роды Cladosporium и Monilia). Бластоспоры могут продуцировать новые бластоспоры на апикалах, формируя акропетальные цепочки конидий, простые или разветвленные.

Фиалоспоры — конидии, развивающиеся на фиалидах Фиалида — конечная одноклеточная спороносная веточка сложного конидиеносца, обычно бутылковидная, расширенная у основания, с узкой длинной шейкой, на верхнем конце с воротничком или без него. Фиалоконидии на верхушке фиалиды расположены цепочками или головками, склеенными слизью (тип: роды Fusarium, Phylophora и Cylindrocarpon).

Артроспоры — одиночные конидии или их ветвящиеся цепочки, образуемые путем деления спорогенной гифы конидиеносцев. Они могут также возникать эндогенно внутри спорогенной гифы и тогда имеют цилиндрическую форму (тип: род Geotrichum — эндогенный, род Thielaviopsis — эндогенный).

Алейроспоры, или хламидоспоры, — терминальные, боковые или интеркалярные выпячивания конидиеносцев или гиф, отделяющиеся от материнской клетки одной или двумя перегородками. Устойчивы и функционируют как покоящиеся споры (тип: род Trichoscladium).

Пороспоры — конидии, имеющие толстую оболочку, образуются одинично или группами и развиваются через мелкие одиночные или многочисленные поры в стенках конидиеносца.

Тип: роды Drechslera, Alternaria, Curvularia.

Радуласпоры — конидии, которые развиваются на маленьких стержнях, образованных на кончике конидиеносца или же на интеркалярных вздутиях (тип: род Beauveria). [32]

Среди дейтеромицетов известны как сапрофиты, обитающие в воде, почве, на растительных и животных остатках, так и паразиты, развивающиеся на высших растениях, реже на животных. Дейтеромицеты являются причиной многочисленных болезней сельскохозяйственных
культур, приводящих к большим потерям урожая. Развиваясь на зерне и других продуктах питания, отдельные виды выделяют токсины, которые могут вызывать тяжелые отравления при использовании этих продуктов в пищу человеком или при кормлении ими животных. 

Класс Deuteromycetes делится на четыре порядка: Mycelia sterilia, Moniliales, Melanconiales и Sphaeropsidales. Mycelia sterilia — группа грибов, характеризующаяся наличием стерильных гиф и отсутствием какого-либо спороношения. Известно около 200 видов этого порядка, принадлежащих к 50 родам. У некоторых представителей установлена связь с аскомицетами и базидиомицетами.

Moniliales — наиболее крупный и разнообразный в морфологическом отношении порядок, объединяющий виды с одиночными и собранными в коремии и спородохии конидиеносцами. Он разделен на четыре семейства: Monilaceae — с одиночными светлыми конидиеносцами и конидиями; Dematiaceae — с одиночными, но темными конидиеносцами и конидиями; Stilbellaceae — с конидиеносцами, соединенными в коремии; Tuberculariaceae — с конидиеносцами, собранными в спородохии.

У представителей порядка Melanconiales конидиеносцы собраны в спороложа. У представителей порядка Sphaeropsidales конидии (стилоспоры) развиваются в пикнидах, которые морфологически близки к перитециям и апотециям аскамицетов.

Известно около 30 тыс. видов дейтеромицетов. [4, 6, 21, 35, 44, 64, 66]

ПОРЯДОК MYCELIÀ STERILIA (AGOMYCETALES) — СТЕРИЛЬНЫЕ МИЦЕЛИИ

Род Rhizoctonia DC. — Ризоктония

МИЦЕЛИЙ развиваются в субстрате или на его поверхности в виде войлочных шнуров буровато-фиолетового цвета. На гифах образуются цепочки утолщенных, не распадающихся клеток. Склероции темные, плоские, неправильной формы.

Среди представителей рода есть сапрофиты и паразиты растений — возбудители опасных заболеваний. [6, 8, 44] Rhizoctonia solani Kuhn.— Ризоктония пасленов Возбудитель бурых и сухих гнилей, или ризоктониоза. Мицелий образует сплетения и черные склероции, крепко приросшие к субстрату, на подземных органах растений. Гифы коричневые, местами бесцветные, 6—10 мкм толщ.

Телеоморфа — Pellicularia filamentosa Sprague.

Факультативный паразит. Склероции зимуют в почве и на растительных остатках Болезнь развивается на холодных кислых почвах с избыточным увлажнением. Поражает свыше 230 видов однодольных и двудольных сельскохозяйственных растений: картофель, томаты, капусту, редис, свеклу, люцерну, фасоль, люпин, клевер, чечевицу, лен и др.

Заболевание характеризуется образованием на поверхности корней растений бурого плотного налета мицелия и склероций гриба. Пораженная ткань приобретает бурый цвет. Растение погибает.

Ризоктониоз льна проявляется на ранних фазах его развития. Пораженные отростки загнивают и погибают. У пораженных всходов и растений, находящихся в фазе «елочка» корень темнеет, разрушается и растения увядают или постоянно буреют.

При ризоктониозе картофеля на больных ростках (при самой вредоносной форме болезни) появляются коричневые вдавленные пятна.
Ростки чернеют и гибнут до появления их на поверхности почвы. При поражении стеблей у их основания развиваются темно-коричневые сухие, растрескивающиеся и переходящие в язвы пятна, до 1 см, часто охватывающие стебель и образующие перетяжку (сухая язвенная гниль стеблей). Растения желтеют и увядают, начиная с верхушки. При сильном поражении стеблей образуются сидячие воздушные клубни. При заболевании столовиков наблюдается их загнивание вместе с боковыми клубнями. Корни поражаются реже. На клубнях болезнь проявляется в виде черных коростинок, благодаря которым болезнь получила название «черная ножка), или «черная парша». Коростинки состоят из псевдосклероциев, из которых весной образуются гифы, оплескующие клубень и ростки.

На Дальнем Востоке летом, после смыкания ботвы картофеля, при высокой влажности почвы и воздуха гриб образует телеспорную стадию. На этой стадии болезнь называется «белая ножка».

Источник инфекции - микелий и псевдоконидии гриба, которые сохраняются в растительных остатках и клубнях, а также в почве до 6 лет.

Болезнь приводит к изреживанию посевов, потери урожая достигают 30 %.

Распространение: повсеместно в районах возделывания.

Меры борьбы: соблюдение севооборота; опрыскивание рассады 1 %-ным раствором бордоской жидкости, маточных корнеплодов сахарной свеклы – 0,25 %-ным раствором формалина; протравливание семян ТМТД (8 кг/кг) или фентиурамом (3 г/кг). [9,17,42, 44, 47]

Rhizoctonia aderholdii (Ruhl.) Kolosh. — Ризоктония Адергольда

Один из возбудителей корнееда и бурой гнили сахарной свеклы.

Микелий образует тонковойлочное бурое сплетение и иногда темно-бурые мелкие склероции. На гифах иногда образуются цепочки похожих на конидии клеток, которые не опадают.

Поражает подземные органы различных растений. На наземных органах развивается на бобах гороха.

Сахарная свекла поражается в фазе проростков. Листья нижнего яруса больных растений чернеют, скручиваются. Корнеплоды покрываются бурым войлочным налетом, распространяющимся на черешки листьев. Ткани пораженных корнеплодов трескаются и полностью гниют. Развитию болезни способствует жаркая погода.

У хлопчатника вызывает гниль корневой шейки всходов, чаще в фазе первых двух настоящих листьев. Верхушка растения поникает, листья сморщиваются, искривляются, буреют и засыхают. Такая же картина наблюдается и при поражении грибом кенафа, табака, капусты, томатов, огурцов, репы и др.

Источник инфекции — склероции, сохраняющиеся в пораженных растительных остатках.

Болезнь приводит к изреживанию посевов, снижению технологических качеств сырья, снижению урожая на 10—11 %.

Распространение: повсеместно, особенно в сухих районах (Средняя Азия).

Меры борьбы: соблюдение севооборота с ротацией сахарной свеклы не ранее чем через 4—5 лет; внесение повышенных (в 1,5 раза) доз калия на фоне азота и фосфора; внесение в почву перед посевом соломы пшеницы и кукурузы; мелиоративные мероприятия.

Rhizoctonia zeae Voorh. — Ризоктония кукурузы

Возбудитель корневой гнили кукурузы.

Склероции погребенные или поверхностные, сначала белые, потом коричневые, с гомогенной структурой, при созревании твердеющие, одиночные, иногда сливающиеся, обильные. Гифы 4—10 мкм толщ.
сначала бесцветные и зернистые, в старых культурах — красновато-коричневые. [42, 44]

_Rhizoctonia violacea_ Tul.— Ризоктония фиолетовая
Син.: _Rhizoctonia craccorum_ (Pers.) DC., _Rh. medicaginis_ DC.
Возбудитель красной корневой гнили, или ризоктониоза.
Мицелий в виде шнуров, буро-фиолетовый. Молодые гифы бесцветные, с возрастом — от фиолетового до буро-фиолетового цвета, 7—10 мкм толщ. Внутри шнуров — разветвленные гифы с перегородками. На поверхности склероциев клетки гиф более короткие — 30—50 мкм и толще — 12—14 мкм.

Телеоморфа — _Helicobasidium purpureum_ (Tul.) Pat.
Поражает различные растения: свеклу, морковь, спаржу, хлопчатник, хмель, люцерну, табак, эспарцет, клевер, виноград, а также сорняки: осот, одуванчик, лебеду, паслен, пастушью сумку и др. Корнеплоды сахарной свеклы ризоктониоз поражает как в период вегетации, так и при хранении.

Болезнь проявляется во второй половине лета в загнивании корнеплодов, начинающемся обычно с хвоста и с боковых корешков. На поверхности корнеплода появляются мелкие красно-фиолетовые точки, погруженные в ткани. В дальнейшем, особенно во влажной почве, образуется густой красно-фиолетовый войлочный налет. Загнившая ткань имеет вид свинцово-серых пятен, которые затем охватывают значительную часть корнеплода. Сухая гниль развивается под покровными тканями на глубине 0,5—1 см. Оптимальная температура для развития болезни 20—30 °С. Заболевание носит очаговый характер.

Источник инфекции — склероции, сохраняющиеся в пораженном растительных остатках и в почве.

Болезнь приводит к гибели до 35 % урожая маточной свеклы.

Распространение: южные районы свеклосеяния.

Меры борьбы: соблюдение севооборота; пнев сахарной свеклы после зерновых; мелиорация; агротехнические мероприятия. [41, 42, 51]

**Род Sclerotium Tode — Склероций**

Склероции образуются на вегетативных гифах, шаровидные, удлиненные или неправильной формы, разного размера, с черной или коричневой оболочкой, плотные, внутри белые, одиночные. Некоторые склероции являются стадиями развития сумчатых грибов, для многих соответствующие спороносные стадии еще не обнаружены.

Представители рода являются возбудителями гнилей различных растений.

_Sclerotium bataticola_ Taub.— Склероций бататовый
Возбудитель корневой и стеблевой гнилей или сухого склероциоза. Склероции образуются на поверхности пораженных корней, 50—150 мкм в диам., внутри пораженных тканей склероции сплюснутые.
Спороносная стадия — _Macrophomina phaseoli_ (Maubl.) Ashby, развивается на фасоли.

Поражает кукурузу, картофель, арахис, сахарную свеклу, фасоль, клевер, люцерну и др.

Заболевание развивается в поверхностных тканях корня, преимущественно в верхней части. На корнях появляются сухие серые мелкорастреккивающиеся пятна. Характерный признак заболевания — по-краснение здоровой ткани, прилегающей к пораженному участку. Ткань корня становится деревянной, буреет, впоследствии чернеет. Развитию болезни способствует температура 30—32 °C.

Источник инфекции — склероции, сохраняющиеся на растительных остатках.
Болезнь приводит (в случае сахарной свеклы) к сокращению урожая на 10—15 %, уменьшению сахаристости корнеплодов на 0,5 % и выхода семян на 35—50 %, поражению больных клубней кагатной гнилью.

Меры борьбы: соблюдение севооборота; выбраковка пораженных корнеплодов при уборке маточной свеклы.

**Sclerotium cepivorum Berk.— Склероций лукоядный**
Возбудитель сухой гнили лука репчатого.
Склероции мелкие, шаровидные, собраны группами, черные, внутри белые. Склероции прорастают только в присутствии питающего растения.
Поражает также чеснок.
Болезнь развивается в период вегетации и при хранении. Листья желтеют и, начиная с кончиков, отмирают. Растение вянет и гибнет. На корнях, чешуйках и донце луковиц образуется белый пушистый мицелий и полуводянистая гниль, на которой формируются мелкие черные склероции. Развитию болезни способствует температура 15—20 °C и низкая влажность воздуха.
Источник инфекции — склероции, зимующие в почве.
Болезнь приводит к значительным потерям урожая.
Распространение: повсеместно в районах возделывания.
Меры борьбы: соблюдение севооборота; протравливание семян ТМТД (6 г/кг), гранозаном (3 г/кг); браковка луковиц перед закладкой на хранение; соблюдение правильного температурного и воздушного режима во время хранения. [6, 8, 41, 44]

**Sclerotium rolfsii Sacc.— Склероций Рольфа**
Возбудитель южной склероциальной гнили.
Склероции округлые или эллипсоидальные, 0,5—0,8 мм шир., легко отделяются от субстрата, гладкие, блестящие, сначала розовые, затем коричневатые, внутри белые.
Поражает пасленовые, тыквенные, крестоцветные культуры.
У больных растений сначала загнивает основание стебля, затем весь стебель и корни. На стеблях образуются перетяжки, листья увядают и засыхают. На пораженных участках развивается белый паутинистый налет мицелия. Оптимальная температура для роста гриба 24—32 °C.
Источник инфекции — склероции, сохраняющиеся в почве на глубине до 2,5 см.
Болезнь приводит к значительным потерям урожая.
Распространение: повсеместно.
Меры борьбы: такие же, как против S. bataticola.

Порядок **Moniliales** — монилиальные
Семейство **Moniliaceae** — монилиальные
Род **Monilia** Pers. — Монилия
Мицелий полушарий с поперечными перегородками, распространяется внутри субстрата, образуя на его поверхности плотные подушечки. Гифы распадаются на эллипсоидальные или лимоновидные конидии, образующие цепочки.
Представители рода вызывают гниль, или монилиоз, плодовых культур.

**Monilia fructigena** Pers.— Монилия плодовая (рис. 1.31)
Возбудитель черной гнили, или монилиоза, семечковых и косточковых пород.

Подушечки конидий охряно-желтые, затем бурые, расположенные концентрическими кругами. Конидии яйцевидные и эллипсоидальные, 20—24 × 12 — 14 мкм, образуют цепочки.

Телеоморфа — Monilinia fructigena (Aderh. et Ruhl.) Honey. Роль этой стадии в цикле развития гриба незначительна, так как она образуется редко — при очень благоприятных условиях.

Поражает плоды, а также цветы и плодовые веточки груш, яблонь, слив.

На плодах образуются бурье пятна, которые, разрастаясь, покрывают весь плод. На их поверхности формируются розово-оранжевые подушечки спороношения гриба. Плод загнивает. При неблагоприятных для спороношения гриба условиях плоды мумифицируются, чернеют и зимуют на дереве. Листья опадают, кора некротизируется, образуются раковые образования на ветках. Болезнь развивается и в хранилищах. Развитию болезни способствует высокая влажность воздуха.

Источник инфекции — склероции, сохраняющиеся в мумифицированных плодах.

Болезнь приводит к значительным потерям урожая.

Распространение: повсеместно в местах произрастания.

Меры борьбы: регулярное удаление и сжигание пораженных ветвей; уничтожение сухих мумифицированных плодов; опрыскивание посадок при первых признаках поражения каждые 15—20 дней 1 %-ной бордоской жидкостью или ее заменителями: 0,2 %-ным карпеном (2—4 кг/га), 0,4 %-ным поликарбацином или полихолом (4—8 кг/га), 0,1 %-ным токсином-М (1—2 кг/га), 0,4 %-ным цинебом (4—8 кг/га) и др.

Monilia cinerea Bon.— Монилия серая

Син.: Monilia laxa Sacs.

Возбудитель серой гнили, или монилиоза, плодовых культур.

Плоды мумифицируются, серые, плотные. Конидии чаще лимоновидные, 12 — 13 × 9 — 10 мкм, сероватые, в длинных цепочках.

Телеоморфа — Monilia cinerea (Bonord.) Honey.

Одна из самых распространенных и вредоносных болезней косточковых плодовых пород — черешни, вишни, слив, абрикоса, персика.

Болезнь проявляется в виде засыхания молодых побегов, цветков, листьев, которые остаются висеть на дереве. Летом пораженные плоды покрываются подушечками серой гнили, затем мумифицируются.

Развитию и распространению болезни способствует повышенная влажность воздуха и низкие температуры во время цветения.

Источник инфекции, вредоносность, распространение и меры борьбы такие же, как для M. fructigena.

Известна специфическая форма этого гриба — f. mali (Worm.) A. Harrison.— ф. яблоневая, поражающая листья, цветки, молодые завязи яблони и айвы, произрастающих на Дальнем Востоке. [6, 8, 23, 44]
Род *Oospora* Wallr. — Ооспора

Мицелий стеляющийся по субстрату, образует подушковидное сплетение. Конидиеносцы отсутствуют. Гифы распадаются на шаровидные, яйцевидные или овальные, бесцветные оидии.

Виды рода — возбудители ооспороза, или бугорчатой парши, апельсинов, томатов, кукурузы и других растений.

*Oospora pustulans* Owen. et Wak. — Ооспора пустульная (рис. 1.32)

Возбудитель бугорчатой парши, или ооспороз, клубней картофеля. Пустулы округлые, 2—3 мм в диам. Конидии удлиненно-цилиндрические, 6 — 12 × 2 — 2,5 мкм.

Поражаются корни, стебли и столоны. На клубнях внешние признаки заболевания проявляются во второй половине зимнего хранения в виде темных бугорков или пустул, одиночных или сливающихся. Ткань темнеет и отслаивается. В основном поражает глазки. При холодном хранении развивается ямчатая форма ооспороза: на поверхности клубней образуются округлые углубления диаметром 4—10 мм. Развитию болезни способствует температура 4 °С и относительная влажность воздуха 100 %, наличие трещин на клубнях, поздняя уборка во влажную и холодную погоду, обработка картофеля ингибиторами прорастания.

Источник инфекции — конидии, сохраняющиеся в клубнях, растительных остатках, почве в течение 2 и более лет.

Болезнь приводит к снижению всхожести клубней (на 11—12 %), образованию малостебельных и отстающих в развитии кустов, снижению урожая до 35 %, в отдельные годы до 80 %, ухудшению вкусовых качеств клубней.

Распространение: в северных районах возделывания.

Меры борьбы: соблюдение севооборота с ротацией картофеля через 3—4 года; использование здорового посадочного материала; протравливание клубней перед посадкой 3—3,5 %-ной суспензией ТМТД (2,1—
2,5 кг/т), полицианином (2,6—2,7 кг/т); томление клубней в парах формалина. [17, 41, 44]

**Oospora betae Delacr.** — Ооспора свеклы

Возбудитель бугорчатой парши, или ооспора, сахарной свеклы.

Мицелий ползучий, белый, гифы 2—3 мкм толщ., распадаются на цилиндрические бесцветные, собранные в длинные цепочки конидии или оиди, 4—16 × 4 — 4,5 мкм.

Развитие и симптомы болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как и у O. pustulans.

Другие вредоносные виды: *A. lactis-parasitica Pritch. et Port.* — ооспора молочно-паразитическая, поражает апельсины, плоды томатов; *O. verticilloides Sacc.* — ооспора вертициллезная, поражает зерновки кукурузы. [41, 42, 44]

**Род Geotrichum Lk — Геотрих**

Мицелий слаборазвитый, стелющийся по субстрату, образует на нем белый порошистый налет. Конидиеносцы слабо развиты, простые, распадаются на отдельные клетки — оиди, с тупыми концами, цилиндрические, бочкообразные, собранные в цепочки.

*Geotrichum candidum Lk emend. Carm.* — Геотрих белый (рис. 1.33)

Син.: *Oidium lactis Fres., Oospora lactis (Fres.) Sacc.*

Возбудитель водянстой гнили томатов. Колонии белые, распростертые, с порошистыми дерновинками. Конидии образуются путем расчленения гиф на отдельные клетки, 5 — 10 × 4 мкм, сначала цилиндрические, потом бочонковидные до эллипсоидальных или почти шаровидных.

Поражает также дыни. На пораженных участках плодов образуется белый порошистый налет из мицелия и конидий гриба. Внутри плода ткани размягчаются становятся водянистыми.

Источник инфекции — мицелий, сохраняющийся на пораженных растительных остатках.

Болезнь приводит к значительным потерям урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: удаление пораженных плодов; опрыскивание посевов 1 %-ной бордоской жидкостью (за 5—7 дней до сбора урожая); протравливание семян ТМТД (8 г/кг). [44]

**Род Oedocephalum Preuss. — Эдоцефал**

Мицелий бесцветный или светлоокрашенный. Конидиеносцы прямые, простые, на верхушке вздутые. Конидии шаровидные или продолговатые, образуются на маленьких, радиально расположенных зубчиках.

Виды рода — возбудители гнилей различных растений.
Oedocephalum beticola Oud. — Эдоцефал свеклы (рис. 1.34)
Возбудитель гнили сахарной свеклы.

Мицелий ползучий. Конидиеносцы 140—200 × 6 мкм, на верхушке с яйцевидным вздутием, 36 × 24 мкм. Конидии многочисленные, яйцевидные, бесцветные, 8 × 3 мкм, образуют головки 40—50 мкм в диам.

На пораженных тканях корнеплодов развивается войлочный светлоокрашенный налет мицелия гриба.

Ткани расслаиваются, образуют полости, заполненные мицелием гриба, впоследствии охватывающие весь корнеллод.

Источник инфекции — мицелий, сохраняющийся на пораженных корнеплодах.

Болезнь приводит к снижению товарного качества сырья, уменьшению сахаристости.

Распространение: повсеместно в районах возделывания.

Меры борьбы: такие же, как и против Rhizoctonia aderholdii [44]

Род Oidiopsis Scalia — Оидиопсис

Мицелий двух типов: первичный — эндофитный, с присосками, проникающими в ткань субстрата, и вторичный — эктофитный, без присосок, образующий на поверхности субстрата густой белый войлочный налет. Конидиеносцы выступают из устьиц, одиночные или собраны в пучок в виде тонкой бесцветной гифы, с одиночной, верхушечной, бесцветной, удлиненно-эллипсоидальной конидией, после отделения которой могут образовываться еще конидии, таких же размеров, как и первая.

Телеоморфа — Leveillula Arn.
Oidiopsis taurica Salm. — Оидиопсис таврический (рис. 1.35)
Возбудитель мучнистой росы.

Воздушный мицелий образует на различных органах пораженного растения беловато-серый войлочный налет. Конидиеносцы простые, реже слаборазветвленные, 200—700 мкм дл. Конидии булавовидные или цилиндрические, 22 — 85 × 13 — 28 мкм, одиночные.

Телеоморфа — Leveillula taurica Arn.

Пораженные листья, стебли покрываются белым, паутинистым или плотным сероватым налетом с черными точками (клейстотециями).
Листья преждевременно засыхают. Развитию болезни способствует повышенная температура.
Источник инфекции — клейстотеции, сохраняющиеся на пораженных растительных остатках.
Болезнь приводит к снижению ассимиляционной поверхности и фотосинтеза.
Распространение: повсеместно.
Меры борьбы: такие же, как и против Erysiphe cichoracearum. [41, 51]

**Род Oidium Sacc. — Оидий**

Мицелий поверхностный, с гаусториями, белый, затем серый или коричневый. Конидиеносцы простые, в виде коротких веточек мицелия. Конидии бочонковидные, цилиндрические, эллипсоидальные, в цепочках, бесцветные.

Паразиты травянистых и древесных культур, возбудители мучнистой росы.

**Оидий Туккера**

Возбудитель мучнистой росы винограда.
Мицелий паутинистый, белый, хорошо развитый, с лапчатыми аппressориями, образуется на обеих поверхностях листьев. Конидиеносцы прямые, цилиндрические, 100—900 мкм дл. Конидии по 2—8 собраны в цепочки, 22 — 30 X 14 — 16 мкм, бочонковидные, эллипсоидальные, гладкие.
Телеоморфа — Uncinula pesca-tor Burill.
Первые признаки болезни обнаруживаются на молодых побегах, отрастающих весной из почек глазка, зараженного грибом. Такие побеги называют «побеги-флаги», так как они и листья на них покрыты белым мучнистым налетом гриба. Массовое поражение листьев проявляется во второй половине лета. Соцветии усыхают, отдельные ягоды или вся кисть покрываются обильным, сначала белым, затем сероватым, порошкообразным, жирным на ощупь налетом; ягоды останавливаются в росте, растрескиваются, созревают или загнивают и опадают. Оптимальная температура для развития гриба 16 — 25 °С, минимальная 11—12, максимальная — 30 °С.
Источник инфекции — толстостенный мицелий, сохраняющийся на побегах и кроющих чешуйках глазка.
Распространение: повсеместно, чаще — в Средней Азии, реже — в Молдавии, Закавказье.
Меры борьбы: в период распускания почек — обработка растений 1 %-ной суспензией коллоидной серы, в период вегетации — опыливание молотой серой (20—25 кг/га), коллоидной серой (9—12 кг/га), топсином — М (1—1,5 кг/га), бенлатом (1,5 кг/га), сероцинном (10—18 кг/га).
Другие вредоносные виды: O. fragariae Harz.— о. земляники, поражает листья, плоды земляники; O. monilioide Lk.— о. монилие-видный (рис. 1.36) (телеоморфа — Erysiphe graminis DC.), поражает стебли, колоски и метелки злаков; O. lini Bond.— о. льна, поражает культурный лен; O. lycopersicum Cooke et Mass.— о. томатов, пора- жает томаты; O. tabaki Thuem.— о. табака (телеоморфа — Ery- siphe eichoracearum DC. f. nicotianae Jacz.), поражает листва табака; O. solani auct.— о. картофельный (телеоморфа — Erysiphe solani Vanha), поражает картофель; O. dianthi — о. гвоздика, поражает листья и чашелистики гвоздики.

Род Phialophora Medlar — Фиалофора


Мицелий от бесцветного или розового до оливково-черного. От- делные клетки гиф имеют вздутия с утолщенной оболочкой.

Фиалиды бутылковидные, верхушечные или боковые, иногда имеют вид кисточек. В некоторых случаях редуцированы до простого ворот- ничка, выступающего из гифы или хламидоспоры без перегородки,— так называемой плеврофиалиады. Конидии развиваются эндогенно, выталкиваются через щейку фиалиды и образуют на ее верхушке го- ловку, склеенную слизью.

Виды рода паразитируют на цветковых растениях, вызы- вают гнили и усыхание.

Phialophora cinerescens (Wr.) van Beyma — Фиалофора серо-ватая

Возбудитель увядания гвоздики ремонтантной.

Колонии шерстистые, зо- нальные, в центре — дымчато- серые, по краю — бесцветные. Гифы 1—3 мкм шир., образуют вздутое клетки до 5 мкм шир. Характерным признаком явля- ется расположение фиалид в плотных мутовчатых пучках на коротких конидиеносцах. Конидии 3—6 × 1,5 — 2 мкм, с одной или двумя каплями масла.

Поражаются сосудисто- проводящие пучки; корни и ос- нование стебля загнивают. Листья становятся серо-зелеными и увя- дают.

Источник инфекции — конидии, сохраняющиеся в почве на глубине до 75 см. Болезнь приводит к гибели значительного количества растений. Распространение: карантинный объект.

Меры борьбы: уничтожение больных растений; дезинфекция или смена зараженной почвы; обработка черенков перед укоренением в те- чение 15—20 мин 0,2 %-ными суспензиями топсина и фундазола, 0,6 %-ной суспензий ТМТД, 0,5 %-ными растворами каптана, фталана, цинеба, профилактический полив растений этими фунгицидами один раз в месяц (8—10 л/м²).

Рис. 1.37. Phialophora malorum:

а — конидии молодой культуры; б — конидии старой культуры; в — фиалиды молодой культуры; г — фиалиды старой культуры; д — цепочка клеток с утол- щенной оболочкой [44]

Род Nigrospora Zimm — Нигроспора

Мицелий сначала бесцветный, затем темнеющий. Конидиеносцы короткие, простые. Конидии одноклеточные, шаровидные, яйцевидные или слегка эллипсоидальные, черные, верхушечные, одночные.

Виды рода паразитируют на высших растениях, вызывают гнили.

Nigrospora maydis (Garov.) — Нигроспора кукурузная (рис. 1.38)


Возбудитель нигроспориоза, или сухой корневой и стеблевой гнили, кукурузы.

Конидии эллипсоидальные или шаровидные, черные, 11,3 — 21 × 9,5 — 16,5 мкм.

Телеоморфа — Kuskia oryzae Huds.

Более всего известен как возбудитель сухой гнили початков кукурузы, а также стеблей и соцветий сорго. Поражает репродуктивные почки, стержни початков и полости зерновок. При сильном развитии болезни пораженные початки недоразвиты, стержень их рыхлый, сероватый с синим оттенком, вследствие образования в нем мицелия и конидий. Стержень распадается на отдельные пучки волокон. Зерновки часто недоразвиты, тусклые, легко расшатываются, при нажиме вдавливаются в стержень. При слабом — основание стебля размягчается, нижние зерновки тускнеют. Гриб живет сначала на отмерших тканях растений как сапрофит. По мере созревания початков начинает поражать ткани живых растений, особенно при повышенной влажности воздуха. Болезнь проявляется, как правило, во второй половине лета, особенно после обильных дождей.

Оптимальная температура для развития болезни 20—25 °С. Источники инфекции — конидии, сохраняющиеся на остатках пораженных растений, семенах.

Болезнь приводит к снижению всхожести семян, плесневению и ухудшению товарных качеств початков.

Распространение: Украина, Северный Кавказ, Алтайский край.

Меры борьбы: уничтожение послеуборочных остатков; противовоздействие семян ТМТД (1,5—2 кг/т), фентиурамом или тигамом (3 кг/т). [39, 41, 44, 51]
Род **Ovularia** Sacc. — Овулярия

Мицелий разветвленный, развивается внутри питающего растения. Конидиеносцы прямостоячие, выходят пучком из устьиц, узловатые. Конидии одиночные, верхушечные, образуются на зубчиках конидиеносцев, яйцевидные или эллипсоидальные, одноклеточные.

Виды рода паразитируют на различных растениях, вызывают пятнистости листьев и муцистую росу.

**Ovularia monosporia** (West.) Sacc.— Овулярия моноспоровая (рис. 1.39).

Син.: **Ovularia obliqua** (Cooke) Oud.

Возбудитель муцистой росы щавелей.

Конидиеносцы в пучках, выступающие из устьиц, без перегородок, реже с одной перегородкой, 40 — 125 × 3 — 5 мкм. Конидии продолговато-яйцевидные, иногда несимметричные, 16 — 35 × 6 — 13 мкм.

**Ovularia hordei** (Cav.) Sprague — Овулярия ячменя (рис. 1.40)

Син.: **Ophiocladium hordei** Cav.

Возбудитель муцистой росы ячменя.

Конидиеносцы собраны в плотные бесцветные пучки и расположены между жилками листьев, извилистые, закрученные или змеевидные у вершин. Конидии бесцветные, одноклеточные, от эллипсоидальных до продолговато-яйцевидных мелкошероховатые, верхушечные.

На обеих поверхностях листьев больного растения появляются продолговатые пятна, в виде полосок, 10 — 30 × 1 — 2 мм, от соломенного до темно-желтого цвета, затем бледно-коричневые, сливающиеся.

Телеоморфа — **Ovosphaerella lapathi** Laibach.

На верхней стороне листа появляются темно-пурпурные пятна, сначала мелкие, затем увеличивающиеся до 1 см в диам., буреющие, в центре светлые, обычно с темно-пурпурной каймой, иногда выпадающие, часто сливающиеся.

Белый налет, образующийся на нижней стороне листа, состоит из конидиеносцев с конидиями. Развитию болезни способствует высокая влажность воздуха.

Источник инфекции — клейстотеции, сохраняющиеся на пораженных растительных остатках в почве.

Болезнь приводит к значительным потерям урожая.

Распространение: европейская часть СССР.

Меры борьбы: такие же, как против **Erysiphe communis**. [41, 44, 51] **Ovularia hordei** (Cav.) Sprague — Овулярия ячменя (рис. 1.40)

Син.: **Ophiocladium hordei** Cav.

Возбудитель муцистой росы ячменя.

Конидиеносцы собраны в плотные бесцветные пучки и расположены между жилками листьев, извилистые, закрученные или змеевидные у вершин. Конидии бесцветные, одноклеточные, от эллипсоидальных до продолговато-яйцевидных мелкошероховатые, верхушечные.

На обеих поверхностях листьев больного растения появляются продолговатые пятна, в виде полосок, 10 — 30 × 1 — 2 мм, от соломенного до темно-желтого цвета, затем бледно-коричневые, сливающиеся.
Развитию болезни способствуют высокая температура и низкая влажность воздуха.

Источник инфекции — мицелий, зимующий на пораженных растительных остатках.

Болезнь приводит к угнетению растений и снижению их продуктивности.

Распространение: европейская часть СССР.

Меры борьбы: такие же, как против Erysiphe graminis.

Другие вредоносные виды: O. brassicaceae Bres. et Allesch.— о.репы, поражает репу; O. cucurbitae Sacc.— о. тыквы, поражает тыкву; O. medicaginis Br. et Cav.— о. люцерны, поражает люцерну; O. monospora (West.) Sacc.— о. щавеля, поражает щавель; O. vitis Rich.— о. винограда, поражает виноград. [39, 41, 44, 51]

Род Acremonium Lk: Fr.— Акремоний

Колонии медленнорастущие. Гифы ползучие, образуют дерновинки. Конидиеносцы простые, в виде прямых ответвлений, равномерно утончающиеся к верхушке. Верхушка их гладкая, реже с маленьким воротничком. Конидии овально-цилиндрические, бесцветные или окрашенные, образуют цепочки или склеенные слизью головки.

Виды рода паразитируют на различных растениях, вызывают увядания и гнили.

Acremonium sclerotigenum (F. et R. Moreau ex Valenta) Gams.— Акремоний склероцийный

Син.: Cephalosporium sclerotigenum F. et R. Moreau.

Возбудитель увядания.

Колонии хлопьевидно-косматые, белые или бледно-розовые, обильно спороносящие. Фиалиды многочисленные, расположены на гифальных тяжах, 25 — 55 X 1, 2—2 мкм, на верхушке с хорошо заметным воротничком до 1 мкм дл. Фиалоконидии цилиндрические, к концам утончающиеся, гладкие, бесцветные, 3,5 — 5 X 1 — 1,6 мкм. Вид образует твердые шаровидные гладкие бесцветные склероции, 15—50 мкм в диам.

Поражает огурцы, хлопчатник и другие растения. Проводящие сосуды больных растений темнеют, что видно невооруженным глазом на срезе стебля, растения увядают.

Источник инфекции — мицелий, сохраняющийся на пораженных растительных остатках и в почве.

Болезнь приводит к значительным потерям урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: уничтожение пораженных растений; соблюдение севооборота; протравливание семян ТМТД (1,5—2 кг/т), тигамом или фентиуромам (2 кг/т).

Другие вредоносные виды: A. charticola (син.: Cephalosporium charticola Lind., C. malorum Kidd. et Beaum) — а. бумажный, поражает плоды яблока (рис. 1.41); A. diospyri (Grandall) Gams (син.: Cephalosporium diospyri Grandall) — а. хурмы, поражает хурму; A. appii (Sm. et Ramsey) Gams.— а. сельдерея, поражает листья сельдерея. [41, 44]

Род Gliocladium Cda — Глиокладий

Воздушный мицелий хорошо развит, рыхлопушистый, сначала белый, затем розовый или лососево-зеленого цвета. Конидиеносцы самые разнообразные, в виде коротких веточек, отходящих перпендикулярно от
Рис. 1.41. Acremonium charticolia:
а — тяж с конидиеносцами; б — конидии
воздушных гиф или тяжей. Впоследствии эти веточки мутовчато разветвляются, образуя кисточку с пучками фиалид, часто расположенных на веточках второго порядка. Конидии эллипсоидальные или неправильно эллипсоидальные, яйцевидные, одноклеточные, склеенные в головку или колонку.

Виды рода являются возбудителями различного рода гнилей растений.

Gliocladium roseum (Lk) Bain. — Глиокладий розовый (рис. 1.42)

Возбудитель корневой гнили.
Воздушный мицелий белый, с тяжами. Конидиеносцы 80—190 (320) мкм дл. (вместе с кисточкой), нерегулярно (однажды или трижды) очередно- или мутовчато-ветвистые. Обычно 3—5 веточки 3,2 мкм толщ., образуют сложную кисточку (метулу), 8 — 18 × 2,2 — 3,2 мкм, с фиалидами; в пучках обычно 3 — 5 (7) фиалид, 14 — 24 × 2,4 — 3,2 мкм. Конидии яйцевидно-эллипсоидальные, непра-
Рис. 1.42. Gliocladium roseum:
а — конидиеносцы; б — конидии

вильно эллипсоидальные, (3,4) 4 — 8, 5 × 2,5 — 4,5 мкм, в массе розовые или оранжево-розовые, склеенные в головки (на молодых конидиеносцах) или в колонки.

Гриб относится к слабым паразитам высших растений. Поражает семена, всходы, корни сои в годы с затяжной и холодной весной. Внешние признаки поражения сходны с фузариозом, от которого данное заболевание отличают при микроскопировании препаратов растений.

Чаще всего заболевание проявляется в виде корневой гнили. Корневая система всходов, молодых и взрослых растений не развивается, клубеньки почти не образуются. На тканях пораженного корня развивается белый или бледно-розовый налет. У пораженных всходов темнеют корни, стебли и семядоли, нередко отмечается гибель точки роста.

На пораженных бобах сои образуются бурье или светло-бурые расплывчатые пятна. Нередко заболевание носит скрытый характер и проявляется только в влажной камере. При этом на семядолях образуются несколько вдавленные, округлые или неправильные, темно-коричневые, ограниченные черной каймой, блестящие пятна различной величины, на которых развивается пышный белый, затем уплотняющийся и розовеющий налет, состоящий из массы тесно скученных конидиеносцев и конидий гриба.

В фазе цветения заболевание проявляется в виде хронического или скоротечного увядания. При этом поражаются ткани корневой шейки и основания стебля, на которых образуются перетяжки. Сначала в месте поражения появляются удлиненные пурпурные пятна, которые опоясывают постепенно весь стебель. Ткани темнеют и растрескиваются, растения увядают и засыхают в течение нескольких дней.
Оптимальная температура для развития гриба 25 °С, минимальная 4—8. Теплая дождливая погода и переувлажнение почвы благоприятствуют развитию этого заболевания.

Источник инфекции — мицелий и конидии, сохраняющиеся в почве, растительных остатках, семенах. Гриб обладает высокой антагонистической активностью, что и обусловливает его распространение в почве.

Болезнь не приводит к значительным потерям урожая.

Распространение: Дальний Восток, Украинская ССР.

Меры борьбы: протравливание семян 80 %-ным раствором ТМТД (2—2,5 кг/т) или фентиуроном (4—6 кг/т). [9, 41, 44]

Род Botrytis Mich. — Ботритис

Мицелий распространенный, пушисто-паутинистый, дымчатый. Конидиеносцы разветвленные (древовидные), их концы вздутые, с маленькими зубчиками, несущими конидии и скученные головками. Конидии овально-яйцевидные, как правило, темноокрашенные. Часто образуют склероции, которые прорастают после перезимовки в мицелии или образуют плодовые тела — апотеции.

Виды этого рода паразитируют на различных растениях, вызывая серую гниль.

Botrytis cinerea Pers.— Ботритис серый (рис. 1.43).

Мицелий серо-оливковый. Возбудитель серой гнили. Конидиеносцы разнообразного вида, 300 — 1000 × 6 — 17,5 мкм, с толстой оболочкой, древовидно развитые, с короткими конечными веточками, снабженными мелкими зубчиками, на которых гроздями расположены тесно скученные конидии. Конидии яйцевидно-эллипсоидальные, 9 — 15 × 6, 5 — 10 мкм, в массе дымчатые. Собранные в клубочки склероции серовато-бурые, потом черные, 2—7 мм дл., с бородавчатой поверхностью. Склероции образуются при пониженной температуре (до 2 °С). Весной из них развиваются конидиальное и сумчатое спороношение. Для нормального развития склероциев необходимо, чтобы они хотя бы раз в течение зимы подверглись действию отрицательных температур.


Поражает свыше 200 видов из различных семей, чаще всего — сложноцветных, пасленовых, бобовых, зонтичных. Особенно часто поражаются корни свеклы, моркови, капусты. Один из наиболее агрессивных возбудителей кагатной гнили.

Пораженные растения увядают или преждевременно теряют листву и постепенно отмирают. Болезнь развивается на растениях не только в период вегетации, но и после уборки урожая. При заболевании корнеплодов сахарной свеклы и моркови во время хране-
ния болезнь проявляется в их побурении, образовании налета спороношения гриба, а затем в отмирании и разложении тканей корнеплода. Загнившие участки или целые корнеплоды покрываются плесенью разного цвета, со временем приобретающей сероватую, бурую, иногда почти черную окраску. Ткань корнеплода теряет прочность, легко разрушается, быстро подсыхает при сухой гнили или ослизняется при мокрой.

Для развития гриба оптимальны: температура воздуха 25—30 °C, (минимальная 1—3), влажность 100 %.

Болезнь приводит к потере 10—15 % урожая, а на отдельных сахарных заводах — 30—40 %.

На подсолнечнике болезнь проявляется в течение всего вегетационного периода. Весной у основания листьев и стеблей появляются бурые участки, на которых позже развиваются мелкие черные склероции. Растения, как правило, погибают. При выпадении обильных осадков у взрослых растений верхние листья привадывают, нижние усыхают, ткани разрушаются, растение надламывается. В период созревания и уборки урожая поражаются корзинки. На их тыльной стороне образуется темное маслянистое пятно, ткань цветоложа размягчается, поверхность корзинки покрывается обильным серым налетом, через 7—10 дней после заражения корзинка загнивает. При сильном поражении корзинок оболочка семян становится рыхлой, на их поверхности и внутри образуются склероции.

Болезнь приводит к ухудшению качества и заплесневению семян (ядра), снижению всхожести и выпадению всходов, потере урожая.

Плоды и стебли томатов и огурцов поражаются в период вегетации, особенно в условиях закрытого грунта (в местах ранений). Во влажную погоду чаще всего поражаются молодые надземные органы растений (верхушки побегов, соцветия, бутонов, цветков).

У люпина поражаются зеленые побеги, на которых образуются вдавленные ранки, а также основание стебля, верхние участки.

Капуста заражается еще в поле, в конце лета в дождливую погоду или при обильных осадках. Заболевание начинается с нижних листьев, часто в местах прикрепления черешка листа к кочережке. При хранении поверхность качана покрывается серым пушечным налетом.

У хмеля поражаются листья и шишки, у конопли — нижние листья, позже — стебли, у рапса — стебли, соцветия, стручки, на которых образуются бурые пятна, покрытые серым налетом. На листьях и стеблях этих растений образуются мелкие черные склероции. Растения с пораженным стеблем желтеют и увядают. Пораженные соцветия поникают, а в больных стручках образуются недоразвитые семена.

У хлопчатника поражаются коробочки, их поверхность покрывается пушечным серым налетом, на месте которого развивается мокрая гниль.

Меры борьбы: уничтожение растительных остатков; внесение фосфорно-калийных удобрений, повышающих устойчивость растений; противление семян ТМТД или фентиуром (3 кг/т), фундазолом, топсином или каптаном (по 1—3 кг/т); создание оптимальных условий хранения.

Известна одна форма V. cinerea f. linii Beyma et Kingm.— ф. льняной.

Возбудитель серой плесени льна.

Болезнь проявляется во влажные годы, после засухи или холодов. На корневой шейке всходов образуются коричневые пятна, на семядолях и листьях — серовато-коричневые. У более старых растений поражается верхушка. При сильном поражении растений коробочки не раз-
виваются. Проростки зараженных семян загнивают и погибают, на стеблях образуются обесцвеченные пятна, которые со временем белеют и на них развиваются выпуклые черные склероции, которые зимуют на растительных остатках.

Источник инфекции — зараженные склероциями семена.

Болезнь приводит к разрушению волокна соломки и трести и значительным потерям урожая.

Меры борьбы: соблюдение сезонооборота; уничтожение растительных остатков. [41, 42, 44]

Botrytis allii Munn — Ботритис луковый*
Возбудитель серой гнили шейки луковиц лука репчатого.
Колонии плотново­йлочные, дымчато-серые. Конидиеносцы прямые, 0,5—1 мкм выс., с перегородками. Конидии в пучках только в верхней четверти или трети конидиеносца, эллипсоидальные, на концах слегка заостренные, 7,1 — 16,2 × 3,8 — 6,3 мкм. Склероции плотные, матово-черные, в середине белые, неправильной формы, 1—5 мм в диам.

Телеоморфа — Botryotinia allii (Budd. et Wakef). Seaver.
На шейке луковиц образуется серый пушистый налет, затем он становится порошистым и на нем образуются мелкие черные склероции, часто сливающиеся в сплошную черную корочку. Листья бледноокрашенные, быстро увядают. Цветоносы и соцветия покрываются тоже серым налетом. Семена не созревают. Чаще поражаются сорта белого лука, реже — желтого и красного.

Гриб развивается в широких пределах температуры (3—33 °С), заражение происходит при 20 °С.

Источник инфекции — склероции в зараженных луковицах, почве, семенах.

Болезнь приводит к потере до 50 % и более лука при хранении.

Распространение: южные районы СССР с засушливым климатом.

Меры борьбы: соблюдение режима хранения лука (температура 0—2 °С, относительная влажность воздуха 70—75 %); выборовка пораженных луковиц; противоразмножение семян 80 %-ным ТМТД (6 кг/т) гранозаном с красителем (3 кг/т). [27, 34, 35, 39, 42]

Botrytis fabae Sardina — Ботритис бобовый
Возбудитель серой гнили бобовых культур.
Мицелий коричневый. Конидиеносцы прямостоячие, темно-коричневые, 162—351 мкм дл., 3—4 раза разветвленные. Конидии яйцевидные, несимметричные 15,2 — 24,3 × 10,9 — 18,2 мкм, образуют головки. Склероции в естественных условиях не образуются.
На листьях появляются мелкие округлые коричневые, с серо-зеленой или красно-коричневой каймой, сливающиеся пятна. Сильно пораженные листья засыхают.

Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у В. цинера.

Botrytis anthophila Bond.— Ботритис цветколюбный
Возбудитель серой гнили цветов клевера.
Конидиеносцы разветвленные, 100 — 130 × 7—10 мкм, бледно-бурые. Конидии сначала эллипсоидальные, потом продолговато­эллипсоидальные, 8 — 22 × 3,8 — 7 мкм, бесцветные.
Поражает тычинки красного клевера.

* Наряду с В. allii лук репчатый поражается В. byssoidea Walk. — б. ватообразным, который вызывает гниль лука, отличающаяся от серой гнили шейки луковиц более светлым и рыхлым воздушным мицелием и более длинными и разветвленными, склонными к пролиферации конидиеносцами, а также В. squamosa Walk.— б. чешуйчатым (телеоморфа Botryotinia squamosa Vien.-Bourg.) и В. septospora El.-Helaly.— б. перегородчатым, которые помимо луковиц поражают соцветия семенников и цветоносные побеги.
Болезнь обнаруживается при раскрытии соцветий, на которых вместо пыльцы образуется серый налет, состоящий из мицелия и конидий гриба.

Источник инфекции — конидии, сохраняющиеся в семенах.

Болезнь приводит к изреживанию посевов и снижению урожая семян (из-за уменьшения возможности опыления цветков).

Распространение: повсеместно.

Меры борьбы: при сильном поражении — скашивание клевера на сено; протравливание семян гранозаном (1,5 кг/т), ТМТД (3 кг/т).

Род *Botryosporium* Cda — Ботриоспорий

Воздушный мицелий пушисто-паутинистый, белый. Конидиеносцы удлиненные, нитевидные, простые или вилкообразные, с боковыми, одиночными или противоположными, но не кольцеобразно расположены

**Рис. 1.44. Botryosporium diffusum:**

1 — конидиеносцы; 2 — конидии [44]

ми веточками с булавовидными вздутиями на концах, с короткими стеригмами. Конидии круглые или яйцевидные, одноклеточные, неокрашенные.

Виды этого рода паразитируют на многих растениях, вызывают корневую гниль.

**Botryosporium diffusum** Corda — Ботриоспорий распространенный (рис. 1.44)

Возбудитель корневой гнили огурцов.

Мицелий белый, разветвленный, пушистый. Конидиеносцы со спиральными боковыми веточками, несущими на концах 3—5 булавовидных вздутия, 10—12 мкм в диам., на которых образуются мелкие цилиндрические стеригмы с одной яйцевидной или эллипсоидальной бесцветной конидией, 6—8 × 4 — 5 мкм.
Корень пораженного растения чернеет и загнивает. Заболевание наблюдается в условиях закрытого грунта. Источник инфекции — мицелий, сохраняющийся в пораженных растительных остатках и в почве. Болезнь приводит к значительным потерям урожая. Распространение: Украинская ССР (в условиях закрытого грунта) Меры борьбы: такие же, как против V. cinerea.

Род Verticillium Nees — Verticillium

Мицелий белый или кирпично-красный. Конидиеносцы прямостоячие, муточато-разветвленные. Веточки первого порядка расположены или поочередно, или супротивно. Фиалы бутылковидные, на концах заостренные. Фиалоконидии эллипсоидальные, овальные, шаровидные, бесцветные или окрашенные. В мицелии образуются следующие морфологические структуры: хламидоспоры, геммы, склероции, микросклероции (мелкие или крупные, иногда удлиненные уплотнения мицелия различной формы) и даузермицелий (темные толстостенные гифы, уплотняющиеся с возрастом), предназначенный для сохранения вида в неблагоприятных условиях; из видоизменений мицелия известны оидии.

Микросклероции образуются только в отмерших частях растений путем утолщения и многократного деления клеток гиф и последующего утолщения и пигментирования клеточных оболочек. Их цвет в зависимости от возраста варьирует от желтого до черно-бурого.

Микросклероции представлены клетками двух типов: толстостенными, темными, 15—25 мкм в диам., и тонкостенными, бесцветными, 5—15 мкм в диам. В клетках первого типа накапливаются питательные вещества, обеспечивающие выживание клеток второго типа в неблагоприятных условиях.

В цикле развития грибов этого рода отмечено несколько стадий: вегетативный рост мицелия, бесполое размножение (конидиями) и покоящиеся стадии (геммы, хламидоспоры, склероции и микросклероции) (рис. 1.45).

Из большого числа видов рода — паразитов и сапрофитов — наибольшее значение имеют виды, вызывающие увядание (вильт), усыхание и гниль растений. Verticillium dahliae Kleb. — Verticillium георгины

Возбудитель вертициллезного увядания, или вильт. Мицелий бесцветный, гифы септированные, 2—4 мкм в диам. Конидиеносцы муточатые, 80—160 мкм дл., несущие 1—3 (обычно 1—2) мутовки с 1—5 (обычно 3—4) стеригмами. Стеригмы прямые, 14—26 мкм дл. Конидии одноклеточные, редко с одной перегородкой, бесцветные, эллипсоидальные, образующиеся по одной на верхушке стеригмы и по мере образования соединяющиеся в головки, 3 — 5,5 × 1,5 — 2 мкм. Даузермицелий темно-коричневый, покуюющийся и чернеющий. Микросклероции четковидные, овальные, состоят из грядей толстостенных и тонкостенных клеток; первые 15—25 мкм в диам., вторые — 5—15 мкм. Микросклероции образуются в отмерших частях растений независимо от стадии вегетативного развития. Оптимальная температура воздуха для прорастания микросклероций 24—26 °С, влажность 60—70 %; сохраняют жизнеспособность в широких пределах температур (от 80 до 30 °С). Оптимальное значение рН почвы для развития гриба 7—8.

Поражает около 700 видов растений, относящихся к различным семействам, в частности хлопчатник, картофель, томаты, баклажаны. Почвенный полифаг.
Характерным признаком вертициллеза хлопчатника является по- 
бурение внутренних тканей черешка листа на расстоянии 3—4 мм от 
основания листовой пластинки. На светло-зеленом фоне среза централь- 
ного цилиндра черешка отмечается точечное побурение сосудистых пуч- 
ков с размытым потемнением окружающих тканей. В них обнаружи- 
вается мицелий гриба, скопление камеди, закупоривающей сосуды; 
иногда образуются тиллы — пузырковидные выросты боковых сте- 
нок сосудов, которые закупоривают их.
Первый признак болезни — появление на листьях нижнего яруса 
желтоватых округлых или угловатых пятен, которые беспорядочно раз-

Рис. 1.45. Типы спороношения и мицелия грибов рода Verticillium: 
а — микросклероции; б — даурмицелий с микросклероциями; в — даурмицелий; 
г — оидиоподобные образования; д — фиаллоспоры; е — конидиеносец и конидии [21]
брованы по листовой пластинке. Сохраняется лишь небольшая зеленая 
часть листа в виде узких полосок вдоль жилок. Затем пятна буреют 
и подсыхают, листья опадают. Рост растения прекращается и оно поги- 
бает. Болезнь проявляется во всех фазах развития хлопчатника, мас- 
совое проявление — в фазах бутонизации — цветения. Болезнь рас- 
пространяется по растению снизу вверх, охватывая все новые листья. 
При хронической форме образуются укороченные междоузлия, растение 
теряет всю листву, коробочки преждевременно засыхают и раскры- 
ваются.

В конце вегетации нередко проявляется молниеносная форма вил- 
та, при которой все листья на кусте бледнеют, а затем одновременно 
поникают, растение засыхает без признаков некроза в течение 2— 
3 дней, листья при этом не опадают. Волокно и семена во многих коро- 
бочках остаются недоразвитыми.
Заражение происходит микросклероциями через корневую систему при ее механическом повреждении, образовании боковых корней и разрыве коры стебля.

Микросклероции сохраняются в почве 10—13 лет.
На подсолнечнике вертициллезное увядание проявляется с момента образования корзинки: сначала увядают отдельные участки листьев (обычно в середине), которые бледнеют, желтеют и усыхают, приобретая коричневый цвет. Во влажную погоду на них образуется легкий беловатый налет, состоящий из спороношения гриба. Микросклероции образуются в стеблях, иногда мицелий проникает и в семена.

Источник инфекции — микросклероции и дауэрмицелий, сохраняющиеся в почве, растительных остатках, семенах.

Болезнь приводит к значительному снижению урожая хлопка (до 50 %), к ухудшению качества волокна (длинны, крепости, растяжимости), уменьшению масличности семян, а также их всхожести. Урожай подсолнечника снижается на 19—48 %, масса семян — на 11—24 %, количество масла в ядрах и семянках — на 4—16 %.

Распространение: повсеместно в районах возделывания.
Меры борьбы: сжигание растительных остатков; соблюдение севооборота; уничтожение сорняков; культувирование устойчивых сортов, правильное применение удобрений, расположение посевов хлопчатника рядом с непоражаемыми видами культурами — кукурузой, сорго, рапсом, пшеницей, ячменем, ржи: подкормка растений в фазе 2—5 листьев 1 %-ным раствором карбамида; внесение в почву под зяблевую вспашку на глубину 15—20 см 50 %-ного раствора пентахлорнитробензола (100—200 кг/га). [21, 41, 42, 48, 51]

Verticillium albo-atrum Rke et Berth.— Вертициллий бело-черный.

Возбудитель увядания.
Мицелий бесцветный. Кониденосцы мутовчатые, 100—800 мкм дл. Стеригмы прямые или слегка согнутые, с перегородкой у основания, 24—30 мкм дл. Конидионод бесцветные, эллипсоидальные, собраны в головки. Дауэрмицелий сначала бесцветный, затем темно-коричневый, при старении с толстой оболочкой. В культуре часто образует цепочки хламидоспор и черные узелки мицелия, отличающиеся от микросклероций.

Возбудитель увядания поражает многие культурные растения: картофель, томаты, лен, люцерну, табак, огурцы, землянику, хмель, дыни и др. Отмечен на 66 видах сорняков из 15 семейств.

Гриб развивается в сосудисто-волокнистых пучках. Листья у больших растений желтеют, сгорают и увядают, проводящие сосуды чернеют. На черешках и главной жилке увядших листьев образуется серовато-грязный налет спороношения. Стебли отмирают. У хмеля листья желтеют, шишки буреют и отмирают. У льна изменяется цвет стебля, он становится свинцово-серым, корни разрушаются. Лубяная часть растений разрушаются и волокно становится непригодным для использования. Такие же признаки заболевания наблюдаются и при хранении льна. Изменение окраски (обесцвечивание) начинается у корневой шейки и распространяется по стеблю. В паренхиме коры, в древесине и полостях образуются микросклероции, соединенные между собой гифами, проникающими в волокнистые пучки.

Картофель поражается чаще при бессменной культуре в период цветения и после него. В сухую погоду листья желтеют, буреют, засыхают и опадают, во влажную — повисают вдоль стебля. На черешках и главной жилке увядших листьев появляется серовато-грязный налет.
Стебли отмирают. На их поперечном срезе можно обнаружить потемнение сосудов.

Источник инфекции — микросклероции и дауэрмицелий, сохраняющиеся в клубнях, растительных остатках, почве.

Болезнь приводит к потере 30—50 % урожая в засушливых районах.

Распространение: южные районы СССР.

Меры борьбы: такие же, как против V. dahliae. [17, 44]

Verticillium lateritium Berk.— Вертициллий кирпично-красный (рис. 146).

Один из возбудителей сухой гнили клубней картофеля и корнеплодов сахарной свеклы.

Мицелий кирпично-красный, бархатистый. Конидиеносцы до 200 мкм дл., мутовчато-разветвленные. Веточки клиновидные, 7,5—15 (29) × 2,45 — 3,4 мкм. Конидии почти цилиндрические, несимметричные, 3,2 — 7 × 2 — 3,2 мкм, часто склеены в головки, в массе кирпично-красного цвета.

Симптомы заболевания, вредоносность, распространение и меры борьбы такие же, как у Fusarium sambucinum.

Источник инфекции — дауэрмицелий, сохраняющийся в пораженных растительных остатках и почве.

Verticillium foexii v. Beyma — Вертициллий Фоэкса

Один из возбудителей сухой гнили клубней картофеля, луковицы нарцисса и сои.


У зараженных семян сои семядоли покрываются вдавленными сухими язвами, на которых развивается белый, быстро розовеющий плотный налет. В сырую погоду ростки темнеют, точка роста чернеет и загнивает.

У картофеля и нарцисса симптомы заболевания, вредоносность, и меры борьбы такие же, как у Fusarium sambucinum.

Источник инфекции — дауэрмицелий, сохраняющийся в почве и растительных остатках.

Распространение: Приморский край. [9]

Другие вредоносные виды: V. nigrescens Pethybr.— в. черный, поражает всходы хлопчатника, клубни и стебли картофеля, стебли томатов; V. prolificans Pidopl.— в. пролифицирующий, поражает корни сахарной свеклы; V. lycopersici Pitchard et Porte — в. помидоровый, поражает сеянцы томатов; V. nubilum Pethybr.— в. хмурый, поражает стебли и клубни картофеля; V. cornicolor Mschvidobadze — в. кизиловоцветный, поражает кизил; V. ibericum Mschvidobadze — в. грузинский, поражает яблоню, сливу, черешню, абрикос.
Род Rhynchosporium — Ринхоспорий

Мицелий межклеточный. Конидиеносцы простые, заостренные у вершины, выходят пучком из устьиц на нижней поверхности пораженных листьев. Конидии двухклеточные, верхняя клетка — клювоидная, нижняя — прямая.

Виды рода паразитируют на злаках, вызывая пятнистость.

Rhinchosporium graminicola Heiny.— Ринхоспорий злаковый

Син.: Marssonina secalis Oud.

Возбудитель окаймленной пятнистости, или ринхоспориоза, злаков. Споророжда расположены под эпидермисом. Конидиеносцы простые, заостренные у вершины, одноклеточные, бесцветные, мелкие, образуют плотный слой. Конидии бесцветные, двухклеточные, верхняя клетка клювовидная, нижняя — прямая, заостренная книзу, 16 — 18 X 3 — 5 мкм.

Поражает ячмень, рожь и многие злаковые травы.

На влагалищах и обеих поверхностях листьев образуются овальные или неправильной формы водянистые, серо-зеленые пятна с темно-бурым окаймлением. Споророждение образуется на нижней поверхности листьев в виде белых подушек. Пораженные листья скручиваются и усыхают.

Источник инфекции — мицелий, сохраняющийся в пораженных растительных остатках, семенах, зараженных посевах злаковых.

Болезнь приводит к недобору урожая на 3—4 ц/га.

Распространение: западные области Украинской ССР, Белорусская ССР, Прибалтика, предгорные районы Северного Кавказа.

Меры борьбы: очистка и протравливание семян гранозаном с красителем (1,5 кг/т) или меркурбензолом (1,5—2 кг/т). [39, 41]

Род Trichothecium Lk — Трихотеций

Рис. 1.47. Trichothecium roseum: конидии

Воздушный мицелий распростертый, пушисто-мухнистый, сначала белый, потом розовый, образует густой порошистый налет. Конидиеносцы прямые, простые, цилиндрические, на верхушке слегка вздутые. Конидии грушевидные, продолговатые с одной перегородкой, слегка перетянутые, к основанию немного вытянутые, с нижней (меньшей) несимметричной клеткой, отчленяют по одной, обычно скучены в головку на верхушке конидиеносца, в массе розовые.

Виды рода паразитируют на высших растениях, вызывают гнили. [44]

Trichothecium roseum Lk — Трихотеций розовый (рис. 1.47)

Возбудитель гнили. Один из возбудителей кагатной гнили сахарной свеклы, а также плесневения семян и проростков кукурузы.
Воздушный мицелий хорошо развит, паутинистый. Конидиеносцы прямостоячие, цилиндрические, 120 — 130 × 4 — 5 мкм. Конидии грушевидные, бесцветные, в массе розовые, 12 — 23 × 8 — 11 мкм, часто собраны в головку.

Поражает хлопчатник, рис, подсолнечник, сою.

На листьях, стеблях, зерне, бобах появляется порошистый розовый налет. Развитию болезни способствует повышенная влажность воздуха. У хлопчатника поражаются коробочки разной зрелости. На створках сначала образуются темно-зеленые пятна, а через неделю — розовый, легко распыляющийся налет. Волокно в коробочке загнивает и превращается в порошковидную массу. Коробочки не раскрываются или слегка растрескиваются, часто подсыхают и опадают. У риса развивается розовое плесневение семян, у подсолнечника — розовая гниль коробочек и семян.

Источник инфекции — конидии и мицелий, сохраняющиеся в пораженных растительных остатках.

Болезнь приводит к незначительным потерям урожая.

Распространение: повсеместно, особенно в районах с повышенной влажностью и температурой.

Меры борьбы: протравливание семян ТМТД (1,5—2 кг/т), тигамом или фентиурамом (по 2 кг/т), уничтожение растительных остатков.

Род Piricularia Sacc. — Пирикулярия

Колонии распростертые, мелковолокнистые, серовато- или оливково-коричневые. Мицелий погруженный. Конидиеносцы хорошо выраженные, тонкие, выходят из устьиц по одному или по несколько, прямые, или извилистые, кверху коленчатые, бледно-коричневые, гладкие, с цилиндрическими тонкостенными зубчиками, отделяющимися от конидии перегородкой. Конидии одиночные, сухие, образуются как на верхушке конидиеносца, так и на боковых зубчиках. Сначала образуется конидия на верхушке конидиеносца, затем рядом — новая точка роста, развивается веточка конидиеносца, а на ней — следующая конидия; этот процесс повторяется 7—9 раз. Образование последовательных конидий происходит с интервалами около часа. Конидии обратногрушевидные, конусовидные или обратнобулавовидные, бесцветные или бледно-оливково-коричневые, гладкие, с 1—3 (обычно 2) перегородками, часто с выступающим зубчиком.

Представители этого рода паразитируют на злаках, вызывают пятнистость листьев. [44]

Piricularia oryzae Cav Пирикулярия риса (рис. 1.48)

Возбудитель пирикуляриоза риса.

Конидиеносцы цилиндрические, к вершине суженные, у основания слегка вздутые, 60 — 120 × 4—5 мкм. Конидии обратнобулавовидные, к вершине сужающиеся, 17 — 23 × 8 — 11 мкм, с двумя перегородками.

Рис. 1. 48. Piricularia oryzae:
1 — конидиеносцы; 2 — конидии
[44]
Один из наиболее вредоносных и распространенных видов. Поражает костер, просо, тимофеевку, пырей, которые служат источником заражения риса. Существуют 32 расы гриба, различающиеся патогенностью для разных сортов риса.

Известны две формы заболевания — листовая и узловая. При листовой форме, развивающейся на ранних стадиях вегетации (до выхода в трубку), на листьях появляются светло-серые пятна. На верхней поверхности листьев образуются удлиненные, сероватые с темно-бурой каймой пятна спороношения гриба, на нижней — почти черные с грязно-серым налетом.

Узловая форма проявляется перед выметыванием метелок, когда гриб поражает узлы стебля. Узлы чернеют, размягчаются, на них образуются перетяжки и стебель ломается. Наибольший вред приносит заболевание в период колошения и цветения риса. Метелки высыхают до образования зерна, или в них образуются шуплы, недоразвитые зерновки. В сухой соломе мицелий гриба сохраняется 2—4 года (особенно в узлах стеблей).

Развитию болезни способствуют температура 15—35 °C и высокая влажность воздуха (80 %).

Источник инфекции — мицелий, сохраняющийся на растительных остатках.

Болезнь приводит к потере 20—30 % урожая. Возбудитель выделяет фитотоксины — пирикулярин и α-пиколиновую кислоту.

Распространение: повсеместно в районах рисосеяния, чаще на Дальнем Востоке, Северном Кавказе, в Украинской ССР.

Меры борьбы: соблюдение севооборота с ротацией зерновых на прежнее место, не ранее чем через 3 года; протравливание семян гранозаном с красителем (2 кг/т), 3 %-ным раствором родана (0,23 л/т) с последующим томлением в течение 24 ч, а также антибиотиками: бластцидином, касуагальцином и др.: опрыскивание посевов цинебом (3 кг/га) или 1 %-ной бордоской жидкостью. [39, 41, 44, 51]

Piricularia grisae (Cook.) Sacc. — Пирикулярия серая

Син.: Trichochecium griseum Cook.

Возбудитель серой пятнистости, или пирикуляриоза.

Конидиеносцы собраны в серые пучки, 150 X 2,5 — 4,5 мкм. Конидии верхушечные, грушевидные, к основанию заостренные, с тремя перегородками, без перетяжек, 17 — 28 X 6 — 9 мкм. Поражает просо, сорго, рожь, кукурузу и др.

Симптомы заболевания, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у P. oryzae. [39, 41, 44, 51]

Род Ramularia Ung. — Рамулярия

Конидиеносцы короткие, реже — удлиненные, цилиндрические, у вершин с зубчиками, собраны в пучки, реже одиночные, выступающие из устьиц или прорывающиеся через эпидермис. Конидии яйцевидные или цилиндрические, с закругленными концами, одно- или двуклеточные, бесцветные или слегка окрашенные, иногда в коротких цепочках.

Телеоморфа — Mycosphaerella.

Представители этого рода поражают многие виды растений: батат, кориандр, клубнику, землянику, ромашку, люцерну, мяту, нарцисс, эспарцет, ревень, щавель, валериану и др.; вызывают рамуляриоз. [44]

Ramularia betae Rostr.— Рамулярия свеклы (рис. 1.49)

Возбудитель пятнистости листьев, или рамуляриоза, сахарной свеклы.

110
Конидиеносцы собраны в пучки, находятся на обеих поверхностях листьев. Конидии цилиндрические, 10 — 25 × 4 — 5 мкм, на концах суженные или заостренные, одно- или двухклеточные.

Конидиальная стадия дает несколько генераций в год.

На листьях больных растений появляются мелкие, круглые или неправильной формы пятна, которые постепенно увеличиваются в размере. В центре они бурые, с темно-буровой каймой или без нее. Пятна на нижней поверхности листьев опущены белым порошкообразным налетом конидиального спороношения гриба. Поврежденные листья усыхают.

Болезнь похожа на церкоспороз, но отличается от него пятнами менее правильной формы и белым, а не серым, налетом.

Источник инфекции — микроцилий, сохраняющийся на растительных остатках.

Болезнь приводит к преждевременному усыханию листьев, снижению урожая и сахаристости корнеплодов.

Распространение: Украинская ССР, Литовская ССР, Латвийская ССР.

Меры борьбы: соблюдение севооборота; опрыскивание растений 1 %-ным раствором бордоской жидкости, 0,1 %-ным топсином-М или бенлатом (0,6—0,8 кг/га), поликарбацином, купрозаном (по 2,4—3,2 кг/га), 0,5 %-ным цинебом, хлороксидом меди (3,2—4 кг/га); выращивание устойчивых сортов [39, 41, 42, 44, 58].

Ramularia tulasnei Sacc.— Рамулярия Тюляна

Возбудитель белой пятнистости листьев земляники.

Конидиеносцы неразветвленные, бесцветные, 30 × 3 — 4 мкм, собраны в пучки, выступают из устьиц на обеих поверхностях листьев. Конидии бесцветные, цилиндрические, одно-, трехклеточные, 15 — 45 × 2,5 — 4,5 мкм.

Телеоморфа — Mycosphaerella fragariae (Tul.) Sacc.

Поражает преимущественно листья, реже черешки, цветоножки и плодоножки. На листьях образуются округлые белые пятна с пурпурной каймой, которые часто сливаются. Со временем центральная часть пятна выпадает. На других пораженных органах пятна вытянутые, бурые, затем в центре белеющие. При сильном поражении образуются перетяжки и органы надламываются. Оптимальная температура для развития болезни 18—23 °С.

Источник инфекции — склероции.

Болезнь приводит к уменьшению ассимиляции листьев и снижению урожая.

Распространение: повсеместно в районах выращивания.

Меры борьбы: такие же, как против R. betae.

Другие вредоносные виды: R. medicaginis Bond. et Lebed.— р. люцерны, поражает листья люцерны; R. onobrychidis Allesch.— р. эспарцета, поражает листья эспарцета; R. rhei Allesch.— р. ревеня, поражает листья ревеня. [41, 44, 58]
Мицелий развивается внутри ткани питающего растения. Конидиеносцы простые, выходящие пучками из устьиц на нижней стороне пораженных грибом листьев растений. Конидии цилиндрические или булавовидные, удлиненные, с многочисленными поперечными перегородками.

Cercosporella herpotrichoides Fron — Церкоспорелла герпотриховидная (рис. 1.50)

Возбудитель церкоспореллезной гнили или эллипсовидной, глазковой пятнистости стеблей злаковых культур.

Мицелий внутри растения сначала бесцветный, затем темнеющий, на поверхность растения прорастают толстостенные, круглые темноокрашенные клетки, часто образующие склероции. Конидиеносцы в виде коротких боковых ветвей. Конидии бесцветные, игольчатые, в верхней части сгнутые, с перегородками (до 6), 50—70 мкм дл., возле основания 2—3 мкм, около верхушек 1—1,5 мкм толщ., по 2—4 на конидиеносце.

На питательных средах обильно образует темноокрашенные толстостенные клетки, превращающиеся в скопления типа микросклероциев, которые видны невооруженным глазом в виде черных точек (100—500 мкм). В природных условиях такие образования иногда появляются на пятнах и на поверхности стеблей пораженных растений.

Один из самых вредоносных видов. Поражает основание стебля взрослых растений и проростков озимой пшеницы, реже ячменя и еще реже ржи.

Характерным признаком поражения является образование на нижних листовых влагалищах и на междоузлиях стеблей осенью или поздней весной удлиненных эллипсоидальных пятен, обычно желтоватых или буроватых, окруженных бурой или пурпурной каймой. Иногда пятна покрывают все основание стеблей, вследствие чего растение теряет тургор и растения полегают, причем беспорядочно, в отличие от полегания, вызванного непаразитными причинами (например, в направлении ветра). Оптимальная температура для заражения ржи и ячменя 10 °С, пшеницы — 7—15°С.

Источник инфекции — мицелий и склероции, сохраняющиеся в пораженных растительных остатках.

Болезнь приводит к уменьшению размеров колосьев и массы зерна, часто к белоколосости.

Распространение: западные районы европейской части СССР, Северный Кавказ.

Меры борьбы: протравливание семян препаратами, применяемыми против Tilletia caries; соблюдение севооборота и агroteхники: опрыскивание посевов фундазолом или бенлатом (0,3—0,6 кг/га); выведение устойчивых сортов.

Другие вредоносные виды: C. valerianae Siemaszko — ц. валерианы, поражает листья валерианы; C. inconspiqua (Wint.) Koch.— ц. неприметная, поражает листья лилии; C. persicae Sacc.— ц. персика, поражает листья персика. [39, 41, 44, 51, 58]
Семейство Dematiaceae — Дематиеевые

Род Aureobasidium Viala et Boy. — Авреобазидий

Мицелий большей частью погруженный, сначала белый, затем темнеющий. Конидиеносцы слабо обособлены. Конидии полуэндогенные, боковые, одиночные, эллипсоидальные или яйцевидные, бесцветные, гладкие, одноклеточные, почковующиеся, образуют слизистую массу.

Представители рода вызывают пятнистость листьев различных растений.

Aureobasidium pullulans (DB) Arnaud — Авреобазидий почковый (рис. 1.51)


Рис. 1.51. Aureobasidium pullulans:
а — образование конидий почкованием;
б — цепочки хламидоспор;
в — конидии [65]

Возбудитель пятнистости, или антракноза, листьев. Известно несколько биологических форм и рас возбудителя, отличающихся патогенной активностью.

Конидиеносцы 5—8 мкм толщ., коричневые, с маленькими боковыми выступами. Конидии 4—6 × 2—3 мкм.

Поражает различные растения.

У клевера повреждаются надземные органы в течение всей вегетации, но особенно сильно в фазе бутонизации. На листьях, стеблях и других органах появляются вытянутые узкие пятна темного цвета, с возрастом светлеющие в центре. На них образуются трещины, язвы. Пораженные органы надламываются, растение буреет, засы...
хаеет, кажется обожженным. Заболевание сильно проявляется на кислых почвах. Развитию болезни способствуют температура 14—16 °C, повышенная влажность воздуха.

Источник инфекции — хламидоспоры, сохраняющиеся в семенах и растительных остатках.

Болезнь приводит к снижению урожая клеверного сена на 50 %, семян — на 60 %.

Меры борьбы: протравливание семян 80 %-ным ТМТД или 65 %-ным фентиурамом (3,4 кг/т); ранний укос зараженных участков. [44, 58]

Aureobasidium pullulans var. lini (Laff) Cooke — Апреобазидий почекущийся разновидность льновая

Син.: Polyspora lini Laff., Kabatiella lini (Laff.) Karak.

Возбудитель побурения, или ломкости стеблей (полиспороза), льна. Конидиеносцы 27 × 6,5 мкм, образуют на верхушке и по бокам 3—5 конидий. Конидии разнообразной формы с мелкозернистым содержимым, 9—20 (15) × 4 мкм. Когда конидии опадают, на их месте образуются новые. При неблагоприятных условиях мицелий распадается на хламидоспоры. В культуре на питательной среде колонии слизистые, различной окраски (от белых до черных). В сухих семенах патоген сохраняет жизнеспособность до 2,5 лет, на растительных остатках и в почве — до 1 года.

Источник инфекции — хламидоспоры, сохраняющиеся в семенах, растительных остатках, почве. Поражает листья, стебли, коробочки и семена. Болезнь проявляется в образовании бурых пятен, часто сливающихся, и изломов. Первые симптомы заболевания обнаруживаются на семядолях всходов льна в виде бурых пятен с темной каймой. Затем на корневой шейке или подсемядольном колене образуются бурье перегишки, ткань в этом месте становится хрупкой, стебли ломаются, погибают и погибают. В фазе цветения и зеленой спелости бурая пятнистость сохраняется и на волокне в виде "бурых присух". Развитию болезни способствуют повышенная влажность, резкие колебания температуры, а также избыток фосфора в почве. Оптимальная температура для развития гриба 20—23 °C.

Источник инфекции — хламидоспоры, сохраняющиеся в семенах, растительных остатках, почве. Болезнь приводит к потере 50 % урожая семян и соломы, качество волокна ухудшается на 3—4 номера за счет снижения прочности и призматических свойств волокна.

Распространение: повсеместно в районах возделывания.

Меры борьбы: оздоровление семенного материала и почвы; очистка и сортировка семян; протравливание семян 80 %-ным раствором ТМТД (2—3 кг/т); внесение в почву микроэлементов (бора, меди, цинка), повышенных доз калия (90—120 кг/га); агротехнические мероприятия; при первых признаках болезни — двухкратное опрыскивание посевов. [41, 42, 44, 51]

Rod Thielaviopsis Went. — Тхелавиопсис

Колонии распространяются, серые, оливковые, черно-коричневые, бархатистые или пороистые. Мицелий частично погруженный, частично верхностный. Конидиеносцы простые, неправильно ветвистые, прямые или извилистые, бесцветные или бледно-коричневые, гладкие. В цикле
развития гриба имеется две стадии: 1) образование эндогенных фиалоконидий, обычно цилиндрических, бесцветных, развивающихся цепочками на фиалидах, 2) образование на концах гиф темноцветных бочонковидных или цилиндрических хламидоспор (артроспор) с толстыми стенками, соединенных в цепочки.

Представители этого рода — паразиты или сапрофиты растений, вызывают черную корневую гниль.

**Thielaviopsis basicola** (Berk. et Br.) Ferr.— Тиелавиопсис грунтовой (рис. 1.52)

Возбудитель черной корневой гнили.

Конидиеносцы 50×6—9 мкм. Артроспоры обычно в цепочках, длительно остаются вместе, напоминая многоклеточные конидии, потом разделяются. Они продолговатые или короткоцилиндрические, темно-бурье, с толстой бородавчатой оболочкой, 7—2 мкм дл., 10—17 мкм толщ.

Фиалиды до 100 мкм дл., 5—8 мкм толщ.

Фиалоконидии цилиндрические, на концах усеченные, бесцветные, 7—17×2,5 — 4,5 мкм.

Фиалоспоры служат только для размножения вида в период вегетации, а артроспоры являются источником инфекции.

Поражает свыше 100 видов растений. Особенно вредоносен для хлопчатника, многих бобовых, табака, льна, фасоли, масла, джута.

У табака особенно сильно поражается рассада. Корешки буреют по всей длине, или с образованием перетяжек: они покрываются тонким темным налетом мицелия и спороносные гриба. Корни отмирают, листья желтеют. Растение погибает. Развитию заболевания способствует температура 16—20 °С.

Источник инфекции — артроспоры, сохраняющиеся в почве и пораженных растительных остатках.

Болезнь приводит к потере 20—30 % урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: обеззараживание почвы 40 %-ным раствором карбатиона не позднее чем за 30 дней до высева семян; агротехнические мероприятия. [6, 14, 16, 21, 44]

**Thielaviopsis basicola** Ferr. f. gossypii Zaprom.— Тиелавиопсис грунтовой ф. хлопчатниковой

Возбудитель черной корневой гнили хлопчатника.

Морфология органов спороношения подобна таковой **T. basicola**.

Весной поражаются всходы хлопчатника, а осенью — дозревающие растения. Особенно подвержены заболеванию средневолокнистые и тонковолокнистые сорта. Растения теряют тургор и отмирают. Корни их становятся темно-пурпурными или почти черными, поверхностные ткани мацерируются. При поражении в фазе 4—5 листьев тургор хотя и сохраняется, но листья становятся тусклыми с сероватым оттенком. Корневая шейка растрескивается и утолщается. Повышение температуры и уменьшение влажности почвы приводит к выздоровлению растений.

Осенью болезнь проявляется с новой силой и развивается до конца вегетации. Листья теряют тургор, увядают и засыхают, но остаются зелеными, позже буреют и делаются хрупкими. Ткани стебля приобретают ярко-коричневую окраску, подсыхают и становятся хрупкими. У корневой шейки появляется вздутие, стебель искривляется.

Рис. 1.52. *Thielaviopsis basicola*:

а — конидиеносцы; б — артроспоры; в — фиалоконидии [65]
Источник инфекции — артроспоры, сохраняющиеся в пораженных растительных остатках и почве.

Болезнь приводит не только к снижению урожая, но и к уменьшению в 1,5 раза разрывной прочности волокна, ухудшению качества семян и содержания в них масла.

Распространение: повсеместно в районах возделывания.

Меры борьбы: соблюдение севооборота; внесение минеральных удобрений в оптимальных дозах; протравливание семян суспензией 65 %-ного фентиурама (10—12 кг/га препарата и 15—20 л воды с прилипательной добавкой на 1 т опущенных и механически делинированных семян) или суспензией 20 %-ного дуста либо трихлорфенола меди (6—7 кг/га препарата и 15—20 л воды с прилипательной добавкой на 1 т семян). [41, 42, 51]

Род Cladosporium Link — Кладоспорий

Мицелий темноокрашенный, погруженный в субстрат, или поверхностный. Конидиеносцы древовидной формы, собраны в пучки или одиночные, буроватые или бледно-оливкового цвета, прямоостоячие, септированные. Короткие разветвленные цепочки конидий, образуемых по типу бластоспор, расположены на верхушке конидиеносца и формируют боковые ветви. Непосредственно на конидиеносце развиваются длинные цилиндрические конидии, которые называют базальными конидиями, или метаконидиями. Эти конидии дают начало более коротким продолговато-эллипсоидальным или цилиндрическим конидиям, от которых, в свою очередь, отпочковываются одноклеточные яйцевидные или овальные конидии. Образованные на одном конидиеносце конидии различаются по форме и размерам. Оболочка их гладкая или шиповатая. У некоторых видов при созревании конидий оболочка становится шиповато-бородавчатой. На одном конидиеносце образуется 100—300 конидий (в зависимости от вида).

У паразитических видов конидий более крупные и они образуются в меньшем количестве.

Наличие меланинового пигмента, определяющего окраску мицелия и конидий, определяет их устойчивость к облучению и широкое распространение в различных экологических нишах.

Представители рода — сапротрофы и паразиты растений, вызывают оливковую плесень злаковых культур, паршу, бурую пятнистость листвьев, стеблей, всходов и плодов.

Cladosporium cucumerinum Ell. et Arth.— Кладоспорий огурцовый

Син.: Cladosporium cucumeris Frank, Scolecotrichum melophtorum Prill et Delacr.


Поражаются в основном плоды. Они покрываются сероватым вдавленным пятном, быстро увеличивающимися и иногда покрывающимися темно-зеленым бархатистым налетом. Гниль проникает глубоко, ткань разлагается, превращаясь в текучую массу. При поражении стеблей и листьев развитие побега прекращается, он почти перестает расти в длину. Характерными признаками являются стеклянистый вид и большая хрупкость пораженных побегов.
Особенную опасность заболевание представляет для растений, выращиваемых в закрытом грунте при пониженной температуре и высокой влажности.

Оптимальная температура для развития болезни 22—25 °C, влажность — 95 % (при влажности 75 % растения заражаются слабо, а при влажности ниже 60 % заражения не происходит).

Источник инфекции — конидии и мицелий, сохраняющиеся в пораженных растительных остатках, почве, семенах.

Болезнь приводит к потере 30—40 % и более урожая.

Распространение: повсеместно, особенно в закрытом грунте.

Меры борьбы: уничтожение растительных остатков; дезинфекция теплиц; соблюдение режима влажности в теплицах (не выше 70 %); четырех-пятикратное опрыскивание растений 0,4 %-ной суспензией цинеба (2,4—3,2 кг/га). [6, 14, 16, 34, 41, 44, 47, 58]

Cladosporium linicola Pidopl. et Deniak — Кладоспорий льновый

Возбудитель гнили семян льна.

Конидиеносцы до 50 мкм дл. в виде коротких боковых ответвлений гиф. Конидии от продолговатых до короткоэллипсоидальных, 6 — 15 × 3,8 — 6 мкм, оливковые, сначала гладкие, затем мелкобородавчатые, одно-двухклеточные, образуют разветвленные цепочки. Базальные конидии в основном одноклеточные, иногда с одной перегородкой.

На пораженных семенах образуется темно-оливковый налет спороношения гриба. Ткань размягчается и загнивает.

Источник инфекции — конидии и мицелий, сохраняющиеся в семенах.

Развитию болезни способствуют повышенные влажность и температура при хранении.

Болезнь приводит к снижению всхожести и изреживанию посевов.

Распространение: повсеместно, в районах возделывания.

Меры борьбы: такие же, как против Mucor mucedo. [7, 16, 41, 44]

Cladosporium herbarum (Pers.) Lk — Кладоспорий травяной (рис. 1.53).

Возбудитель оливковой плесени злаков, один из возбудителей корнееда сахарной свеклы.

Конидиеносцы прямые или извилистые, часто узловатые, гладкие до 250 мкм дл., 3—6 мкм толщ. Конидии в длинных, часто ветвистых цепочках, эллипсоидальные или продолговатые, с толстой оболочкой, мелкобородавчатые, 8 — 15 × 4 — 6 мкм, иногда 5 — 23×3 — 8 мкм, с маденьким рубчиком на концах.

Телеоморфа — Mycosphaerella tassiana (deN.) Joh.

Обычный сапрофит, иногда проявляющий фитопатогенные свойства. Поражает хлебные злаки, семена сои, листья и корнеплоды гниющей сахарной свеклы.

Болезнь проявляется в период дозревания зерновок. На стеблях, колосьях, зернах и стареющих листьях образуется оливково-черный плотный налет, листья отмирают. При сильном развитии болезни растение погибает. Развитию заболевания способствует высокая влажность воздуха.

Источник инфекции — мицелий и конидии, сохраняющиеся в пораженных растительных остатках и зерне.

Болезнь приводит к недобору 10 % урожая (в годы сильного развития болезни).

Распространение: повсеместно.

Меры борьбы: такие же, как против Tilletia caries.

117
Cladosporium griseo-olivaceum Pidopl. et Deniak.— Кладоспорий серо-оливковый
Возбудитель оливковой плесени зерновок кукурузы.
Конидиеносцы с ножкой, 50—150 × 2,75 — 4 мкм. Конидии оливковые, эллипсоидальные или почти шаровидные, 3,8—1,9 мкм в дим., одноклеточные.
Симптомы проявления болезни, источник инфекции, вредоносность, распространение, меры борьбы такие же, как у C. herbarum.

Cladosporium transchelii var. semenicola Pidopl. et Bilai — Кладоспорий Траншеля разновидность семенная
Возбудитель оливковой плесени зерновок овса.

Рис. 1.53. Cladosporium herbarum:
а — конидии; б — конидиеносцы [55]

Конидиеносцы до 170 мкм дл., около 4,5—5 мкм толщ. Конидии одноклеточные, иногда 2—3-клеточные, 4,5 — 8 × 2,8 — 4,2 мкм, базальные конидии 12—14 мкм дл.
Симптомы болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у C. herbarum.

Cladosporium carpophilum Thuem.— Кладоспорий плодовый
Син.: Fusicladium carpophilum (Thuem.) Oud.
Возбудитель парши плодово-ягодных культур.
Конидиеносцы прямые или извилистые до 100 мкм дл., 4—6 мкм толщ. Базальные конидии цилиндрические, до 32 мкм дл., 4—5 мкм толщ., мелкобородавчатые. Конидии от цилиндрических до веретено-видных, 12 — 20 × 4 — 5 мкм, образуют простые и ветвистые цепочки, состоящие из 3—4 конидий.
Телеоморфа Venturia carpophila Fisch.
Симптомы болезни, источник инфекции, вредоносность распространение и меры борьбы такие же, как у Venturia pirina. [23, 41, 44]
Род Curvularia Boed. — Курвулария
Мицелий войлочно-бархатистый, коричневый, серый или черный, по- 
гроженный в субстрат. Конидиеносцы прямые или извилистые, часто 
коленчатые, коричневые, гладкие. Конидии одиночные, часто согнутые 
или прямые, булавовидные, эллипсоидальные, широковеретеновидные 
с тремя или большим числом поперечных перегородок, бледно- или 
темно-коричневые, с более светлыми крайними клетками, гладкие 
или бородавчатые. У некоторых видов наряду с нормальными обра-
зуются трехконечные конидии.
Виды рода паразитируют на злаковых культурах, вызывают чер- 
ную пятнистость различных органов.
Curvularia trifolii (Kauffm.) Boed.— Курвулария клеверная (рис. 
1.54)

Рис. 1.54. Curvularia 
trifolii: 
конидии [65]

Син.: Brachysporium trifolii Kauffm.
Возбудитель пятнистости листьев клевера.
Конидиеносцы у вершины коленчатые, 5—6 мкм в диам. Конидии 
коричневые с тремя перегородками, неравнобоко-брюшковидно-вере-
теновидные, согнутые, иногда треугольные, 25 — 35 × 11 — 15 мкм.
Симптомы заболевания, источник инфекции, вредоносность, рас-
пространение и меры борьбы такие же, как у Cladosporium herbarum.
Другие вредоносные виды: С. lunata (Wakk.) Boed.— к. лунооб-
разная, поражает верхушки риса; С. inaequalis (Shear.) Boed.— к. не-
равнобокая, поражает рожь, кукурузу, пшеницу, горох; С. tuber-
culata Sain.— к. бородавчатая, поражает листья кукурузы, зерно 
риса на корню. [44]

Род Alternaria Nees — Альтернария
Мицелий обычно окрашен в оливковые или оливково-бурые тона, 
нередко в молодом возрасте белый. Конидиеносцы простые, иногда 
слабо отдифференцированы от гиф, одиночные или в пучках. Конидии 
(пороспоры) многоклеточные, темноокрашенные, обратнояйцевидные 
или обратнобулавовидные, с поперечными или продольными перего-
родками, одиночные или собраны в цепочки акропетального типа раз-
ной длины. У вершин вытянуты в более светлую шейку, часто с поперечными перегородками, нередко нитевидными.

Строение и форма конидий является основным систематическим признаком.

Представители рода широко распространены в природе (более 100 видов), около 25 видов растений являются сапротрофами или факультативными паразитами, вызывают пятнистость листьев, загнивание сеянцев, ингибируют прорастание семян у фасоли, земляники, люцерны, шпината, табака, клевера, пшеницы, мака.

**Alternaria solani** (Ell. et Mart.) Sor. — Альтернария пасленовая

Син.: Macrosporium solani Ell. et Mart., Alternaria porri (Ell.) Neerg. f. sp. solani (Ell. et Mart.) Neerg., A. dauci (Kuhn.) Grov. et Skolko. sp. solani (Ell. et Mart.) Neerg.

Возбудитель пятнистости, или альтернариоза, листьев и клубней картофеля.

Конидиеносцы до 110 мкм дл., 6—10 мкм толщ. Конидии прямые, обратнобулавовидные, сужающиеся к шейке, длина которой такая же, как корпус конидии или больше, 150—300 мкм, 15—19 мкм толщ., с 1—9 поперечными перегородками и немногими продольными, или без них. Шейка 2,5—5 мкм толщ.

На листьях больных растений образуются коричневые или темно-коричневые пятна, часто концентрические. При благоприятной температуре и влажности пятна заметны уже на 2—3-й день после заражения, а конидии образуются на 3—4-й день, когда пятно достигает около 3 мм.

Гриб выделяет альтернариевую кислоту, которая вызывает некроз стеблей, черешков и листьев.

Оптимальная температура для заражения клубней 13—16 °С, при 5—7 и 25 °С развитие болезни незначительно.

Источник инфекции — мицелий и конидии, сохраняющиеся в растительных остатках, почве, клубнях.

Вредоносность, распространение и меры борьбы такие же, как у *A. brassicae*.

**Alternaria cucumerina** (Ell. et Ev.) Elliot.— Альтернария огурцовая (рис. 1.55)

Син.: Macrosorium cucumerinum Ell. et Ev.

Возбудитель пятнистости, или альтернариоза, огурцов.

Конидиеносцы коленчатые или прямые, 15 — 72 × 5 — 6 мкм, с 1—6 перегородками, со слегка вздутым основанием. Конидии яйцевидные или обратнобулавовидные с 1—10 продольными и 5—13 поперечными перегородками, гладкие, с возрастом бородавчатые, 33,6 — 129,4 × 13,4 — 33,6 мкм. Шейка прямая, тонкая с 2—6 перегородками, 20 — 336 × 1,3 — 5 мкм, сужающаяся до 1—2,5 мкм.

На листьях и плодах огурцов появляются маленькие округлые мокнущие беловатые или рыжевато-коричневые пятна, позже увели-
чивающиеся. Часто на верхней поверхности листа пятна зональные со светло-коричневым краем.

Источник инфекции — как у A. solani.

Вредоносность, распространение и меры борьбы такие же, как у Cladosporium cucumerinum.

**Alternaria linicola** Grov. et Skolko.— Альтернария льновая

Син.: Alternaria linicola Neerg.

Возбудитель пятнистости, или альтернариоза, всходов льна.

Конидиеносцы простые, прямые или коленчатые, одиночные или в пучках. Конидии обычно одиночные, гладкие, продолговатые, эллипсоидальные или обратнобулавовидные, 22,5 — 130,5 (175) × 7,5 — 28,5 мкм, без шейки, с 4—16 поперечными и несколькими (до 4) продольными перегородками, или без последних, постепенно переходящими в нитевидную шейку с 1—3 перегородками или без них, 14—252 мкм дл.

На корешках и нижней части стеблей молодых растений образуется черный налет, вызывающий часто выпадение всходов льна.

Источник инфекции — мицелий и конидии, сохраняющиеся в семенах.

Болезнь приводит к выпадению всходов.

Распространение: повсеместно в районах с повышенной влажностью.

Меры борьбы: такие же, как против A. Brassicae.

**Alternaria gossypii** (Jacq.) Nisicado — Альтернария хлопчатника

Син.: Macrosporium gossypii Jacq.

Возбудитель пятнистости, или альтернариоза, волокон и всходов хлопчатника.

Мицелий темно-коричневый. Конидиеносцы короткие, зубчатые. Конидии слегка булавовидные, часто яйцевидные с 2—3 поперечными перегородками, 22 — 27 × 9 — 11 мкм, одиночные или в коротких цепочках.

Болезнь начинает проявляться у всходов и прогрессирует в течение вегетации растения. На семядолях, листьях, прицветниках и коробочках образуются буроватые пятна с хорошо выраженной зональностью в виде концентрических кругов. На пятнах появляется оливковый налет спороношения гриба. При сильном поражении листья во второй половине лета опадают, что приводит к недоразвитости коробочек и слабой распущенности волокон. Иногда волокно приобретает коричнево-бурую окраску. Семена теряют или снижают всхожесть. Развитию заболевания способствует температура 15 °C и повышенная влажность воздуха.

Инкубационный период болезни 3—5 дней.

Источник инфекции: мицелий и конидии, сохраняющиеся в растительных остатках, семенах, почве.

Меры борьбы: уничтожение растительных остатков и вредителей хлопчатника (тли, люцернового клопа и др.). [14, 44]

**Alternaria brassicae** (Berk.) Sacc.— Альтернария капусты (рис. 1.56)

Син.: Macrosporium brassicae Berk.

Возбудитель альтернариоза капусты.

Конидиеносцы прямые, прямые или согнутые, иногда коленчатые, до 70 мкм дл., 5—8 мкм толщ. Конидии в длинных цепочках до 20 и более, выходят через пору в конидиеносце, почти цилиндрические или обратнобулавовидные, со слабо выраженной шейкой, с 1—11 (6) поперечными и не более чем с 6 продольными перегородками, гладкие, при старении слегка бородавчатые, 80—130 × 8 — 20 мкм.

121
Поражаются в основном семенники капусты. На кроющих листьях капусты первого года появляются крупные округлые пятна с черным бархатистым налетом. Пораженные листья загнивают. На стручках семенников образуются отдельные черные блестящие пятна, семенники смерзаются и засыхают. Зараженные семена остаются недоразвитыми, щуплыми, тусклыми, теряют всхожесть. Поражаются и всходы. На семядолях и стеблях образуются черные некротические полоски и пятна. Всходы погибают.

Источник инфекции — мицелий и конидии, сохраняющиеся в растительных остатках, семенах.

Болезнь приводит к снижению всхожести семян (60—100 %).

Распространение: повсеместно, особенно в районах с повышенной влажностью (Черноморское побережье Краснодарского края, северо-западные районы СССР).

Меры борьбы: уничтожение растительных остатков; просушка семенников; протравливание семян после обмолота фентиуромом (3 г/кг) или ТМТД (8 г/кг); соблюдение правильного режима хранения семян (2—3 °С, влажность 65 %); при первых признаках болезни — опрыскивание рас­сады 0,4 %-ной суспензией цинеба (2—3 кг/га) или хлороксидом меди, 1 %-ной бордоской жидкостью с добавлением прилипателя. [6, 14, 16, 44, 50, 51, 58]

**Alternaria radicina Meier, Drechs. et Eddy.** — Альтернария корневая

Син.: Stemphylium radicinum (Meier, Drechs. et Eddy) Neerg., Pseudostemphylium radicinum (Meier, Drechs. et Eddy) Subram.

Возбудитель пятнистости, или альтернариоза, черешков, листьев, стеблей зонтичных.

Конидиеносцы до 200 мкм длиной, 3—9 мкм шириной, прямые или извилистые. Конидии одиночные или в цепочках по 2, редко 3, очень изменчивые по форме, обычно с 3—7 поперечными и одной или несколькими продольными перегородками, 27—57 (38) × 9 — 27 (19) мкм.

Поражает морковь, сельдерей, укроп и другие зонтичные. Вызывает также черную сухую гниль моркови при хранении.

На корнеплодах образуются сухие вдавленные пятна, пораженная ткань чернеет, покрывается темным налетом спороношения гриба, мацерируется, на корнях семенников отслаивается кора.

Источник инфекции, вредоносность, распространение такие же, как у *A. tucumerina*.

Меры борьбы: соблюдение режима хранения моркови (2—3 °С); закладка на хранение только здоровых корнеплодов. [6, 14, 16, 41, 44, 58]

**Alternaria porri (Ell.) Cif.** — Альтернария порея

Син.: Macroporium porri Ell., M. allii Nolla, Alternaria allii Nolla, A. porri (Ell.) Saw., A. dauci (Kuhn) Grove et Skolikof. f. sp. porri (Ell.) Neerg.
Возбудитель пурпурной пятнистости, или альтернариоза, лука.
Конидиеносцы до 120 мкм дл., 5—10 мкм толщ. Конидии обычно одиночные, обратнобулавовидные, суженные к шейке, которая равна длине корпуса, до 300 мкм дл., 15—20 мкм толщ., с 8—12 поперечными перегородками.
Листья пораженных растений покрываются продолговато-яйцевидными пурпурными пятнами, до 2 см дл., с ясно выраженной концентрической зональностью. На стрелках, у их основания и под семенными головками развиваются 3—4 круглых, темно-фиолетовых, с пурпурным оттенком пятна, которые опоясывают стрелки на протяжении 4—6 см. Оптимальная температура для развития гриба 25 °C, влажность воздуха — 90 %.
Источник инфекции, вредоносность, распространение, меры борьбы такие же, как у A. brassicola.

Alternaria dauci (Kuhn) Grov. et Skolko.— Альтернария моркови
Син.: Alternaria carotae (Ell. et Langl.) Stev. et Wellman, A. porri (Ell.) Saw. f. sp. dauci (Kuhn) Neerg., Macrosomum dauci (Kuhn) Rostr., M. carotae Ell. et Langl.
Возбудитель пятнистости, или альтернариоза листьев зонтичных.
Конидиеносцы одиночные или собраны в пучки до 80 мкм дл., 6—10 мкм толщ. Конидии одиночные, иногда в цепочках по 2, обратнобулавовидные, с длинной шейкой (в 3 раза длиннее, чем корпус), гладкие, 100 — 450 X 16 — 25 (20) мкм, с 7—11 поперечными или с одной или несколькими продольными перегородками.
Поражает морковь и другие зонтичные культуры.
Повреждаются все надземные части созревающих семенников: черешки, листья, стебли, семена. На черешках появляются темные точки или полоски, которые постепенно покрывают полностью листовые пластинки. Листья чернеют и засыхают.
Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у A. brassicola.

Alternaria alternata (Fr.) Keissl.— Альтернария чередующаяся (рис. 1.57)
Возбудитель черного зародыша, или альтернариоза, зерна злаков, хлороза и плодовой гнили; один из возбудителей корнееда сахарной свеклы, разного рода пятнистостей листьев и стеблей.
Колонии черные или оливково-черные, иногда серые. Гифы бесцветные, оливковые или буроватые. Конидиеносцы до 50 мкм дл., 3—6 мкм толщ. Конидии яйцевидные, обратногрушевидные, с 21—8 поперечными перегородками, 20—63 (32) X 9 — 18 (13) мкм, с короткой конической шейкой, 2—5 мкм толщ.
Телеоморфы — Clathrospora diplospora (Ell. et Ev.) Wehm.; C. elynae Rab.; Leptosphaeria heterospora Niessl.; Pleospora infectoria Fuck.
Поражается зерно пшеницы, ячменя, реже овса и ржи, злаковые травы в период созревания. На зародыше и окружающих его тканях образуются вмятины, ткани темнеют. Развитию болезни способствуют повышенная температура и влажность воздуха.
Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у A. brassicola.

Другие вредоносные виды: A. cucurbitae Letendre et Roum.— а. тыквенных, поражает листья огурцов, тыквы, патиссонов. A. capsici-annui Sav. et Sandu-Ville — а. стручкового перца, поражает плоды перца; A. dianthi Stevens et Hall — а. гвоздики, поражает листья и стебли гвоздики; A. citri EU. et Pierce — а. цитрусов, поражает цитрусовые; A. rudbeckiae Nelen — а. рудбекии, поражает листья руд-
бекии; A. brassicae Sacc. var. macrospora Sacc.— а. капустная разно­видность крупноспоровая, поражает редьку и редис; A. brassicicola-­Wilts.— а. капустолюбная, поражает рапс; A. vitis Cav.— а. винограда, поражает листья винограда.

Рис. 1.57. Alternaria alternata: конидии [65]

Род Stemphyllum Wallr. — Стемфилий

Мицелий распространенный, пушистый, темноокрашенный. Конидиеносцы в виде боковых, коротких или удлиненных веточек, прямые или извилистые, септированные. Молодые конидии округлые, яйцевидные или обратнояйцевидные, зрелые — почти шаровидные, оливково-коричневые, гладкие или шиповатые, с поперечными и продольными перегородками, одиночные или в очень коротких цепочках (по две). Конидии одиночные, редко собраны в короткие цепочки, неправильно овальные, округлые или яйцевидные, без удлиненной шейки. Клетка конидиеносца, несущая конидию, вздута у вершины. После образования первой конидии на вершине вздутия конидиеносец продолжает расти, отодвигая первую конидию в сторону. После некоторого роста вершина конидиеносца снова вздувается, образуется следующая конидия и т. д. Таким образом в результате трех или более пролифераций на конидиеносце образуются 3—5 конидий, располагающихся кистевидно.

В основном виды этого рода относятся к сапротрофам, некоторые — к факультативным паразитам, вызывают пятнистость листьев и стеблей растений, гниль семян. [44, 65]

Stemphyllum botryosum Wallr.— Стемфилий кистевидный


124
Возбудитель пятнистости листьев и черной гнили сеянцев, клубней и корнеплодов.

Мицелий темно-коричневый. Конидиеносцы темно-оливково-желтоватые, 10 — 80 × 3 — 7 мкм, с верхушечным вздутием, 7 — 10 мкм шир., с перегородками с интервалом обычно 10 мкм. Конидии одиночные, шиповатые или бородавчатые, округло-квадратные, с 3 — 10 поперечными и 1 — 10 и более продольными или косыми перегородками, 13,5 — 66 × 7 — 28, 5 мкм, суженные в центральной части, от желто-коричневых до оливково-коричневых.

Телеоморфа — Pseudoplea trifolii (Rostr.) Petri.

Поражает лук, морковь, фасоль, капусту, люпин, люцерну, горох и др. Обнаружен на 64 видах растений в качестве слабого паразита. Чаще других растений поражает салат, лук и люцерну (особенно в условиях повышенной влажности). Гифы гриба проникают внутрь листьев через устьица растения и уже через 120 ч листьях появляются спороношения гриба.

Симптомы болезни, вредоносность, источник инфекции, распространение и меры борьбы такие же, как у Alternaria radicina. [21, 44, 65]

Stemphylium solani Weber.— Стемфилий пасленовый (рис. 1. 58)

Возбудитель пятнистости листьев и сухой прикорневой гнили.

Конидиеносцы до 200 мкм. Конидии на верхушке остроконечные с 3—6 поперечными и несколькими продольными перегородками, золотисто-коричневые, гладкие или четко мелкобородавчатые, 35 — 55 × 18 — 28 мкм.

Поражает томаты, картофель. На Дальнем Востоке вызывает сухую прикорневую гниль стеблей молодых растений томатов (после приживания рассады в открытом грунте). У основания стеблей появляются светло-коричневые вдавленные пятна с резко выраженной концентрической зональностью, которые постепенно увеличиваются и углубляются.

Стебли в местах поражения часто надламываются, в фазе бутонизации растения засыхают.

Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у Alternaria solani.

Stemphylium allii Oud.— Стемфилий лука

Возбудитель черной плесени лука.

Конидиеносцы разветвленные, переплетенные, бесцветные. Конидии от продолговатых до почти шаровидных, очень мелкочиповатые, сначала фиолетовые, потом буроватые или дымчатые, большей частью с 5 поперечными и одной или несколькими продольными перегородками, 20 — 50 × 12 — 25 мкм.

На пораженных листьях образуется бурый налет. При сильной степени поражения листья усыхают и растения погибают.
Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у Alternaria porri.

Другие вредоносные виды: S. cannabinum (Bacht. et Gutner) M. Chochr.— с. коноплевый, поражает листья конопли; S. sarcliniforme (Cav.) Wiltsch.— с. сарциновидный, поражает листья клевера.

Род Helminthosporium Lk: Fr.— Гельминтоспорий

Воздушный мицелий слабо развит, темноокрашенный. Конидиеносцы одиночные, прямые или извилистые, темно-коричневые, цилиндрические или шиловидные, гладкие или слегка бородавчатые с порой на верхушке и сбоку. Конидии (пороспоры) одиночные, обратно-булавовидные, от бесцветных до коричневых, гладкие, с ложными поперечными перегородками, верхушечные и боковые; последние часто образуются в мутовках сквозь очень мелкие поры под перегородками, пока верхушка активно растет, а рост конидиеносца прекращается. У основания конидий часто выступает темно-коричневый рубчик.

Это комплексный формальный род, из которого выделилось несколько самостоятельных родов: Drechslera, Bipolaris, Curvularia. К роду Helminthosporium относятся грибы, у которых отсутствует телеоморфа и конидии образуются одновременно на вершине и по бокам конидиеносца.

Helminthosporium solani Dur. et Mont — Гельминтоспорий паслевенный (рис. 1.59)

Син.: Spondylocladium atrovirens Harz, et Sacc.

Возбудитель серебристой парши клубней картофеля.

Колонии от темно-коричневых, до черных; конидиеносцы шиловидные, темноокрашенные, гладкие, иногда мелкобородавчатые, до 600 мкм дл., 9—15 мкм толщ. Конидии прямые или согнутые, обратно-булавовидные, коричневые или бесцветные, с 2—8 ложными перегородками, 24 — 85 × 7 — 11 мкм (39 × 9,4 мкм), суживающиеся до 2—4 мкм у вершины, расположены в несколько ярусов мутовками по 2—4.

Поражает клубни в период вегетации и при хранении. В первом случае кожура их покрывается пятнами темно-серого цвета 1—6 мм в диам., с легкостирающимся налетом, во втором — под кожурой образуется белый мицелий, который со временем темнеет и на нем обра-
ауются склероции. Ткань пробковеет и кожура отслаивается от мяко­ти. Пятна коричневого цвета с серебристым оттенком. При сильном по­ражении почки клубня отмирают и всходы не образуются. Развитию болезни способствуют высокая температура и влажность воздуха.

Источник инфекции — склероции, сохраняющиеся в пораженных клубнях, почве и растительных остатках.

Распространение: повсеместно в районах выращивания.

Болезнь приводит к ухудшению качества клубней картофеля и зна­чительным потерям урожая при хранении.

Меры борьбы: просушивание клубней перед закладкой на хране­ние; посадка здоровых клубней; обработка семенных клубней за 2—4 нед. до посадки беномилом или тиабендазолом.

Род Drechslera Ito — Дрехслера

Род выделен из комплексного, формального рода Helminthosporium, от которого отличается наличием коленчатоподобных конидиеносцев. Мицелий межклеточный, темноокрашенный. Колонии распростертые, серые, коричневые, черные. В культу­ре часто образуют перитеции и скле­роции. Конидиеносцы одиночные, пря­мые или извилистые, часто коленчатые, коричневые, гладкие. Конидии одиноч­ные, у некоторых видов в цепочках, верхушечные и боковые, простые, пря­мые или согнутые, булавовидные, ци­линдрические, на концах закруглен­ные, эллипсоидальные или обратнобу­лавовидные, соломенного цвета, или бледно-темно- или оливково-коричневые, гладкие, с ложными поперечными пере­городками.

Представители этого рода парази­тируют преимущественно на злаковых культурах, вызывают разного рода пят­нистости, коричневые гнили, сажистые налеты на колосьях, семенах. Один и тот же вид паразита может вызывать не­сколько типов заболеваний, или разные виды—один тип заболевания.

Drechslera sorokiniana Sacc. Sub- {^с; Drechslera soro­ram .— Дрехслера Сорокина (рис. 1.6J) kiniana: Син: Helminthosporium sativum /6 Т1конидии; Pam., King et Bakke, Bipolaris soro­ kiniana (Sacc.) Shoem.

Один из возбудителей корневой гнили злаков, пятнистости, или гельмнотоспороза листьев, зерновых колосьев, семян. Конидиеносцы выступают из пораженной ткани через устьица или эпидермис, одиноч­ные или в пучках по 2—3, до 220 мкм дл., 6—10 мкм толщ., хорошо развитые, узловатые, с неровными вдутьями, на каждом из которых фор­мируется по одной конидии. Конидии с 5—13 ложными перегород­ками, ладьевидные или удлиненно-яйцевидные, с закругленными кон­цами, иногда слегка изогнутые, несимметричные, молодые — светло­оливковые, зрелые — от темно-оливковых до почти черных, прораста­ющие биполярно, 60 — 100 × 18 — 23 мкм.

Телеоморфа — Cochliobolus sativus (Ito et Kuribay,) Drechs. et Dastur.
Поражает злаковые растения 90 видов.
Болезнь развивается на протяжении всего периода вегетации, поражаются различные органы. Наиболее ранняя форма — заболевание проростков и всходов. На молодых тканях колеоптиля образуются пятна втянутой формы или штрихи от желтого до светло-коричневого цвета. Побурение, распространяясь, окольцует весь орган. Ткани загнивают, разрушаются, стебель изгибаются в пораженном месте. Также поражаются первичные корни, затем вторичные и подземные междоузлия. У вторичных корней признаки заболевания наблюдаются чаще на кончиках, реже — у основания, часто — в местах ветвления корней. С начала кущения происходит заражение подземного междоузлия, на нем появляются продольные бурые полосы.
Наиболее разрушительной формой является гниль основания стебля, которая развивается от начала выхода растений в трубку до созревания зерна. При этом на корневой шейке и нижней части стебля появляются темно-бурые пятна, которые затем окольцуют все основание стебля.
При поражении надземных органов злаков развивается темно-бурая пятнистость.
При колосковой форме заболевания семенные чешуи приобретают сплошную светло-бурую окраску или на них появляются овальные пятна светло-бурого цвета с более темной каймой. Впоследствии пораженные места покрываются обильным черным бархатистым налетом спороношения гриба. В конце периода восковой и полной спелости происходит заражение зародыша. Эта форма болезни получила название «черный зародыш». Степень пигментации зерна определяется глу-биной залегания мицелия. Патогенные свойства гриба обусловлены выделяемыми им токсинами: гельминтоспоролом, гельминтоспоралом, виктоксином, цитокинином. Развитию болезни способствуют повышенная температура и пониженная влажность воздуха в период формирования зерна.
Источник инфекции — мицелий и конидии, сохраняющиеся в пораженных растительных остатках, зерне, почве.
Болезнь приводит к гибели растений, отмиранию продуктивных органов, развитию пустоколосости.
Распространение: зоны с недостаточным и неустойчивым количеством осадков (Казахстан, Западная и Восточная Сибирь, Алтайский край).
Меры борьбы: внесение в почву биопрепарата триходермина; противирование семян препаратами, содержащими в незначительных количествах ртуть, или безрутными (кургексаном, ТМТД, с увлажнением, выведение устойчивых сортов; комплекс агroteхнических мер.

Drechslera graminea (Rab.) Ito — Дрехслера злаковая (рис. 1.61)
Син.: Helminthosporium gramineum Rabenh.
Возбудитель полосатой пятнистости, или гельминтоспориоза, листвьев ячменя.
Конидиеносцы в пучках по 2—6, прямые или извилистые, бледно-коричневые, до 250 мкм дл. Конидии прямые, почти цилиндрические, но часто шире в нижней части и слегка сужены кверху, с полуширинными конечными клетками, почти бесцветные до золотисто-коричневых, гладкие, с 1—7 ложными перегородками, делящими конидии на клетки более короткие, широкие, 50 — 60 × 18 — 20 мкм. Регулярно образуются вторичные конидии на вторичных конидиеносцах, отходящих от верхушечной и часто также от базальной клетки конидии.
Телеоморфа — Pyrenophora graminea Ito et Kuribayashi (отмечена на территории Украинской ССР и Белорусской ССР).
Узкоспециализированный вид. На молодых, еще не развернувшихся листьях ячменя образуются очень маленькие беловато- или бледно-зеленые пятна, на развернувшихся — бледные полосы, вытянутые по длине листовой пластинки, позднее обычно окруженные коричневой каймой. Пораженные листья желтеют и постепенно отмирают, легко расщепляясь в продольном направлении.

Болезнь приводит к отмиранию листьев, образованию щуплых семян; урожай зерна при сильном поражении снижается в 4,5 раза.

Распространение: повсеместно в районах возделывания.

Меры борьбы: такие же, как против

**Drechslera teres** (Sacc.) Shoem. Ito — Дрехслера вальковатая

Син.: Helminthosporium teres Sacc., H. hordei Eidam.

Возбудитель сетчатой пятнистости, или гельминтоспориоза, ячменя.

Конидиеносцы одиночные или собраны по 2—3 в пучок, прямые или извилистые, иногда коленчатые, часто вздутые у основания, светло-оливковые, до 200 мкм дл., 7—11 мкм толщ., с 2—7 сложными поперечными перегородками, часто с перетяжками, узкоцилиндрические, некоторые сверху суженные, желто-оливковые, 30 — 175 × 15 — 23 мкм.

Телеоморфа — *Pyrenophora teres* (Died.) Drechs.

На пораженных тканях появляются многочисленные коричневые с беловато-желтой каймой пятна, разрастающиеся по всей пластинке листа, не сливающиеся, с поперечными и продольными полосками, образующие при повышенной влажности характерный сетчатый рисунок. При сухой погоде пятна имеют удлиненную форму в виде небольших полосок с неясным рисунком. На зерновках пятна светло-бурые, с нежным сетчатым рисунком. Жизнеспособность склероциев на стерне — 2 года, в почве — до года.

Источник инфекции — мицелий, склероции и конидии, сохраняющиеся на растительных остатках и семенах.

Болезнь приводит к отмиранию листьев.

Распространение: повсеместно в районах возделывания.

Меры борьбы: протравливание семян гранозаном, меркураном, меркурбензолом, ТМТД (по 1,5—2 кг/т). [41, 51]

**Drechslera avenae** (Eidam.) Sharif, Ito et Kurib.— Дрехслера овся

(рис. 1.62)

Син.: Helminthosporium avenae Eidam.

Возбудитель красно-бурой пятнистости, или гельминтоспориоза, листьев овса.

Конидиеносцы одиночные или по 2—4, прямые или извилистые, часто коленчатые, коричневые, гладкие, до 400 мкм дл., 8—12 мкм шир. Конидии одиночные, иногда в цепочках, прямые, цилиндрические, на концах закругленные, оливково-коричневые, гладкие, 30 — 170 ×
× 11 — 22 мкм, с 1—9 ложными перегородками, на пораженной ткани растения с 2—6 перегородками, в культуре — с 2—5.

Телеоморфа — Pyrenophora avenae Ito et Kuribay.

На листьях появляются овальные пятна с красной каймой, затем они сливаются и удлиняются в короткие продольные полоски. Чаще пятна сосредоточены в верхней части листа. Пораженные листья деформируются и засыхают, в дальнейшем происходит усыхание всей листовой пластинки.

Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у D. graminea.

Меры борьбы: такие же, как и против других гельминтоспориозов злаков.

Drechslera oryzae (Breda de Haan) Subram — Дрехслера риса

Син.: Helminthosporium oryzae Breda de Haan, Bipolaris oryzae (Breda de Haan) Shoem.

Возбудитель глазковой пятнистости, или гельминтоспориоза, риса.

Конидиеносцы одиночные или собраны в пучки, прямые или извилистые, иногда коленчатые, 150 — 600 × 2 — 8 мкм. Конидии сгонутые, чешуйковидные, веретено-видные или обратнобулавовидные, иногда почти цилиндрические, с 4—14 ложными перегородками, 63 — 153 × 11 — 17 мкм, бледно-коричневые, гладкие.

Телеоморфа — Cochliobolus miyabeanus (Ito et Kuribay. ) Drechs.

Симптомы заболевания особенно заметны на листьях и окошечных чешуях, покрывающихся коричневыми или пурпурно-коричневыми пятнами, 3—5 мм в диам. На семенных чешуях пятна темные или темно-коричневые. Отличаются от пятен физиологической природы наличием коричневого кольца и серого центра, вследствие чего болезнь получила название — "глазковая пятнистость".

Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у D. graminea.

Drechslera turcica (Pass.) Subram et Jain.— Дрехслера турецкая

Син.: Helminthosporium turcicum Pass., Bipolaris turcica Shoem.

Возбудитель северного гельминтоспориоза кукурузы.

Конидиеносцы выходят из устьиц поодиночке или пучком по 2—6, прямые или извилистые, оливково-коричневые, с 2—3 (4) перегородками, до 300 мкм дл., обычно 5,5 мкм толщ. Конидии прямые или слегка согнутые, от продолговато-эллипсоидальных до обратнобулавовидных, соломенного цвета, гладкие, на концах закругленно-заостренные, обычно с 5—8 перегородками, 115— 117 × 20 — 24 мкм, с толстой оболочкой.

Телеоморфа — Trichomesphaeria turcica Luttrell.

Болезнь поражает в основном листья. Заболевание начинается с нижних листьев. Пятна сначала мелкие, эллипсоидальные, серовато-
зеленые, прозрачные, до 1 см дл., окруженные более темной каймой, затем достигают 20—25 см дл. и 1—5 см шир., приобретая веретеновидную форму. Некротическая ткань в центре пятна светлее и окрашивается в соломенный цвет, кайма становится красно-коричневой. Отдельные пятна сливаются, охватывая почти всю пластинку листа. Листья увядает, потом засыхает и отмирают. Сильно пораженные поля кукурузы выглядят обожженными.

Источник инфекции — мицелий, склероции и конидии, сохраняющиеся в пораженных растительных остатках и почве.

Болезнь при температуре выше 28 °С и влажности воздуха более 97 % может привести к полной гибели посевов в течение 10—14 дней.

Распространение: в северных районах возделывания.

Меры борьбы: выведение устойчивых сортов; противовление семян 80 %-ным раствором ТМТД (1,5 кг/т), а также гранозаном (1 кг/т), гексатиурамом (2 кг/т), пентатиурамом (2 кг/т), витаваксом (2,5—3 кг/т); при сильном развитии болезни в период вегетации — двукратное опрыскивание посевов фунгицидами — 0,5 %-ной суспензией каптана или цинеба, 0,6 %-ной суспензией фигона. [9, 39, 41, 51]

Drechslera maydis (Hisikado) Subram.— Дрехслера маисовая

Син.: Helminthosporium maydis Nisikado et Miy.

Возбудитель южной гельминтоспориозной пятнистости листьев кукурузы.

Конидии эллипсоидальные, сильно согнутые, с тонкой оболочкой, расширенные к середине, постепенно сужающиеся к концам, от светло-оливковых и золотистых до бурых, 26 — 115 × 8,5 — 20,6 мкм, с перегородками (до 12).

Телеоморфа — Cochliobolus heterostrophus Drechsl.

Возбудитель характеризуется высокой вирулентностью и поражает растения кукурузы на всех стадиях развития. Поражаются влага-лища листьев, наружная часть обертки початка, стебли. Особенно большой вред причиняет всходам. На взрослых растениях основные признаки болезни проявляются в образовании на листьях серовато-рыжеватых или соломенно-желтых вытянутых пятен с параллельными краями, до 4 см дл. и 6 мм шир., ограниченными жилками листа. При сильном заражении пятна сливаются, образуются большие участки отмершей ткани.

Развитию болезни благоприятствуют повышенные температура (более 28 °С) и влажность воздуха (более 97 %).

По внешним признакам сходен с гельминтоспориозами, вызываемыми D. turcica.

Распространение: карантинный объект; Северный Кавказ, Грузия, Приморский край.

Меры борьбы: такие же, как против D. turcica. [46]

Drechslera carbonum Ulstr.— Дрехслера углистая

Син.: Helminthosporium carbonum Ulstr.

Возбудитель южного гельминтоспориоза кукурузы.

Конидии удлиненно-эллипсоидальные, прямые или слегка согнутые, оливково-бурые, 25 — 100 × 7 — 18 мкм, с 2—12 перегородками (в среднем 7).

Телеоморфа — Cochliobolus carbonum Nels.; отмечается очень редко.

Возбудитель поражает все надземные части растения. На листьях различают несколько типов пятнистостей: сначала пятна мелкие, маслянистые, бледно-зеленые или желтоватые, затем они увеличиваются, удлиняясь вдоль жилок, и, достигнув примерно 2 см в дл., расширяются, приобретают округлую или овальную форму. В одних случаях пятна становятся коричневатыми, четкими, с более темными краями,
с характерным концентрическим рисунком, размером до 20 × 5 мм, в других — пятна овальные, коричневатые, непостоянной формы, сливающиеся в продольном направлении, на них образуется налет мицелия и спороношения гриба. На влагалищах листьев и обертках початка пятна непостоянной формы, с темно-коричневой каймой, светлой средней частью и налетом спороношения гриба черного цвета. Иногда первые признаки заболевания появляются на верхушке початка. Оптимальная температура для развития возбудителя 25—31 °С, влажность воздуха не менее 97 %.

Источник инфекции, вредоносность и меры борьбы такие же, как у D. turcica.

Распространение: карантинный объект, южные районы возделывания. [46]

Род Embellisia E. Simmons — Эмбеллизия

Мицелий коричневый или соломенного цвета. Конидиеносцы простые, с перегородками, прямые или коленчатые. Конидии (пороспоры) одиночные, эллиптические или почти цилиндрические, прямые или разнообразно изогнутые, с поперечными, косыми, иногда продольными перегородками. Перегородки толстые, темноокрашенные, грубые по сравнению с наружной оболочкой.

Виды рода паразитируют на растениях, вызывают гнили и пятнистости различных органов. [44, 69]

Embellisia allii (Campanile) Е. Simmons — Эмбеллизия чеснока

Возбудитель гнили луковиц чеснока.

Конидиеносцы 30 — 50 × 5 — 7 мкм. Конидии вначале шаровидные или обратнояйцевидные, затем увеличиваются в размерах до почти цилиндрических, с 3—10 (обычно 4—10) поперечными и косыми перегородками, обычно 30 — 40 × 10 — 12 мкм, иногда 56 × 14 мкм, слегка шероховатые, прямые или согнутые, светло-желтые или желто-коричневые.

Пораженные места темнеют, на них образуется коричневый налет, состоящий из гиф и мицелия возбудителя.

Источник инфекции, вредоносность, распространение такие же, как у Alternaria cucumerina.

Меры борьбы: соблюдение севооборота, уничтожение растительных остатков, протравливание семян ТМТД (2, 1—2,5 г/т) или граназоном с красителем (2—3 кг/т) за 3—5 дней до посева; опрыскивание посевов 1 %-ной бордоской жидкостью или 0,4 %-ной суспензии купрозана, поликарбацина (по 2,4 кг/га), 0,5 %-ных каптана (3 кг/га) и фталанэ (3—4 кг/га). [41, 44]

Embellisia helianthi (Hansf.) Pidopl.— Эмбеллизия подсолнечника (рис. 1.63)

Синонимы: Helminthosporium helianthi Hanst., Alterneria helianthi (Hansf.) Tubaki et Nishihara.

Возбудитель пятнистости листьев, стеблей, цветов подсолнечника.

Конидиеносцы 25—80 × 8—11 мкм. Конидии цилиндрические, от бледно-серо-желтых до бледно-коричневых, в среднем с 5 поперечными перегородками, 40—110 × 13—28 мкм (в среднем 74 × 19 мкм), на концах закругленные.

На листьях больных растений появляются сначала мелкие, затем до 3 см в диам., темно-коричневые пятна с более светлым краем, окруженные желтой зоной. На стеблях пятна черные, от округлых до полосовидных, на чашелистиках — коричнево-черные, иногда концентрические, на лепестках сначала мелкие, коричневые, потом эллипсоидал-
ные, 5 × 2 мкм, сливающиеся. Пораженные растения ломаются и усыхают.

Источник инфекции — мицелий и конидии, сохраняющиеся в пораженных растительных остатках.

Болезнь приводит к большим потерям урожая.

Распространение: карантинный объект; южные районы СССР.

Меры борьбы: строгое соблюдение карантинных мероприятий. [44]

**Embellisia chlamydospora** (Hoes et al.) E. Simmons — Эмбеллисия хламидоспорная

Рис. 1.63. **Embellisia helianthi**: конидии (х 400)

Син.: **Pseudostemphylium chlamydosporium** Hoes, Bruchl et Shaw. Возбудитель гнили и пятнистости.

Мицелий погруженный, гифы темно-коричневые. Конидиеносцы прямые или коленчатые, до 150 мкм дл., темноокрашенные. Конидии коричневые, одиночные, широкозеллипсоидальные или почти цилиндрические 8,4—36, 2 × 4,2—9,8 мкм, имеют до 8 поперечных перегородок (большей частью 3), с одной продольной перегородкой в предпоследней клетке. Хламидоспоры темноокрашенные.

Поражают подземные органы различных растений, зерна пшеницы, ячменя, стебли люна.

На листьях, стеблях и цветках больных растений появляются сухие, округлые или неправильной формы пятна, светло-коричневые, с более светлым центром, с черным налетом спороношения. Растения погибают.
Источник инфекции, вредоносность, распространение такие же, как у Alternaria cucumerina.

Меры борьбы: такие же, как против E. allii.

Embellisla hyacinthi de Hoog, Muller — Эмбеллизия гиацинта
Возбудитель гнили луковиц и пятнистости листьев гиацинтов.

Конициеносцы прямые или разветвлённые. Конидии овальные, эллипсоидальные, цилиндрические, часто с сильнее изогнутой апикальной клеткой, 20—27 × 8—11 мкм, с 3—4 поперечными и 1—2 (3) продольными перегородками, либо цилиндрические 32—36 (45) × 9—10 мкм, с 5—7 (8) поперечными и с 1—2 продольными перегородками.

Поражают также фрезии. На пораженных органах растений появляются бурые расплывающиеся пятна, покрывающиеся со временем темным налетом спороношения гриба. Ткань размягчается. Листья увядают и опадают.

Источник инфекции, вредоносность и распространение такие же, как у Alternaria cucumerina.

Меры борьбы: такие же, как против E. allii.

Род Stigmina Sacc. — Стигмина

Син.: Thyrostroma Hohnel, Thyrostromella Syd.

Мицелий погруженный. Стroma прорывающаяся, от бесцветной до темно-коричневой. Конициеносцы короткие, прямые или извилистые, гладкие или бородавчатые, оливково-коричневые. Конидии одиночные, булавовидно-цилиндрические, на верхушке закругленные, у основания усечённые, с 5 или более поперечными перегородками, иногда с одной или более косыми или продольными перегородками.

Виды рода паразитируют на плодовых растениях, вызывают пятнистости надземных органов. [44, 65]

Stigmina carpophila (Lew.) Ell. — Стигмина плодовая (рис. 1.64)

Син.: Clasterosporium carpophilum Aderh., C. amygdalearum Sacc., Coryneum beyerinkii Oud.

Возбудитель пятнистости, или кластероспориоза, плодовых растений.

Стroma частично погруженная, частично поверхностная, 50—250 мкм шир. Конициеносцы 14—45 × 3—11 мкм. Конидии цилиндрические, веретенообразные, иногда вильчатые.

Заболевание особенно опасно для абрикоса, персика, миндаля. На листьях, побегах, почках, цветках, плодах появляются светло-коричневые пятна с буровой или малиновой каймой, которые в дальнейшем исчезают. На сильно поражённых плодах, когда пятна сливаются в сплошной слой, заболевание напоминает паршу. Развитию болезни способствует температура воздуха 18—22 °C.

Источник инфекции — мицелий и конидии, сохраняющиеся в поражённых растительных остатках, плодах, почве.
Болезнь приводит к нарушению ассимиляции листьев, преждевременному их опаданию, снижению товарных качеств плодов и порче их при хранении.

Распространение: Средняя Азия, Закавказье, Молдавская ССР, Украинская ССР.
Меры борьбы: такие же как против Venturia pirina. [41, 44]

Stigmina hippophales A. Zukov. sp. nov. — Стигмина облепиховая
Возбудитель парши облепихи.
Мицелий межклеточный, бурый, толстостенный. Гифы с перегородками, 4—5 мкм в диам. Боковые ветви мицелия состоят из округлых, толстостенных клеток 16—20 X 8—10 мкм, с каплями масла. От этих клеток почкуются овальные бластоспоры, 12—15 X 5—6 мкм. Конидиеносцы выходят пучками из устьиц, образуют бурые дерновинки на поверхности субстрата. Конидии светло-коричневые, веретеновидные или цилиндрические, с закругленными или усеченными концами, многоклеточные, с перетяжками у перегородок, двухклеточные — 28—34 X 8—12 мкм, многоклеточные — 48—87 X 8—12 мкм.

На первой стадии заболевания на листьях развиваются неправильной формы черные бархатистые пятна, располагающиеся вдоль жилок листа. Кроме того на листьях образуются темные язвочки. На однолетних побегах куста образуются черные вадуты. На плодах образуются округлые серые пятна, которые по мере созревания плода становятся черными, плотными, с ровным краем. Плоды сморщиваются и усыхают.

Источник инфекции — мицелий и конидии, сохраняющиеся в пораженных органах растения.
Болезнь приводит к усыханию побегов и всего растения.
Распространение: Тувинская АССР, Горный Алтай, Бурятская АССР.
Меры борьбы: обрезка и сжигание пораженных веток; до распускания почек — опрыскивание деревьев и почвы под ними 3—4 %-ной бордосской жидкостью или 1 %-ным раствором медного купороса (15—20 кг/га), ДНOK (10—20 кг/га), 2—3 %-ным раствором нитрафена (40—60 кг/га), в период после цветения, через 20 дней после цветения и после сбора урожая — опрыскивание 0,4 %-ной суспензией хлороксида меди, цинеба (по 4—8 кг/га), купрозана (6—8 кг/га). [22]

Род Cercospora Fres. — Церкоспора
Мицелий темного цвета. Конидии у многих видов светлоокрашенные, образуются на вершине простых, прямых или извилистых, поверхностных конидиеносцев, обычно окрашенных, одиночных или соединенных в пучки, образующих коремии или сближенные в нижней части ложа. Конидии цилиндрические, палочковидные, веретеновидные, булавовидные, обратобулавовидные, с поперечными перегородками, прямые или согнутые, вверху обычно утончающиеся. Молодые конидии иногда одноклеточные.
Все представители этого рода паразитируют на растениях, вызывают образование пятен на листьях, черешках, стеблях и плодах. Пятнистость может быть слабо выражена, но чаще — это четко ограниченные пятна. Настоящих сапрофитов в этом роде нет, хотя некоторые виды его встречаются как вторичные паразиты на растениях, ослабленных другими патогенами.

Cercospora beticola Sacc.— Церкоспора свекловичная (рис. 1.65)
Син.: Cercospora betae (Rabenh.) Frank.
Возбудитель пятнистости, или церкоспороза, сахарной свеклы. Один из вредоносных, наиболее опасных и распространенных ви-
дов. Конидиеносцы светло-коричневые 30—235 × 4—5 мкм, в пучках, выступающие из устьиц или через прорванную кожицу на обеих поверхностях листьев. Конидии бесцветные, обратнообулововидные или почти шиловидные, с многочисленными (до 35) перегородками, 30—360 × 3—5 мкм.

На листьях, черешках, стеблях и семенниках пораженных растений образуются сероватые или беловатые пятна с буровато-коричневой или красноватой каймой, 3—6 мм в диам. Во влажную погоду на нижней поверхности листьев развивается сероватый налет, состоящий из неветвящихся, буроватых у основания конидиеносцев с бесцветными многоклеточными, слегка изогнутыми конидиями. В ткани листа развивается бесцветный мицелий, затем буреющий и утолщающийся в строму. По мере отмирания листьев образуются новые; нормальный рост корней задерживается. У семенной свеклы болезнь проявляется раньше, чем у свеклы первого года жизни. При сильном поражении листья быстро усыхают, скручиваются книзу, ботва ложится на землю, междурядья размыкаются, вегетируют только молодые листья в центре розетки. Оптимальная температура для развития гриба: ночью выше 15 °С, днем 20—25 °С, влажность воздуха 69 %.

Инкубационный период при благоприятных условиях около недели, в других случаях — 15—40 дней. Эпифитотии отмечаются в годы с чередованием сухой, жаркой и умеренно теплой, влажной погоды.

Источник инфекции — конидии и мицелий, сохраняющиеся в пораженных листьях, черешках, околоплодниках, корнеплодах.

Болезнь приводит при сильном и раннем заражении к потере 30—70 % урожая, снижению сахаристости на 3—7 %, ухудшению технологических качеств сырья, повышению содержания небелкового азота.

Распространение: повсеместно в районах возделывания.

Меры борьбы: при первых признаках заболевания — опрыскивание растений 1 %-ной бордоской жидкостью, 0,1 %-ным топсином-М (ежедневно 8—10 дней) или бенгалатом (0,6—0,8 кг/га), 0,4 %-ным полицином (2,4 кг/га), поликарбазином, купрозаном (по 2,4 — 3,2 кг/га), купроцинном (3,2 кг/га), 0,5 %-ным цинебом, хлороксидом меди (3,2—4 кг/га).

Cercospora beticola — Церкоспора подсолнечника

Болезнь проявляется обычно во второй половине лета. На листьях больных растений с обеих сторон появляются небольшие, сначала желтоватые, позже буроватые пятна, на которых появляются спороношения гриба. Конидии образуются при влажности воздуха 98—100 % и температуре 15—28 °C. Для их прорастания и заражения растений нужна капельная влага и такая же температура. Обильное развитие гриба отмечается в условиях частых дождей или обильных туманов.

Источник инфекции — конидии, сохраняющиеся на опавших, пораженных болезнью листьях.

Болезнь приводит к потере в среднем 5 % урожая.
Распространение: повсеместно в районах возделывания.
Меры борьбы: такие же, как против C. beticola. [41, 42]
Cercospora pachypus Ell. et Kell. — Церкоспора подсолнечника
Конидиеносцы в пучках по 12—15, зубчатые, оливково-коричневые, 20—30 × 6—8 мкм. Конидии оливковые, цилиндрические, сверху изогнутые, 25—70 × 5—7 мкм, с одной перегородкой.
Симптомы заболевания, источник инфекции, вредоносность, распространение и меры борьбы такие же как у C. helianthi.
Cercospora carotae (Pass.) Kasn. et Siem. — Церкоспора моркови
Возбудитель церкоспороза моркови.
Конидиеносцы собраны в пучки, бледно-оливковые, прямые или слегка согнутые, 15—25 × 3,5—4 мкм. Конидии бесцветные, слегка булловидные, одноклеточные, иногда с несколькими перегородками, 30—70 × 3,5—4 мкм.
На листьях, часто на верхушках и стеблях моркови появляются бурье мелкие пятна. Листья засыхают, развитие растений замедляется.
Симптомы болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у C. beticola.
Cercospora sojina Нага — Церкоспора соевая
Син.: Cercospora daizu Miura.
Возбудитель церкоспороза сои.
Конидиеносцы дымчатые, без перегородок, 75 — 310 × 6 мкм. Конидии бесцветные, цилиндрические или веретеновидные, на верхушке закругленные, книзу заостренные, с 6—7 перегородками, 39—70 × 5—7 мкм.
Телеоморфа — Mycosphaerella phaseolicola (Desm.) Sacc.; встречается очень редко.
Узкоспециализированный патоген. Поражает только культурную и дикорастущую сою. Известна листовая и семенная формы заболевания. При листовой форме на простых и сложных листьях образуются белесовато-серые пятна с резко выраженным коричневым ободком. На нижней поверхности листьев на пятнах развивается темно-серый налет. Наиболее интенсивное развитие болезни наблюдается в период налива бобов. На стеблях пятна фиолетово-красные, вытянутые, с сероватым центром и коричневым ободком. На бобах пятна такие же, как и на листьях.
При семенной форме образуются пятна двух типов: с резким коричневым ободком, 1—2 пятна на семени и темно-коричневые без ободка, с расплывчатыми краями. Поражаются чаще всего крупные семена. Развитию болезни способствует температура 20—30 °C и влажность воздуха 100 %. Источник инфекции — микелий, сохраняющийся в листьях и семенах.
Болезнь приводит к недоразвитию бобов и некоторому снижению урожая.
Распространение: Дальний Восток.
Меры борьбы: соблюдение севооборота (сою не следует возвращать на прежнее место раньше чем через год); уничтожение дикорастущей сои как источника инфекции; правильная агротехника; использование устойчивых сортов.
Cercospora fragariae Lob. — Церкоспора земляники
Возбудитель церкоспороза земляники.
Конидиеносцы в основном сосредоточены на нижней поверхности листьев, оливково-бурые, изогнутые, с 1—2 перегородками, 32,0 — 98,7 × 3,9—5,9 мкм. Конидии кверху уточняющиеся, в середине — слабовздутие, с 1—3 перегородками, 36,2—49,4 × 6,6—6,9 мкм.

137
На листьях появляются буроватые, потом белеющие пятна, окруженные темно-пурпурной зоной. Пораженные листья отмирают, продуктивность растений уменьшается.

Источник инфекции — мицелий, сохраняющийся в пораженных растительных остатках.

Болезнь приводит к некоторому снижению урожая.

Распространение: повсеместно в районах возделывания, особенно в Приморском крае.

Меры борьбы: уничтожение растительных остатков; опрыскивание плантаций 1%-ной бордоской жидкостью или ее заменителями; выращивание устойчивых сортов. [41, 44]

Cercospora medicaginis Eil. et Ev.— Церкоспора люцерны
Возбудитель церкоспороза люцерны.

Конидиеносцы прямые или слегка изогнуты, 20—70 × 3,5—5 мкм, собраны в пучки, образуют бледно-оливковый или серый налет на верхней поверхности листьев. Конидии бесцветные, с 3—15 перегородками, 30 — 165 × 2 — 4 мкм.

Поражают люцерну посевную и другие виды. На листьях больных растений появляются ржаво-бурые, неясно ограниченные пятна, 1,5—8 мм шир., иногда сливающиеся.

Симптомы болезни, источник инфекции, вредоносность и меры борьбы такие же, как у C. sojina.

Распространение: южные районы СССР. [6, 44]

Cercospora ribicola EU. et Ev.— Церкоспора смородиновая
Возбудитель церкоспороза смородины.

Конидиеносцы бледно-бурые, 25—50 × 3,5—4 мкм, собраны в мелкие пучки, чаще на верхней поверхности листа. Конидии бесцветные, ланцетовидные, булавовидные, слегка изогнутые, с 1—3 перегородками, 35—95 × 3—4 мкм.

На пораженных листьях появляются круглые или неправильной формы пятна, сначала грязновато-зеленые, малозаметные, затем бурье или коричневые, в середине серые.

Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у C. vitis.

Cercospora concors (Casp.) Sacc.— Церкоспора картофеля
Син.: Cercospora heterosperma Bres.
Возбудитель желтой пятнистости, или церкоспороза, листьев картофеля.

Конидиеносцы бледно-оливковые, в пучках, искривленные, ползучие, 3,5—6 мкм толщ., образующие на нижней поверхности листьев темно-оливковый налет. Конидии с желтоватым оттенком, обратно-булавовидные, с 1—5 перегородками, иногда с перетяжкой, 26—55 × 3—6 мкм.

Во второй половине лета, преимущественно на нижних листьях, появляются расплывчатые зеленовато-желтые пятна, сначала мелкие, затем увеличивающиеся до 1 см в диам., нижняя поверхность листьев покрывается серо-зеленым — грязно-фиолетовым налетом конидий гриба. Развитию болезни способствует повышенная влажность, повышенные дозы азотных удобрений. Особенно поражаются растения, выращиваемые в затененных влажных местах, в загущенных посадках, с сильно развитой ботвой.

Источник инфекции — конидии, сохраняющиеся в зараженных растительных остатках.

Болезнь приводит к ослаблению растений и снижению их продуктивности.

Распространение: Дальний Восток, Сибирь.
Меры борьбы: такие же, как против Phytophthora infestans. [6, 39, 41, 42]

Cercospora zebrina Pass.— Церкоспора полосатая
Син.: Cercospora helvolu Sacc., C. stolziana Magn.
Возбудитель церкоспороза клевера.
Конидиеносцы собраны в пучки, светло-бурые, 35—80 × 5—6 мкм. Конидии бесцветные, удлиненно-цилиндрические, со многими перегородками, 21—150 × 2—6 мкм.
Поражает разные виды клевера.
На обеих поверхностях листьев больных растений появляются темно-бурые пятна конидиального спороношения, ограниченные жилками листа. Листья усыхают.
Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у C. sojina. [44]

Cercospora vitis (Lev.) Sacc.— Церкоспора винограда
Возбудитель церкоспороза винограда.
Конидиеносцы буровато-оливковые, собранные в плотные пучки, 50—200 × 4—5,5 мкм. Конидии темноокрашенные, 30—90 × 6—8 мкм, веретеновидные, обратнобулавовидные, с 3—11 перегородками.
На нижней поверхности листьев, плодоножках и ягодах ослабленных старых кустов винограда появляются грязно-бурые пятна 0,2—1 см в диам., с бархатистым оливковым или коричневым налетом конидиального спороношения гриба. Листья желтеют, опадают. С повышением температуры воздуха болезнь усиливается.
Источник инфекции — мицелий, сохраняющийся на растительных остатках и пораженных побегах.
Болезнь приводит к ослаблению растений и потере зимостойкости.
Распространение: повсеместно в районах возделывания.
Меры борьбы: уничтожение опавших листьев; опрыскивание кустов до распускания почек 1 %-ным раствором ДНОК (10—20 кг/га), при появлении первых признаков болезни — опрыскивание 1 %-ным раствором бордоской жидкости. [41, 44]

Другие вредоносные виды: C. armoraciae Sacc. — ц. хрена, поражает листья хрена; C. cannabina Wakeff.— ц. конопляная, поражает листья конопли; C. capsici Heald et Wolf — ц. стручкового перца, поражает стебли, веточки, плоды и листья перца; C. kaki Eil. et Ev.— ц. хурмы, поражает листья хурмы; C. bolleana (Thuem.) Speg.— ц. Болле, поражает листья инжира; C. moricola Cooke — ц. шелковиця, поражает листья шелковиц; C. ricinella Sacc. et Berl.— ц. клещевины, поражает листья клещевины.

Род Nakataea Hara — Накатаея
Мицелий погруженный или поверхностный, на природных субстратах на нем образуются шаровидные или полушаровидные склероции. Конидиеносцы одиночные, простые, коричневые, гладкие. Конидии одиночные, верхушечные и боковые, серповидные, часто сигмовидные, гладкие, с 3 перегородками, с концевыми бесцветными или бледно-коричневыми клетками, образуются на зубчиках конидиеносца.
Виды рода паразитируют на злаках, вызывают пятнистость листьев.

139
**Nakataea sigmoidea (Cav.) Subram. — Накатея сигмовидная (рис. 1.66)**

Син.: Helminthosporium sigmoideum Cav., Vakrabeeja sigmoideum Cav., Vakrabeeja sigmoidea (Cav.) Subram., Curvularia sigmoidea (Cav.) Hara.

Возбудитель склероциальный гнили риса.
Конидиеносцы до 200 мкм дл., 4—6 мкм толщ. Конидии 40—83 мкм дл., 11—14 мкм шир., внезапно суживающиеся к концам.
Склероциальная стадия — Sclerotium oryzae Cat.

Телеоморфа — Leptosphaeria salvinii Cat.

Заболевание начинается с образования небольших черных пятен неопределенной формы на влагалищах листьев (после выметывания метелок), постепенно увеличивающихся. Пораженные стебли желтеют, надламываются и отмирают. Развитию болезни способствуют травмы растений, в связи с чем гриб активно проникает в ткани, а также высокие дозы азотных и фосфорных удобрений. Зерновки остаются недоразвитыми.

Источник инфекции — склероции, сохраняющиеся в почве на глубине 5—10 см.

Болезнь приводит к недобору урожая.
Распространение: повсеместно в районах возделывания.
Меры борьбы: сжигание соломы и пожнивных остатков; соблюдение севооборота; внесение повышенных доз калия и кремнезема. [9]

Рис. 1,66. Nakataea sigmoideae:
1 — конидиеносцы; 2 — конидии
[65]

**Род Heterosporium Klotzsch. — Гетероспорий**

Мицелий погруженный. Конидиеносцы цилиндрические, зубчатые, прямые, темноокрашенные, собраны в пучки. Конидии цилиндрические или удлиненно-эллипсоидальные, на концах закругленные, с 3 или большим количеством перегородок, шиповатые, бородавчатые, темноокрашенные.

Телеоморфа — Didymellina Burt.
Большинство видов рода — паразиты различных растений, вызывают пятнистость листьев.

**Heterosporium avenae Oudem. — Гетероспорий овсовый**
Возбудитель пятнистости листьев овса.
Конидиеносцы собраны в пучки по 6—10, прямые, выходящие из общего основания, с 3—5 перегородками, светло-дымчатые. Конидии сначала одноклеточные, впоследствии двухклеточные, на концах заостренные, 18—35 × 9—14 мкм, густо-мелкошиповатые.
Поражает также ячмень и рожь.
На листьях появляются продолговатые пятна, постепенно охватывающие весь лист, который отмирает.
Источник инфекции — мицелий и конидии, сохраняющиеся на пораженных растительных остатках.
Болезнь приводит к снижению продуктивности растений и недобру урожая.
Распространение: повсеместно в районах возделывания. Меры борьбы такие же, как против Drechslera graminea. [41, 44]

Heterosporium maydis Lob. — Гетероспорий кукурузный
Возбудитель пятнистости листьев кукурузы.

Конидиеносцы прямые, зеленовато-бурые, 45,5—87 X 4,2—5,7 мкм, собраны в пучки. Конидии бледнее конидиеносцев, цилиндрические или посередине шире, с одной, реже с 2—5 перегородками, на концах ширококруглые или суженные, бородавчатые, 13 — 23 X 5,8 — 7,6 мкм.

Симптомы болезни, источник инфекции, вредоносность и меры борьбы такие же, как у H. avenae.

Распространение: Северный Кавказ.

Heterosporium syringae Kleb.— Гетероспорий облепиховый (рис. 1.67)
Возбудитель пятнистости листьев облепихи.

Конидиеносцы прямые или извилистые, на вершине коленчато изогнутые или заостренные, 6 мкм толщ. Конидии с 1—3 перегородками, цилиндрические, эллипсоидальные, с перетяжками возле перегородок, от дымчатых до желто-коричневых, тонкочешуйчатые.

Поражает плоды, листья и живые ветви облепихи. На коре гриб развивается в виде оливково-бурового или коричневого войлочного налета в местах ее повреждений. На нижней поверхности листьев появляются угловатые пятна, ткань отмирает. На ягодах образуются темные пятна, уплотняющиеся со временем и захватывающие большую часть ягоды. Развитие гриба на листьях и ягодах существенного ущерба не приносит, особенно опасно повреждение коры.

Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у Stigmina carpophila. [22, 44]

Другие вредоносные виды: H. betae Dows — г. свекловичный, поражает листья свеклы; H. variabile Cke.— г. изменчивый, поражает листья шиповника; H. phlei Greg.— г. тимофеевки, поражает листья тимофеевки; H. hordei Bub.— г. ячменевый, поражает листья ячменя; H. echinulatum (Berk.) Cooke (син. Helminthosporium echinulatum Berk., H. dianthi Sacc. et Roum.) — г. шиповатый, поражает листья гвоздик и других цветковых растений.

Род Corynespora Guss. — Коринеспора
Мицелий погруженный или поверхностный. Конидиеносцы длинные, собраны в пучки или одиночные. Конидии обратнобулавовидные, с многочисленными поперечными перегородками, с толстой оболочкой, сегменты или черно-серые, образуют цепочки, соединяясь между собой маленькими бесцветными члениками.
Виды рода паразитируют на разных растениях, вызывают пятнистость различных органов.

*Corynespora melonis* (Cooke) Lind. — Коринеспора дынная
(рис. 1.68)

Возбудитель пятнистости листьев и плодов дыни.

Конидиеносцы длинные, многоклеточные, коричневые, к вершине светло-зеленые, 500 × 5—11 мкм. Конидии удлиненно-булавовидные, 15 мкм толщ., с 3—23 поперечными перегородками, более широким концом прикрепляются к конидиеносцу.

Поражает также огурцы и дыни.

Первыми признаками заболевания являются на семядольных листьях молодых растений в виде пятен соломенно-желтого или свинцово-серого цвета, часто с темным ободком. По мере старения пятна засыхают, вокруг них образуется коричневый ободок и хлоротичная кайма тканей листа. Гриб пронизывает жилки листа. Листья преждевременно засыхают. Пораженные молодые плоды обесцвечиваются, затем покрываются коричневыми пятнами, съеживаются. Плоды остаются недоразвитыми. Растения погибают.

Болезнь особенно опасна в теплицах для ранних огурцов. Развитию болезни способствуют температура 28—30 °С и повышенная влажность воздуха.

Источник инфекции — хламидоспоры, сохраняющиеся в пораженных растительных остатках, семенах, почве.

Болезнь приводит к значительным потерям урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: такие же, как и против *Cladosporium cucumerinum*.

*Corynespora cassicola* (Berk. et Curt.) Well.— Коринеспора кассий

Возбудитель корневой гнили сои.


Симптомы заболевания такие же, как у *Fusarium solani*. Гриб заражает корни вегетирующих растений сои до того, как происходит их заселение другими, менее патогенными видами. Не поражает дикую сою в естественных условиях, в то же время при посеве ее в питомни-

Рис. 1.68. *Corynespora melonis*: конидии [44]
ках обнаруживается налет спороношения гриба на корнях отдельных растений.
Источник инфекции — хламидоспоры, сохраняющиеся на растительных остатках.
Болезнь приводит к значительным потерям урожая.
Распространение: Приморский край.
Меры борьбы: соблюдение севооборота; уничтожение пораженных растительных остатков; протравливание семян; обработка посевов фунгицидами такими же, как против Fusarium avenaceum.

Род Acremoniella Sacc. — Акремониелла

Син.: Harzia Costantin, Monopodium Delacr., Eidamia Lind.
Мицелий поверхностный или погруженный. Конидиеносцы простые или разветвленные, суженные к заостренной верхушке, бесцветные, тесно скученные у верхушки. Конидии одиночные, одноклеточные, яйцевидные, обратнояйцевидные, или почти шаровидные, золотисто- или светло-коричневые, гладкие или бородавчатые, с двойной оболочкой, с порой у основания.
Виды рода паразитируют на различных растениях, вызывают гнили.

Acremoniella atra (Cda) Sacc.— Акремониелла черная (рис. 1.69)
Син.: Monopodium uredopsis Delacr.
Возбудитель гнили.
Воздушный мицелий пушисто-войлочный, сначала бесцветный, затем коричневый. Конидиеносцы двух типов. Конидиеносцы первого типа более скученные, простые или рыхловетвистые, с веточками, отходящими под прямым углом, суживающиеся к тонкой верхушке, бесцветные, гладкие, 100 × 4—8 мкм, с немногими перегородками, одиночными одноклеточными яйцевидными, обратнояйцевидными или почти шаровидными, золотисто-коричневыми гладкими конидиями, 20—30 × 15—25 мкм. Конидиеносцы второго типа редкие, одиночные, бесцветные, с шаровидным вдутием, 7—12 мкм в диам., несущие на поверхности многочисленные бугорковидные фиалиды, 4—10 × 3,5—5 мкм.
Поражается корневая система различных растений. На поверхности корней образуется светло-бурый налет спороношения гриба. Пораженная ткань буреет, мацерируется, отмирает.
Источник инфекции — мицелий, сохраняющийся на пораженных растительных остатках и в почве.
Болезнь приводит к снижению урожая.
Распространение: повсеместно.
Меры борьбы: такие же, как против Thielaviopsis bassicola. [44] Acremoniella verrucosa Tognini — Акремониелла бородавчатая
Син.: Monopodium verrucosum Moroczk.
Возбудитель гнили.
Отличается от *A. atra* наличием бородавчатых конидий, чаще шаровидной формы.

Поражает различные органы, но чаще корни клевера, кукурузы, гороха, картофеля и других растений.

Симптомы болезни, вредоносность, распространение и меры борьбы такие же, как у *A. atra*.[44].

**Род Fulvia Ciferri — Фульвия**

Воздушный мицелий распространенный, бархатистый. Колонии от темно-желтых до коричневых или пурпурных. Конидиеносцы хорошо или плохо выражены, выходят из устьиц, простые, иногда ветвистые, прямые или извилистые, у основания узкие, кверху утолщающиеся, с одно-сторонними узловатыми вздутиями. Конидии в цепочках, часто ветвистые, верхушечные и боковые, цилиндрические, на концах закругленные, светло-коричневые, гладкие, одноклеточные или с 1—3 поперечными перегородками, иногда со слабо выступающим зубчиком.

![Рис. 1.70. Fulvia fulva:](a — пучок конидиеносцев; b — конидии; c — конидиеносцы [65]

Виды рода паразитируют на разных растениях, вызывают гнили и пятнистости.

**Fulvia fulva** (Cooke) Ciferri — Фульвия буру-желтая (рис. 1.70)

Син.: *Cladosporium fulvum* Cooke.

Возбудитель пятнистости листьев томата.

Колонии бархатистые, сначала бледно-рыжевато-желтые с белым краем, позже коричневые и, наконец, пурпурные. На листьях конидиеносцы до 200 мкм дл., в культуре до 100 мкм дл., 2—4 мкм толщ. Конидии 12—47 × 4—10 мкм.

Поражает также плоды огурца, вызывая изъедение.

Болезнь развивается чаще всего в теплицах. Первые признаки болезни обнаруживаются на нижних листьях, затем поражается все растение. На верхней поверхности листьев образуются желтовато-ко-
ричневые пятна, на низней (под этими пятнами) — бархатистый налет (сначала желтоватый, затем буро-коричневый) спороношения гриба. Развитию болезни способствуют температура 20—25 °С и влажность воздуха до 95 %.

Источники инфекции — мицелий и конидии, сохраняющиеся в почве и растительных остатках. Болезнь приводит к угнетению развития растений и снижению их продуктивности.

Распространение: повсеместно в районах возделывания. Меры борьбы: уничтожение пораженных листьев и плодов; соблюдение оптимальных условий влажности и температуры; профилактическое опрыскивание растений 0,3—0,5 %-ной суспензий цинеба, в период фазы массового цветения томатов, при появлении первых признаков болезни — опрыскивания каждые 10—12 дней. Обработку растений прекращают за 20 дней до сбора урожая. [16, 44]

Род Fumago Pers. — Фумаго

Мицелий поверхностный, часто образует тяжи, бурый или черный. Конидиеносцы прямые, часто собраны в коремии. Конидии в цепочках, оливковые, вначале одно-, затем многоклеточные, разнообразной формы, продолговатые, с перегородками. Болезнь приводит к снижению фотосинтеза и продуктивности растений.

Распространение: повсеместно в районах возделывания. Меры борьбы: опрыскивание растений медьсодержащими препаратами (купрозаном), 0,2—0,5 %-ным раствором медного купороса и медно-мыльной жидкостью, состоящей из 20—50 г медного купороса и 200—300 г мыла в 10 л воды. [44, 49]

Семейство Stylobellaceae — Коремиевые

Род Graphium Corda — Графий

Мицелий поверхностный или погруженный. Конидиеносцы срастаются в коремии. Коремии цилиндрические, темноокрашенные, на верхушке булавовидные, без головки; иногда она имеется, но состоит из конидий, соединенных слюной, а не из ответвлений конидиеносцев. Ножка коремии состоит из параллельных гиф. Конидии яйцевидные, удлиненно-эллипсоидальные, одноклеточные, неокрашенные, соединенные слюной в головку.
Виды рода паразитируют в основном на древесных и кустарниковых растениях, злаках, вызывают усыхание и гнили.

**Graphium guttuliferum** Pidopl. — Графий капленосный

Возбудитель гнили зерна проса.

Коремии оливково-бурые, 520 × 17,5 мкм, состоят из параллельных гиф, на верхушке растопыренных в виде чашечки. Головка шаровидная, сначала оливковая, затем черная. Конидиеносцы древовидно разветвленные, 10 — 12 × 1,5 мкм. Конидии одноклеточные, цилиндрические, эллипсоидальные, несимметричные, на концах притупленные или усеченные, 4—10,5 × 2 — 3 мкм, в массе бледно-серые.

Болезнь проявляется во время уборки урожая и при его хранении. На пораженном зерне образуется бурый налет спороношения гриба. Развитию болезни способствует высокая влажность зерна (17—19 %) в период созревания, сбора и хранения.

Источник инфекции — мицелий, сохраняющийся в зерне. Болезнь снижает всхожесть и товарные качества зерна.

Распространение: Башкирская АССР.

Меры борьбы: такие же, как против *Micor mucedo*.

**Graphium ulmi** Schwarz.— Графий ильмовый

Возбудитель голландской болезни, или усыхания, ильмовых.

Мицелий в культуре сначала белый, затем желттоватый. Коремии на поверхности коры пораженных веток имеют вид прямостоячих темноокрашенных столбиков с бесцветной блестящей головкой, на поверхности культуры — волосковидные. Конидии бесцветные, эллипсоидальные, 4,7 — 10 × 2 — 3,5 мкм.

Телеоморфа — Ophiostoma ulmi (Buisman) Nannfeld.

Болезнь проявляется в увядании листьев, засыхании сначала отдельных ветвей, потом всей кроны вследствие поражения сосудистой системы. При хронической форме болезнь продолжается несколько лет, при острой — деревья погибают в течение нескольких недель. На поперечном срезе ветвей заметно побурение или почернение последних годичных колец. Развитию болезни способствует длительная жаркая порогода.

Источник инфекции — мицелий и конидии, сохраняющиеся в растительных остатках, почве и проникающие в ткани через ранки.

Болезнь приводит к гибели посадок.

Распространение: повсеместно.

Меры борьбы: уничтожение больных деревьев; окорка пней; обрезка сучьев только после окончания вегетации; уничтожение короедов.

Другие вредоносные виды: *G. cubanicum* Sczerbin-Parfenenko — г. кубанский, поражает сосудисто-волокнистые пучки дуба, вызывает усыхание; *G. persicae* Kebadze — г. персиковый, поражает персик; *G. stilboideum* Cda — г. блестящий, поражает малину. [16, 41, 44]

**Род Doratomyces Cda — Доратомицес**

Мицелий поверхностный или погруженный. Коремии от бледно-коричневых до черных. Конидиеносцы гладкие, ближе к верхушке ветвистые, с кисточковидно разветвленными веточками, составляющими головку. Конидии в верхушечных цепочках, эллипсоидальные, яйцевидные, шаровидные, у основания усеченные, одноклеточные.

Виды рода паразитируют на различных растениях, вызывают гнили и плесневение семян.

**Doratomyces stemonitis** (Pers.: Fr.) Morton et Sm.— Доратомицес стемонитис (рис. 1.71)

Син.: *Stysanus stemonitis* (Pers.) Cda.

Возбудитель гнили корней и плесневение семян.
Коремии до 1200 мкм выс., с эллиптической или цилиндрической головкой. Конидии яйцевидные с усеченым основанием, на верхушке с острием, 6 — 8,5 × 4 — 4,5 мкм.

Телеоморфа — Echinobryum Cerda.

Поражает семена многих растений.

На пораженных семенах образуется темно-бурый налет спороношения гриба, они загнивают. Развитию болезни способствует повышенная влажность зерна при хранении (17—19 %).

Источник инфекции — мицелий, сохраняющийся в семенах и растительных остатках.

Болезнь приводит к потере товарных качеств семян.

Распространение: повсеместно.

Меры борьбы: соблюдение правил сбора и хранения семян, дезинфекция тары для хранения.

Род Pseudocercospora Speg. — Псевдоцеркоспора

Мицелий погруженный. Конидиеносцы образуют коремии — простые, цилиндрические, плотно прижатые у основания, вздувающиеся к вершине, оливково-коричневые, гладкие. Фиалиды с короткими широкими зубцами. Конидии одиночные, верхушечные или боковые (с возрастом культуры), обратнобулавовидные, гладкие или шероховатые, с многочисленными поперечными перегородками, иногда с 1—2 продольными или косыми перегородками.

Виды рода паразитируют на многих растениях, вызывают пятнистость разных органов.

Pseudocercospora vitis (Lev.) Speg.— Псевдоцеркоспора винограда Сино.: Septonema vitis Lev., Cercospora vitis (Lev.) Sacc., C. viticola (Ces.) Sacc.

Возбудитель пятнистости винограда. Конидиеносцы до 500 мкм дл., 2—7 мкм толщ. Конидии с 5—14 поперечными перегородками, 35—95 мкм дл., 6—8 мкм толщ, в наиболее широкой части, 2—3 мкм толщ, у вершины и основания.

На листьях, плодоножках и ягодах появляются крупные, круглые или неправильной формы пятна, иногда сливающиеся, пурпурово-коричневые. Растения угнетаются.

Источник инфекции — мицелий, сохраняющийся в пораженных растительных остатках, почве.

Болезнь приводит к снижению продуктивности растений.

Меры борьбы: такие же, как против Cercospora vitis. [23, 44]

Семейство Tuberculaceae — Туберкулярные

Род Fusarium Lk : Fr. — Фузариий

Мицелий хорошо развитый, войлочно-пушистый, паутинистый, беличный, красный, светло-креомовый, соломенно-желтый, серово-сиренево-лиловый или буровый. Конидиеносцы хорошо выраженные, прямые или разветвленные. Из элементов морфологии раз-
личают следующие структуры: макроконидии, микроконидии, хламидоспоры, пионноты, спородохии и склероции (рис. 1.72).

Макроконидии образуются на простых или разветвленных конидиеносцах, коротких отростках или выступах гиф, в спородохиях, пионнотах и воздушном мицелии. У некоторых видов при длительном культивировании в лабораторных условиях, когда образуются только конидии с 1—3 перегородками или без них, макроконидии отличаются от образуемых в спородохиях. Макроконидии обычно серповидные, веретеновидно-серповидные, реже веретеновидно-ланцетовидные с различ-
ным характером и степенью изогнутости. Диагностическое значение имеют размеры макроконидий, характер их изогнутости (рис. 1.73), форма верхней клетки (рис. 1.74), наличие ножки у основания, количество перегородок. Типичной является эллипсоидальная изогнутость макроконидий. Ножка у основания макроконидий обычно четко выражена, но у ряда видов она имеет вид сосочка или нечетко выражена, а у некоторых отсутствует. Количество перегородок в макроконидиях большинства видов 3—5, реже — 5—7.

Микроконидии образуются на коротких ответвлениях гиф, вокруг которых и скапливаются. У ряда видов они образуют четко выраженные и довольно длинные цепочки, отчетливо видные при малом увеличении микроскопа на стенках пробирки, у других — ложные головки. Микроконидии менее разнообразны по форме, чем макроконидии. Они играют значительную роль в заселении субстрата. При диагностике наличие или отсутствие их может быть использовано только в случае их обильного и относительно постоянного образования.

Большинство видов рода — сапротрофы, некоторые — факультативные паразиты высших растений с различной степенью паразитизма.
Вызывают гниль корней, семян, плодов, корне- и клубнеплодов, сеянцев, увядание, задержку роста, бесплодие, пигментацию.

К наиболее распространенным фузариозным заболеваниям относятся трахеомикозное сосудистое увядание растений и корневая гниль.

Причины фузариозов разнообразны и зависят от физиологического состояния растений, степени их устойчивости, инфекционной нагрузки, специфической физиологической активности возбудителя (быстроты роста, образования токсинов, ферментов и т. д.).

Трахеомикозное увядание обусловлено проникновением патогена в сосудистую систему, разрастанием его биомассы и механической закупоркой сосудов. Ферменты и токсины возбудителя вызывают побурение стебля. Растение погибает.

Рис. 1.75. Fusarium avenaceum:
а — конидии; б — сумка с аскоспорами; в — аскоспоры [62]

Корневая гниль проявляется в поражении корневой шейки под воздействием ферментов возбудителей, вследствие чего ткани размягчаются и разрушаются, что также приводит к гибели растения. Гнили нередко сопровождаются некрозами тканей различных органов растения, затем происходит разрушение межклеточников, распад тканей на клетки и ее разрушение, в котором может принимать участие уже комплекс первичных и вторичных возбудителей.

Широкий диапазон приспособительных реакций видов этого рода обусловливает наряду с широким распространением сапрофитов (в ризосфере, на мертвых растительных остатках и поверхности корней в почве) существование вирулентных рас, адаптированных преимущественно к поражению определенных растений, то есть переход к паразитизму. Наличие последнего нашло отражение в существовании в пределах многих видов специализированных форм. [3, 62]

Fusarium avenaceum (Fr.) Sacc. — Фузарий овсяный (рис. 1.75)
Син.: Fusarium de tonianum Sacc., F. avenaceum (Fr.) Sacc. var. de tonianum (Sacc.) Raill.
Возбудитель корневой и стеблевой гнили злаковых и зернообояховых культур, фузариоза колосьев злаков; один из возбудителей фузариозного побурения льна-долгунца.
Воздушный мицелий хорошо развит, желтоватый, розовый, красный, охряный. Спородохии розово-телесного цвета, пионноты образуются при слабом развитии мицелия. Макроконидии нитевидно-цилиндрические, на значительном протяжении цилиндрические, сильно и постепенно суживающейся или нитевидной верхней клеткой (до 15 мкм), эллипсоидальными или гиперболическими изогнутые, довольно хорошо выраженной ножкой у основания, в массе оранжевые, розово-охряные или кирнично-красные, образуются на простых или разветвлённых конидиеносцах. Размеры макроконидий с тремя перегородками 30—60 X 3—4 мкм, с четырьмя — 38—75 X 3,3—4,8, с пятью — 32—90 X 3—4,5, с семью — 60—95 X 3—5,2, с девятью — 70—120 X 3,5—5 мкм. В воздушном мицелии образуются более мелкие макроконидии — эллипсоидальные, ланцетовидные или веретеноидные, без ясно выраженной ножки, с 1—3 перегородками или без перегородок. Типичные хламидоспоры отсутствуют, склероции 60—80 мкм в диам., темно-синие, темно-лиловые, коричневые, желтые, белые, иногда отсутствуют.

Распространён повсеместно.

Поражает многие виды растений, относящиеся к 160 родам различных семейств; среди них цветковые растения (гладиолусы, гвоздики), зернобобовые культуры (люцерна, клевер, люпин, вика).

При корневой гнили поражаются первичные и вторичные корни, подземные междоузлия и основание стебля. Они буреют и отмирают. Во влажную погоду на них образуются оранжевые подушечки спороношений гриба.

Стечевая гниль обычно проявляется на 2—3 нижних узлах и междоузьях в виде бурых или желтых пятен различной формы, покрывающихся при повышенной влажности розово-красным налетом. Стебель пораженных растений внутри полый, часто размочаливается. Подземные междоузлия и корешки приобретают красный цвет, паренхима сердцевины разрушается.

При фузариозе колосьев в период вегетации поражаются колосовые чешуи и зерно, покрываясь сплошным розовым налетом спороношения гриба. При хранении пораженное зерно склеивается разрастающимся мицелием в плотные комочки.

При фузариозном побурении льна зараженные коробочки и соцветия становятся бурьми, коробочки и семена недоразвиваются. Во влажную погоду на них образуется розовый налет спороношения гриба. Стебли надламываются, размочаливаются. Развитию болезни способствует полегание льна.

В отличие от фузариозного увядания, корневая система не поражается. В этот же период развивается одна из наиболее вредоносных форм болезни — фузариоз по ржавчине. Болезнь проявляется в образовании розового налета вокруг черных, с глянцевым оттенком, выпуклых пятен (телиостадии возбудителя ржавчины — Melampsora lini). Пораженные участки стеблей размочаливаются, изламываются. Развитию болезни способствует полегание льна.

Все формы фузариоза прогрессируют при высоких температурах и влажности воздуха.

Источник инфекции — мицелий, сохраняющийся в пораженных растительных остатках, почве, семенах.

Гнили приводят к гибели растений, отмиранию продуктивных стеблей и белоколосости, фузариозное побурение льна — к снижению качества волокна на 4—5 номеров и сокращению урожая семян на 16 %.

Распространение: повсеместно.

Меры борьбы: уничтожение пораженных растительных остатков; использование здорового семенного материала; противовлаживание семян ТМ ТД, фентиуром, фентиуром-молибдатом или тигамом (3—4 кг/т),
гранозаном с красителем (1,5 кг/т); соблюдение севооборота и другие агroteхнические мероприятия; выведение устойчивых сортов. [3, 39, 41, 44, 62, 63, 67]

Fusarium semitectum Berk. et Rav.— Фузарий полуоткрытый (рис. 1.76)

Син.: Fusarium wollweberii Raillo.
Возбудитель гнилей.
Воздушный мицелий беловато-желтоватый или охряно-розоватый. Макроконидии веретеновидно-серьевые, ланцетовидные, эллипсоидально изогнутые или почти прямые, к обоим концам постепенно су-

Рис. 1.76. Fusarium semitectum: макроконидии (х 950)

живые, с ножкой или без нее, часто с сосочковидным основанием, с 3—5 перегородками. Размеры макроконидий с тремя перегородками 4—45 × 3,5—4,5 мкм, с пятью — 23—75 × 2,5—5 мкм. Эллипсоидально изогнутые макроконидии с удлиненной верхней клеткой, веретеновидно-ланцетовидные — с постепенно суживающейся, конической. Микроконидии часто мало отличаются по форме от макроконидий. Хламидоспоры промежуточные, гладкие или с шипиками.

Симптомы болезни, вредоносность, распространение и меры борьбы такие же, как у F. avenaceum.

Источник инфекции — хламидоспоры, сохраняющиеся в пораженных растительных остатках, почве, семенах.

Fusarium gibbosum App. et Wr. emend Bilai — Фузарий горбатый (рис. 1.77)

Син.: Fusarium equiseti (Corda) Sacc., F. scirpi Lamb. et Fautr., F. caudatum Wr., F. scirpi Lamb. et Fautr. var. candatum Wr., F. con-
Возбудитель корневой гнили.
Воздушный мицелий от светло-кремового до коричневого, бледно-розовый, рыхло- или плотнопушистый. Строма кремово-коричневая, кроваво-красно-коричневая. Макроконидии образуются в спородохиях или пинонотах, а также в воздушном мицелии. На естественных субстратах они веретеновидно-серповидные, с наибольшим диаметром посредине, параболически или гиперболически изогнутые, с вытянутой верхней клеткой, с хорошо выраженной ножкой, обычно с пятью перегородками, в массе розовые или охряные. Отличительным признаком онтогенеза макроконидий является утрата жизнеспособности их крайних клеток. В воздушном мицелии образуются мелкие нетипичные макроконидии с 1—3 перегородками или без перегородок, овальные, ланцетовидные, почковидные, в форме запятой. Размеры конидии без перегородки — 5—18 × 2—6 мкм, с одной перегородкой — 8—24 × 2—4, с тремя — 25—56 × 3,7—5, с пятью — 20—70 × 3,7—6, с семьей — 40 — 80 × 4 — 7 мкм.
Хламидоспоры обильные, гладкие или слегка шероховатые, образуются в мицелии, старых макроконидиях, промежуточные, реже верхушечные, в цепочках, узелках, в массе коричневые. Склероции редкие, 60—80 мкм в диам., черные.
Симптомы болезни, вредоносность, распространение и меры борьбы такие же, как у F. avenaceum.
Источник инфекции — хламидоспоры, сохраняющиеся в пораженных растительных остатках, почве, семенах.
Fusarium gibbosum Appl. et Wr. emend. Bilai var. acuminatum (Ell. et Ev.) Bilai — Фузарий горбатый разновидность заостренная (рис. 1.78)

Син.: Fusarium scirpi Lamb, et Fautr. var. acuminatum (Ell. et Ev.) Wr., F. scirpi Lamb. et Fautr. subsp. acuminatum (Ell. et Ev.) Raillow, F. scirpi Lamb. et Fautr. var. filiferum (Preuss.) Wr., F. caudatum Wr. var. filiferum Raillow, F. acuminatum (Ell. et Ev.) Booth.

Возбудитель гнилей и увядания.

Рис. 1.78. Fusarium gibbosum var. acuminatum:
а — макроконидии (x950); б — аскоспоры

Отличаются от основного вида гиперболически изогнутыми макроконидиями, преимущественно с пятью перегородками, с наибольшим диаметром посредине, с резко удлиненной и сильно суженной верхней клеткой, с явно выраженной ножкой у основания. Длина верхней клетки макроконидий с пятью перегородками 12—20 мкм.

Телеоморфа — Gibberella acuminata Wr.

Поражает свеклу, сою, хлопчатник, картофель, клевер, пшеницу, огурцы, лен, коноплю, томаты, злаки (стеблевая и корневая гниль).

Симптомы болезни, вредоносность, распространение и меры борьбы такие же, как у F. avenaceum и F. oxysporum.

Источник инфекции — хламидоспоры и аскоспоры, развивающиеся в перитециях, сохраняющиеся в пораженных растительных остатках, почве, семенах.

Fusarium gibbosum App. et Wr. emend Bilai var. bullatum (Sherb.) Bilai — Фузарий горбатый разновидность пузырчатая (рис. 1.79)
Син.: Fusarium bullatum Sherb., F. equiseti (Cda) Sacc. var. bullatum (Sherb.) Wr., F. scirpi Lamb et Fautr. subsp. acuminatum (El. et Ev.) Raillo var. triseptatum Raillo.

Возбудитель гнили корней, стеблей, клубней, плодов, цветков, листьев.

Воздушный мицелий белый, беловато-охряный, иногда порошкообразный. Макроконидий преимущественно с тремя перегородками. Верхняя клетка неудлиненная. Размер макроконидий с тремя перегородками 20—50 × 3,5—5 мкм, с пятью — 20—50 × 4,5—5,5 мкм. Микроkonидии встречаются редко. Хламидоспоры обильные, промежуточные, в цепочках, узлах, гладкие, бородавчатые, золотисто-желто-коричневые.

Телеоморфа — Gibberella intricans Wr.

Поражает многие растения.

Симптомы болезни, вредоносность, меры борьбы и распространение такие же, как у F. avenaceum, F. oxysporum.

Источник инфекции такой же, как у F. gibbosum var. acuminatum. Fusarium graminearum Schwabe.— Фузарий злаковый (рис. 1.80)

Возбудитель корневой гнили корней, красной гнили початков кукурузы, колосковой гнили злаков — «пьяный хлеб».

Воздушный мицелий хорошо развит, пушистый, хлопьвидно-пушистый, бело-розовый, кроваво-красный. Макроконидии образуются в спороношениях и воздушном мицелии. Они веретеновидно-серповидные, эллипсоидально изогнутые, с постепенно и равномерно суживающейся конической, несколько удлиненной верхней клеткой, с ясно выраженной ножкой у основания, обычно с пятью перегородками, в массе бело-

Рис. 1.79. Fusarium gibbosum var. bullatum: макроконидии (х 950)
Рис. 1.80. Fusarium graminearum:
а — макроконидии (х 950); б — сумки с аскоспорами; в — аскоспоры
Телеоморфа — Gibberella saubinetti (Mont.) Sacc.
Поражает пшеницу, реже рожь, овес, ячмень.
Первые признаки колосковой гнили злаков появляются на колосьях в середине лета, в фазе молочно-восковой спелости зерна. На больных колосьях сначала появляется бледно-розовый налет спороношения гриба. Рассчитают две формы заболевания — белоколосость и поражение отдельных колосков в колосе. Первая форма проявляется в преждевременном пожелтении всего колоса или его верхней части, побурении соломины, находящейся непосредственно под колосом. Вторая форма проявляется в приобретении больными колосками соломенно-желто-
го цвета (на зеленом фоне колоса). В период восковой спелости на по­
беливших чешуйках пораженных колосков развивается восковидный налет конидий ярко-розового или оранжевого цвета. В конце восковой спелости на месте розового налета образуются плодовые тела — пери­
теции, от темно-фиолетового до черного цвета. Под колосковыми че­
шуями развивается мицелий гриба. Оптимальная температура для раз­
вития фузаризоza зерна злаков 18—20 °C. Конидии прорастают при
4—6 °C, при 32 °C заметно ингибитируется прорастание конидий. Разви­
тию заболевания способствует высокая влажность воздуха.

Гриб вырабатывает экстрогенный токсин — зеараленон. Хлеб, вы­
печенный из муки такого зерна, вызывает тошноту, рвоту, головокру­
жение, головную боль — признаки, напоминающие отравление алко­
гольными напитками; поэтому болезнь получила название «пьяный хлеб». У животных, поедающих фузаризоное зерно, наблюдаются воз­
бужденное состояние, заторможенные движения, вульвовагинит, рас­
строение зрения, у лошадей — временное бешенство.

Распространение: Дальний Восток, Краснодарский край, Ростов­
ская обл., Украинская ССР, Северная Осетия.

При красной гнили початков кукурузы поражаются всходы, кор­
невая система, початки. Заболевание развивается во все периоды веге­
тации. На вершине пораженного початка появляется плотный воско­
видный ярко-розовый налет, распространяющийся сверху вниз и пере­
ходящий в стержень. Оболочка пораженных зерновок становится сна­
чала вишнево-красной, затем буру-коричневой. Полясти зерновок за­
поляются мицелием гриба. Листовые обертки пронизываются мицелием,
плотно прилегают друг к другу и початку, приобретают красно-вишне­
вый цвет. Стержень загнивает, в нем появляются глубокие трещины, зерновки опадают, начиная с вершины початка.

Сильно пораженные семена не дают всходов. При скрытой форме
заболевания семена прорастают, но ростки их не достигают поверхности
почвы, погибают. Корни поражаются в фазе 2—3 листьев, они загни­
вают, окрашиваясь в красно-коричневый цвет. Пораженные проростки,
начиная с вершины, увядают, бледнеют, засыхают.

Оптимальная температура для развития красной гнили початков
кукурузы 24—30 °C. Развитию болезни способствует высокая влажность
воздуха. Мицелии и конидии сохраняются в почве в течение года, аско­
споры — более 3 лет.

Источник инфекции — хламидоспоры и аскоспоры, сохраняющи­
еся в семенах, пожнивных остатках, почве.

Колосковая гниль злаков приводит к значительному недобору уро­
жая, гибели всходов, пустоколосости, красная гниль початков куку­
рузы — к полному разрушению зерна и початков.

Распространение: повсеместно.

Меры борьбы: соблюдение севооборота; оптимальные сроки сева;
просушка зерна; внесение полного комплекса минеральных удобре­
ний; протравливание семян ТМТД (2 кг/т) или фентиурамом (2 кг/т).

Fusarium heterosporum Nees.— Фузарий разноспоровый (рис. 1.81)
Син.: Fusarium flocciferum Cda, F. reticulatum Mont., F. hetero­
sporum Nees var. negundinis (Sherb.) Raillo.

Возбудитель гнили плодов, стеблей, корней и клубней.

Воздушный мицелий белый, бело-розовый, светло-кромовый или желтаватый. Строма желто-пурпурная, коричнево-красная. Макро­
цидии образуются в воздушном мицелии, спороношениях; они ветвенно­
видно-серповидные с несколько удлиненной конической верхней клет­
кой с ножкой или сосочковидным основанием с 3—5 перегородками: с тремя — 20—50 X 3—4,5 мкм, с пятью — 25—60 X 3—3,5 мкм.
Микроконидии образуются редко. Хламидоспоры промежуточные, в це-почках и узлах.
Телеоморфа — Gibberella gordonia Booth.
Поражает многие растения.
Симптомы болезни, вредоносность, распространение и меры борьбы такие же, как у F. avenaceum, F. sambucinum.
Источник инфекции — хламидоспоры и аскоспоры, сохраняющиеся в пораженных растительных остатках, семенах, почве.
Fusarium lateritium Nees.— Фузарий кирпично-красный (рис. 1.82)

Рис. 1.81. Fusarium heterosporum: макроконидии (х950)

Син.: Fusarium lateritium f. sp. ciceri (Padw.) Erw., F. lateritium Nees var. majus Wr., F. lateritium Nees var. mori Desm., F. lateritium Nees var. minus Wr., F. lateritium Nees var. uncinatum Wr., F. lateritium Nees var. buxi Booth.

Возбудитель усыхания и увядания древесно-кустарниковых пород.
Воздушный мицелий белый, беловато-розовый или желтоватый. Макроконидии образуются в воздушном мицелии, спородохиях, реже в пионнотах; они веретеновидно-серповидные, более или менее цилиндрические на большом протяжении, с постепенно сужающейся, слегка усеченной, иногда клювовидно согнутой верхней клеткой, с ясно выраженной ножкой у основания, с 3—5 (редко 6—7) перегородками. Иногда в воздушном мицелии образуются одноклеточные макроконидии, 4—22 × 2—6 мкм, или с одной перегородкой, 10—35 × 2—5 мкм. Размер макроконидий с тремя перегородками 13—53 × 2—5 мкм,
с пятью — 25 — 70 × 3 — 5, с семью — 32 — 80 × 3— 5 мкм. Микроконидии образуются редко. Хламидоспоры промежуточные, образуются в мицелии и конидиях, встречаются редко. Склероции иногда имеют, темно-серовато-оливковые.

Телеоморфа — Gibberella baccata (Wallr.) Sacc.

Болезнь проявляется в увядании листьев, засыхании сначала отдельных ветвей, затем и всего растения, вследствие поражения сосудистой системы. На поперечном срезе ветвей видны побуревшие сосуды в виде сплошного или прерывистого кольца.

Рис. 1.82. Fusarium lateritium: макроконидии (х500)

Источник инфекции — хламидоспоры и аскоспоры в перитециях, сохраняющиеся на сухих ветвях и древесине, в почве.

Распространение: повсеместно, особенно в зонах с теплым влажным климатом (Средняя Азия, Закавказье).

Меры борьбы: уничтожение пораженных побегов и растений.

Fusarium lateritium Nees var. stilboïdes (Wr.) Bilai — Фузариум кирпично-красный

Син.: Fusarium stilboïdes (Wr.) Booth, F. lateritium Nees var. longum Wr.

Возбудитель увядания и усыхания.

Отличается от основного вида более крупными макроконидиями и преобладанием макроконидий с пятью и большим числом перегородок. Размеры макроконидий с пятью перегородками 40—97 × 3,3—6 мкм,
с семьей — 56—105 × 3,5—6, с девятью — 70—100 × 3,8—6, с десятью — 70—110 × 5—6 мкм.

Телеоморфа — Cibberella stilboides Gord. ex Booth.

Поражает семянцы и взрослые древесные и кустарниковые растения. Симптомы болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у F. lateritium.

*Fusarium sambucinum* Fuck.— Фузарий бузиновый (рис. 1.83)

Сим.: *Fusarium culmorum* (W. G. Sm.) Sacc. var. cereale (Cke.) Wr., *F. sambucinum* Fuck. var. cereale (Cke.) Raiilo, *F. sulfurium* (Schlecht.) Booth.

Возбудитель сухой гнили клубней картофеля.

Воздушный мицелий белый, беловато-охряный, розовый, сильнопушистый или плотновойлочный. Стroma белая, желтая, желто-оливковая, охра-коричневая. Склероции темно-красные или коричневые, часто отсутствуют. Микроконидии образуются в воздушном мицелии, спороходиях и пиннотах; они веретеновидно-серповидные, эллипсоидально изогнутые, с короткой, внезапно сужающейся в виде сосочка или только сжатой или слегка загнутой верхней клеткой, с хорошо выраженной ножкой у основания, обычно с 3—5 перегородками, в массе розово-оранжевого или телесного цвета. Размеры микроконидий с тремя перегородками 16—45 × 3—6 мкм, с пятью — 25—60 × 3,5—6 мкм. Микроконидии отсутствуют. Хламидоспоры обильные, промежуточные, в цепочках или узлах, в массе коричневые.

Телеоморфа — *Gibberella pulicaris* (Fr.) Sacc.

Поражает многие виды растений, относящиеся к 30 семействам. У древесных пород, особенно стеблей хмеля, вызывает образование наростов, у злаков — корневую и стеблевую гнили, гниль початков кукурузы.

На пораженных клубнях картофеля появляются серовато-белые, тусклые, слегка вдавленные пятна, которые со временем увеличиваются, ткань размягчается, становится трухлявой, сухой, приобретает бурую окраску, кожца на пораженных участках сморщивается. Клубень высыхает, внутри него возникают пустоты, заполненные мицелием гриба. На поверхности клубней образуются подушечки желтовато-розового цвета. Развитию заболевания способствуют поражение клубней фитофторозом и паршой, механические повреждения, высокая влажность воздуха (75 %). Оптимальная температура для развития гриба 17—25 °C. Заболевание передается от больного клубня на соседнее здоровое, поэтому часто проявляется в виде очагов.

Болезнь обнаруживается спустя несколько недель после уборки картофеля. Возникает, как правило, на клубнях с механическими повреждениями (у которых раны не затянулись и не покрылись перидермой), или пораженных другими болезнями (фитофторозом).

По вредоносности сухая гниль занимает второе место после фитофтороза.

Пораженные *F. sambucinum* ткани клубней картофеля образуют фитоалексины — ришитин и любимин.

Источник инфекции: хламидоспоры, сохраняющиеся в пораженных клубнях, растительных остатках, почве.

Болезнь приводит к потере 7—11 % урожая, а при хранении картофеля в условиях повышенной температуры и влажности — до 50 %.

Меры борьбы: дезинфекция хранилищ; закладка на хранение здоровых, неповрежденных клубней; соблюдение в хранилищах оптимальных режимов температуры (1—3 °C) и влажности (85—90 %). [16, 17, 41, 44, 58]

*Fusarium sambucinum* Fuck. var. ossicolum (Berk. et Curt.) Bilai — Фузарий бузиновый разновидность косточковая
Рис. 1.83. *Fusarium sambucinum*:
a — макроконидии (х 950), b — сумка с аскоспорами; в — аскоспоры [62]
Син.: Fusarium ossicolum (Berk. et Curt.) Sacc., F. equiseti (Cda) Sacc. subsp. ossicolum (Berk. et Curt.) Raillo, F. scirpi Lamb. et Fautr. var. caudatum Wr., F. compactum (Wr.) Raillo, F. caudatum Wr.

Возбудитель гнили.

Отличается от основного вида наличием резко суженной, удлиненной, иногда загнутой верхней клеткой макроконидий, несколько суженных к основанию. Размер макроконидий с пятью перегородками 30—64 × 3,7—6,5 мкм, с тремя — 17—40 × 3,6—6 мкм.

Рис. 1.84. Fusarium sambucinum var. sublunatum: макроконидии (x 950)

Поражает плоды цитрусовых, стебли, семена и коробочки хлопчатника, свеклу, плоды огурцов, бананы, зерновки и стебли кукурузы и других злаков, клубни картофеля.

Симптомы болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у F. avenaceum и F. sambucinum.

Fusarium sambucinum Fuck. var. sublunatum (Rq.) Bilal — Фузарий бузиновый разновидность полудуговидная (рис. 1.84)

Син.: Fusarium sublunatum Rq.

Возбудитель плодовой гнили цитрусовых и корневой гнили пшеницы.

Воздушный мицелий белый или розовый, розово-красный, рыхловоолокнистый. Склероции образуются часто, темно-оливковые. Отличается от основного вида более длинными макроконидиями с удлиненной бутылковидной верхней клеткой, обычно с пятью перегородками, с ясно выраженной ножкой у основания. Размеры макроконидий с тремя перегородками 12—53 × 4—6,5 мкм, с пятью — 41—85 × 4—7.
с семь — 66—90 × 5,8—6,8 мкм. Микроконидии образуются редко. Хламидоспоры промежуточные, гладкие.
Симптомы болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у F. avenaceum и F. sambucinum.

Fusarium sambucinum Fuck. var. minus Wr.— Фузарий бузиновый разновидность меньшая (рис. 1.85)
Син.: Fusarium sambucinum var. coeruleum Booth.
Возбудитель корневой, стеблевой и плодовой гнили.

Рис. 1.85. Fusarium sambucinum var. minus: микроконидии (x 950)

Воздушный мицелий бело-розовый, плотновойлочный. Склероции образуются редко. Отличается от основного вида преобладанием микроконидий с тремя перегородками. Размер микроконидий с тремя перегородками 12—45 × 3—5,5 мкм, с пятью — 20—50 × 3—3,5 мкм.
Поражает хлопчатник, картофель, томаты, гвоздики, цитрусовые и др.
Симптомы болезни, источник инфекции, вредоносность, меры борьбы и распространение такие же, как у F. avenaceum и F. sambucinum.

Fusarium culmorum (W. G. Sm.) Sacc.— Фузарий соломинковый (рис. 1.86).
Возбудитель корневой гнили злаковых культур.
Воздушный мицелий бледно-оливково-желтый, охрено-темно-красный, плотно- или рыхло-пушистый, хорошо развитый. Макроконидии образуются в спородохиях и воздушном мицелии, они веретеновидно-серповидные, эллипсоидально изогнутые или почти прямые и тогда несимметричные, иногда почти цилиндрически-веретеновидные, с более широкими центральными клетками (более 6 мкм), с короткой, вне-
запно сужающейся верхней клеткой, с ножкой или сосочковидным основанием, с толстой оболочкой, с 3—5 хорошо выраженными перегородками, в массе — желтоватые, розовые, затем охряные, светло-коричневые или красно-охранные. Размеры макроконидий с тремя перегородками 15—56 × 3,7—11,5 мкм, с пятью — 20—88 × 4,7 —12,5 мкм. В воздушном мицелии встречаются редко двухклеточные макроконидии. Микроконидий нет. Хламидоспоры овальные или круглые, промежуточные, иногда терминальные, 10—14 × 9—12 мкм, одиночные или образующие клубочки или цепочки.

Рис. 1.86. Fusarium culmorum:
1 — макроконидия; 2 — разветвленный конидиеносец; 3 — гифа; 4 — конидии в старом возрасте (х950)

Поражает пшеницу, рожь, овес, ячмень в комплексе с другими видами грибов. Вызывает стеблевую гниль кукурузы, сухую гниль картофеля при хранении в комплексе с F. sambucinum, F. solani. Представляет серьезную опасность для растений закрытого грунта.

Симптомы болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у F. graminearum, F. avenaceum и F. sambucinum. [3, 62, 63, 67]

Fusarium bucharicum (Jacz.) Raillo — Фузарий бухарский (рис. 1.87)

Возбудитель гнили корневой шейки хлопчатника.
Воздушный мицелий белый, пушисто-войлочный, часто скудный. Макроконидии образуются в воздушном мицелии и спородохиях, они эллипсоидально изогнутые или цилиндрические, с короткой верхней
клеткой, с выступающей ножкой у основания, с 3—7 перегородками. Размеры макроконидий с тремя перегородками 40—43 × 4—5, с пятью — семью — 42 — 100 × 4,5 — 6 мкм. Микроконидий нет. Хламидоспоры шаровидные, промежуточные, одиночные или в цепочках, с гладкой оболочкой.

Поражаются проростки, всходы и взрослые растения. Проростки желтеют, скручиваются и засыхают, часто не достигнув поверхности почвы. У всходов загнивает корневая шейка, листья желтеют и отмирают, начиная снизу, основание стебля буреет, корни легко отделяются от стебля. У взрослых растений поражаются узлы, что приводит к надламыванию стеблей.

Рис. 1.87. Fusarium buharicum: макроконидии (х 950)

Болезнь приводит к гибели растений.
Развитию болезни способствуют резкие перепады температуры и влажности.
Источник инфекции — хламидоспоры, сохраняющиеся в пораженных растительных остатках, почве.
Распространение: Средняя Азия.
Меры борьбы: такие же, как против F. avenaceum.
Fusarium macroceras Wr. et Rg.— Фузарий крупноспоровый (рис. 1.88)

Возбудитель розовой плесени, или фузариоза зерна злаков.
Воздушный мицелий пушистый, рыхлый или плотный, кроваво-красный или бурый. Макроконидии веретеновидно-серповидные, с постепенно и равномерно сужающейся, удлиненной верхней клеткой, с ножкой или сосочковидным основанием, с 5—7, иногда с 8—10, редко с 11—14 перегородками. Размеры макроконидий с пятью перегородками 35 — 67 × 3,5 — 8 мкм; с семьёй — 47—80 × 4 — 7; девятью — 50 — 100 × 4 — 6; с одиннадцатью — 63 — 111 × 4 — 7, с трина-
дцать — четырнадцать — 85 — 130 × 4 — 7 мкм. Микроконидии отсутствуют. Хламидоспоры образуются редко.

Пораженное зерно становится щуплым, сморщенным, теряет всходость.

Источник инфекции, вредоносность, распространение и меры борьбы такие же, как и у F. avenaceum и F. graminearum.

Распространение: Украинская ССР, Дальний Восток.

Fusarium sporotrichiella nom. nov. Bilai — Фузарий споротриховый (рис. 1.89)

Син.: Fusarium sporotrichiodes Sherb., F. sporotrichioides Sherb. var. minus Wr., F. chlamydosporum (Wr. et Rg.) Booth., F. tricinctum (Cda) (Wr.) Booth.

Возбудитель пlesenевения, или фузариноза, зерна элаков.

Воздушный мицелий быстрорастущий, высокий, пушисто-паутинистый, при спорообразовании поросящий, белый, бело-розовый или красный. Макроконидии образуются в воздушном мицелии, реже в спородосях и пионнотах, веретеновидно-серповидные, с постепенно сужающейся неравномерно-закругленной верхней клеткой и с более или менее ясно выраженной, иногда сосочковидной, ножкой. Макроконидии, образующиеся на естественном субстрате, обычно с пятью перегородками, 26 — 48 × 3,8 — 5 мкм; образующиеся в воздушном мицелии — с тремя перегородками, 17 — 28 × 2,8 — 4,5 мкм. Микроконидии чаще грушевидно-лимоновидные, 3,8 — 12,5 × 3,8 — 6,6 мкм, реже булавовидные, 9,5 — 15 × 3,8 — 6,5 мкм. Образуются на простых или разветвленных коницеденосцах. Хламидоспоры образуются в мицелии и макроконидиях при старении культуры.

Поражает свыше 20 видов растений во время вегетации и при хранении. Образует токсические для человека и животных вещества — трихотецены, обладает фитотоксичностью.

Симптомы болезни, источник, инфекция, вредоносность, распространение такие же, как у F. avenaceum и F. graminearum.

Fusarium sporotrichiella Bilai var. poae (Pk.) Wr. emend Bilai — Фузарий споротриховый разновидность мятликовая (рис. 1.90)

Возбудитель корневых стеблевых гнилей цветковых культур.
Отличается от основного вида наличием многочисленных грушевидно-лимоновидных микроконидий, 3,8 — 9,5 X 3,8 — 6,1 мкм.
Симптомы болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у F. avenaceum и F. graminearum, F. lateritium.
Fusarium sporotrichiella Bilai var. tricinctum (Cda) Bilai — Фузарий споротриховый разновидность трехпоясная (рис. 1.91)

Рис. 1, 89. Fusarium sporotrichiella:
a — макроконидии; b — микроконидии; в — кламидоспоры [67]

Один из возбудителей корневой гнили злаков и других растений (в комплексе с другими видами фузариев), плодовой гнили семечковых и овощных культур.
Отличается от основного вида преобладанием макроконидий с тремя перегородками, 25 — 35 X 3,8 — 4,8 мкм, и овально-цилиндрических микроконидий с одной перегородкой, 7,6 X 17 X 3 — 5 мкм, наряду с типичными грушевидно-лимоновидными микроконидиями.
Симптомы болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у F. avenaceum, F. graminearum и F. sambucinum.
Fusarium sporotrichiella Bilal var. sporotrichioides (Sherb.) Bilal — Фузарий споротриховый разновидность споротриховидная (рис. 1.92)
Син.: Fusarium sporotrichioides Sherb.
Возбудитель гнили сеянцев, корней и корневой шейки злаков.
Отличается от основного вида преобладанием макроконидий с тремя перегородками.
Поражает корни люцерны, гороха, коробочки и семена хлопчатника, семена и всходы сои и других растений.
На листьях, влагалищах листьев и соломине развиваются некрозы. Пораженный колос напоминает колос, зараженный F. graminearum, но зерно при этом не поражается.

Рис. 1.90. Fusarium sporotrichiella var. roae:
а — макроконидии; б — микроконидии; в — конидиеносцы [67]

Симптомы болезни, источник инфекции, вредоносность, меры борьбы и распространение такие же, как у F. graminearum, F. avenaceum.
Fusarium oxysporum (Schlecht.) Snyd. et Hans.— Фузарий остро-споровый (рис. 1.93)
Син.: Fusarium oxysporum Schlecht. var. cepae (Hans.) Raillo, F. vasinfectum Atk., F. bulbigenum Cke. et Mass., F. orthoceras App. et Wr. var. longins (Sherb.) Wr., F. conglutinans Wr.
Возбудитель трахеомикозного увядания и корневой гнили. Описано 80 более или менее специализированных форм.
Воздушный мицелий пленчато-паутинистый, невысокий, окрашен в различные оттенки розово-карминно-лилового цвета, реже в белый или светло-желтый. Имеются склероции. Макроконидии образуются в воздушном мицелии, редко в спородохиях и пионнотах, веретеновидно-серповидные, эллипсоидально изогнутые или почти прямые, цилиндрические, с тонкой оболочкой, с 3—5 перегородками. Размеры макроконидий с тремя перегородками — 25 — 40 × 3,7 — 5 мкм, с пятью — 30 — 50 × 3,5 мкм. Микроконидии обильно образуются

168
на длинных цилиндрических конидиеносцах, образуют ложные головки или скопления вокруг гиф, овально-цилиндрические, с обоими закругленными концами, длина их в 2—4 раза превышает ширину, 10,8 — 18,6 × 1,5 — 3 мкм. Хламидоспоры обильные, промежуточные и верхушечные, одно-двухклеточные, неокрашенные.

Поражает многие растения (свыше 150 видов).

В теплицах и парниках трахеомикозному увяданию подвержены многие цветковые растения (гвоздики, цикламены, фрезии, левкои, хризантемы), в питомниках — сеянцы хвойных пород, а также древесные породы.

Трахеомикозное увядание проявляется в фазе всходов, но чаще в более поздних фазах развития. Характерным признаком заболевания является поникание верхушки растения, потеря тurgора листьями, их пожелтение, увядание, полное усыхание. Часто заболевание носит очаговый характер. При поражении растений до цветения они задерживаются в росте и развитии, при этом болезнь может развиваться медленно (хроническая форма). В более поздних фазах при повышенной температуре и недостатке влаги она может протекать более интенсивно,
Рис. 1.92. Fusarium sporotrichiella var. sporotrichioides:
а — макроконидии; б — микроконидии (x 950)

Рис. 1.93. Fusarium oxysporum:
а — макроконидии; б — микроконидии (x 850)
и гибель растений наступает очень быстро (в течение 6—7 дней). Расте­ния, пораженные увяданием, обычно не образуют плодов и зерновок или имеют недоразвитые, щуплые семена. В патогенезе важную роль играют токсины, продуцируемые грибом,— фузариевая кислота, лико­маразмин, и ферменты — экзополигалактуроназа, пектин-транс-эли­миназа, нарушающие физиологические функции растений и угнетающие их развитие.

Трахеомикозное увядание хлопчатника — одно из наиболее рас­пространенных заболеваний в хлопководческих районах. Проявляется во всех фазах развития. Первые симптомы отмечаются на семядольных листьях, листьях нижнего яруса; постепенно болезнь распространяется до точки роста. Наиболее интенсивное развитие заболевания приходит­ся на период появления всходов до образования настоящих листьев, затем болезнь затухает и вновь возобновляется и нарастает в фазы бутонизации, цветения — до конца вегетации.

На листьях появляются небольшие желтоватые пятна, которые увеличиваются и охватывают весь лист. На листьях обнаруживается сетчатость, они теряют тургор, засыхают и опадают. Молодые расте­ния погибают.

При медленном течении болезни, если заражение происходит в фазе семядольных листьев, междоузлия укорачиваются, а стебель около шейки утолщается; при заражении в фазе бутонизации листья опадают, бутоны и стебли засыхают; при заражении в фазе плодообразования ко­робочки не раскрываются, стебель приобретает темную окраску.

При молниеносном течении болезни, обычно наблюдаемом в се­редине лета или в конце вегетации, листья, не меняя окраски, теряют тургор, повисают, растение быстро засыхает.

Отличительным признаком заболевания является побурение дре­весины стебля. В патогенезе важную роль играет токсинфузариевая кислота, выделяемая грибом. Хламидоспоры могут проникать в почву до глубины 2 м, но в основном встречаются не глубже 60 см.

Оптимальная температура для развития гриба 18—27 °С, мини­мальная 10, максимальная 35 °С. Оптимальная влажность воздуха 40—70 %, при влажности 20—30 рост гриба ингибируется, а при 80 % — прекращается.

Трахеомикозное увядание, или желтизна капусты, выражается в появлении на листьях рассады и растений в грунте желто-зеленой окраски, чаще на одной поверхности листа. Лист развивается нерав­номерно, интенсивнее в зеленой части. Одностороннее поражение на­блидается и у кочана. Семядоли и листва рассады желтеют, увядают. Растения погибают. В парниках заболевание начинает развиваться при 12—13 °С, оптимум 20—25; в полевых условиях минимальная темпе­ратура 16—17, максимальная 35 °С.

Трахеомикозное увядание картофеля обычно проявляется у всхо­дов. В фазе цветения листья увядают и засыхают, начная сверху (в от­личие от вертициллезного увядания, при котором листья увядают снизу вверх). Часто отмечается стекловидность клубней.

Трахеомикозное увядание льна-долгунца наиболее вредоносно в фазе всходов. Верхушки стебля больных растений поникают, желтеют, быстро буреют, растения увядают. Корни разрушаются, приобретает серовато-пепельный оттенок. Растения легко выдергиваются из почвы. При поражении в фазе цветения растения отстают в росте, листья и стебли приобретают бурый цвет. Коробочки, как правило, на них не образуются, или они недоразвиты и без семян. Хламидоспоры гриба могут сохраняться в почве 6—7 лет. Оптимальная температура для раз­вития гриба 24—28 °С, максимальная 37 °С. Заражение происходит при температуре 13 °С и высокой влажности почвы (свыше 60 %).
Источник инфекции — хламидоспоры, сохраняющиеся в пораженных растительных остатках и почве.

Болезнь хлопчатника приводит к снижению количества коробочек до 51,8 %, массы хлопка до 34,2 %, ухудшению посевных качеств семян; болезнь льна приводит к недобору 60 % урожая соломы и 44 % семян, ухудшению качества волокна на три номера.

Распространение: повсеместно в районах возделывания; для картофеля — южные и юго-восточные районы СССР.

Меры борьбы: выведение устойчивых сортов; соблюдение севооборота; нормированное внесение удобрений и микроэлементов; известкование почв и внесение бора (для льна); уничтожение растительных остатков после уборки урожая; в парниках и теплицах — дезинфекция почвы, обработка посевов фунгицидами. [3, 41, 42, 57, 62, 63]

Рис. 1.94. Fusarium oxysporum var. orthoceras: микроконидии разных штаммов (× 950)

Fusarium oxysporum Sohlecht. emend. Snyd. et Hana var. orthoceras (App. et Wr.) Bilai — Фузарий остросторовый разновидность прямо­рогая (рис. 1.94)

Син.: Fusarium orthoceras App. et Wr., F. orthoceras App. et Wr. var. apii (Nels. et Cochr.) Wr. et Rg., F. orthoceras App. et Wr. var. pisi Lindford, F. orobanches Jacz, F. lini Bolley, F. bostricoides Wr. et Rg., F. conglutinans Wr., F. conglutinans Wr. var. betae Stewart.

Возбудитель увядания и корневой гнили.

Отличается от основного вида отсутствием макроконидий. Микроконидии обильные, одиночные или в ложных головках, изменчивые по форме и размерам, от 8—9 × 1,6 — 2 до 20 × 3 мкм. Хламидоспоры обильные, верхушечные или промежуточные, одноклеточные.

Поражает самые разнообразные растения.

Симптомы заболевания, источник инфекции, вредоносность, меры борьбы и распространение такие же, как у F. oxysporum.

Fusarium moniliforme Sheld.— Фузарий монилиевидный (рис. 1.95)

Син.: Fusarium moniliforme Sheld. var. majus Wr. et Rg., F. moniliforme Sheld. subsp. majus (Wr. et Rq.) Raillo.
Возбудитель розовой плесени и гигантизма зерновых, а также гнилей.

Воздушный мицелий хорошо развит, пушистый, белый или белорозовый, розовато-кариаминовый, лиловатый. Склероции темно-синие, шаровидные, 80—100 мкм в диам. Конидиоспобы бутылковидные, диаметр у основания в 2—3 раза меньше диаметра в средней части, с четко выраженной перетяжкой. Макроконидии образуются в воздушном мицелии, очень редко в спородохиях и пионнотах, шиловидные, слегка серповидные, эллипсоидально изогнутые или почти прямые, суживающиеся к обоим концам, с постепенно сужающейся, неуздлиненной, иногда ключовидно изогнутой верхней клеткой, с четко выраженной ножкой или сосочком у основания, обычно с 3 — 5 (реже 6—7) перегородками. Размеры макроконидий с тремя перегородками — 20 — 60 × 2 — 4,5 мкм, с пятью — 37 — 70 × 2 — 4,5, с семью — 58 — 90 × 2,5 — 4,5 мкм. Микроконидии развиваются на коротких ответвлениях гиф, на фиалидах, бутылковидной формы, образуют цепочки, короткие или длинные, сильно ветвящиеся, по краю колонии часто образуются ложные головки. Они овально-эллипсоидные, удлинено-гроздевидные, одноклеточные, с закругленным верхним концом и суженным, усеченным — нижним, 10,2 — 14,8 × 2,2 — 4 мкм. Диаметр микроконидий в нижней части в 1,5—2 раза меньше, чем в верхней. С возрастом культуры верхняя часть микроконидий становится закругленной, особенно у микроконидий в цепочках, а нижняя — усеченной. Типичные хламидоспоры отсутствуют.

Телеоморфа — Gibberella fuikuroi (Saw.) Wr.
Поражает рис, кукурузу, сорго, сахарный тростник и другие травянистые и древесные растения, относящиеся к 30 семействам.

Вызывает корневую гниль, ожоги, низкорослость и гипертрофию органов растений.

Симптомы болезни, источник инфекции, вредоносность, меры борьбы и распространение такие же, как у F. avenaceum, F. graminearum, F. moniliforme var. lactis.

Fusarium moniliforme Sheld. var. subglutinans Wr. et Rg.— Фузарий монилиевидный разновидность клейковатая (рис. 1.96)

Рис. 1.96. Fusarium moniliforme var. subglutinans: микроконидии (× 850)

Син.: Fusarium neoceras Wr. et Rq., F. moniliforme Sheld. var. lacticolor RAILLO.

Возбудитель розовой пlesenи кукурузы.

Отличается от основного вида более широкими макроконидиями, обычно с 3 — 5 перегородками. Размеры макроконидий с тремя перегородками — 18 — 60 × 2,5 — 5 мкм, с пятью — 40 — 61 × 3 — 5 мкм. Макроконидии формируются в основном в ложных головках, образующихся на концах вздутых конидиеносцев; веретеновидные, овально-эллипсоидальные или слегка удлиненно-цилиндрические, с обоими закругленными концами, одноклеточные — 9,4 — 16,8 × 3,2 — 4,2 мкм, двухклеточные — 10 — 28 × 2,2 — 4,5 мкм.

Телеоморфа — Gibberella fujikuroi (Saw.) var. subglutinans Edwards.

Поражает пшеницу и другие злаки.

Симптомы болезни, источник инфекции, вредоносность, меры борьбы и распространение такие же, как у F. moniliforme var. lactis, F. avenaceum, F. graminearum.

Fusarium moniliforme Sheld. var. lactis (Pir. et Rib.) Bilai — Фузарий монилиевидный разновидность молочная (рис. 1.97)

Син.: Fusarium lactis Pir. et Rib.
Возбудитель розовой плесени зерновок кукурузы и фузариоза стеблей риса.

Отличается от основного вида меньшим размером макроконидий, обычно с 1—3 перегородками. Размеры макроконидий с одной перегородкой — 9 — 32 × 2 — 6 мкм, с двумя — 15 — 35 × 2 — 4, с тремя — 16 — 40 × 2 — 4 мкм. Микроконидии обильные, обычно в цепочках, реже в ложных головках, яйцевидные, удлиненно-грушевидные, одно-двухклеточные, разбросанные в виде розового порошка на воздушном мицелии.

Поражает хлебные злаки, корзинки подсолнечника.

Рис. 1.97. Fusarium moniliforme var. lactis: микроконидии (Х 950)

При заболевании в фазе всходов развиваются ослабленные, хлоротичные растения, быстро погибающие и покрывающиеся розовым налетом спороношения гриба.

В фазах молочной и восковой спелости признаки болезни обнаруживаются на початках в виде розового налета на отдельных зерновках, затем зона поражения расширяется и превращается в очаг, в центре которого располагаются полуразрушенные зерновки грязно-бурого цвета, внутренняя полость которых заполнена мицелием. Они легко ломаются и крошаются. Фузариозный очаг среднего размера охватывает 150—200 полуразрушенных зерновок и около 40—60 со скрытой формой поражения. На початке может быть 2—3 очага, которые часто, сливаюсь, охватывают весь початок. Проникая внутрь початка, гриб распространяется по стержню, вызывает его гниль и разрушение, зерновки при этом легко выпадают. Поражаются также початки, хранящиеся в сырых помещениях. Развитию болезни способствуют обильные осадки и низкие температуры.

Фузариоз, или гигантозм (баканав, гибереллез), стеблей риса характеризуется чрезмерным удлинением междоузлий. Вольные всхо-
ды выше здоровых на несколько сантиметров. Они желтовато-зеленые, часто погибают до кущения. У взрослых больных растений флаговый лист резко выделяется светло-зеленой окраской. Кущение слабое, листья отмирают один за другим, метелки пустые, на нижней части отмирающих стеблей образуется беловато-розовый налет. Массовое заражение происходит в период цветения и созревания риса. В патогенезе большую роль играет фитогормон гиббереллин, выделяемый грибом и обусловливающий гигантизм растений.

Источник инфекции — мицелий и аскоспоры в перитециях, сохраняющиеся в зараженных семенах, растительных остатках и почве.

Болезнь приводит к значительным потерям урожая.

Распространение: повсеместно в районах возделывания; Дальний Восток (для риса).

Меры борьбы: такие же, как против F. graminearum, а также борьба с кукурузным мотыльком и другими вредителями — переносчиками инфекции (для кукурузы). [3, 9, 41, 42, 51]

Fusarium javanicum Koord — Фузарий яванский (рис. 1.98)
Син.: Fusarium javanicum Koord var. ensiforme Wr. et Rg.

Возбудитель гнили зернобобовых культур, хлопчатника и усыхания ветвей древесных пород.

Воздушный мицелий слаборазвитый, тонкопаутинистый, серовато-синевато-зеленоватый или кремовато-коричневый. Стroma желтовато-желто-коричневая. Макроконидии образуются в пионнотах, спородохиях; веретеновидно-серповидные, эллипсоидально изогнутые, с одинаковым диаметром на большей части длины, слегка суженные к концам, с закругленной (тупой) верхней клеткой, сосочковидным основанием, с 3—5 перегородками. Размеры макроконидий с тремя перего-
родками — 35—50 × 3,5—4,5 мкм, с пятью — 40—70, × 4—6 мкм. Микроконидии малочисленные. Хламидоспоры конидиальные и мицеллиальные, обильные. Склероции образуются редко.

Телеоморфа — Hypomyces ipomoeae (Hals.) Wr.

Поражает также кофейное дерево, миндаль, гевею, какао, маниоку.

Симптомы болезни, вредоносность, распространение и меры борьбы такие же, как у F. avenaceum, F. sambucinum и F. lateritium.

Источник инфекции — хламидоспоры и аскоспоры в перитециях, сохраняющиеся в пораженных клубнях, зерне, почве. [3, 62, 63]

Fusarium javanicum Koord. var. radicicola Wr.— Фузарий яванский разновидность корневая (рис. 1.99)

Рис. 1.99. Fusarium javanicum var. radicicola: a — макроконидии; b — микроконидии (х 950)

Возбудитель гнили.
Отличается от основного вида наличием макроконидий, преимущественно с 3 перегородками и меньшего размера.

Поражает клубни картофеля, корнеплоды сахарной свеклы, плоды и овощи, хлебные злаки при хранении.

Симптомы болезни, вредоносность, распространение и меры борьбы такие же, как у F. avenaceum и F. sambucinum.

Источник инфекции — хламидоспоры, сохраняющиеся на пораженных растительных остатках, зерне, клубнях. [3]

Fusarium solani (Mart.) App. et Wr.— Фузарий пасленовый (рис. 1.100)

Син.: Fusarium martii App. et Wr., F. martii App. et Wr. var. pisi F. R. Jones, F. martii App. et Wr. var. phaseoli Burkh., F. martii App. et Wr. var. minus Sherb.

Возбудитель корневой, стеблевой, плодовой гнилей.
Описано свыше 20 более или менее специализированных форм.

Воздушный мицелий плотнопушистый, белый, бело-розовый, беловато-кремово-желтоватый. Макроконидии образуются в спородохиях

177
Рис. 1.100. Fusarium solani:
а — конидиеносцы; б — макроконидии (х950); в — сумки с аскоспорами [62]
и пионнотах, веретеновидно-серповидные, слабо эллипсоидально изогнутые, с короткой, слегка суженной и тупой верхней клеткой с сосочковидным основанием, обычно с 3—5 перегородками, с одинаковым диаметром на большей части длины, в массе кремово-желтоватые, синезеленые, коричневато-белые или глинистого цвета. Размеры макроконидий с тремя перегородками — 30—45 × 4,5—5,5 мкм. Микроконидии образуются в воздушном мицелии, овально-цилиндрические, 12—16 × 3—4 мкм. Хламидоспоры обильные, мицелиальные и конидиальные.

Особенно поражает бобовые растения, а также овощные культуры во время вегетации и при хранении; в комплексе с другими видами по-

Рис. 1.101. Fusarium solani var. argillaceum:
а — макроконидии; б — микроконидии (× 950)

ражает древесные породы: дуб, шелковицу, миндаль, инжир, абрикос, персик и др. Образуют токсин — мартицин.

Симптомы болезни, вредоносность, распространение и меры борьбы такие же, как у F. avenaceum и F. lateritium.

Источник инфекции — хламидоспоры, сохраняющиеся в почве, пораженных растительных остатках, корнях, корнеклубнях, плодах. [3, 62, 63, 67]

Fusarium solani (Mart.) App. et Wr. var. argillaceum (Fr.) Bilai — Фузариум пасленовый разновидность глинистая (рис. 1.101)

Син.: F. argillaceum (Fr.) Sacc., F. ventricosum Booth.

Возбудитель гнили.

Одличается от основного вида наличием макроконидий с 1—3 толстыми перегородками, с толстой оболочкой, без ножки, симметричных, снизу суженных. Размеры макроконидий с одной перегородкой — 10—25 × 4,5—6 мкм, с тремя — 20—67 × 4—11 мкм.

Телеоморфа — Hypomyces solani Rke. et Berth.
Поражает томаты, дыни, картофель, сахарную свеклу, гвоздику, люпин и многие другие растения.

Симптомы болезни, вредоносность, распространение и меры борьбы такие же, как у F. sambucinum, F. avenaceum и F. solani.

Источник инфекции — хламидоспоры и аскоспоры в перитециях, сохраняющиеся в пораженных растительных остатках, зерне, клубнях, семенах.

Fusarium solani (Mart.) App. et Wr. var. coeruleum (Lib.) Bhai — Фузарий пасленовый разновидность голубая (рис. 1.102)

Рис. 1.102. Fusarium solani var. coeruleum:
а — макроконидии; б — микроконидии (× 950)

Возбудитель сухой гнили картофеля.
Отличается от основного вида более мелкими макроконидиями, преимущественно с 3 перегородками, несколько суженными к основанию, 21—47 × 3,5—6 мкм, в массе от грязно-охряного до коричнево-белого цвета.
Телеоморфа — Hyphomycetes asclepiadis Zerova.
Поражает плоды томатов, корни гороха, корнеплоды сахарной свеклы, зерновки пшеницы.
Симптомы болезни, вредоносность и распространение такие же, как у F. sambucinum и F. avenaceum.
Источник инфекции — аскоспоры в перитециях и хламидоспоры, сохраняющиеся в пораженных растительных остатках, семенах, клубнях, корнеклубнях, почве.

180
Меры борьбы: предохранение клубней от повреждений при сборе урожая, транспортировке и сортировке; дезинфекция хранилищ 1 %-
ным раствором формалина и 2—3 %-ной хлорной известью; поддержа­ние в хранилищах температуры 1—3 °C и влажности воздуха 85—90 %.

*Fusarium redolens* Wr.— Фузарий пахучий (рис. 1.103)


Возбудитель гнилей различных органов растений.
Макроконидии образуются в спородохиях и пионнотах, веретеновид­но-серповидные с 3 (реже с 4 или 5) перегородками, с закругленной и тупой верхней клеткой, имеют наибольший диаметр в верхней трети, постепенно суживающиеся к основанию, с ножкой или сосочком, в массе белые, буроватые или красноватые. Размеры макроконидий с тремя перегородками — 17—51 × 3—6,5 мкм, с пятью—31—61 × 3,5 — 6,5 мкм. Микроконидии одно- или двухклеточные. Хла­мидоспоры одно-, двухклеточные, мицелиальные и конидиальные.
Поражает горох, люцерну, клевер, ячмень, лен, картофель, спар­жу, зерновки хлебных злаков, сеянцы хвойных пород.
Симптомы болезни, вредоносность, распространение и меры борь­бы такие же, как у *F. sambucinum* и *F. avenaceum*.
Источник инфекции — хламидоспоры, сохраняющиеся в пора­женных растительных остатках, почве, семенах, плодах.
**Fusarium merismoides** Cda — Фузарий мерисмовидный
Возбудитель гнилей разных органов растений.
Воздушный мицелий развит слабо или отсутствует, розово-белого цвета. Макроконидии образуются в пионнотах, кремово-светло-оранжевые, розовато-телесные, с 3—5 перегородками. Размеры макроконидий с тремя перегородками — 22—60 × 2—2,5 мкм, с пятью — 30—60 × 3—5 мкм. Микроконидии отсутствуют. Хламидоспоры образуются редко.

![Рис. 1.104. Fusarium nivale: макроконидии (X 650)](image)

Поражает многие растения, в частности хлопчатник, зерно злаков. Вызывает слизетечение деревьев и кустарников.
У хлопчатника на створках коробочек и на волокне образуются пятна с розовым налетом в виде отдельных или слившихся плотных подушечек спороношения гриба. Пораженные ткани разрушаются и загнивают.
Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у F. avenaceum и F. moniliforme.
**Fusarium nivale** (Fr.) Ces.— Фузарий снеговой (рис. 1.104)
Возбудитель снежной гнили злаков.
Мицелий паутинистый, светлый, розовый, длинноволокнистый или кустистый. Макроконидии образуются в мицелии обычно в виде порошистого налета; иногда скученные в комочки или образуют слизистый оранжевый слой, по мере высыхания темнеющий и приобретающий кирпично-красную или кирпичную окраску, при высыхании — розово-
белый. Макрообонди веретеновидно-серповидные, к обоим концам суженные и конусовидно притупленные или округлые, без ножек, редко у основания слегка перетянутые, с 1—2 перегородками, часто без перегородок. Хламидоспоры верхушечные. Размеры одноклеточных макрообонди — 5—18 × 2—4 мкм, с одной перегородкой — 9—23 × 2,2—4,5, с тремя — 13—36 × 2,4 — 4,5, с четырьмя 19—30 × 2,5—4 мкм.

Телеоморфа — Griphosphaeria nivea Müll. et Arx. (син.: Calo­nectria graminicola Wr.).

После таяния снега на листьях появляются водянистые пятна, на которых возникает сначала белый, а позже розоватый, паутинисто-пушистый нежный налет спороношения гриба. При обильном росте мицелия листья склеиваются, теряют зеленую окраску, разрушаются и отмирают. Наблюдается также отмирание листовых влагалищ и узла кущения. В патогенезе заболевания большую роль играют трихотециевые миокотоксины — ниваленол и фузаренон X, продуцируемые грибом. Жизнеспособность гриба сохраняется при 33 °С. Оптимальная температура 2—6 °С. Развитию болезни способствуют частые оттепели, высокая влажность и низкие температуры воздуха весной.

Источник инфекции — аскоспоры в перитециях и хламидоспоры, сохраняющиеся в растительных остатках, семенах, почве.

Болезнь приводит к изреживанию посевов.

Распространение: северо-западные районы европейской части СССР.

Меры борьбы: при сильном поражении болезнью — пересев или подсев яровых культур, при более слабом — подкормка весной азот­ными удобрениями; боронование посевов. [3, 9, 16, 39, 41, 44, 58, 67]

Род Cylindrocarpon Wr. — Цилиндрокарпон

Воздушный мицелий бледно-коричневый, оранжево-коричневый, пушисто-войлочный. Конидиеносцы образуются в мицелии, иногда — в спородохиях, простые или мутовчато-разветвленные. Макрообонди бесцветные, прямые или согнутые, удлиненно-цилиндрические (не серповидные), но с округлыми концами, без ножек, с 1—10 поперечными перегородками. Образуют ложные головки ярко-розового, белого, кремового, желтого цвета. Макрообонди обычно одноклеточные, овальные, яйцевидные, продолговатые. Хламидоспоры у некоторых видов отсутствуют, у других — одиночные, в цепочках или клубочках, шаровидные, бесцветные или коричневые, обычно промежуточные, редко верхушечные.

Основным отличием рода Cylindrocarpon от рода Fusarium является форма макрообонди. Они почти прямые, цилиндрические, но не серповидные, большей частью без ножки у основания, на концах закругленные.

Виды рода паразитируют в основном на древесных породах, вызывают гнили и рак.

Cylindrocarpon destructans (Zins.) Scholten — Цилиндрокарпон разрушающий (рис. 1.105)

Син.: Ramularia destructina Zins., R. macrospora Wr., Cylindrocarpon radicicola Wr.

Возбудитель гнили.

Воздушный мицелий пушисто-войлочный, серовато-белый, затем бледно-коричневый или красно-коричневый. Конидиеносцы типа фиаллид, 18—35 × 2,5—3 мкм. Макрообонди цилиндрические, с закругленными концами, прямые или слегка согнутые, с 1—3 (5) перегородками, 20—52 × 5—7,5 мкм. Хламидоспоры шаровидные, гладкие.
коричневые, 9—14 мкм в диам., одиночные или в цепочках, узелках.

Телеоморфа — Nectria radicicola Gerl. et Nils.

Поражает различные органы древесных и травянистых растений (сеянцы сосны и дуба, сою, цикламены, люцерну, эспарцет, люпин), морковь и картофель при хранении.

На коре деревьев образуются глубокие раны с наплывами по краям, возникающие вследствие усиленного размножения клеток коры под влиянием токсина гриба. Эти наплывы разрушаются и образуются раны. На пораженных семядолях всходов сои образуются язвы с кремо-

Рис. 1.105. Cylindrocarpon destructans: макроконидии (× 950)

вым или желтым налетом спороношения гриба. На корнях и семенах гриб не спороносит.

Источник инфекции — аскоспоры в перитециях и хламидоспоры, сохраняющиеся в пораженных растениях, коре, почве.

Болезнь приводит к гибели растений.

Распространение: повсеместно.

Меры борьбы: такие же, как против Fusarium lateritium [9] Cylindrocarpon heteronema (Berk. et Br.) Wr.— Цилиндрокарпоп гетеронема

Син.: Fusarium heteronema Berk. et Br., F. mali Allesch., Cylindrocarpon mali (Allesch.) Wr., C. mali var. flavus Wr.

Возбудитель рака.

Воздушный мицелий белый, пушисто-войлочный с желто-коричневыми оттенками. Макроконидии образуются на ветвистых конидиеносцах, 12—16 × 2—2,5 мкм (на отдельных коротких фиалидах),

Телеоморфа — Nectria galligena Bres.
Поражает яблоки, груши и другие плодовые культуры.
На коре больных деревьев появляются глубокие раны с наплывами по краю, которые являются следствием усиленного деления клеток коры под влиянием токсинов гриба. Деревья усыхают.
Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у C. destructans. [23, 44]

Род Tubercularia Tode — Туберкулярия
Спороложа бородавчатые, округлые, плотные, красноватые, телесного цвета, часто прорывают ткань коры. Конидиеносцы простые или неправильно разветвленные. Конидии яйцевидные, цилиндрические или шаровидные, бесцветные, в цепочках.
Виды паразитируют на древесных и кустарниковых растениях, вызывают пятнистость ягод и ветвей.
Tubercularia acinorum Cav. — Туберкулярия ягодная
Возбудитель пятнистости ягод винограда.
Спороложа рассеянные, иногда сливающиеся, телесного цвета, образуются на коричневых вдавленных пятнах. Конидиеносцы нитевидные. Конидии нитевидные, цилиндрические, 12 — 15 × 3,5 мкм, бесцветные.
Ягоды больных растений покрываются вдавленными коричневыми пятнами, на которых со временем появляются беловатые, восковидной консистенции бородавки, разбросанные или сливающиеся. Ягоды загнивают.
Источник инфекции — мицелий, сохраняющийся в пораженных растительных остатках.
Болезнь приводит к снижению урожая.
Распространение: Северный Кавказ, Закавказье.
Меры борьбы: такие же, как против Cercospora vitis.
Tubercularia rubi Rabenh.— Туберкулярия малины
Возбудитель пятнистости ветвей малины.
Спороложа кроваво-красные или цвета киновари. Конидии эллипсоидальные, 7 — 9 × 2 — 3 мкм.
На пораженных побегах образуются расплывчатые темные пятна, со временем покрывающиеся спороношением гриба красного цвета. Побеги усыхают.
Источник инфекции — мицелий и конидии, сохраняющиеся в пораженных побегах.
Распространение: повсеместно в районах произрастания.
Меры борьбы: обрезка и сжигание пораженных побегов. [44]

Род Rhacodiella Peyr. — Ракодиелла
Воздушный мицелий хорошо развит, темноокрашенный. Гифы септированные. Фиалиды бутылковидные, одиночные или собранные в муточки. Конидии выходят через верхушку фиалид, шаровидные, сначала собранные в головки, потом в цепочках.
Виды рода паразитируют на древесных и кустарниковых растениях, вызывают пятнистость.
Rhacodiella vitis Sterenberg.— Ракодиелла винограда
Возбудитель черно-буровой пятнистости виноградной лозы.
Воздушный мицелий пушистый, сероватого цвета. Гифы бурье, часто септированные (через 5—6 мкм), образуют тяжи. Конидиеносцы муточчатые. Конидии округлые или слегка яйцевидные, 2—3 мкм в диам., в массе розовые.

На побегах, под корой образуются черно-бурые пятна, со временем покрывающиеся темно-серым налетом мицелия и спороношения гриба. Побеги усыхают.

Источник инфекции — мицелий, сохраняющийся в пораженных побегах.

Болезнь приводит к снижению продуктивности растений.
Распространение: юг Украинской ССР, Закавказье.
Меры борьбы: обрезка и уничтожение пораженных побегов. [44]

Род Epicoccum Lk — Эпикоккум
Спороложа шаровидные или выпуклые, очень мелкие, черные, скученные на темно-коричневых или пурпурно-красных пятнах. Конидиеносцы короткие, окрашенные. Конидии шаровидные или эллипсоидальные, одноклеточные, темноокрашенные, бородавчатые, с ножкой.

Виды рода развиваются на древесине, листьях и стеблях различных растений, вызывают пятнистость.

Epicoccum neglectum Desm.— Эпикоккум забытый
Возбудитель пятнистости листьев кукурузы.
Спороложа полушаровидные, бархатистые, черно-коричневые, состоящие из коротких гиф, образуются на обеих поверхностях листьев, 90—100 мкм в диам. Конидиеносцы бесцветные, короткие. Конидии шаровидные, 11,4—19 мкм в диам., черно-коричневые, с грубобородавчатой оболочкой, короткой цилиндрической бесцветной ножкой.
Поражает многие виды растений. На листьях больных растений появляются расплывчатые темные пятна, впоследствии покрывающиеся темными подушечками спороношений гриба. Пораженные ткани листьев отмирают.

Развитию болезни способствует повышенная влажность и температура.
Источник инфекции — мицелий и конидии, сохраняющиеся в пораженных растительных остатках.
Болезнь приводит к уменьшению продуктивности растений.
Распространение: Украинская ССР.
Меры борьбы: опрыскивание растений 1 %-ной бордоской жидкостью или ее заменителями; уничтожение растительных остатков. [41, 44]

Epicoccum purpurascens Ehrenb.— Эпикоккум пурпурный
Возбудитель пятнистости листьев кукурузы и конопли.
Спороложа черные, шаровидные, 120—150 мкм в диам., скученные длинными рядами на пурпурных пятнах. Конидии шаровидные, сначала желтоватые, затем темно-коричневые, угловатые, 16—22 мкм в диам., у основания с небольшой бесцветной ножкой.
Симптомы болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у E. neglectum. [44]

Род Myrothecium Tode — Миротеций
Воздушный мицелий белый, впоследствии темнеющий от образующихся спородохий. Спороложа мелкие, блюдцевидные, с бесцветными щетинками или без них. Конидиеносцы развителенные, с тесно скученными фиалдами на концах коротких веточек, бесцветные или оливковые. Конидии одноклеточные, овально-цилиндрические, в массе бледно-оливковые, черные.
Виды рода паразитируют на разных растениях, вызывают черную плесень.

_Myrothecium roridum_ Tode — Миротеций росистый

Возбудитель черной плесени сои.

Спородохии сидячие, дисковидные, округлые или неправильной формы, 0,1—1,5 мм в диам., часто сливающиеся, сначала зеленые, впоследствии черные, с белой каймой, без щетинок. Конидиеносцы прямые, развителенные, бесцветные. Фиалиды булавовидные, прямые, бесцветные, сначала зеленые, затем светло-зеленые, с 1—2 каплями масла. Споровая масса впоследствии угольно-черная, склеенная слизью, образующая шаровидное или плоское плодовое тело.

Поражает томаты, картофель, люпин, фасоль, горох, хлопчатник, пшеницу, огурцы.

Болезнь проявляется на корнях, бобах и семенах сои. Семена деформируются, становятся щуплыми и трухлявыми. При помещении их во влажную камеру на них развивается налет в виде темных, сливающихся спородохий с белой мицелиальной каймой. На корнях спородохии редко, обильно спороносит при повышенной влажности воздуха и почвы.

Активно использует целлюлозу и продуцирует ряд токсинов — миротецин, роридин, верукарин, дегидроверукарин, некротицин, вызывающие увядание растений.

Источник инфекции — конидии, сохраняющиеся в почве и семенах.

Болезнь приводит к изреживанию всходов и потере урожая.

Распространение: повсеместно в районах возделывания. 

Меры борьбы: такие же, как против _Mucor mucedo_ и _Fusarium avenaceum_.

_Myrothecium verrucaria_ Ditm. : Fr. — Миротеций шиповатый

Возбудитель пятнистости огурцов.

Спороложа сидячие, без стром, до 1—1,5 мм в диам., часто сливающиеся, сначала зеленоватые, затем от оливково-зеленых до оливково-черных, без щетинок. Конидиеносцы 56—75,5 мкм дл., прямостоячие, разветвленные, тесно сближенные. Конидии лимоновидные, ладьевидные, широкоэллипсоидальные, со слегка выступающей верхушкой, усеченные у основания, гладкие, в массе — оливково-черные.

Поражает корни, стебли, листья, плоды. На завязях и плодах образуются коричневые сухие пятна разных размеров и формы, иногда охватывающие весь плод в виде перетяжек. Непораженная часть плода сохраняет нормальный цвет. В дальнейшем плоды деформируются. Листья усыхают, начиная с нижнего яруса, но не опадают.

Источник инфекции — мицелий и конидии в спороложах, сохраняющиеся в пораженных растительных остатках.

Болезнь приводит к потере урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: уничтожение пораженных растительных остатков.[36]

ПОРЯДОК MELANKONIALES — МЕЛАНКОНИАЛЬНЫЕ

Семейство _Melanconiaceae_ — Меланкониевые

Род _Colletotrichum_ Sacc. — Коллетотрих (рис. 1.107)

Спороложа погруженные, потом прорывающиеся, обычно довольно плоские, нередко сначала светлоокрашенные, потом темнеющие до темно-бурых или почти черных, снабженные бледно-бурыми или тем-
но-бурыми щетинками, развивающимися по периферии и внутри ложа. Конидиеносцы удлиненные, сначала бесцветные, потом в нижней части окрашенные. Конидии цилиндрические или продольговатые, одиночные, окрашенные или бесцветные, одноклеточные.

Телеоморфа — род Glomerella Ces. et de Not.

Представители рода вызывают антракнозы (углубленные язвы с темной каймой, на поверхности которых образуется спороношение возбудителя) и пятнистости. [7, 44, 71]

*Colletotrichum lindemuthianum* (Sacc. et Magn.) Br. et Cav.— Коллетотрих Линдемута


Возбудитель антракноза бобовых.

Известно несколько биологических рас.


Поражает фасоль, горох, кормовые бобы, сою, люпин.

На бобах, листьях, стеблях и черешках появляются бурьес трескающиеся пятна с красноватой каймой, на поверхности которых образуется розоватая или серо-бурая масса конидий. У фасоли более подвержены заболеванию молодые растения, после цветения в основном поражаются бобы. Пятна сливаются, изъявляются и покрывают весь боб, захватывая и семена, которые твердеют, сморщиваются и темнеют. Пораженные стебли переламываются. Наиболее опасно заболевание всходов. Споры прорастают при влажной погоде. Ростковая трубка споры образует аппрессорий, с помощью которого она плотно прикрепляется к кутикуле. От аппрессория отходит инфекционная гифа, внедряющаяся в клетки растения. От заражения до появления нового спороношения гриба проходит 4—7 дней. При сильном развитии болезни мицелий проникает в семена, которые теряют всхожесть или дают больные проростки, которые гибнут. Оптимальная температура для роста мицелия 18—22 °C, влажность воздуха 60 %.

Источник инфекции — мицелий, сохраняющийся в пораженных растениях.

Болезнь приводит к изреживанию посевов, потере всхожести семян, снижению урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: сбор и уничтожение растительных остатков; соблюдение севооборота; при первых признаках заболевания — опрыскивание растений 1 %-ной бордосской жидкостью ежедневно 10—12 дней; профилактика семян ТМТД (горох, фасоль, соя, люпин — 3—4 кг/т), фентиурамом (горох, соя, кормовые бобы — 4—6 кг/т; фасоль, люпин — 3—4 кг/т), тигамом (горох, соя, кормовые бобы — 4—6 кг/т; фасоль, люпин — 3—4 кг/т).

*Colletotrichum pisi* Pat.— Коллетотрих гороха

Возбудитель пятнистости гороха.

Спороложа прорывающиеся, 100—150 мкм в диам. Щетинки бурые, островерхонечные, прямые, 60 — 100 × 6 мкм. Конидии веретеноидные, с заостренными концами, прямые или согнутые, 10 — 20 × 3 — 4 мкм.

На листьях гороха появляются дымчато-серые или бурые пятна, в центре — светлее, на бобах — грязно-белые с темно-бурым
краем, 0,5−0,8 мм, на стеблях — удлиненные, изредка опоясывающие стебель.
Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у C. lindemuthianum. [7, 44]

**Colletotrichum truncatum** (Schw.) Andrus et Moore.— Коллетотрих усеченный
Возбудитель антракноза сои.
Спороложа черные, расположены полосками. Щетинки нитевидные, 60 — 300×3,5 — 8 мкм. Конидии серповидные или ланцетовидные, 18 — 30 × 3 — 4 мкм.
Поражает также фасоль.
При раннем сильном проявлении заболевания растения отстают в росте, слабо ветвятся. Корневая система почти не развивается. Растения засыхают в начале вегетационного периода. При слабо выраженному поражению растения обычно сначала внешне мало отличаются от здоровых. Но в фазе налива бобов листья на них буреют, и постепенно засыхает все растение. Бобы остаются пустыми или с 1—2 щуплыми зернами. Сначала антракноз проявляется на подсемядольном колене и семядолях всходов в виде буру-коричневых округло-удлиненных пятен или язв. В фазе налива бобов стебли (главные и боковые) и бобы буреют и покрываются обильным спороношением — черными ложами. Позднее стебли становятся белесыми, легко надламываются. Сторожки бобов к концу вегетационного периода разрушаются. При увлажнении заболевание распространяется на семена, которые покрываются грановато-серым мицелием и спороношением в виде черных лож.
Источник инфекции — мицелий, сохраняющийся в семенах и растительных остатках.
Болезнь приводит к изреживанию посевов, потере всхожести семян, сокращению урожая.
Распространение: Приморский край.
Меры борьбы: такие же, как и против C. lindemuthianum. [9, 41, 44]

**Colletotrichum orbiculare** (Berk. et Mont.) Arx.— Коллетотрих округлый
Возбудитель антракноза, или «медянки», тыквенных культур.
Спороложа плоские, чечевицеобразные, 40 мкм — 1 мм, щетинки 90—120 мкм дл. Конидии эллипсоидальные, цилиндрические, серповидно согнутые, одноклеточные, зернистые, 10—40 × 3—8 мкм.
Поражает арбузы, огурцы, реже тыквы, заразиху египетскую.
На надземных органах и корневой шейке растений появляются пятна. На листьях пятна бледно-зеленые, светлые, округлые, ограниченные, а затем сливающиеся, на плодах — бледно-зеленые, вдавленные. Пораженные ростки и листья отмирают, плоды становятся горькими, темнеют, на них образуются склерозиции. На пораженных местах образуются спороложа, приобретающие от массы конидий розовый цвет. Развитию болезни способствуют высокая влажность и температура воздуха (затененные места). Оптимальная температура 22—27 °C.
Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у C. lindemuthianum. [41, 44]

**Colletotrichum lini** Manns et Boll — Коллетотрих льна (рис. 1.106)
Син.: *Colletotrichum linicola* Pethybr. et Laff.
Возбудитель антракноза льна.
Известно несколько физиологических рас.
Спороложа малозаметные. Щетинки темно-бурые, прямые или согнутые, кверху утончающиеся, с 2—3 перегородками, 64,3—157,3 мкм дл., 2,9—7,1 мкм толщ. у основания. Конидии продолговато-цилиндрические, согнутые, с закругленными концами, 14,3 — 21,4 × 2,9 — 5,7 мкм, с каплями масла. Иногда образуются коричневые хламидоспоры, овальные или шаровидные, 10 — 12 × 10 — 15 мкм.
Заболевание проявляется во всех фазах развития растения. У проростков и всходов поражаются корешки, стебли, семядоли, на них появляются желто-оранжевые пятна, на подсемядольном колене и корневой шейке возникают язвы или перетяжки; все это приводит к гибели растений. На настоящих листьях образуются резко ограниченные сухие ржаво-оранжевые или темно-бурые пятна разной величины, вследствие чего листья буреют и опадают. Стебель буреет, на нем появляется мелкая мраморная пятнистость. Коробочки, пораженные антракнозом, темные. Оптимальная температура для роста гриба 24—26 °С, для прорастания конидий необходима капельно-жидкая влага. Хламидоспоры сохраняют жизнеспособность в семенах до 8 лет.
Источник инфекции — мицелий и хламидоспоры, сохраняющиеся в растительных остатках, почве, семенах.
Болезнь при сильном развитии приводит к недобору до 37,5 % льноволокна.
Распространение: повсеместно в районах возделывания.
Меры борьбы: протравливание семян гранозионом (1,5 кг/т) или меркурексаном (2 кг/т); подкормка всходов азотно-калийными удобрениями в сочетании с микроэлементами. [42, 44]
Colletotrichum gossypii Southw — Коллетотрих хлопчатника
Возбудитель антракноза хлопчатника.
Спороложа прорывающиеся из-под эпидермиса. Щетинки одиночные или в пучках. Конидиоспоры разветвленные, 12 — 28 × 5 мкм,

Рис. 1. 106. Colletotrichum lini:
а — мицелий и конидии; б — конидии с каплями жира; в — мицелий с аппрессориями; г — спороношение гриба по краю пораженного листа [44]
бесцветные. Конидии продолговатые, в массе розово-оранжевые, 10—20 × 4,5 — 5,5 мкм.

Телеоморфа — Glomerella gossypii Edg.

Поражаются коробочки, плодоножки, стебель и листья хлопчатника. На корневой шейке, стебельке и семядолях всходов появляются бурые пятна. Пятна разрастаются, ткань загнивает, погибает. При заболевании взрослых растений на листьях и стеблях образуются бурые пятна. При заражении в период формирования коробочек на створках образуются красно-бурые или темно-бурые пятна с красным ободком. При раннем поражении коробочки не раскрываются, волокно и семена в них склеиваются и загнивают. При поражении плодоножек коробочки опадают. Развитию болезни способствуют умеренно теплая погода и высокая влажность. За летний период гриб дает несколько генераций конидиального спороношения.

Источник инфекции — мицелий и аскоспоры в перитециях, сохраняющиеся в семенах, волокне и растительных остатках.

Болезнь приводит к выпадению всходов, изреживанию посевов, снижению урожая хлопка-сырца и семян.

Распространение: карантинный объект; повсеместно.

Меры борьбы: соблюдение карантинных мероприятий. [39, 41]

Colletotrichum atramentarium (Berk. et Br.) Taub.— Коллетотрих чернильный

Син.: Colletotrichum tabificum (Hall.) Pethybr., Vermicularia atramentaria Berk. et Br.

Возбудитель черной гнили, или антракноза.

Спороложа расположены группами, буроватые, 60 — 125 × 35—65 мкм. Щетинки темно-бурые, желтые, прямые, вверху заостренные, 20 — 340 × 2,8 — 3,8 мкм. Конидиеносцы бесцветные или буро-ватые. Конидии продолговато-цилиндрические, 15,2—22 × 3 — 5 мкм.

Поражает картофель и синие баклажаны, на других растениях — сапротроф.

Во второй половине вегетации стебли у основания покрываются почти полностью светлыми пятнами. При подсыхании стебли покрываются множеством черных точечных микросклероциев. Характерной особенностью заболевания является поражение подземной части стебля. Разрушается верхняя ткань кожуры, которая легко снимается, внутренние слои коры приобретают фиолетовую или синюю окраску. Склероции образуются на подземной части стебля, они крупные, одиночные или объединены в группы. Оптимальная температура для роста и спороношения гриба 25—26 °C, минимальная 5, максимальная 38 °C; при 32 %-ной влажности гриб погибает.

У картофеля поражаются клубни в период уборки. В столовой части клубня появляются некротические пятна темно-серого цвета с неясными очертаниями. Поражение проникает в глубь корня на 5—7 мм. Под кожей и на поверхности клубня образуются микросклероции. При повышенной температуре и влажности болезнь может протекать по типу мокрой гнили.

Источник инфекции — склероции, сохраняющиеся на отмерших растительных остатках, клубнях.

Вредоносность, распространение и меры брьбы такие же, как у C. lindemuthianum. [41, 44]

Другие вредоносные виды: C. ipomaeae Cam.— к. батата, поражает листья и стебли батата; C. corni (Woronich.) Vassil.— к. кизиловый, поражает плоды кизила; C. hibisci Poll.— к. кенафа, поражает стебли кенафа; C. phomoides (Sacc.) Chest.— к. фомовидный, поражает плоды томатов и баклажан; C. mali Woronich.— к. яблони, поражает соцеве

191
тия и кору яблони культурной; G. grossulariae Jacz.— к. крыжовника, поражает ягоды крыжовника; C. valerianae Kwaschm — к. валерианы, поражает листья валерианы; C. zeae Lob.— к. кукурузы, поражает листья кукурузы. [44]

Род Gloeosporium Desm. et Mont. — Глеоспорий (рис. 1.107)
Этот род близок роду Colletotrichum. Отличается от последнего отсутствием щетинок на спороложах. Однако в настоящее время показано, что этот признак не стабилен и зависит от внешних факторов (вида питающего растения или состава среды). Поэтому использование этого признака для разделения двух родов было поставлено под сомнение.
Телеоморфа рода Gloeosporium относится как к роду Glomerella, так и к другим родам пиреномицетов. Поэтому в настоящее время он рассматривается как сборный, не имеющий собственного статуса.
Спороложа сначала погружены под эпидермис листьев или стеблей, затем прорывающиеся, плоские или слегка выпуклые, светло- или темно-коричневые. Конидиеносцы продолговатые, яйцевидные, реже удлиненно-овальные, одноклеточные, бесцветные.
Представители рода паразитируют на многих растениях, вызывают опасные заболевания растений — антракнозы.
Gloeosporium ampelinum (DB.) Jacz.— Глеоспорий виноградный
Возбудитель пятнистого антракноза виноградной лозы.
Спороложа мелкие, точковидные, бледные, сливающиеся в сплошной спороносный слой, образуются на поверхности или внутри клеток.
в эпидермиса. Конидиеносцы цилиндрические или конические. Конидии яйцевидные или продольговатые, 3—6 × 2—3,5 мкм, склеенные слизью, при высыхании образуют на поверхности пятен розовую или оранжевую корочку.

Поражает надземные части растения. На листьях образуются мелкие бурые, с красноватыми или темно-бурым ободком пятна, затем сереющие, выпадающие, на побегах — сначала бурые, затем розовато-серые, с чернеющими краями, вскоре вдавливающиеся и растрескивающиеся, на ягодах — буро-желтые или розовато-серые, вдавленные, с пурпурной или черной каймой. Ягоды засыхают и преждевременно опадают. Болезнь быстро развивается весной в сырую погоду. За сезон гриб дает до 30 генераций спор.

Источник инфекции — мицелий, зимующий в побегах, склероциях и пикнидах, сохраняющихся в пораженных растительных остатках.

Болезнь приводит к снижению урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: обрезка и уничтожение пораженных побегов; опрыскивание растений до распускания почек 1 %-ным раствором ДНОК (20 кг/га) при температуре воздуха не выше 20 °C или 2—3 %-ным раствором нитрофина (40—60 кг/га), 2—3 %-ным раствором медного купороса (30—40 кг/га), во время вегетации — 0,4 %-ной суспензией купрозана (4—6 кг/га), цинеба, хлороксида меди, поликарбацина (6 кг/га), 0,5 %-ной суспензией каптан (5—7,5 кг/га), фталана (5—6 кг/га). [41]

Gloeosporium trifoliorum Rotmers.— Глеоспорий клевера
Возбудитель антракноза листьев клевера.
Спороложа приподнятые эпидермисом, впоследствии растрескивающиеся, 133 — 225 × 95 — 152 мкм. Конидии короткоцилиндрические, с закругленными концами, 4 — 8 × 1,5 — 2 мкм.
Пятна на листьях сначала светло-коричневые, затем почти черные, но с более светлым краем. Листья преждевременно высыхают и опадают.

Источник инфекции, вредоносность и меры борьбы такие же, как у Kabatiella caulivora.

Распространение: Архангельская область.
Gloeosporium ribis (Lib.) Mont. et Desm.— Глеоспорий смородины
Син.: Gloeosporium curvatum Oudem.
Возбудитель антракноза листьев красной и черной смородины.
Известны три специализированные формы: f. rubri Kleb.— ф. красная, паразитирует на красной смородине; f. nigri Kleb.— ф. черная, паразитирует на черной смородине; f. grossulariae Kleb.— ф. крыжовниковая, паразитирует на крыжовнике.
Спороложа расположены чаще на верхней поверхности листьев, прорывающиеся из-под эпидермиса, до 0,5 мм в диам. Конидиеносцы цилиндрические или конические, наверху утончающиеся, 12—17 × 1,5 — 3 мкм. Конидии продолговатые, слегка согнутые или серповидные, на верхнем конце утолщенные и суженные клювиком, 14—32 × 5 — 8 мкм, иногда образуют палочковидные конидии, 5—7 × 1,5 — 2 мкм.
Биологические формы отличаются морфологическими признаками и отношением к температуре.
Телеоморфа — Pseudopeziza ribis.
Поражаются в основном листья, на которых возникают желтовато-бурые пятна, охватывающие иногда весь лист, реже — побеги, ягоды и черешки. Теплая и влажная погода благоприятствует развитию болезни.
Источник инфекции — апотеции и конидии, сохраняющиеся на опавших листьях.
Распространение: Сибирь.
Вредоносность и меры борьбы такие же, как у G. ampelinum.

7, 44

Gloeosporium epicarpii Thuem. — Глеоспорий эпикарповый
Возбудитель антракноза плодов грецкого ореха.
Спорожала мелкие, рассеянные, прорывающиеся из-под эпидермиса, черноватые, блестящие. Конидиеносцы короткие, цилиндрические. Конидии веретеновидные, с заостренными концами, 12 × 4,5 мкм, или согнуто-эллипсоидальные, на концах закругленные, 12 × 6—7 мкм, с 3 каплями жира.
Плоды покрываются плоско-выпуклыми, серо-бурыми засыхающими пятнами с нерезко очерченными узкими красно-бурыми краями.
Источник инфекции, вредоносность, меры борьбы такие же, как у G. ampelinum.
Распространение: Закавказье.
Gloeosporium piperatum Ell. et Ev. emend Higg.— Глеоспорий перечный
Возбудитель антракноза стручкового перца.
Спорожала расположены внутри или под эпидермисом, прорывающиеся, желтовато-оранжевые. Конидии короткоцилиндрические, с закругленными концами, 15,5 — 18,6 × 5,4 — 6,2 мкм.
На листьях, стеблях, плодах больных растений появляются вдавленные пятна, 1—2 см в диам., сначала грязно-зеленые, затем буреют. Листья преждевременно опадают, стебли надламываются.
Источник инфекции, вредоносность, меры борьбы такие же, как и у Colletotrichum lindemuthianum.
Распространение: Украинская ССР.
Gloeosporium perennans Zeller et Childs.— Глеоспорий многолетний
Возбудитель фруктовой гнили плодов, язв, или ожога, коры яблонь.
Спорожала расположены под эпидермисом или погружены более глубоко. Конидии эллипсоидальные, на одном конце более широкие, 12 — 20 × 4 — 6 мкм. Конидии, образующиеся почкованием, искривленные, 3 — 10 × 1 — 2 мкм.
Фруктовая гниль плодов возникает при их хранении в холодильнике. Ожог коры проявляется в образовании мелких раковых язв на тонких веточках, покрывающихся подушковидными водянистыми светло-серыми спорожалами, в которых в теплое время года образуются многочисленные конидии.
Заражение растения происходит через чечевички. Патоген находится сначала в латентном состоянии, а во время хранения начинает развиваться, поражая ткани вокруг инфицированного места. Гниль медленно распространяется. На гнильных участках, под эпидермисом, развиваются спорожала, в которых образуются многочисленные конидии.
Источник инфекции, вредоносность и меры борьбы такие же, как у G. ampelinum.
Распространение: европейская часть СССР.
Gloeosporium venetum Speeg.— Глеоспорий синеватый
Возбудитель антракноза листьев и стеблей малины.
Спорожала очень мелкие, расположены одиночно или группами, мало заметны. Конидиеносцы короткие. Конидии продольговатые или эллипсоидальные, 5 — 8 × 2 — 3 мкм, выступающие наружу желтоватой слизистой массой.
194
На поверхности листа появляются мелкие, рассеянные, 1—3 мм в диам., пурпурные пятна, в середине бледные, впоследствии сливающиеся. На стеблях пятна сначала небольшие, красноватые, слегка выпуклые, вдавленные, в центре желтоватые, по краям пурпурные, сливающиеся в сплошные язвы. Листья и стебли усыхают.

Источник инфекции, вредоносность, меры борьбы такие же, как у G. ampelinum. [7, 41, 44]

Распространение: повсеместно в районах произрастания.

Род Marssonina Magn.— Марссонина

Спорожала, как у Colletotrichum и Gloeosporium, но имеют двухклеточные конидии с утолщенной верхней клеткой, часто клювовидные или суженные, яйцевидные, грушевидные, прямые или искривленные. Иногда образуются мелкие одноклеточные конидии различной формы. Многие виды рода паразитируют на листьях, черенках и плодах древесных растений, вызывают пятнистость.

Marssonina potentillae (Desm.) Magn. f. tragaria (Lib.) Ohl.— Марссонина лапчатки ф. земляничная

Возбудитель бурой пятнистости земляники. Спорожала расположены под эпидермисом, прорывающиеся, конидиеносцы мелкие, короткие, бесцветные, расположены плотным слоем. Конидии одиночные, бесцветные, двухклеточные. Верхняя клетка у верхушки клиновидно заостренная, слегка изогнутая, нижняя — цилиндрическая, 16,5 — 28 × 5 — 7,5 мкм.

Телеоморфа — Fabraca fragariae Kleb. (в СССР не обнаружена). Поражает листья, преимущественно старые, реже черешки и усы земляники. На листьях образуются крупные расплывчатые пятна, красновато-бурые, часто ограниченные жилками листа. На верхней поверхности листьев на пятнах появляются темные бляшечные мелкие подушечки — спорожала гриба. На черешках и усиках — пурпурные вдавленные пятна. Пораженные листья засыхают. Развитию болезни способствует влажная теплая погода (дожди, росы).

Источник инфекции — мицелий, реже конидии в спорожалах, сохраняющиеся на пораженных опавших и зеленых листьях земляники. Болезнь приводит к значительным потерям урожая.

Распространение: повсеместно, особенно в северо-западных и центральных районах.

Меры борьбы: уничтожение пораженных листьев; весной опрыскивание плантаций 1,5—2 %-ной суспензией нитрафина; профилактическая обработка плантаций 1 %-ной бордоской жидкостью в фазе бутонации, перед цветением и после сбора урожая. [7, 16, 41, 44]

Marssonina panattoniana (Berl.) Magn.— Марссонина Панаттони

Син.: Didymaria perforans (Ell. et Ev.) Danden. Возбудитель пятнистости листьев салата. Спорожала скученные, прорываются из-под эпидермиса. Конидии обратнобулавовидные, 11 — 20 × 3 — 4 мкм, бесцветные, на коротких конидиеносцах.

Поражает также стебли и соцветия. На пораженных органах появляются пятна 2,5 мм в диам., иногда сливающиеся, желтовато-буроватые, с темными краями. Листья преждевременно усыхают.

Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у M. potentillae.

Другие вредоносные виды: M. juglandis (Lib.) Magn. (телеморфа—Gnomonia leptostyla (Fr.) Ces. et de Not. — м. ореха, поражает листья,
черенки, побеги и плоды грецкого ореха; M. mali (Henn.) Ito — м. яблони, поражает листья и черенки сеянцев яблони, реже — взрослые деревья; M. rosae (Lib.) Died. — м. розы, поражает листья культурных и диких роз. [7, 44]

Род Kabatiella Bub. — Кабациелла

Спороложа расположены внутри эпидермиса или под ним, прорываются, очень мелкие, распространеные. Конидиеносцы тесно скученные, толстые, булавовидные, иногда разветвленные, на вершине и по бокам отчленяют несколько конидий, образующихся на мелких стеригмах.

Рис. 1.108. Kabatiella caulivora:
а — конидиеносцы с конидиями на семенах клевера красного;
б — поперечный разрез через спороложе;
в — общий вид пораженного растения [44]

Конидии почти сидячие, продолговатые, яйцевидные или веретеновидные, одноклеточные, бесцветные, часто почкующиеся.

Виды рода паразитируют на различных растениях, вызывают пятнистости и язвы листьев и других органов растений.

Kabatiella caulivora (Kirchn.) Karak.— Кабациелла стеблеядная (рис. 1.108)


Возбудитель пятнистости и язв красного клевера.

Спороложа мелкие, едва заметные. Конидиеносцы тесно скученные, цилиндрические или булавовидные, 20—30 × 4,5—7 мкм. Конидии до 8 на каждом конидиеносце, продолговатые, почти прямые, или серповидно согнутые, 8 — 24 × 2,5 — 5 мкм.

Поражает все надземные органы растения.

Пятна, образующиеся на стеблях и черешках больных листьев, 9,5—3 см дл. (иногда захватывают целые междоузлия, что обусловливает переламывание стеблей и черешков), сначала желтовато-бурые с темными краями, впоследствии чернеющие, вдавленные. На листьях сначала появляется сетчатость, позже — бурые пятна. Семена на боль-
ных растениях образуются щуплые, легковесные. Пораженное поле имеет выгоревший вид.

Источник инфекции — мицелий, сохраняющийся в пораженных растительных остатках и семенах.

Болезнь приводит к недобору зеленой массы до 40 %, семян — 50 %.

Распространение: повсеместно.

Меры борьбы: такие же, как против Colletotrichum lindemuthianum. [7, 41, 44]

Kabatiella nigricans (Atk. et Edgert.) Karak.— Кабациелла чернеющая

Син.: Exobasididopsis viciae Karak.

Возбудитель пятнистости вики.

Спороложа, расположенные на нижней поверхности листьев вдоль жилок, до 500 мкм в диам., имеют вид бородавок, на бобах — в виде слегка выпуклых коростинок. Конидиеносцы плотно скученные, толстые, цилиндрические или булавовидные, 20 — 30 × 5 — 8,5 мкм. Конидии до 8 на каждом конидиеносце, от продольговатых до почти эллипсоидальных, прямые или слегка согнутые, 11—23 × 3—4 мкм, в массе розовые, покоящиеся.

Поражает также листья, стебли и бобы.

Симптомы болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у K. caulivora.

Род Cylindrosporium Ung. — Цилиндроспорий

Спороложа в виде подушечек, выпуклые или плоские, бурые, черные, ярко-красные, беловатые, очень мелкие, различных под лупой. Конидиеносцы нитевидные, цилиндрические, бесцветные. Конидии одиночные, неокрашенные, цилиндрические, игловидные, одноклеточные или с поперечными перегородками, прямые, согнутые, выступающие на поверхность субстрата слизистым слоем.

Виды рода паразитируют, главным образом, на листьях (иногда на плодоножках и плодах) древесных и плодово-ягодных культур, вызывают пятнистость.

Cylindrosporium padi Karst.— Цилиндроспорий черемухи


Возбудитель коккомикоза плодовых косточковых культур.

Спороложа на листьях темноокрашенные, мелкие, 114—310 мкм в диам. На плодах — более крупные, с толстым базальным слоем, окруженные разорванным эпидермисом. Конидиеносцы палочковидные, конические или шиловидные, до 15 мкм дл. Конидии нитевидные, чаще согнутые, кверху постепенно суженные, с одной или несколькими перегородками, 30—67,5 × 1,5—3 мкм, иногда выступает желто-бурыми засыхающими массами.

Телеоморфа — Blumerella jaapii (Rehm) Arx. (син: Coccomyces hiemalis Higg.).

Поражает черешни, вишни, сливы, черемуху.

На верхней поверхности листьев черешен и вишен образуются пятна от красно-фиолетового до темно-коричневого цвета, 0,5—2 мм. На нижней поверхности — мелкие, беловато-розовые, ограниченные жилками листа угловатые пятна, сливающиеся в большое пятно. После осадков на них образуется масса конидий, при высыхании которой образуются бугорки. Листья преждевременно желтеют и опадают.
На плодах появляются крупные коричневые пятна с беловатым налетом спороношения гриба. Развитию болезни способствует влажная погода.

Источник инфекции — аскоспоры в апотециях, сохраняющиеся на опавших листьях. Болезнь приводит к значительным потерям урожая, уменьшению размеров плодов, зимостойкости, гибели посадок.

Распространение: повсеместно. Меры борьбы: опрыскивание деревьев и почвы под ними 3 %-ным раствором нитрафена или 1 %-ным раствором ДНОК; профилактическое опрыскивание фунгицидами: первое — после цветения, второе — через 20 дней; третье — после сбора урожая (применяют те же фунгициды, что и против Monilia cinerea). Не рекомендуется применять медленно-смываемые препараты, так как они вызывают ожоги листьев.

Cylindrosporium maculans (Bereng.) Jacz.— Цилиндроспорий шелковичный


Возбудитель пятнистости листьев шелковицы. Спороложи расположены на верхней поверхности листьев, желтобурьи или черные. Конидиеносцы цилиндрические или конические, 6 — 30 X 2,5 — 3,7 мкм, образуют плотный слой на базальном сплетении бесцветных или бурых гиф. Конидии обычно с 2—5 не всегда ясными перегородками или одноклеточные, бесцветные, 20 — 62 X 2,5 — 5 мкм.

На листьях образуются красно-коричневые, нечетко очерченные пятна, со временем сливающиеся. Листья становятся непригодными для вскармливания тутового шелкопряда.

Источник инфекции — мицелий, конидии в спороложах, сохраняющиеся в пораженных растительных остатках. Болезнь причиняет значительный ущерб щелководству. Распространение: европейская часть СССР, Закавказье. Меры борьбы: такие же, как против C. padi. [7, 41, 44]

Другие вредоносные виды: С. cydoniae (Mont.) Schoschiaschwili — ц. айвы, поражает листья айвы (Закавказье); С. juglandis Wolf.— ц. ореха, поражает листья ореха; С. mespili Woron. — ц. мушмулы, поражает листья мушмулы (Закавказье); C. rhei — ц. ревеня, поражает листья ревеня (Алтайский край); C. fragariae (Br. et Har.) Vassil.— ц. земляники, поражает листья земляники.

Род Coryneum Nees — Коринеум

Спороложи погруженные, потом прорывающиеся, плотные, черные. Конидиеносцы палочковидные. Конидии широковеретеновидные, булавовидные, с двумя или более поперечными перегородками, бурье, оливковые, медового цвета.

Виды рода — преимущественно сапрофиты, поселяющиеся на отмирающих листьях и ветвях древесных растений. Паразитных форм мало. Они проникают в ткань дерева через ранки в коре, вызывают пятнистость. Часто поселяются на коре совместно с другими грибами.

Coryneum microstictum Berk. et Br.— Коринеум мелкоточечный

Возбудитель пятнистости. Спороложи продолговатые, до 1 мм в диам., выпуклые, черные. Конидиеносцы цилиндрические, прямые, 20 — 30 X 1,5 мкм. Кони-
дни булавовидные, грушевидные или продолговатые, с заостренным нижним концом, вверху тупые или широкозакругленные, с тремя перегородками, 12 — 18 × 4 — 6,5 мкм, бледно-бурые.
Поражает живые и отмершие ветви роз, боярышника, малины, яблони.
На ветвях образуются опоясывающие пятна бурого цвета с пурпурной каймой. При отмирании коры отмечены многочисленные черные подушечки конидиального спороношения гриба. Зараженные ветви засыхают.
Источник инфекции — мицелий и конидии в спороложах, сохраняющиеся на пораженных растительных остатках.
Болезнь приводит к снижению продуктивности растений.
Распространение: европейская часть СССР.
Меры борьбы: обрезка и сжигание пораженных ветвей; опрыскивание растений теми же фунгицидами, что и Monilia cinerea. [7, 23, 41, 44]

Род Pestalotia de Not. — Песталоция (рис. 1.109)
Спороложа типа пикнид или псевдопикнид, без строматической основы. Конидии веретеновидные, прямые или согнутые, четырех-шестиклеточные. Верхняя клетка конидий несет 2—5 длинных нитевидных бесцветных щетинок. Средние клетки конидий окрашены в буроватый цвет, верхняя и нижняя — бесцветные, реже светлоокрашенные.

Виды рода встречаются на листьях и ветвях многих древесных растений как сапротрофы и паразиты. Паразитические свойства слабо выражены. Чаще всего они развиваются в тканях уже ослабленных растений, вызывают пятнистость.
Pestalotia thumenii Speg.— Песталоция Тюменя
Возбудитель пятнистости ягод винограда.
Спороложа продолговатые, приплоснутые, прорывающиеся из-под эпидермиса. Конидии клиновидные, внизу суженные, с четырьмя перегородками, с каплями масла, 35 × 6 мкм, темно-оливковые, со светлоокрашенными крайними клетками, с несимметричной верхней клеткой, с двумя бесцветными, довольно толстыми щетинками, 15 × 1,3 мкм; одна отходит от вершины, другая — сбоку, с ножкой, 5 — 10 × 2 — 2,5 мкм.

Рис. 1.109. Pestalotia malorum:
а — спороложе; б — конидия [8]
Пятна округлые, темно-оливковые, охватывают всю поверхность ягоды, со временем покрываются черным налетом спороношения. Источник инфекции — мицелий и конидии в спороложах, сохраняющиеся в растительных остатках.

Болезнь приводит к потере урожая. Распространение: Закавказье.
Меры борьбы: такие же, как против Colletotrichum vitis.

Pestalotia theae Saw. — Песталоция чая
Возбудитель серой пятнистости листьев чая.
Спороложа погруженные. Конидии темно-оливковые, с двумя неокрашенными крайними клетками и темно-коричневыми средними, с двумя широко расходящимися щетинками.
В основном поражает старые листья, может распространяться и на молодые листья, побеги и стволы, ослабляя чайный куст. На зараженных листьях появляются черные подушечки спороношения гриба на белом войлочном сплетении гиф. Болезнь имеет хронический характер; паразит постоянно находится в листьях.
Источник инфекции — мицелий и конидии в спороложах, сохраняющиеся в растительных остатках.
Болезнь приводит к значительным потерям урожая и к угнетению роста чайного куста.
Распространение: повсеместно в районах возделывания.
Меры борьбы: уничтожение растительных остатков.

Другие вредоносные виды: P. malorum Elenk. et Ohl. — п. яблоневая, поражает листья яблони (Северный Кавказ); P. breviseta Sacc. — п. короткощетинковая, поражает листва груши и яблони (Северный Кавказ); P. granati Huss. — п. гранатовая, поражает листья граната (Азербайджанская ССР); P. adusta Eli. et Ev. — п. обугленная, поражает листья вишни, сливы, груши (европейская часть СССР).

ПОРЯДОК SPHAEROPSIDALES (PYCNIDIALES) — СФЕРОПСИДАЛЬНЫЕ
Семейство Sphaeropsidaceae — Сферопсидные
Род Phoma Sp. — Фома
Пикниды шаровидные или приплюснутые, эллипсоидальные, без носика или с сосковидным устьщем конической формы; обычно погружены под эпидермис, потом прорываются, с пленчатой или кожистой оболочкой. Конидиеносцы простые, радиальные. Конидии яйцевидные, эллипсоидальные, одноклеточные, бесцветные, реже слегка желтоватые, до 15 мкм дл.
Большинство видов — сапротрофы или факультативные паразиты, проводящие часть жизненного цикла на живых растениях; поражают стебли, корни, плоды, в редких случаях листья, вызывают пятнистости, или фомозы.
Phoma betae Fr. — Фома свеклы (рис. 1.110)
Возбудитель зональной пятнистости, или фомоза, листьев, точечности стеблей и клубочков семян, сухой гнили корней; один из возбудителей корнееда сахарной свеклы и кататной гнили свеклы.
Пикниды шаровидно-приплюснутые, от светло- до темно-коричневых, 100—400 мкм в диам. Конидии яйцевидные, иногда почти шаро-
видные, бесцветные, 3,5 — 6,5 × 3 — 4 мкм, часто с 1—2 каплями масла.

Телеоморфы — Pleospora betae (Berl.) Newod., Mycosphaerella tabifical Prill. et Delacr.

Особенно часто поражает семенники свеклы, а также корешки свекловичных всходов.

На листьях нижнего яруса появляются небольшие, 3—5 мм, округлые пятна из буроватой сухой ткани, которые увеличиваются до 1—2 см концентрическими кругами. На их поверхности образуются пикниды, погруженные в ткани. Пораженные листья отмирают.

Источник инфекции — конидии в пикнидах, иногда — аскоспоры, находящиеся в пораженных растительных остатках и почве.

Болезнь приводит к снижению сахаристости, урожая семян и их всхожести.

Распространение: повсеместно в районах возделывания.

Меры борьбы: такие же, как против Cercospora betae. [16, 41, 42, 44]

Phoma exigua Desm.— Фома скудная

Возбудитель пятнистости стеблей, фомозной гнили корней и клубней картофеля.

Пикниды многочисленные, разбросанные, шаровидные, погруженные под эпидермис, черные. Конидии яйцевидные, 5—7 мкм дл. Известен на растениях 46 семейств.

Телеоморфа — Ophiobolus porphyrogonus (Tode) Sacc.

Может поражать свеклу, лен, гречиху, томаты, капусту, морковь, баклажаны, салат, люпин и другие культуры.

На клубнях появляются вдавленные охряно-бурые пятна отмершей ткани, в которой со временем появляются пустоты, заполненные серым войлочным мицелием гриба. Клубни становятся сухими и твердыми. В ткани и на ее поверхности развиваются пикниды с конидиями. На стеблях образуются удлиненные, до 8 см, расплывчатые пятна, часто охватывающие стебель, иногда в виде язв. Стебли отстают в росте и увадают, при сильном поражении переламываются. Развитию болезни способствует температура 8—16 °С и механические повреждения корня.

Источник инфекции — конидии, сохраняющиеся в растительных остатках, больных клубнях, почве.

Меры борьбы: соблюдение севооборота (не высаживать картофель после томатов, капусты, льна, подсолнечника); уничтожение ботвы; дифференцированный режим хранения клубней. [13, 16, 41, 44]

Phoma exigua Desm. f. linicola (Naum. et Vass.) Maas. — Фома скудная ф. льновая

Возбудитель пятнистости, отмирания и засыхания стеблей, или фомоза, льна.

Пикниды шаровидные, погруженные, сначала темно-бурые, затем черные, 110—120 мкм в диам. Конидии цилиндрические, удлиненно-эллипсоидальные, с закругленными концами, бесцветные, 5—7 мкм дл.

Симптомы заболевания напоминают фузариозное увядание. Внача-
ле на стебле появляются бурые пятна, не резко ограниченные в зоне корневой шейки; иногда и в середине стебля на посветлевших участках образуются темно-коричневые или черные пикниды. Пораженные ткани стебля разрушаются и размачиваются. При заражении в фазе всходов растения погибают. На корешках хорошо заметны перетяжки, корни утончаются и отмирают. Такие явления могут наблюдаться до цветения льна. После цветения пораженные растения приобретают буро-коричневый цвет с хорошо заметными пикнидами, стебель размачивается. Семена таких растений теряют всхожесть или дают ослабленные растения. Оптимальная температура для роста гриба 24 °С, влажность воздуха 70 %, pH 4—5. Засуха и повышенная среднесуточная температура воздуха снижают вирулентность гриба.

Источник инфекции — конидии в пикнидах, сохраняющиеся в почве, зараженных семенах, растительных остатках.

Болезнь приводит к уменьшению густоты стеблестоя льна, ухудшению качества льноволокна, недобору урожая соломы и семян.

Распространение: повсеместно в районах возделывания.

Меры борьбы: уничтожение растительных остатков; очистка и протравливание семян; соблюдение правил агротехники. [39, 41, 42]

**Photina rostrupii Sacc.** — Фома Рострупа

Син.: Phoma sanguinolenta Rostr.

Возбудитель фомозной гнили моркови.

Пикниды полушаровидные, черные. Конидии эллипсоидальные, 4—6 × 1,5 — 3 мкм, выступающие из пикниды извилистой коричнево-красной лентой.

Телеоморфа — Leptosphaeria rostrupii Lind.

Поражаются все органы растения, в том числе и корни. В первый год заболевание проявляется главным образом на жилках и черешках листьев, прежде всего на их нижней поверхности. На листьях сначала образуются полоски или продолговатые пятна, на которых со временем возникают темноокрашенные, почти черные, пикниды. Постепенно заболевание переходит на цветки и семена. На корнеплодах гриб причиняет наибольший ущерб во время зимнего хранения. Начинал на головке, а затем и на других частях корня появляются вдавленные пятна. Пораженная ткань на срезе корнеплода загнивает, в ячейках виден белый мицелий гриба, на поверхности пятен — многочисленные пикниды. Развитию болезни способствует теплая дождливая погода. Оптимальные условия — температура 20—25 °С, влажность 75—90%.

Источник инфекции — мицелий, конидии и аскоспоры, сохраняющиеся в зараженных семенах, растительных остатках и корнеплодах.

Болезнь приводит к выпадению всходов, снижению урожая семян, при сильном поражении — к полной гибели семенников, к усиленному развитию гнили при хранении.

Распространение: повсеместно, особенно в районах с холодным климатом.

Меры борьбы: уничтожение пораженных растений, протравливание семян ТМТД (6—8 кг/кг) или фентиурамом (3 г/кг); обработка семян перед закладкой на зимнее хранение 80 %-ным ТМТД (6—8 кг/т); соблюдение режима хранения (температура 2—3 °С). [7, 14, 16, 41, 44, 71]

**Phoma solanica Prill. et Delacr.** — Фома пасленовая

Возбудитель бурой гнили стеблей, усыхания ботвы, пуговичной гнили клубней картофеля.

Пикниды шаровидно-приплюснутые, 130 — 145 × 110—115 мкм, на пятнах конидии яйцевидные, 5 — 7 × 3 мкм.

На поверхности стеблей образуются коричневые пятна, увеличивающиеся по длине и высыхающие внутри, с тканью, заполняющейся
воздухом; посредине белые, по краям коричневые. Увеличение пятен приводит к надламыванию стеблей. На клубнях образуются темные твердые вдавленные пятна, 2,5—5 см в диам., часто похожие на пуговицы, откуда и произошло название болезни. Пораженная ткань приобретает светло-коричневую окраску, затем она темнеет, смиряется и становится черной. В отличие от фузариозной сухой гнили, в местах поражений отсутствует конидиальное спороношение в виде подушечек.

При хранении часто развивается совместно с фузариозной гнилью. Оптимальная температура для роста гриба 15—25 °С, максимальная 30, минимальная 5 °С.

Источник инфекции: конидии в пикнидах, сохраняющиеся в пораженных клубнях, растительных остатках, почве до 3 лет.

Распространение: повсеместно в районах возделывания.

Меры борьбы: уничтожение растительных остатков; предохранение клубней от механических повреждений при хранении и транспортировке; соблюдение режима хранения; соблюдение севооборота с ротацией картофеля на прежнее место не раньше чем через 4 года. [41, 44]

**Phoma Ungarn (Tode) Desn.— Фома поганка**

Возбудитель фомоза, или сухой гнили, крестоцветных культур. Пикниды образуют группы, часто сливающиеся в бугорки до 1 мм в диам. Конидии овально-цилиндрические или почти яйцевидные, иногда слегка согнутые, 4 — 6 X 1,5 — 2 мкм. Поражает рассаду, растения 1-го года жизни, маточники и семенники. На семядолях, листьях и корневой шейке образуются бурые расплывчатые пятна, на стеблях и стручках — светло-бурые с темной каймой. Пикниды развиваются на корневой шейке. Например, у капусты в основном поражаются верхние кроющие листья, на семенниках — стебли, ветви и стручки. На корнеплодах (брюкве, репе, турнепсе) образуются бурые сухие пятна с пикнидами. Развитию болезни способствует повышенная влажность и температура 20—24 °С (инкубационный период 5—8 дней).

Источник инфекции — пикноспоры в пикнидах, сохраняющиеся на пораженных растительных остатках, семенах, а также маточниках (до 2 лет).

Болезнь приводит к значительным потерям урожая семян.

Распространение: север Нечерноземной зоны, Дальний Восток, Сибирь, Казахская ССР, Северный Кавказ.


Возбудитель инфекционного усыхания, или мальсека, цитрусовых. Пикниды шаровидно-конические, развиваются на отмерших частях дерева. Под эпидермисом образуется масса конидий, выходящих из пикнид слизистым шнуром длиной до 1 мм. Пораженная древесина приобретает оранжево-красную окраску — отличительный признак этого заболевания. Гибель растения происходит из-за закупорки сосудов и выделения грибом токсинов. Прорастанию конидий благоприятствуют влажность воздуха 65—95 % и температура 2—32 °С. Инкубационный период равен 48—58 дням при температуре 12,7—22,4 °С.

Источник инфекции — пикноспоры в пикнидах, сохраняющиеся на пораженных растительных остатках, семенах.

Распространение: повсеместно.

Меры борьбы: сжигание пораженных побегов.

Другие вредоносные виды: *P. amygdali Oud.— ф. миндаля, поражает ветви миндаля; P. pomi Pass.— ф. фруктовая, поражает листья...*
и плоды айвы (Крым); P. fructicola Siemaszko — ф. фруктовая, поражает плоды слив; P. punicae Tassi — ф. граната, поражает тонкие веточки граната; P. negeriana Thuem.— ф. Негри, поражает живые листья винограда; P. jaczewskii Speschn.— ф. Ячевского, поражает ягоды винограда; P. vitis Bon.— ф. винограда, поражает стебли винограда.

Рис. 1.111. Phoma tracheiphila:
а — пикнида с выходящими конидиями; б — конидии; в — пикниды на поперечном срезе пораженной ветви [21]

Род Phomopsis Sacc. — Фомопсис

Пикниды приплюснутые, чечевицеобразные, шаровидные, конусовидные, с устьицем на верхушке. В отличие от других родов этого порядка, у фомопсис имеется небольшая строма. Конидиеносцы нитевидные или шиловидные, обычно длиннее конидий. Конидии двух типов: А-, или α-конидии,— продолговатые, яйцевидные, веретеновидные, Б-, или β-конидии,— нитевидные, серповидные, крючковидн согнутые. β-Конидии бесцветные, являются главным источником заражения; α-конидии не прорастают, их значение пока не установлено. Образование их индуцируется определенным соотношением углерода и азота в среде, температурой выше 30 °С, насыщением CO₂.

Многие виды являются конидиальными стадиями сумчатых грибов порядка Diaporthales.

Свыше 100 видов рода — паразиты, реже сапрофиты травянистых растений, деревьев и кустарников, вызывают пятнистость и сухую гниль.
Photopsis vexans (Sacc. et Syd.) Harter.— Фомопсис гибельный (рис. 1.112)
Син.: Phoma solani Halst., Ascochyta hortorum (Speg.) Sm., Phyllosticta hortorum Speg.
Возбудитель сухой гнили, или фомопсиса, синих баклажан.
Пикниды прорывающиеся, группами, снаружи черные, с шейкой, на листьях — 60—200 мкм, на плодах — 120—350 мкм в диам. α-Конидии овально-цилиндрические, 5—10 × 2 — 4 мкм, одноклеточные, бесцветные, с 2—3 каплями масла, β-конидии серповидно изогнутые, 13—28 мкм дл.

Рис. 1.112. Photopsis vexans:
а — пораженный плод; б — конидии; в — пикнида [21]

Телеоморфа — Diaporthe vexans Sacc.
Заражает все органы растения в течение всего вегетационного периода.
На пораженных органах возникают темно-коричневые пятна с более светлым краем, на которых впоследствии образуются пикниды. Пораженные плоды мумифицируются.
Гриб теплолюбив и влаголюбив. Оптимальная температура для прорастания конидий 27—37 °С, минимальная 8—9 °С. Инкубационный период — 8—12 дней при температуре 18—20 °С, при более высокой — сокращается.
Источник инфекции — аскоспоры в перитециях, пикнospоры в пикнидах, мицелий, сохраняющийся в пораженных растительных остатках, семенах.
Болезнь приводит к значительным потерям урожая.
Распространение: западные районы Грузии.
Меры борьбы: такие же, как против Phoma rostrupii. [42, 44]
Phomopsis tulasnei Sacc.— Фомопсис Туляна
Син.: Promopsis solani Grove, Phlyctena maculans Fautr.
Возбудитель сухой гнили, или фомопсиса, стеблей картофеля.
Пикниды погруженные, приплюснуто-шаровидные, около 200 мкм в диам. α-Конидии продольговато-яйцевидные, на концах притупленные, 7—9 × 2,5—3 мкм, β-конидии крючковидные, 20—27 × 1 мкм.
Симптомы болезни, вредоносность и распространение такие же, как у Phoma rostrupii.
Источник инфекции — пикноспоры в пикнидах, сохраняющиеся в пораженных растительных остатках, почве. [41, 44, 71]
Phomopsis dauci Arx.— Фомопсис моркови
Возбудитель сухой гнили, или фомопсиса, стеблей и цветков моркови.
Пикниды 200 — 360 × 90 — 150 мкм, погруженные. α-Конидии почти цилиндрические, к обоим концам суженные, округлые, бесцветные, одноклеточные, 7 — 12 × 2—4 мкм, β-конидии нитевидные, изогнутые, бесцветные, 18 — 28 × 0,6 — 1,4 мкм.
Симптомы болезни, вредоносность, распространение и меры борьбы такие же, как у Phoma rostrupii. [41, 44, 71]
Phomopsis lepistromiformis (Kuhn.) Bub.— Фомопсис лентостромовидный
Возбудитель пятнистости стеблей и черешков люпина.
Пикниды черные, 100—200 мкм в диам., полушаровидные, с сосочком. Конидии β-типа, цилиндрические, яйцевидно-ланцетовидные, 5 — 12 × 1,5 — 2 мкм.
Телеоморфа — Diaporthe lupini Harkn
Поражает также бобы и семена.
На листьях и влагалищах листьев вначале появляются небольшие удлиненные или овальные темно-бурые пятна, которые, увеличиваясь, покрывают почти весь стебель. Пораженные растения отстают в росте или погибают. Оптимальная температура для роста гриба 27,5 °С, минимальная 5, максимальная 40 °С. Оптимум pH 4,5—6.
Источник инфекции, вредоносность и меры борьбы такие же, как у P. rostrupii. [41, 44, 71]
Распространение: Белорусская ССР, Литовская ССР.
Phomopsis mori Woronich.— Фомопсис шелковицы
Возбудитель отмирания молодых побегов шелковицы.
Пикниды черные, мелкие, точковидные. Конидии α-типа, веретеновидные, одноклеточные, бесцветные, 7—9 × 3 мкм.
На ветках появляются удлиненные вдавленные светло-коричневые пятна с выпуклой каймой, которые, разрастаясь, окольцовывают ветви. Ветки отмирают. При заболевании главного стебля погибает весь саженец.
Симптомы болезни, источник инфекции, вредоносность, распространенное и меры борьбы такие же, как у P. viticola.
Распространение: повсеместно в районах произрастания. [23, 44]
Phomopsis viticola Sacc.— Фомопсис винограда
Возбудитель черной пятнистости винограда.
Пикниды погружены под эпидермис, продольговато-шаровидные, до 400 мкм дл., прорываются верхушкой, α-Конидии эллипсоидально-веретеновидные, на одном конце слегка утончающиеся, 7—10,4 × 3,5—4 мкм, β-конидии нитевидные, слегка изогнутые, 20 × 0,7 мкм.

206
Весной, в холодную и влажную погоду в базальной части молодых побегов появляются продолговатые черные пятна. На листьях и череш­ках также появляются угловатые темноокрашенные пятна. Листья жел­теют и опадают. При осеннем и зимнем заражении наблюдается окра­шивание древесины лозы в сероватый цвет. Затем лоза покрывается пикнидами гриба, а ниже расположенная часть растрескивается, глаз­ки у основания побега отмирают.

Источник инфекции — пикноспоры в пикнидах, сохраняющиеся в пораженных растительных остатках и почве.

Болезнь приводит к снижению продуктивности растений и сниже­нию урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: уничтожение пораженных растений. [23, 44, 71]

Phomopsis sojae Lehm. — Фомопсис сои

Возбудитель ожога стеблей сои.

Пикниды шаровидные, погруженные, 112—542 X 98—385 мкм.

β-Конидии нитевидные, бесцветные, одноклеточные, 4,9—9,8 X 
X 1,8 — 3,2 мкм

Телеоморфа — Diaporthe phaseolorum Sacc. var. sojae Wehn.

Поражает также фасоль. Болезнь может развиваться на всех органах в любой фазе вегетации. У всходов загнивают корни и семядоли, расте­ния отмирают. На листьях, бобах и стеблях образуются бурые вдавлен­ные пятна, порой опоясывающие весь стебель. Сильно пораженные листья усыхают, но не опадают, бобы ссыхаются и растрескиваются, семена покрываются буро-фиолетовыми пятнами. Развитию болезни способствует температура 25° С и повышенная влажность воздуха.

Источник инфекции — пикноспоры в пикнидах, аскоспоры в пе­ритециях, мицелий, сохраняющиеся в пораженных растительных остатках.

Болезнь приводит к значительным потерям урожая.

Распространение: карантинный объект; Дальний Восток.

Меры борьбы: соблюдение карантинных мероприятий.

Другие вредоносные виды: P. cinerescens (Sacc.) Trav. — ф. светло­пепельно-серый поражает ветви инжира; P. sarmentella (Sacc.) Trav. — ф. хмеля (телеоморфа — Diaporthe sarmenticola Sacc.), поражает стебли хмеля; P. juglandina (Sacc.) Hoehn. — ф. ореховый, поражает ветви и околоплодники греческого ореха; P. osmanthi Dzhalag. — ф. ос­мантовый, поражает маслину европейскую, вызывая усыхание ветвей; P. ambiguа Trav. — ф. сомнительный, поражает ветви груши и яблони, плоды мушмулы; P. ribesia (Sacc.) Died. — ф. смородиновый (телео­морфа — Diaporthe pungens Nitschke), поражает ветви крыжовника и смородины.

Род Phyllosticta Pers. — Филлостикта

Пикниды шаровидные, полушаровидные или конусовидные, приплюс­нурные, образуются на верхней поверхности листьев, сначала покрыты эпидермисом, затем прорывают, с хорошо выраженным устьем. Кониденосцы простые. Конидии мелкие, яйцевидные, эллипсоидаль­ные, продолговато-эллипсоидальные, цилиндрические, прямые, реже изогнутые, одноклеточные, бесцветные

Конидии погружены в слизистое вещество, которое при наличии влаги набухает, и тогда конидии в виде белой, иногда розовой или сероватой ленты вытесняются из пикниды. Освобождаясь, лента кони­дий, склеенных слизы, причудливо изгибаются, напоминая завитки

207
спирали. Попадая на лист, при благоприятных условиях конидии прорастают. Перед прорастанием они набухают, ростковые трубки простираются вдоль поверхности листа, затем проникают в подустойчивую полость и в ткань листа. Иногда гифа внедряется в водные устьица — гидатоды, служащие для выделения капельно-жидкой воды в процессе гуттации.

Известно более 500 фитопатогенных видов.

Виды рода — паразиты высших растений, особенно плодовых и плодово-ягодных культур, — вызывают филлостиктоз — образование на листьях округлых, продолговатых или угловатых, иногда выпадающих пятен, часто резко ограниченных от неповрежденной ткани более темной узкой или широкой каймой.

Телеоморфа — виды семейства Mycosphaerellaceae.

Phyllosticta cannabis Speg.— Филлостикта конопли

Возбудитель филлостиктоза конопли.

Пикниды приплюснутые, с хорошо видным устьицем. Конидии одноклеточные, эллипсоидально-цилиндрические, прямые или слегка согнутые.

Телеоморфа — Mycosphaerella cannabis Rehe.

На верхней поверхности листьев образуются округлые пятна, сначала темно-коричневые, затем светлеющие, в красно-буруй каймой. В центре их формируются черные пикниды. При сильном развитии болезни листья быстро желтеют и опадают.

Источник инфекции — аскоспоры в клейстотециях и пикноспоры в пикнидах, сохраняющиеся в пораженных растительных остатках и почве.

Болезнь приводит к значительному снижению урожая, ухудшению качества волокна.

Распространение: повсеместно в районах возделывания.

Меры борьбы: уничтожение растительных остатков, соблюдение севооборота; при первых признаках болезни — двукратное опрыскивание растений 1 %-ной бордоской жидкостью (с интервалом 10—15 дней).

Phyllosticta helianthi Ell. et Ev.— Филлостикта подсолнечника

Возбудитель филлостиктоза подсолнечника.

Пикниды образуются на верхней поверхности листьев, коричневые, погруженные, шаровидные, 90—140 мкм в диам. Конидии бесцветные, цилиндрические, с закругленными концами, 5—7 X 1—1,5 мкм.

На верхней поверхности листьев появляются сначала светлые, затем темно-коричневые расплывчатые пятна, ограниченные жилками листа. Со временем они сливаются, охватывая большую площадь листа. Листья усыхают. Болезнь прогрессирует во второй половине лета.

Развитию заболевания способствует влажная и теплая погода.

Источник инфекции — пикноспоры в пикнидах, сохраняющиеся на пораженных растительных остатках.

Болезнь приводит к снижению урожая зеленой массы и семян.

Распространение: Дальний Восток.

Меры борьбы: такие же, как против P. eannabis. [44]

Phyllosticta humuli Sacc. et Speg. — Филлостикта хмеля

Возбудитель первого типа филлостиктоза хмеля.

Пикниды приплюснутые, с тонкой оболочкой, 80—120 мкм в диам. Конидии продолговатые, закругленными концами, прямые или слегка согнутые, 6—9 X 4,5 мкм, бесцветные. Образуются на обеих поверхностях листьев.

На молодых листьях появляются пятна, сначала темно-зеленые, позже беловатые, четко ограниченные жилками листа, неправильной формы, до 1 см шир.
Развитию болезни способствует повышенная влажность воздуха. Источник инфекции — пикноспоры в пикнидах, сохраняющиеся на опавших листьях.

Распространение: повсеместно в районах произрастания.
Меры борьбы: такие же, как против P. cannabis. [41, 42, 44, 71]

Phyllosticta lupulina Kab. et Bub. — Филлостикта хмеля мелкоклодная

Возбудитель второго типа филлостиктоза хмеля.
Пикниды расположены на верхней поверхности листьев, чёрные, шаровидные, 50—70 мкм в диам., с красно-коричневой оболочкой. Конидии бесцветные, округлые, яйцевидно-эллипсоидальные, 3—7 × 2,5—3 мкм.

На листьях разного возраста появляются пятна, беловато-серые, с узкой пурпурно-коричневой каймой.
Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у P. humuli. [41, 42, 44]

Phyllosticta avenae Lob. — Филлостикта овса (рис. 1.113)

Возбудитель пятнистости, или филлостиктоза овса посевного.
Пикниды образуются на обеих поверхностях листьев, до 100 мкм в диам. Клетки оболочки темно-коричневые, угловатые, около 5—6,5 мкм в диам., у устьиц более мелкие. Конидии продолговато-эллипсоидальные, с закругленными краями, бесцветные, 4,2—7,2 × 1,6—2,0 мкм.

Распространение: повсеместно в районах возделывания.
На нижних листьях образуются светло-зелёные, со временем увеличивающиеся пятна, охватывающие всю пластинку листа и приобретающие темно-серую окраску, с пурпурной каймой. Листья усыхают и преждевременно опадают.
Источник инфекции — пикноспоры в пикнидах, зимующие на пораженных растительных остатках.
Болезнь приводит к снижению продуктивности растений.
Распространение: повсеместно в районах возделывания.
Меры борьбы: такие же, как против P. cannabis. [39, 41, 44, 71]

Phyllosticta sojicola Massai. — Филлостикта союлюбная
Син.: Phyllosticta glycineum Tehon et Daniels.
Возбудитель оливковой пятнистости, или филлостиктоза, сои.
Пикниды мелкие, чёрные, шаровидные, 100—150 мкм в диам., образуются на верхней поверхности листьев. Конидии округло-цилиндрические, 5—10 × 2—3,5 мкм, обычно с 2—3 каплями жира, бесцветные.
Телеоморфа — Pleosphaerulina sojicola Miura.
Листья покрываются отдельными мелкими пятнами светло-зелёного цвета, которые, увеличиваясь, становятся темно-серыми, с коричневой или пурпурной каймой. Середина пятна со временем светлеет, и на ней обнаруживаются пикниды. Наибольшее развитие болезнь имеет в фазах цветения — плодообразования. В фазе созревания поражаются листья нижнего яруса. Развитию заболевания способствует сухая жаркая погода.
Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у P. cannabis. [9, 44]
Phyllosticta cucurbitacearum Sacc.— Филлостикта тыквенных
Возбудитель филлостиктоза огурцов и тыквы.
Пикниды 80—100 мкм в диам., линзовидные. Конидии продолговатые, на концах туповатые, согнутые, с 2 каплями масла, 5—6 × 2—3 мкм, бесцветные.
Листья покрываются пятнами разной формы, которые при высихании становятся грязно-беловатыми, усыхают и преждевременно опадают.
Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у P. cannabis.
Phyllosticta gossypina Ell. et Mart.— Филлостикта хлопчатниковая
Возбудитель филлостиктоза хлопчатника.
Пикниды шаровидные, 60—95 мкм в диам., с округлым устьицем, образуются на верхней поверхности листьев, немногочисленные. Конидии яйцевидные, 2,5—3,5 × 1,5—2,5 мкм, бесцветные. Листья покрываются расплывчатыми коричневыми пятнами, с широкой рыжевато-бурной каймой, усыхают и преждевременно опадают.
Источник инфекции, вредоносность и меры борьбы такие же, как у P. cannabis.
Распространение: Средняя Азия. [41]
Другие вредоносные виды: P. medicaginis Sacc.— ф. люцерны, поражает листья люцерны; P. onobrychidis Panass.— ф. эспарцета, поражает листья эспарцета; P. sorghina Sacc.— ф. сорго, поражает просо обыкновенное; P. spinaciae Zimm.— ф. шпината, поражает листья шпината; P. acetosa Sacc.— ф. шавеля, поражает листья шавеля; P. trifoliorum Barbarina — ф. клевера, поражает листья клевера; P. viciae Cke.— ф. вики, поражает листья вики; P. nicotianae Eli. et Ev.— ф. табака, поражает листья табака; P. allicola Lob.— ф. лука, поражает листья лука репчатого; P. brassicae West.— ф. капусты, поражает листья капусты; P. lycopersici Peck.— ф. помидоров, поражает листья рассады томатов; P. zeina Panasenko — ф. кукурузы, поражает листья кукурузы; P. solani Ell. et Mart.— ф. пасленовых, поражает листья томатов и картофеля. [44]

Род Ascochyta Lid.— Аскохита
Пикниды шаровидные или приплюснутые, с простым округлым отверстием (порусом) или с разнообразными по форме устьицами.; погруженные в ткани листьев, стеблей, плодов и других органов растений. Конидии разнообразной формы и размеров: цилиндрические, веретеновидные, яйцевидные, прямые или слегка изогнутые, двухклеточные, бесцветные или желтовато-зеленоватые, иногда слегка дымчатые. У некоторых видов они образуются путем деления нижней клетки трехклеточных конидий.
Включает свыше 500 видов. Виды рода — паразиты растений (особенно бобовых, розоцветных, сложноцветных, пасленовых), вызывают пятнистости, или аскохитозы, разных органов растений. [21]
Ascochyta pisi Lib.— Аскохита гороха (рис. 1.114)
Возбудитель бледного аскохитоза гороха.
Пикниды шаровидные, слегка приплюснутые, скученные в центре, пятна до 210 мкм в диам., светло- или темно-коричневые. Конидии продольговатые, с закругленными концами, несимметричные, слегка изогнутые, с легкой перетяжкой, 9,6—19 × 3,5—6 мкм, с одной, редко с двумя или тремя перегородками.
На листьях болезнь проявляется в виде желтоватых, а затем бурных пятен с темно-каштановой каймой; на стеблях — пятна такие же, но
вытянуты в длину. Семена заболевших растений щуплые, морщинистые с коричневыми пятнами. В центре пятна образуются темно-коричневые пикниды. Иногда при заражении растений в конце вегетации на бобах и стеблях пятна не образуются, а на их поверхности появляются многочисленные пикниды. Оптимальная температура для прорастания ко- нидий 24 °С, минимальная 14, максимальная 30 °С. Для заражения оптимальна температура 18—20 °С.

Источник инфекции — пикноспоры, сохраняющиеся на пораженных растительных остатках, семенах, почве.

Болезнь приводит к выпадению всходов, задержке развития растений, преждевременному усыханию и опаданию листьев, неравномерному созреванию семян. Недобор урожая зеленой массы может составлять 30—50 ц/га, зерна — 2—7 ц/га.

Распространение: повсеместно в районах возделывания.

Меры борьбы: соблюдение севооборота; удаление послеуборочных остатков; выращивание устойчивых сортов; противрявивание семян (за 3—5 мес до посева) 80 %-ным раствором ТМТД (3—4 кг/т) или 65 %-ным раствором фентиурара (4—6 кг/т); кондиционные по влажности семена лучше противрявивать с увлажнением (5 л воды на 1 т) и припятителями; известкование кислых подзолистых почв; внесение фосфорно-калийных удобрений; на семенных участках — двукратное опрыскивание посевов 1 %-ной бордоской жидкостью (с интервалом 10—12 дней). [14, 16, 39, 41, 44]

Ascochyta pinodes (Berk. et Blox.) L. K. Jones — Аскохита пинодес

Возбудитель темного аскохитоза гороха

Пикниды бледно- или темно-коричневые, 65—180 мкм в диам. Козиции бесцветные, продолговатые, прямые или слегка согнутые, с одной (до трех) перегородкой, 10—21 × 2,7—6,1 мкм.

Телеоморфа — Mycosphaerella pinodes (Berk. et Blox.) Mig.

Поражает ряд других растений.

На листьях, стеблях, бобах и семенах гороха появляются темно-коричневые пятна неправильной формы, 0,5—0,7 мм в диам.; на стеблях и корневой шейке — более мелкие, пурпурно-коричневые или темно-коричневые пятна, особенно многочисленные на узлах. На пораженных стеблях часто образуются язвообразные углубления, на всходах чернеет и загнивает корневая шейка. Оптимальная температура для заражения 16—20 °С. Споры возбудителя прорастают при влажности воздуха выше 90 %. Инкубационный период — 2—4 сут.

Источник инфекции — аскоспоры в перитециях, пикноспоры в пикнидах, мицелий, сохраняющиеся в пораженных растительных остатках, семенах, почве.

Вредоносность, распространение и меры борьбы такие же, как у A. pisi. [6, 39, 44]

Ascochyta pisi cola Sacc.— Аскохита гороховолюбная

Возбудитель сливающегося аскохитоза гороха.

Пикниды черные, 100—210 мкм в диам. Козиции одно-, двухклеточны, бесцветные, 9,5—12 × 3—5,5 мкм.
Болезнь проявляется на листвах и стеблях в виде округлых светлоокрашенных, часто сливающихся пятен с темной каймой. Листья преждевременно отмирают. Развитию болезни способствуют повышенная влажность и температура воздуха 20—25 °С. Инкубационный период — 6—8 сут.

Источник инфекции и меры борьбы такие же, как у A. pisi.

Болезнь приводит к изжению всходов, задержке развития растений и созревания семян.

Распространение: повсеместно в районах возделывания. [39, 44]

Ascochyta sojicola Abramov — Аскохита сои

Возбудитель пятнистости бобов и стеблей сои.

Пикниды коричневые, слегка приплюснутые, 90—220 (160) мкм в диам., с темным устьицем. Конидии цилиндрические, иногда эллипсоидальные, с закругленными концами, слегка перетянутые, 8—11 × 3—5 мкм.

Поражаются листья, бобы, стебли во всех фазах развития. На семенах образуются темно-коричневые пятна и язвообразные углубления с темным ободком; на листьях — крупные, до 1 см в диам., округлые, серовато-белесые пятна с бурой каймой. Часто пораженные участки листа выпадают, остаются лишь бурые окаймленные пятна. На пятах, на верхней поверхности листьев образуются пикниды, погруженные в ткань и располагающиеся концентрическими кругами. Пораженные стебли расщепляются на продольные полоски. Створки бобов становятся трухлявыми и белесоватыми. Семена разрушаются или не развиваются.

Источник инфекции и меры борьбы такие же, как у A. pisi.

Болезнь приводит к недобору 15—20 % урожая зерна (во влажные годы), низкой всхожести семян.

Распространение: Приморский край, Хабаровский край, Амурская область. [6, 9, 39, 44]

Ascochyta helianthi Abramov — Аскохита подсолнечника

Возбудитель черной пятнистости, или аскохитоза, подсолнечника.

Пикниды точковидные, до 200 мкм в диам. Конидии цилиндрические, 10—12 × 3—4 мкм, с одной перегородкой, бесцветные, с перетяжкой.

На листьях, стеблях и корзинках появляются темно-бурые почти черные пятна, округлые или неправильной формы, 1—2 см шир. Листья преждевременно отмирают. Болезнь усиливается во влажные годы.

Источник инфекции — пикноспоры в пикнидах, мицелий, сохраняющиеся на пораженных растительных остатках, семенах, почве.

Болезнь приводит к ослаблению растений, снижению их продуктивности.

Распространение и меры борьбы такие же, как у A. pisi [39, 41, 42, 44, 71]

Ascochyta linicola Naum. et Wassil — Аскохита льна

Возбудитель аскохитоза льна.

Пикниды шаровидные или удлиненные, приплюснутые, 110—160 мкм в диам., 80—100 мкм выс., погруженные. Конидии одноклеточные, 5—7 × 2—2,6 мкм.

Болезнь проявляется на стеблях и коробочках в виде прозрачных, бурых, слегка вдавленных пятен без резких очертаний. Часто бурье пятна разрастаются и охватывают весь стебель. Поражение корневой шейки приводит к гибели растения. Заражению растений и развитию болезни способствует повышенная влажность почвы и воздуха. Гриб проникает в стебель до цветения.

Источник инфекции — пикноспоры в пикнидах, сохраняющиеся в семенах и растительных остатках.
Болезнь приводит к изреживанию посевов и снижению качества волокна.
Распространение: северо-западные и центральные районы СССР.
Меры борьбы: такие же, как против A. pisi. [39, 41, 42, 44, 71]
Ascochyta betae Prill. et Delacr.— Аскохита свеклы
Возбудитель пятнистости листьев и крапчатости клубочков и корней.
Пикидны темно-оливковые, округлые, 120—130 мкм в диам. Конидии сначала одноклеточные, яйцевидные, потом двухклеточные, цилиндрически-ядовидные, 9—12 X 5—3 мкм.
Первые признаки болезни — потемнение сначала узлов стеблей, затем междоузлий. Пораженная ткань покрывается темными точками (пикnidами), высыхает. При поражении прикорневой части стебля рас тение увядает и усыхает. На листьях и плодах образуются желто-бу рье пятна, покрывающиеся пикnidами. Развитию болезни способ ствуют резкие колебания температуры и влажности воздуха, недоста ток освещения и загущенность посевов.
Источник инфекции — аскоспоры в перитициях, сохраняющиеся на пораженных растительных остатках.
Распространение: повсеместно в районах возделывания.
Меры борьбы: дезинфекция почвы в теплицах; соблюдение агroteхники выращивания. [41, 42, 44, 71]
Ascochyta cucuris Fautr. et Roum.— Аскохита огуречная
Син.: Ascochyta melonis Pot., A. citrullina Sm., Macrophoma decorticans Allesch., M. cucurbitacearum Trav., Diplodina citrullina Grossenb.
Возбудитель пятнистости и черной стеблевой гнили тыквенных.
Пикидны разбросаны на верхней поверхности листьев, светло или темно-коричневые, до 200 мкм в диам., прорываются из-под эпидермиса. Конидии продолговато-эллипсоидальные или почти цилиндричес кие, с одной перегородкой, 7—18 X 3—6 мкм, с перетяжкой, бес цветные.
Телеоморфа — Didymella bryoniae (Fuckel.) Rehm. (Mycosphaerella melonis Ferr.)
Поражает огурцы, дыни, тыквы, арбузы.
Черная стеблевая гниль возникает на стеблях и других надземных органах, на корневой шейке, пятнистость развивается на семядолях, семенах. Листья преждевременно опадают, стебли надламываются, плоды мумифицируются.
Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у A. pisi. [44]
Другие вредоносные виды: A. arachidis Woronich — a. арахиса, поражает листья арахиса; A. rusticana Kab. et Bub.— a. хrena крупно споровая, поражает листья хрена; A. batatae Chochr. et Djurinsky — a. батата мелкоспоро вой, поражает листья батата; A. brassicae rapae Bond.-Mont.— a. репы, поражает листья репы; A. capsici Bond.-Mont.— a. стручкового перца, поражает листья перца; A. fragariae Sacc.— a. земляники, поражает листья клубники и земляники; A. abelmoshi Hart.— a. кенафа, поражает листья кенафы; A. lentis Wissal.— a. чечеви цная, поражает листья чечевицы; A. imperfecta Peck.— a. несовершенная, поражает листья и стебли люцерны посевной; A. lupinicola Petrak.— a. люпина, поражает листья люпина; A. rabiei Labr.— a. нута, поражает стебли, листья и бобы нута; A. olorichidis Bond.-Mont.— a. эспарцета, поражает листья, стебли, черешки эспарцета; A. viciae Lib.— a. вики, поражает листья, стебли и бобы вики; A. phaseolarum Sacc. и A. boltshauseri Sacc.— a. фасоли и a. масла, поражают листья
и бобы фасоли и маня; A. fabae Speg.— а. кормовых бобов, поражает листья, стебли и плоды кормовых бобов; A. trifolii Bond. et Trussova — а. клевера, поражается листья и стебли клевера; A. zeina Sacc.— а. кукурузы, поражает листья кукурузы; A. sorghi Sacc.— а. сорго, поражает листья сорго, ячменя, овса, ржи, пшеницы и диких злаков.

Род Septoria Fr.— Септория

Пикниды разной формы, погруженные под эпидермисом. Конидии веретеновидные, цилиндрические, игольчатые, нитевидные, прямые или согнутые, бесцветные, с большим числом перегородок или без них. Конидиеносцы отсутствуют или очень короткие.

Рис. 1.115. Возбудители септориоза зонтичных:

а — конидии разных видов; б — пикнида в разрезе; 1 — Septoria api (септория сельдерея); 2 — S. cauli (септория тмина); 3 — S. umbelliferum (септория зонтичных); 4 — S. pastinacina; 5 — S. pastinaceae (септория пастернака); 6 — S. petroselini (септория петрушки) [21]

Отдельные виды рода являются конидиальными стадиями сумчатых грибов семейства Mycosphaerellaceae.

Включает около 2000 видов. Виды рода — факультативные паразиты или сапротрофы растений, особенно злаковых, сложноцветных, розоцветных, зонтичных (рис. 1.115); вызывают септориозы — образование бурых пятен на листьях. Имеются как узкоспециализированные, так и широкоспециализированные виды. Распространение септориозов в последние десятилетия увеличилось. [40, 68]
Septoria graminum Desm.— Септория злаков
Возбудитель листового септориоза злаковых.
Пикниды многочисленные, 150 мкм в диам., с устьицем 25 мкм шир. Конидии нитевидные, прямые или закрученные, с нечеткими перегородками, 50—75 × 1—1,5 мкм.
Особенно часто поражает озимую пшеницу.
Первые признаки болезни обнаруживаются в фазе кущения, максимум развития — в фазе колошения. На листьях, стеблях и колосьях образуются светло-желтые или бурые слабо выраженные пятна с темным ободком, на которых формируются черные мелкие пикниды. Листва бледнеют, смираются, часто перегибаются и отмирают. Колосья становятся пестрыми, иногда бурыми, зерно в колосе часто шуплое. Больные растения отстают в росте, сильно кустятся, колос укорачивается. Развитию болезни способствуют повышенные влажность (частые осадки) и температура 20—23 °С. Конидии сохраняют жизнеспособность в течение 1,5 года.
Источник инфекции — пикноспоры в пикнидах, сохраняющиеся в пораженных растительных остатках.
Болезнь приводит к уменьшению ассимиляционной поверхности листьев, недоразвитию колоса, преждевременному дозреванию хлебов; недобор зерна может составлять 30 %. 
Распространение: повсеместно в районах возделывания.
Меры борьбы: выращивание устойчивых сортов; своевременная сортосмена; внесение полного минерального удобрения; протравливание семян такими же препаратами, как Тилетия карис. [39, 40, 41, 44, 71]

Séptoria tritici Rob. et Desm.— Септория пшеницы
Возбудитель септориоза всходов пшеницы.
Пикниды золотисто-коричневые, приплюснутые, эллипсоидальные, 100—150 мкм в диам., с устьицем. Конидиеносцы узкобутылковидные, 5—13 × 1,5—3 мкм. Конидии двух типов: макроконидии, обратнобулавовидно-нитчатые, 35 — 98 × 1,4—2,8 мкм, бесцветные; микроконидии, согнутые (крючковатые) без перегородок, 5—9 × 0,3—1 мкм.
Поражает также рожь. На стеблях появляются продолговатые, соломенного цвета пятна, точечные от многочисленных пикнид. При сильном поражении стебли перегибаются.
Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у S. graminum. [5, 6, 39, 40, 44, 68]

Septoria nodorum Berk.— Септория узелковая 
Сино.: Septoria glumarum Pass., Phoma hennebergi Kuhn., Macrophoma hennebergi (Kuhn.) Berl. et Vogl.
Возбудитель чешуйчатого и колоскового септориоза пшеницы.
Пикниды 140—210 мкм в диам., расположены вдоль жилок, прорывающиеся. Конидии двух типов: макроконидии, обратнобулавовидно-нитчатые, 35 — 98 × 1,4—2,8 мкм, бесцветные; микроконидии, согнутые (крючковатые) без перегородок, 5—9 × 0,3—1 мкм.
Пятна на колеоптиле появляются через 2—4 недели после всходов в виде коричневых штрихов, достигающих верхушки и охватывающих весь колеоптил. Весной поражаются влагалища листьев, на которых появляются темно-коричневые участки, чередующиеся с более светлыми. На пластинках листьев образуются коричневые пятнышки. Лист отмирает. Поражаются и соломинки, на которых пятна, увеличиваясь, занимают большую часть междоузлия. Характерным признаком является то, что верхнее междоузлие остается зеленым, а пикниды располагаются на нижнем. Чешуйки буреют в части, не покрытой колосковой чешуей. Стержень колоса буреет у основания. Зерновки после стадии 215
молочной зрелости сморщиваются, темнеют, становятся стекловидными, с более глубокой бороздкой. Развитию заболевания способствует высокая влажность воздуха.

Источник инфекции — пикноспоры в пикнидах, сохраняющиеся на растительных остатках, зерне.

Болезнь приводит к значительным потерям урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: такие же, как против Tilletia caries. [41]

Septoria hordei Jacz.— Септория ячменя
Возбудитель белой пятнистости, или септориоза, листьев ячменя. Пикниды 125—200 мкм в диам. Конидии 25—35 × 3—3,5 мкм. Симптомы болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у S. graminum.

Septoria avenae Frank.— Септория овса
Син.: Stagonospora avenae Sm. et Ramsb.
Возбудитель белой пятнистости, или септориоза, листвьев овса. Пикниды расположены на пятнах под устьицами, точковидные, образуют продольные ряды, 90—150 мкм, коричневые, шаровидные, с устьицами. Конидии бесцветные, палочковидные, прямые или согнутые, 20—45 × 3—4 мкм, с тремя перегородками. Телеоморфа — Leptosphaeria avenaria Weber.

Симптомы болезни, источник инфекции, вредоносность, распространение и меры борьбы такие же, как у S. graminum. [44]

Septoria lycopersici Speg.— Септория помидоровая
Возбудитель белой пятнистости, или септориоза, томатов. Пикниды расположены на обеих поверхностях листьев, коричнево-черные, 100—160 мкм в диам. Конидии нитевидно-цилиндрические, 32—130 × 1,5—3 мкм, с неясными перегородками. В цикле развития гриба имеется только конидиальная стадия. Конидии отклоняются от одних и тех же конидиеносцев несколько раз. За лето гриб дает несколько поколений. Освобождение конидий происходит во время дождя или при выпадении росы. Поражается рассада в парниках, взрослые растения — в открытом грунте.

На листьях, стеблях, иногда на плодах образуются серовато-коричневые с зелено-коричневой каймой пятна 2—3 мм в диам. расширяющиеся и сливающиеся. Поражаются сначала нижние, затем верхние листья, остаются незатронутыми лишь верхушки. На плодах появляются пятна, сходные с пятнами на листьях, но с еще более резко выраженной каймой и еще более светлым центром. В парниках болезнь имеет очаговый характер. Распространению гриба способствуют высокая влажность воздуха, обилие осадков (влагость 77—94 %), умеренная температура (15—27 °С). Инкубационный период — 8—14 дней.

Источник инфекции — пикноспоры в пикнидах, сохраняющиеся в пораженных растительных остатках, плодах, почве.

Болезнь приводит к значительным потерям урожая.

Распространение: районы с повышенной влажностью.

Меры борьбы: соблюдение севооборота с ротацией томата на прежнее место не ранее чем через 3 года; дезинфекция почвы в парниках; при первых признаках болезни — опрыскивание растений такими же фунгицидами, как Fulvia fulva.

Septoria humuli West.— Септория хмеля
Син.: Septoria humulina Bond.
Возбудитель септориоза хмеля. Пикниды расположены на верхней, реже на нижней поверхности листвьев, 90—100 мкм в диам., светло-коричневые. Конидии нитевид-
ные, одноклеточные, иногда с одной — тремя перегородками, 25 — 40 × 1—1,5 мкм.
На листьях появляются мелкие бледно-коричневые пятна неправильной формы. Листья усыхают и преждевременно опадают.
Источник инфекции — зараженные пикноспорами листья. Болезнь приводит к ослаблению растений и снижению их продуктивности.
Распространение: повсеместно в районах выращивания.
Меры борьбы: такие же, как против Phoma humili.
Другие вредоносные виды: S. cucurbitacearum Sacc. — с. тыквенных, поражает листья дынь, тыквы и арбуза; S. carotae Nagornyi — с. моркови, поражает листья моркови; S. fragariae Desm.— с. земляники, поражает листья земляники; S. linicola (Speg.) Gar.— с. льна, поражает листья льна (карантинный объект); S. onobrychidis Bond.— с. эспарцета, поражает листья эспарцета; S. pisi West.— с. гороха, поражает листья гороха; S. amygdali Woron.— с. миндаля, поражает листья миндаля; S. appli (Br. et Cav.) Chest.— с. сельдерея, поражает листья сельдерея; S. carvi Syd.— с. тыквы, поражает листья тыквы; S. grossulariae (Lib.) West.— с. смородины, поражает листья смородины; S. rubi West.— с. малины, поражает листья малины; S. humuli West.— с. хмеля, поражает листья хмеля; S. rhapontici Thuem.— с. рапонтикума, поражает листья ревеня; S. rosae Desm.— с. розы, поражает листья розы; S. petroselini Desm.— с. петрушки, поражает листья петрушки. [41, 51]
Род Cytospora Ehrenb. — Цитоспора
Для видов этого рода характерно наличие стромы, внутри или на которой размещаются плодовые тела или конидии. Строма может быть многокамерной, т. е. расчлененной на камеры с обособленными стенками, внутри которых развиваются пикниды, или простой, с сосочковидным устьицем. На пораженных органах растений грибы этого рода образуют окрашенные при разрыве экстостромы (в виде пластинок или дисков). Эктострома — верхняя часть стромы, окружающая устьище и отличающаяся от эндостромы — нижней части стромы, погруженной в субстрат — более твердой консистенцией и менее яркой окраской. Эктострома способствует разрыву поверхностных слоев ткани растения-хозяина, обеспечивая выход конидий.
Конидиеносцы разной формы: простые, нитевидные, слегка разветвленные, кустистые. Конидии маленькие, цилиндрически согнутые, 3—12 мкм в диам., одноклеточные, бесцветные, в массе грязно-белые, желтоватые, зеленоватые или красноватые, часто выходят из камер яркоокрашенными лентами.
Телеоморфы — виды рода Valsa Nits.
Описано свыше 400 видов. Параситируют на древесных, реже травянистых растениях 147 родов, преимущественно в умеренных зонах; вызывают усыхание стеблей, ветвей побегов. [21, 44]
Cytospora capitata Sacc. et Shulz.— Цитоспора Шульцера
Син.: Cytospora schulzeri Sacc. et Syd.
Один из возбудителей цитоспороза семечковых пород.
Стромы развиваются в паренхиме коры, 0,8—2 × 0,4—1 мм, ложнокамерные (2—17 камер). На поверхность выступают бородавчатым диском, 0,2—0,7 мм в диам., от серого до темно-коричневого цвета, часто с блестящей поверхностью. Камеры различной высоты сливаются в центре стромы в общую полость. Конидиеносцы бесцветные, слаборазветвленные, простые, 15—30 × 2—3 мкм. Конидии бесцветные, со-
сисковидные, 5 — 6,2 (8) × 1 — 2 мкм, выходят на поверхность субстрата золотисто-желтыми или кремовыми лентами.

Поражает растения семейства розоцветных: яблоню, айву, боярышник, рябину.

На стволах и ветвях образуются язвы, кора отмирает и рассланцуется, из поперечных трещин выступают блестящие черные бугорки — пикниды. Во влажную погоду из них выходят ленточки спор. Сначала заболевание напоминает черный рак. В дальнейшем отмершая кора сохраняет красновато-коричневый цвет и плохо отделяется от древесины. Обугливания и окрашивания коры не наблюдается. Болезнь развивается в случае механического или термического повреждения коры или уничтожения вредителей.

Источник инфекции — пикноспоры в пикнидах, сохраняющиеся в пораженных ветках.

Болезнь при сильном развитии приводит к гибели деревьев.

Распространение: повсеместно.

Меры борьбы: уничтожение пораженных деревьев или отдельных веток; борьба с вредителями; своевременная обрезка деревьев с обязательной дезинфекцией ран садовой замазкой; искоренение пораженных деревьев такими же фунгицидами, как Venturia pirina. [7, 44]

Cytospora sydowii Gutn.— Цитоспора Сидова
Возбудитель цитоспороза сливы.

Строма усеченная или эллипсоидальная, прорывающаяся, у основания 1,5—3 мкм в диам., 0,8—1 мм выс., серовато-белая, многокамерная. Камеры извилистые, 100—300 мкм шир., часто с неполными стенками, сливающимися. Конидиеносцы кустистые, 25—30 мкм дл. Конидии 6 × 1,5 мкм.

Симптомы болезни, источник инфекции, вредоносность, меры борьбы и распространение такие же, как у C. capitata. [23, 44]

Cytospora pinica Sacc.— Цитоспора гранатовая
Возбудитель цитоспороза граната.

Стромы 400—600 мкм в диам. Конидиеносцы 15 × 1 мкм. Конидии палочковидные, прямые или слегка согнутые.

Симптомы болезни, источник инфекции, вредоносность, меры борьбы и распространение такие же, как у C. capitata. [23, 44]

Cytospora vitis Mont.— Цитоспора виноградная
Возбудитель цитоспороза виноградной лозы.

Строма продолговато-коническая, у основания 1,5 мм в диам., с выступающим черным блестящим устьицем, погружена под разрушающийся эпидермис. Камеры в количестве 3—10, яйцевидные или цилиндрические, 100—200 мкм шир. Конидиеносцы развителенные, кустистые, 15—20 мкм. Конидии сосновидные, согнутые, 4—5,5 × 1 мкм, в массе желтовато-красноватые.

Телеоморфа — Valsa vitis (Schw.) Fuck.

Симптомы болезни, вредоносность, распространение и меры борьбы такие же, как у C. capitata.

Источник инфекции — аскоспоры в перитециях, пикноспоры в пикнидах, микелии, сохраняющийся в пораженных побегах. [44]

Cytospora rosarum Grev.— Цитоспора роз
Возбудитель цитоспороза роз.

Стромы тугопоконические, 700—1500 мкм шир., 500 мкм выс., оливково—черные. Камер 4—10. Конидиеносцы 15—25 × 1 мкм, кустистые, мутовчатые. Конидии 4—6,5 × 1,5 мкм, сосиксвидные, в массе грязно-белые.

Телеоморфа — Valsa rosarum de Not.

Поражает ветви и плоды.
Симптомы болезни, вредоносность, распространение и меры борьбы такие же, как у C. capitata.

Источник инфекции — аскоспоры в перитециях, пикноспоры в пикнидах, мицелий, сохраняющийся в пораженных побегах. [41, 51]

Cytospora microspora (Cda) Rabenh.— Цитоспора мелкоспоровая (рис. 1.116)

Возбудитель цитоспороза ветвей яблонь, груш, рябины, боярышника, дуба.

Рис. 1.116. Cytospora microspora:
а — ветка растения со стromами;  б — стroma;  в — конидии;  г — конидиеносцы;  д — стroma в разрезе [21]

Строма коническая, многокамерная или с неполными камерами, с одним черным устьицем. Камеры расположены в полтора-два яруса, разнообразной формы. Конидиеносцы 22 мкм дл., заостренные. Конидии сосисковидные, на концах закругленные, 5—6,5 × 1,5 мкм, в массе грязно-белые.

Поражает кору стволов и скелетных веток, на которой образуется много полуширцевидных стром, придающих коре красно-коричневую окраску. Кора плохо отделяется от древесины.

Источник инфекции, вредоносность, распространение и меры борьбы такие же, как у C. capitata. [41, 51]
Род Coniothyrium Cda — Кониотирий

В пикнидах развиваются одноклеточные дымчатые или оливковые мелкие конидии до 15 мкм дл., на коротких конидиеносцах.

Виды рода паразитируют на древесных, реже травянистых, растениях, вызывают гнили побегов и ягод, пятнистость листьев.

Coniothyrium diplodiella (Speg.) Sacc.— Кониотирий диплодиелла (рис. 1.117).

Син.: Phoma diplodiella Speg.

Возбудитель белой гнили ягод винограда.

Пикниды шаровидно-линзовидные, с приплюснутым устьицем, 100—150 мкм в диам. Конидиеносцы бесцветные, нитевидные. Конидии эллипсоидальные или яйцевидные, дымчатые, 7—12 × 5,5—8 мкм.

Рис. 1.117. Coniothyrium diplodiella: а — пикнида; б — разрез через пикниду [21]

Поражает надземные органы.

Повреждение кистей начинается от основания и по плодоножкам переходит к ягодам, которые становятся синевато-коричневыми, затем бледно-серыми, созревают и засыхают или остаются сочными, но гроздья отпадают. На пораженных ветвях образуются продольные трещины и кольцевидные темно-коричневые пятна. Пораженные листья приобретают грязно-зеленую окраску, засыхают, но не опадают. Побеги покрываются бурыми или черными кольцевидными пятнами, на которых развиваются пикниды.

Источник инфекции — пикноспоры в пикнидах, мицелий, сохраняющиеся в пораженных кистях и ягодах.

Болезнь приводит к значительным потерям урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: такие же, как против Botrytis cinerea. [23, 41, 44]

Coniothyrium foliorum Bond.— Кониотирий листовой

Возбудитель пятнистости листьев черной и красной смородины. Пикниды расположены на верхней поверхности листьев, полупогруженные, 80—120 мкм в диам., с коричневой оболочкой. Конидии эллипсоидальные, иногда слегка согнутые, оливковые, 5—7 × 3—4 мкм.

На обеих поверхностях листьев образуются неправильной формы пятна, часто охватывающие большую часть листа. Листья усыхают и преждевременно опадают.
Источник инфекции — такой же, как у C. diplodiella. Болезнь приводит к снижению продуктивности растений. Распространение: повсеместно в районах произрастания. Меры борьбы: такие же, как против Septoria humuli. [41, 44, 71]

Род Macrophomina Tassi — Макрофомина

Пикниды шаровидные, слегка приплюснутые, тонкостенные, чернеющие с возрастом, с маленьким выступающим устьицем. Конидиеносцы бутылковидные. Конидии одноклеточные, овально-цилиндрические, яйцевидные или эллипсоидальные, слегка изогнутые, бесцветные.

Спороносная стадия рода — Sclerotium Tode.

Виды рода — возбудители гнили.

Macrophomina phaseolina (Tassi) Goid.— Макрофомина фасоли

Син.: Macrophomina phaseoli (Maubl.) Ashby, Rhizoctonia bataticola (Taub.) Butter, Sclerotium bataticola Tsub., Botryodiplodia phaseoli (Maubl.) Thir.

Возбудитель угольной (пепельной) гнили сои.

Микросклероции гладкие, от округлых до продолговатых или неправильной формы. Колонии — от белого до коричневого или серого цвета, темнеющие с возрастом, иногда располагаются концентрическими зонами. Пикниды шаровидные, чернеющие с возрастом, 100—200 мкм в диам., с маленьким выступающим устьицем. Конидиеносцы яйцевидно-продолговатые или эллипсоидальные, бесцветные, 2,5—10,5 мкм в диам.

Поражает клубни картофеля, корнеплоды сахарной свеклы, надземные органы хлопчатника, люцерны, фасоли, сорго, баклажана, кукурузы, подсолнечника и других растений.

У сои заражению подвергаются корни. Сначала отмирают мелкие корешки, затем основной корень и стебель в прикорневой зоне. У основания стебля на одревесневших тканях видны черные штрихи, под эпидермисом располагаются многочисленные черные микросклероции, придающие тканям серо-черный цвет. При поражении сейцев на блюдается красно-коричневое окрашивание подсемядольного колена, при поражении взрослых растений — побурение основания стебля. При сильном развитии болезни листья желтеют и засыхают, завязь не образуется или же семена шуplyе, немногочисленные. Жизнеспособность склероциев в почве — 7—8 недель. Оптимальная температура для жизнедеятельности гриба 25—28 °С. Низкая температура и влажная почва препятствуют развитию заболевания.

Клубни картофеля заражаются через чечевички и при повреждениях кожуры. На них появляются черные, слегка водянистые пятна (у глазков или чечевичек). На ранних стадиях развития болезни кожура клубня сохраняет целостность, но нижележащие ткани загнивают, их цвет изменяется от серого до черного, затем пораженная ткань западает, образуются язвы. Иногда вся внутренняя часть клубня загнивает, и в разрезе видна темная мягкая масса с мелкими черными склероциями. Оптимальная температура для инфицирования картофеля 20—36 °С.

Источник инфекции — склероции, сохраняющиеся в сухой почве. Болезнь приводит к значительным потерям урожая. Распространение: повсеместно в районах возделывания. Меры борьбы: соблюдение севооборота и правильный подбор предшественников; протравливание семенных клубней картофеля медьюдезующими препаратами. [46]
Род Diplodia Fr. — Диплодия

Пикниды прорывающиеся, черные, почти углистые, с сосочковидным устьицем. Конидии эллипсоидальные, яйцевидные, с одной перегородкой, темно-коричневые, более 15 мкм дл. Конидиеносцы цилиндрические, простые, бесцветные.

Виды рода — сапротрофы или паразиты различных растений — вызывают пятнистость листьев, черную гниль плодов, рак стволов.

Diplodia malorum Fuck.— Диплодия яблони
Син.: Sphaeropsis malorum Peck.
Возбудитель усыхания ветвей и гнили плодов яблони.

Diplodia zeae (Schw.) Lev.— Диплодия кукурузы (рис. 1.118)
Син.: Phaeostagonosporopsis zeae Woron., Diplodia maydis Sacc.
Возбудитель сухой гнили, или диплодиоза, кукурузы.

Пикниды 100—170 мкм в диам. Конидии 24—30 × 10—12 мкм, изредка с одной поперечной перегородкой, оливковые, иногда бесцветные.

Поражает многие плодово-ягодные культуры.

На листьях образуются бурные пятна. На плодах вызывает черную гниль, иногда гнилые яблоки засыхают, оставаясь мумифицированными, на них образуются многочисленные пикниды. На ветвях (на коре) вызывает наиболее вредоносную (язвенную) форму рака.

Источник инфекции — конидии в пикнидах, сохраняющиеся в пораженных растительных остатках и плодах.

Болезнь приводит к значительным потерям урожая.

Распространение: европейская часть СССР, Абхазская АССР.
Меры борьбы: такие же, как против Cytospora capitata. [6, 23, 44]

Diplodia zeae (Schw.) Lev.— Диплодия кукурузы (рис. 1.118)
Син.: Phaeostagonosporopsis zeae Woron., Diplodia maydis Sacc.
Возбудитель сухой гнили, или диплодиоза, кукурузы.

Пикниды погруженные, до 500 мкм в диам. Конидии оливково-рыжеватые, двухклеточные, 12—33 × 3—7 мкм.
Поражает початки, зерна, стебли, листья, корни, проростки. На стеблях болезнь развивается преимущественно на нижних междоузлиях, вызывая их переломы. Пораженные участки буреют и покрываются пикнидами. На початках, обычно начиная снизу, образуется сплошной белый, ватообразный налет мицелия, распространяющийся на обертки. Сильно пораженные початки сморщены, недоразвиты, легко ломаются. Жизнеспособность конидий в почве — 3—4 года. Оптимальная температура для роста гриба 20—30 °С, минимальная 10, максимальная 35 °С. Развитию болезни способствует совпадение высокой температуры и повышенной влажности.

Источник инфекции — пикноспоры в пикнидах, сохраняющиеся в пораженных растительных остатках: почве и семенах.

Болезнь приводит к значительным потерям урожая.

Распространение: Грузинская ССР.

Меры борьбы: уничтожение пораженных растительных остатков, пространственная изоляция полей, протравливание семян фунгицидами (ТМТД, фентиуром, гранозан и др.). [39, 41, 44, 71]

Род Diplodina West. — Диплодина

Пикниды свободные или погруженные в субстрат (под эпидермис), различной формы, с устьицем. Конидии цилиндрические, эллипсоидальные, с одной перегородкой, бесцветные.

Виды рода паразитируют на разных растениях (подсолнечнике, тыкве, льне, крыжовнике, винограде), вызывают гниль надземных органов. [44]

Diplodina destructiva (Plowr.) Perrak.— Диплодина разрушительная

Син.: Phoma destructiva Plowr., Ascochyta lycopersici Brun.

Возбудитель черной гнили помидоров.

Пикниды погруженные, округлые, 100—150 мкм, с устьицем. Конидии цилиндрические, с закругленными концами, сначала одноклеточные, потом двухклеточные, 7—11 ×2,5—3,5 мкм.

Поражаются плоды в период созревания и при хранении. Сначала на них появляются вдавленные черные пятна, затем ткань под ними размягчается и загнивает. На листьях образуются округлые пятна разных размеров, 0,5—1 см шир., темно-красные или оливково-коричневые, четко ограниченные, потом сливающиеся. Развитию заболевания способствует влажная погода. Оптимальная температура для роста в культуре 20 °С, минимальная 4, максимальная 29 °С.

Источник инфекции — конидии в пикнидах, мицелий, сохраняющихся в пораженных плодах и листьях.

Болезнь приводит к значительным потерям урожая.

Распространение: повсеместно в районах возделывания.

Меры борьбы: уничтожение растительных остатков, протравливание семян ТМТД (8 г/кг); опрыскивание растений 1 %-ной бордоской жидкостью не позже чем за 15 дней до сбора урожая. [41, 44]
Глава 2
ФИТОПАТОГЕННЫЕ БАКТЕРИИ

Фитопатогенными называются бактерии, которые вызывают болезни растений. Наука, изучающая болезни растений (или бактериозы), является составной частью фитопатологии. Эта наука сравнительно молодая, ее становление относится к 80-м годам прошлого столетия. До этого считали, что грибы являются единственными возбудителями болезней растений. Основоположником науки о бактериозах растений является Э. Смит. В нашей стране в признании и развитии учения о бактериальных болезнях растений сыграли важную роль такие ученые, как И. Л. Сербинов, А. А. Потебня, А. А. Ячевский, В. И. Взоров, В. П. Израильский, К. И. Бельтюкова, М. В. Горленко, И. В. Воронкевич и др.

В настоящее время почти для каждого вида растений известен тот или иной бактериоз. Фитопатогенные бактерии вызывают все известные типы поражения растений: пятнистости, увядания, гнили, опухоли. Эти заболевания имеют широкое распространение во всех климатических зонах. Однако бактериозы растений еще недостаточно изучены. Довольно часто открываются новые возбудители заболеваний, ранее считавшиеся другой этиологии.

Бактериозы приносят большие убытки народному хозяйству, снижая урожай сельскохозяйственных культур в результате гибели всего растения или его отдельных частей. Увядания гнили и некоторые другие типы поражений могут быть причиной массовой гибели всходов и взрослых растений на больших площадях — эпифитотии. Так, черный бактериоз пшеницы приводит к снижению урожая зерна на 44—90 %. Сосудистый бактериоз капусты при благоприятных для возбудителя условиях на Украине может вызывать гибель 40—100 % растений. В последнее десятилетие отмечены эпифитотии зерновых, плодовых, овоющих и других сельскохозяйственных культур.

Фитопатогенные бактерии приносят вред не только во время вегетации, но и при хранении. Так, они вызывают гниль клубней картофеля, корнеплодов моркови, качанов капусты, порчу зерна и т. п.

Урожайность уменьшается также в результате того, что фитопатогенные бактерии влияют на различные физиологические функции растения и этим снижают его продуктивность. При образовании бактериальных пятнистостей и опухолей уменьшается ассимиляционный аппарат, что сказывается на величине урожая. Больные растения накапливают меньше органических веществ, чем здоровые, у них наблюдается задержка оттока ассимилятов из листьев, что приводит к снижению интенсивности роста. Поэтому больные растения меньше по величине и массе, чем здоровые; они дают меньший урожай худшего качества. Продукты метаболизма бактерий могут придавать продуктам питания токсические свойства. Некоторые фитопатогенные бактерии, как и условно патогенные бактерии, обладают полибиотрофными свойствами, т. е. способны вызывать заболевания растений, человека, животных, насекомых.

224
Однако фитопатогенные бактерии могут приносить и пользу. Они могут быть продуцентами биологически активных веществ типа ферментов, токсинов, антибиотиков, экзополисахаридов и др. Уже сегодня в микробиологической промышленности используются бактерии рода Xanthomonas для крупнотоннажного производства экзополисахаридов, который широко используется в пищевой, химической, нефтедобывающей, буровой промышленностих, сельском хозяйстве, медицине.

Направление поисков на использование полезных свойств фитопатогенных бактерий является новым и перспективным.

Систематика фитопатогенных бактерий, как и других групп бактерий, несовершена, не является естественной, филогенетической. В основу ее положено наличие тех или иных общих признаков.

Согласно Определителю бактерий Берги [107], фитопатогенные бактерии входят в ряд секций:

Секция 4 (грамотрицательные аэробные палочки и кокки)
   Семейство 1 Pseudomonadaceae
      Род 1 Pseudomonas
      Род 2 Xanthomonas
   Семейство 3 Rhizobiaceae
      Род 3 Agrobacterium
   Семейство 6 Acetobacteraceae
      Род 1 Acetobacter

Секция 5 (факультативные анаэробные грамотрицательные палочки)
   Семейство 1 Enterobacteriaceae
      Род 7 Erwinia, в том числе Pectobacterium

Систематическое положение Bacterium nodoantrum требует уточнения. Однако с учетом ее основных свойств данную бактерию можно отнести к секции 5.

Несмотря на то, что секция 9 посвящена риккетсиям, пока трудно определить точное систематическое положение отнесенных к риккетсиоподобным фитопатогенным бактерий.

Фитопатогенные бациллы [107] относятся к секции 13, которая содержит семейство Bacillaceae род 1 Bacillus, род 2 Clostridium.

Грамположительные неспоровые бактерии, поражающие растения, относятся к секциям 15 и 17. В первую включены Corynebacterium (согласно новейшей классификации, Corynebacterium разделен на роды Arthrobacter, Curtobacterium и Rhodococcus, отнесенные к секции 17), а также род Clavibacter.

При написании главы 2 справочника авторы придерживались систематики бактерий, представленной в Определителе бактерий Берги 1974, 1986 гг. Однако для удобства пользования таксономические названия бактерий в работе расположены в алфавитном порядке.

В главе приводится краткая характеристика ряда распространенных в мире и СССР видов фитопатогенных бактерий и бактерий, обладающих при определенных условиях фитопатогенными свойствами; дается краткое описание биологических свойств, по возможности укажены тип вызываемых ими поражений, симптоматика болезни, распространённость бактериоза. Ряд патоваров, которые не обнаружены в СССР и имеют малое распространение, только упоминаются. Описан также ряд видов, которые по тем или иным причинам не вошли в Общий список бактериальных названий. Ими являются Clavibacter xyli subsp. cynodontis, Clavibacter xyli subsp. xyli, Bacterium nodoantrum, у которых не установлено точное систематическое положение, Pseudomonas lupini, Erwinia horticola, E. toxica и другие, принадлеж
ность к роду у которых установлена, но они недостаточно полно изу­
ченны (Xanthomonas beticola, имеющаяся в коллекциях).
Карантинные объекты и мероприятия по защите растений от бак­
териальных заболеваний приведены отдельно.

СЕКЦИЯ 4
Семейство Acetobacteriaceae

Типовой род: Acetobacter Beijerinck, 1898. Эллипсоидальные или па­
лочковидные клетки, одиночные или соединены попарно, грамотрица­
tельны или грамвариабельны. Подвижные (при помощи перитрихиаль­
nых или 4—8 полярных жгутиков) или неподвижные, неспороносные,
аэробы, хемоорганотрофы, катализоположительны, оксидазоотрица­
Желатин не разжижают, нитраты не восстанавливают, индол не обра­
зуют, этанол окисляют до кислоты.
Семейство состоит из двух родов: Acetobacter и Gluconobacter. Фитопатогенные виды входят только в первый.

Род Acetobacter Beijerinck

Клетки от эллипсоидальных до палочковидных, прямые или слегка
изогнутые, 0,6—0,8 X 1,0—4,0 мкм, одиночные, парные или целоч­
ками. Неподвижны или подвижны при помощи перитрихиально или
латерально расположенных жгутиков; эндоспор не образуют, грамот­
рицательны (в нескольких случаях грамвариабельны), строгие аэробы.
Большинство штаммов не образует пигмент, некоторые выделяют водорас­
творимый розовый пигмент; катализоположительны, оксидазоотрица­
tельны, желатин не разжигают, образуют индол и H2S. Превращают
этанол в уксусную кислоту, ацетаты и лактаты окисляют до CO2 и во­
ды. Лучшими источниками углерода являются этанол, глицерин и лак­
тат. Образуют кислоту из n-пропанола, n-бутанола и D-глюкозы. Не
гидролизуют лактозу и крахмал. Гемоавтотрофы. Иногда образуют
целлюлозу

Температурный оптимум роста 25—30 °С, оптимум pH 5,4—6,3.
Виды Acetobacter выявлены на цветках, фруктах, медоносных
пчелах, в виноградном и пальменном вине. кефире, огородной почве,
канализационной воде. Вызывают розовую болезнь плодов ананаса,
загнивание плодов яблони и груши.

Типовой вид: Acetobacter aceti (Pacteur 1864) Beijerinck 1898.
Состоит из 4 видов. Патогенные свойства для растений обнаружены
у одного вида.
Как правило, растут на глюкозо-дрожжевом агаре, на маннитном
агаре, этанольной среде, растворяя зоны до 12 мм.

Acetobacter liquefaciens Ley, Swiugs and Gossele 1984.
Син.: Gluconoacetobacter liquefaciens Asai 1935, G. liquefaciens De
Ley, Acetobacter aceti subsp. liquefaciens De Ley and Frateur 1974.
Возбудитель розовой болезни плодов ананасов и кожуры яблок.
Палочки, иногда почти кокковидные, искривленные, подвижны
при помощи преимущественно перитрихиально, латерально или поляр­
но расположенных жгутиков, грамотрицательны.
На глюкозо-дрожжевом агаре образует водорастворимый корич­
невый пигмент, 5-кетохлоруроновую кислоту и 2,5-дикетоглюкоро­
nовую кислоту. Усваивает этанол, Na-ацетат, но не дульцит. Не растет
в присутствии 10 % этанола. На среде с манинитом большинство штаммов усваивает азот из L-глицина, L-треонина, L-триптофана и особенно L-аспарагина, L-глутамина. Большинство штаммов растет на про- паноле, этанолдиоле, глицерине, мезо-эритритоле, D-маннитоле, D-глактозе, D-фруктозе, D-глюкозе, D-маннитоле, D-фруктозе, D-глюкозе, D-глуконате кальция, L-глицерате кальция и D-L-лактате натрия. Используют минеральный азот NН₃ без добавления в среду факторов роста.

Бактерии образуют каталазу, кальцийлактатоксидазу. Не восстанавливают нитраты. Не растут на метаноле, дульците, L-сорбозе, Nα-малонате. Хороший рост при 28 °С; при 34 и 37 °С растут не все штаммы.

Семейство Pseudomonadaceae Winslow, Broadhurst, Buchanan Krumwiede, Rogers and Smith 1917

Типовой род: Pseudomonas Migula 1894. Прямые или изогнутые палочки, подвижны посредством одного или нескольких полых жгутиков, грамотрицательны, гемоорганотрофы. Строгие аэробы. Метаболизм дыхательный. Растут при температуре 4—43 °С.

Семейство включает 4 рода: Pseudomonas, Xanthomonas, Frateuria, Zoogloea, из них фитопатогенными являются бактерии рода Xanthomonas, часть видов рода Pseudomonas. Из рода Frateuria известно лишь несколько фитопатогенных штаммов, выделенных из лилии и пло- дов малины в Японии.

Род Pseudomonas Migula 1894

Типовой вид Pseudomonas aeruginosa (Schroeter 1872) Migula 1900. В род Pseudomonas входит большая распространенная в природе группа бактерий, большинство видов которой — сапрофиты, являющиеся обитателями почвы, водоемов и других мест, где им принадлежит огромная роль в минерализации органических веществ. Среди видов рода Pseudomonas есть очень вредоносные фитопатогены и патогены животных. Роль фитопатогенных пseudomonad в этиологии бактериальных заболеваний за последние годы значительно увеличилась.

Для фитопатогенных псевдомонад характерно большое сходство морфологических, культурально-биохимических свойств, антигенной структуры; у них часто отмечается отсутствие видовой специфичности. В род Pseudomonas включены 93 вида, из них 23 фитопатогенных.

Бактерии рода Pseudomonas (факультативные паразиты, сапрофиты) хорошо растут на искусственных средах с добавлением солей аммония, нитрата в качестве источников азота и простых органических веществ в качестве источников углерода и энергии. Только некоторые виды (P. maltophilia, P. diminuta, P. vesicularis и некоторые др.) требуют добавления органических факторов роста (метионина, пантотеновой кислоты, биотина). Они являются хемоорганотрофами, представляют собой палочки размером 0,5—1,0 X 1,5—5,0 мкм. Многие виды рода способны накапливать поли-β-оксимасляную кислоту в качестве запасного вещества.

Фитопатогены рода Pseudomonas на КА образуют небольшие голубовато-серые прозрачные колонии с ровным или слабо волнистым краем. Центр колонии уплотнен и несколько приподнят. Колонии блестящие, гладкие, реже шероховатые (рис. 2.1). Бактерии подвижны посредством одного или нескольких полых жгутиков (рис. 2.2), редко неподвижны (вид P. mallei). Расположение пили или фимбрий — полый (P. aeruginosa, P. solanacearum) или перитрихиальное (P. cepacia). Пили являются рецепторами для фагов, помогают хозяину «атаковать»
клеточную поверхность, способствуют фагоцитозу. Аэробы, тип метаболизма строго дыхательный. Не образуют ксантомонадин. Большинство, если не все, не растут при низких значениях рН (4,5). Оксидазовариабельны, каталазоположительны. Некоторые виды — факультативные хемоолиготропы, способные использовать Н₂ или СО в качестве источника энергии.

В род входят как пигментные, так и апигментные виды. Наиболее распространены пигменты флюоресцеин и пиоцианин. Флюоресцирующий пигмент обильно накапливается в среде с низким содержанием железа. Усилить флюоресценцию можно применением УФ-излучения, при этом наблюдается гамма цветов от белого до зеленовато-голубого.

В отличие от сапрофитов рода Pseudomonas, которые образуют различные пигменты, часто имеющие диагностическое значение (P. aeruginosa — сине-зеленый или красно-коричневый пиоцианин; P. auran tic — ярко-оранжевый) пигментообразование у фитопатогенных бактерий названного рода может быть лишь дополнительным признаком, по которому их группируют по скорости образования пигmenta и его интенсивности. Основными пигментами фитопатогенов рода Pseudomonas является желто-зеленый флюоресцеин и коричневые пигменты. Последние, скорее всего, принадлежат к большой группе меланиновых пигментов. Для вида P. alliicola образование коричневого пигmenta может служить одним из дифференциальных критериев.

Клеточная стенка — важный и обязательный структурный элемент клетки (исключение микоплазмы и L-формы). Бактерии рода
Pseudomonas имеют клеточную стенку, типичную для грамотрицательных бактерий. На нее приходится 5—50 % сухих веществ клетки. Строение и химический состав клетки постоянны для видов и поэтому являются важными таксономическими признаками. У грамотрицательных прокариот строение клеточной стенки намного сложнее, чем у грамположительных. Они имеют многослойную клеточную стенку. В ее состав входит большее число различного типа макромолекул, при этом пептидогликан присутствует только в клеточной стенке, придавая ей необходимую жесткость. У грамотрицательных бактерий содержание пептидогликана значительно меньше, чем у грамположительных (1—10 и 50—90 % соответственно).

Важным компонентом клеточной стенки бактерий рода Pseudomonas является липополисахарид, который играет функциональную роль в патогенности, токсигенности, иммуногенности бактерий.

Для дифференциации фитопатогенов, условных патогенов и сапрофитов следует использовать следующие тесты: оксидазную активность, отношение к солям ТТХ, рост в присутствии некоторых аминокислот (валин, орнитин, тирозин), иммунные сыворотки к фитопатогенам, реакцию сверхчувствительности (рис. 2.3). Фитопатогены не имеют общих антигенных комплексов с сапрофитами.

Дифференциальным признаком для видов Pseudomonas syringae pv. lachrymans, pv. tabaci, pv. phaseoli, pv. pisi, pv. mosprunorum также является рост в среде с винной кислотой, которую перечисленные виды усваивают, в отличие от остальных.

Такие признаки, как наличие каталазы, протопектиназы, тирозиназы, а также гидролиз жиров, пигментообразование (за исключением P. alliicola), не являются диагностическими, а служат лишь характеристикой бактерий.

Фитопатогены рода Pseudomonas могут вызывать у растений пятнистости, некрозы, опухоли, гнили, которые обусловлены изменением метаболизма в растительных клетках под влиянием веществ, выделяемых патогенами. К таким веществам относятся ферменты, гормоны, токсины. Среди факторов патогенности ведущими считаются специфические структуры бактериальной поверхности (антигены) и токсины. Доказано участие многих ферментов фитопатогенных псевдомонад в развитии инфекции. Гнили продуцируются в основном нефлюоресцирующими пепидомонадами (P. cepacia, P. caryophyllii, P. gladioli). Они обусловлены активностью пектинолитических ферментов и целлюлаз. Патовары P. syringae (syringae, tabaci, phaseolicola, glycinea, tomatol и др.) продуцируют фитотоксины, способные вызывать хлороз у чувствительных растений. P. syringae pv. phaseolicola, возбудитель ореховой или угловатой пятнистости бобовых, продуцирует несколько токсинов, из которых наиболее изучен фазеолотоксин.
Высокая концентрация растительного гормона 3-индолилуксусной кислоты, продуцируемой P. syringae pv. savastanoi, как предполагают, является причиной образования опухолей у растений семейства маслиновых.

Выдвинута гипотеза о циркадных ритмах устойчивости растений к бактериальной инфекции. Она подтверждена в опытах на табаке, огурцах, фасоли и некоторых других растениях при искусственном их заражении. Оказалось, что ночью растения наиболее устойчивы к инфекции. Степень восприимчивости зависит от вида и физиологического состояния листьев растений. Высокая восприимчивость в течение суток наблюдается между 10—13 и 15—17 ч.

Основным местом обитания фитопатогенных псевдомонад являются больные растения. В почве, вне растительных остатков они быстро погибают в результате действия антагонистов. Исключение составляет P. solanacearum, которая хорошо сохраняется в почве на глубине 10—75 см.

Взаимоотношения бактерии и растения сложные, фитопатогены не всегда вызывают патологические изменения у растений-хозяина. Они могут находиться на растениях в качестве эпифитов. Некоторые эпифитные псевдомонады являются потенциальными патогенами, например P. viridiflava.

Сапрофитные флюоресцирующие псевдомонады — обычные обитатели почвы, ризосферы растений, где они могут оказывать стимулирующее действие на рост растений и угнетающее на патогенные для растений микроорганизмы. P. fluorescens преобладает в ризосфере пшеницы, P. maltophilia — в ризосфере капусты, рапса, горчицы, кукурузы, свеклы. Это, вероятно, обусловлено выделением корнями перецисленных растений серосодержащих аминокислот, необходимых для роста названного возбудителя.


Типовой вид; сапрофит, условно патогенный для растений, человека, животных, насекомых.

Палочки размером 0,5—0,7 × 1,5—3,0 мкм, подвижны посредством жгутика, грамотрицательны, продуцируют различные пигменты — пиоцианин, пиорубин, флюоресцин и др. Не образуют каротиновых, хлорофиллов, феназин, желто-оранжевые пигменты. Имеются штаммы, продуцирующие меланинобразный пигмент. Частое выделение меланинобразующих штаммов из ран онкологических больных дало основание предположить их взаимосвязь со злокачественными образованиями.
Оксидазоположительны, не образуют леван при росте на сахарозе, разжигают желатин, не гидролизуют крахмал, не образуют лецитина-зузу, не растут при 4 °С, растут при 41 °С, денитрификаторы. Не продуцируют H₂S и индол. Не способны аккумулировать внутриклеточно поли-β-оксимасляную кислоту в качестве запасного источника углерода. Имеют аргининдигидролазную систему ферментов, отличаются ароматообра-зованием.

Вид, гетерогенный по ряду свойств. На твердой среде образует 2 типа колоний: большие, гладкие с приподнятым центром, ровным краем и маленькие, шероховатые, выпуклые. Второй тип колоний выделен из естественных источников, в отличие от первого, полученного из клинического материала. Превращение больших колоний в малые наблюдается часто, в то время как обратное превращение встречается чрезвычайно редко.

Некоторые штаммы P. aeruginosa из клинического материала оказа-лись сильно патогенными для сельдерея, салата, картофеля и др. Они вызывают гниль инокулированных растений. Наиболее чувстви-тельна морковь. Существует корреляция между наличием пиоцианина и способностью вызывать гниль растений. P. aeruginosa при хранении лука может вызывать внутреннюю бурую гниль, а также быть при-чиной размягчения ткани в области шейки луковицы, поражать цветоч-ные культуры.

Не имеет широкого распространения в качестве фитопатогена. Вы-сокопатогенна для людей и насекомых.

Распространение: повсеместно.

Pseudomonas caryophylli (Burkholder 1942) Starr and Burkholder 1942

Возбудитель вилта гвоздики.

Палочки размером 0,35—0,95 × 1,05—3,18 мкм, подвижны, грамотрицательны. Колонии округлые, гладкие с ровными краями. Не образуют индол и H₂S, восстанавливают нитраты. Оптимальная тем-пература роста 30 — 33 °С, максимальная 41, минимальная 4 °С. Не образуют слизь в минеральной среде с 2—4 % сахарозы. Единичные штаммы образуют лецитиназу и гидролизуют твин 80; один штамм нуждается в ростовых факторах.

Образуют внутриклеточно поли-β-оксибутират в качестве запас-ного источника углерода, разжигают желатин, не гидролизуют крах-мал, денитрификаторы. Оксидазоположительны. Имеют аргининдигид-ролазную систему ферментов. Штаммы вида могут образовывать спо-собные к диффузии желто-зеленые нефлюоресцирующие пигменты; об-разуют газ в анаэробных условиях в сложной среде, содержащей нит-раты.

P. carophylli вызывает некрозы и вилт гвоздики. Листья боль-ных растений становятся сероватыми, затем желтеют, гвоздика увя-дает и погибает. Желтые полосы могут появляться на стеблях. Корни разрушаются. Способна вызывать гниль ломтиков лука, подобно P. ce-pacia и P. marginata.

Бактерия является карантинным объектом для СССР.

Распространение: США.

Pseudomonas cepacia (Burkholder 1950) Palleroni and Holmes 1981

Возбудитель бактериоза лука, сапрофит.

Палочки размером 3,2—1,6 × 1,0—0,8 мкм, не растут при 4 °С. Температурный максимум роста для некоторых штаммов 41 °С, оптимум 30—35 °С. Оксидазоположительны, образуют слизь при росте на сахарозе, не гидролизуют крахмал, гидролизуют твин 80. Способны аккумулировать поли-β-оксимасляную кислоту в качестве источника углерода. Не содержат аргининдигидролазу, не денитрификаторы.

Распространение: повсеместно.

Pseudomonas aeruginosa (Burkholder 1942) Brown 1942

Возбудитель синего вилта винограда.

Палочки размером 0,5—1,2 × 0,6—0,8 мкм, подвижны, грамотрицательны. Колонии гладкие, белые с ровными краями. Не образуют индол и H₂S, восстанавливают нитраты. Оптимальная тем-пература роста 30 — 35 °С, максимальная 41, минимальная 4 °С. Не образуют слизь в минеральной среде с 2—4 % сахарозы. Единичные штаммы образуют лецитиназу и гидролизуют твин 80; один штамм нуждается в ростовых факторах.

Образуют внутриклеточно поли-β-оксибутират в качестве запасного источника углерода, разжигают желатин, не гидролизуют крахмал, денитрификаторы. Оксидазоположительны. Имеют аргининдигидролазную систему ферментов. Штаммы вида могут образовывать способные к диффузии желто-зеленые нефлюоресцирующие пигменты; образуют газ в анаэробных условиях в сложной среде, содержащей нитраты.

P. aeruginosa вызывает некрозы и вилт винограда. Растения становятся сероватыми, затем желтеют, виноград увя-дает и погибает. Желтые полосы могут появляться на стеблях. Корни разрушаются. Способна вызывать гниль ломтиков лука, подобно P. ce-pacia и P. marginata.

Бактерия является карантинным объектом для СССР.

Распространение: США.

Pseudomonas cepacia (Burkholder 1950) Palleroni and Holmes 1981

Возбудитель бактериоза лука, сапрофит.

Палочки размером 3,2—1,6 × 1,0—0,8 мкм, не растут при 4 °С. Температурный максимум роста для некоторых штаммов 41 °С, оптимум 30—35 °С. Оксидазоположительны, образуют слизь при росте на сахарозе, не гидролизуют крахмал, гидролизуют твин 80. Способны аккумулировать поли-β-оксимасляную кислоту в качестве источника углерода. Не содержат аргининдигидролазу, не денитрификаторы.
Штаммы могут продуцировать различного цвета нефлюоресцирующие пигменты.
Отличается от других видов составом жирных кислот клеточной стенки, который представлен в основном миристиновой, 3-оксимиристиновой и 3-оксипальметиновой кислотами.
Характерно также наличие в мембранах производных тритерпена, которые по размерам и ряду свойств подобны стеролам зукариот.
Штаммы P. cepacia выделены из гнилого лука, почвы, воды, клинического материала. Вид является условно патогенным для человека, его обычно связывают с различного типа инфекциями.
Распространение: повсеместно. Фитопатогенные штаммы выделены в США.

**Pseudomonas cichorii** (Swingle 1925) Stapp 1928

Возбудитель бактериоза цикория.
Палочки размером 0,8 × 1,2—3,5 мкм, одиночные или парные, имеют капсулу, подвижны посредством более одного жгутика, грамотрицательны.
На мясном агаре образуют серо-белые колонии, округлые, приподнятые, со слабо волнистыми краями.
Не накапливают поли-β-оксибутират в качестве источника углерода, имеют флюоресцирующий пигмент, не обладают аргининдигидролазной системой.
Не продуцируют феназиновый, желтый или оранжевый пигменты. Не образуют леван на среде с сахарозой. Не разжижают желатин, не имеют липазы, не способны к денитрификации, продуцируют лецитиназу. Нитраты не восстанавливают, не образуют Н₂S и индол, крахмал не гидролизуют. Не растут при 4 °С, оптимальная температура роста 30 °С. Использует большое количество органических веществ в качестве источника углерода.

**P. cichorii** патогенна, главным образом, для различных видов цикория, но встречается и на салате латук, дельфиниум (живокость). Получены положительные результаты при искусственном заражении многих растений. Для цикория характерна внутренняя гниль желто-оливкового цвета, главным образом, для молодых внутренних листьев. На листьях могут развиваться темно-коричневые до черных некротические пятна.
Распространение: заболевание обнаружено в Америке, Германии, на Тайване.

**Pseudomonas fluorescens** (Trevisan 1889) Migula 1895

Условный патоген, вызывающий при определенных обстоятельствах заболевания у ряда растений, широко распространен а któфитная бактерия.
Палочки размером 0,7 — 0,8×2,0 — 3,0 мкм, подвижны посредством более одного жгутика, не образуют хлороррафина, желто-оранжевых пигментов, оксидазоположительны, разжигают желатин, не гидролизуют крахмал, не растут при 41 °С, оптимальная температура роста 25—30, минимальная 4 °С, используют трегалозу. Не требуют факторов роста; строгие аэробы, за исключением штаммов, способных к денитрификации, которые могут расти в анаэробных условиях в среде с нитратами. Штаммы могут использовать 60—80 различных источников угле-
рода. Не накапливают поли-β-оксибутират в качестве запасного источника углерода, большинство штаммов продуцируют флюоресцирующий пигмент. Имеют аргининдигидролазную систему, не содержат лизиндекарбоксилазу, орнитиндекарбоксилазу, амилазу, не усваивают целлобиозу, салицил, гликоловую кислоту. Гетерогенный вид.

Флюоресцирующие псевдомонады способны вызывать при определенных условиях мягкую гниль ряда растений: моркови, капусты, сельдерея, лука, салата, картофеля, цикория и некоторых других.

Наряду с другими видами бактерий рода Pseudomonas принимают участие в комплексных патологических процессах, которые приводят к загниванию стеблей овощной пшеницы. Штаммы P. fluorescens выделены в качестве возбудителей мягких гнилей калл и гиацинтов. Производство культуры показала, что она является слабовирулентной по сравнению со основным возбудителем из рода Erwinia.

Обнаружена также мягкая гниль корнеплодов сахарной свеклы в кагатах. Штаммы, обладающие фитопатогенными свойствами, разделили на 3 патовара: P. marginalis pv. marginalis, P. m. pv. alfaefae, P. m. pv. pastinaceae. На каллах заболевание не сопровождается активным образованием слизи, а некрозом или локализованной макерацией инфицированного участка. P. fluorescens является причиной увядания цикламенов, гнили их луковиц. Заболевание проявляется в постепенной потере тургора листьями, ткань луковиц желтеет, затем становится черно-буровой, однако остается твердой до полной гибели растения. Листья засыхают, растение погибает. P. fluorescens может вызывать также гниль тюльпанов, нарциссов, герберы.

Вредоносен бактериоз корней рапса, чаще озимого, вызываемый P. fluorescens Migula var. папереслись и Xanthomonas campestris pv. campestris. Урожайность растения в результате заболевания может снижаться на 30—40 %. Возбудители бактериоза образуют L-формы, которые вызывают заболевания рапса в естественных условиях.

Pseudomonas fluoro-violaceus

Возбудитель гнили калл, герберы, ирисов; условный патоген.

Палочки 0,6 × 1 — 2 мкм, подвижны при помощи полярных жгутиков, грамотрицательны. На КА образуют серовато-белые колонии, округлые, с уплотненным приподнятым центром и прозрачным неровным краем. На МПА колонии блестящие, серые, с конусовидным центром и волнистым прозрачным краем. Бактерии вызывают помутнение МПБ с образованием пленки. Растут при 4 °С, не растут при 42 °С. Образуют на среде Кинг А фиолетовый пигмент, экстрагируемый хлороформом, флюоресцирующий пигмент при росте на среде Кинг Б, увлажненной, желатине, молоке. Молоко пептонизируют, желатин разжиждают, индол и Н2S не образуют, нитраты не восстанавливают, NH3 не образуют. Лакмусовую сыворотку редуцируют, а затем подщелачивают. Бактерии ферментируют (с образованием кислоты) глюкозу, ксилою, арабинозу, фруктозу, маннозу, трегалозу, глицерин, маннит, целлобиозу, раффиозу, сорбит, адонит, инозит. Не ферментируют лактозу, сахарозу, рамнозу, дульциз, салицил. Образуют левансахаразу и лецитиназу.

Используют аммиачные и нитратные формы азота, анаэробно расщепляют аргинин.

Особенностью вида является синтез розово-фиолетового, диффундирующего в среду пигмента. Оптимальным источником углерода для биосинтеза фиолетового пигмента является глицерин. Пигмент образуется на твердых и жидких средах и имеет свойства индикатора: в кислой среде он желтый, в нейтральной — фиолетовый. Пигмент обладает слабой антибактериальной активностью.

При бактериальной гнили калл наблюдается ослабление основания листьев и образование на их черешках черно-бурых пятен, которые
быстро увеличиваются и превращаются в длинные полосы. Пораженные листья повисают у основания стебля. Здоровые листья приобретают хлоротическую окраску и постепенно засыхают. Корневища сгибают полностью, превращаясь в кашицеподобную массу с неприятным запахом.

Выделяется совместно с E. carotovora subsp. carotovora из пораженных калл, ирисов, герберы. Реакция сверхчувствительности на табаке отрицательна, что говорит об условной патогенности. Бактерии вызывают в слабой степени гниль плодов томатов, фасоли, гороха, цернировали ломтики картофеля и моркови. Возбудитель изолирован также из ризосферы ряда сельскохозяйственных растений (озимой пшеницы, свеклы, клубники, люцерны).

Распространение: обнаружена на каллах, ирисах, гербере в цветоводческих хозяйствах Белоруссии. Бактериоз широкого распространения не имеет.

Pseudomonas gladioli Severini 1913


Возбудитель бактериоза гладиолусов, ирисов, лука, моркови.

Палочки 0,8 X 2,0 мкм., грамотрицательны, подвижны, оксидазоположительны. Образуют нефлюоресцирующий желто-зеленый пигмент, слабо при росте на сахарозе. Не требуют факторов роста, разжижают желатин, не гидролизуют крахмал, образуют лецитиназу, гидролизуют твин 80. Не растут при 4 °С, растут при 41 °С. Оптимальная температура роста 30—35 °С. Вид использует 78 из 136 различных источников углерода. Не утилизирует лактозу, мальтозу, рамнозу, использует в качестве источника углерода соли D-винной кислоты, не используют левулинат, 2, 3-бутилен гликоль, триптамин, α-амиламин, соли т-оксибензойной кислоты. Накапливает внутриклеточно поли-ß-оксибутират в качестве запасного источника углерода, не имеет аргининдигидролазную систему, не способен к денитрификации.

Возбудитель вызывает мягкую гниль чаще всего клубней гладиолусов. Листья начинают усыхать с верхушки. Появляется желтизна вдоль края листа. Серо-черные пятна образуются у основания листьев, при сильном поражении растение ломается у основания. Желтые или красноватые вдавленные пятна развиваются на клубнях, которые становятся мягкими, из них выделяется красно-коричневая масса. Поражаются молодые и старые клубни.

При поражении ирисов на листьях, ближе к основанию, могут появляться слабо приподнятые мелкие пятна красно-коричневого цвета. Затем пятна увеличиваются, вдавливаются. Обычно пораженная ткань сухая, но в случае повышенной влажности можно наблюдать поражения типа мягкой гнили. При сильном поражении растения погибают. На клубнях появляются желтые водянистые округлые пятна, которые затем становятся коричневыми, почти черными, увеличиваются, приобретают неправильную форму. Клубни становятся ломкими, выделяют клейкий экссудат. Заболевание вызывает также гниль стеблей. Возбудитель сохраняется в клубнях, и, таким образом, клубни являются источником заражения в новом сезоне.

При поражении лука P. gladioli pv. aliiicola внутренние слои становятся мягкими. На ранней стадии заболевания растение выглядит внешне здоровым. Особенно сильно проявляется болезнь в период образования и созревания семян. Основным ее симптомом является появление в нижней части стрелки удлиненных пятен желто-бежевого цвета, 234
ватем ткань стрелки ослизняется, легко снимается, внутренние ткани превращаются в кашеподобную массу. Стрелки ломаются, падают. Семенные головки на таких стрелках часто вообще не образуются. Свыше 16 % образовавшихся семян являются больными.
Заболевание вредоносное, поражает до 14,5 % вегетирующих растений.
Растениями-хозяевами являются гладиолусы, ирисы, лук, морковь.
Распространение: Северная и Южная Америка, Европа, на Гаваях, в Австралии.

**Pseudomonas lupini Beltjukova et Koroljova**
Возбудитель буровой бактериальной пятнистости люпина.

Полиморфные палочки размером 0,4 — 0,7 × 1,2 — 2,5 мкм, имеют капсулу, подвижны посредством 3—7 полярных жгутиков, оксидазоотрицательны. На КА колонии серовато-белые, блестящие, плоские, центр плотный, края неровные. На МПБ бактерии вызывают умеренный рост, флюоресценцию, образуют осадок. Молоко пептонизируют, желатин разжижают, не образуют индоль и Н₂S. Крахмал не гидролизуют. Образуют кислоту из глюкозы, фруктозы, галактозы, маннозы, сахарозы, раффинозы, маннита, глицирнна, арабинозы, ксилоэ, рамнозы. Не образуют кислоту из салицина, трегалозы, мальтозы, лактозы, декстринна, инулина, дульпита.

Из бактериозов люпина наиболее распространенными являются бурая бактериальная пятнистость. Возбудитель поражает взрослые растения, всходы, семена. На стеблях всходов появляются запавшие пятна бежево-рыжего цвета. Они увеличиваются, охватывают стебель со всех сторон, в месте поражения образуется перетяжка, со временем растение погибает. На семядолях образуются маслянистые пятна — язвы коричневого, бежевого цвета. На стеблях взрослых растений можно наблюдать мелкие запавшие маслянистые коричневые пятна, вытянутые вдоль стебля. Затем пятна достигают дл. 1 см и более. На листьях развиваются мелкие маслянистые коричнево-бежевые пятна, которые имеют неправильную форму, подсыхая, становятся прозрачными в проходящем свете.

На бобах характерны мокнущие темно-зеленые или бурые пятна (рис. 2.4). Вокруг них часто появляется более темного цвета кайма. Створки боба с внутренней стороны также имеют поражения. Больные семена мелкие, щуплые, бурые или буро-коричневые с рыжеватым оттенком.

Пораженность растений составляет 0,1—43 %.
При искусственном заражении озимой и яровой пшеницы, ячменя и ржи на листьях образуются мелкие пятна. P. lupini оказалась патогенной для фасоли, сои, гороха, кормовых бобов, нута; слабо патогенной для чины, клевера, донника, чечевицы, эспарцета.
Распространение: УССР.

**Pseudomonas solanacearum** (Smith 1896) Smith 1914


Возбудитель широко распространенного бактериального увядания многих экономически важных сельскохозяйственных культур.

Палочки 0,5 — 0,7 × 1,5 — 2,5 мкм, подвижны, неспороносные, оксидазоположительны, не образуют лецитиназу, леван из сахарозы, не разжижают желатин, не гидролизуют крахмал. Утилизируют ряд веществ в качестве источника углерода, аккумулируют полн-р-оксибутират в качестве резервного источника питания. Не растут при 40 °C, аргининдигидролазная система отсутствует, денитрификаторы. Образует на KA серо-белые колонии, круглые, блестящие, гладкие, с ровными краями, в молодом возрасте более прозрачные, слизистые, приподнятые. Часто через небольшой период времени после посева колонии P. solanacearum начинают темнеть из-за образования различных оттенков коричнево-черного пигмента. На некоторых средах, например на среде ТТХ, бактерия образует колонии нескольких типов. Существует корреляция между патогенностью P. solanacearum и видом колоний на среде с ТТХ.

Оптимальная температура роста 27—37 °C.

Культура лизогенна, выделены фаги, отмечена специфичность бактериофага P. solanacearum.

Особенностью P. solanacearum является быстрая потеря вирулентности и жизнеспособности в лабораторных условиях. Образование пигмента часто связано с потерей вирулентности.

Заболевание, вызываемое данным возбудителем, характеризуется сходными симптомами проявления на различных растениях. Болезнь носит сосудистый характер, вызывает увядание растений, часто внезапно, листья желтеют, сморщиваются и обвисают, можно наблюдать покоронение жилок, коричневые полосы на стеблях. Причиной увядания являются не только нарушения водного тока, но и действие токсинов, выделяемых P. solanacearum.

При поражении клубней картофеля на разрезе видны потемневшие сосудистые пучки. Сосудистое кольцо клубня имеет серый или бурый цвет. При разрезе больного клубня вытекает слизь грязно-белого цвета. При другом заболевании картофеля, тоже с признаками кольцевой гнили (возбудитель Corynebacterium sepedonicum), сосудистое кольцо клубня имеет желтый цвет. Характерно, что у загнивающего изнутри картофеля корковый слой сохраняется очень долгое время неповрежденным.

Бактериоз на табаке начинает проявляться с момента увядания 1—2 листьев во время дневной жары. Часто увядают листья только с одной стороны ветки. Если заболевание протекает вяло, листья становятся светло-зелеными, затем желтыми. Появляются некрозы между жилками, по краям листьев. Если условия благоприятствуют заболеванию, растения табака приобретают симптомы вилта в течение нескольких дней. Быстро проявляется бактериальное увядание и у баклажанов. Причем на устойчивых к вилту сортах баклажанов может увянуть только 1 ветка. На садовом бальзамине образование дополнительных корней является главным симптомом болезни.
При слабом проявлении заболевания у земляного ореха происходит пожелтение листьев. При сильном — ветки увядают, чернеют, после чего растение часто погибает. Может также наблюдаться гниль корней. У перца листья медленно желтеют, затем их увядание и засыхание. Черешки и стебли могут ослизняться. Степень поражения вилтом зависит от сроков заражения растения, его устойчивости к возбудителю и климатических условий. Инкубационный период для молодых растений обычно равен 5—6 сут, для более старых растений 20—30 сут.

Источниками инфекции являются больные растения, семена, сорная растительность. В отличие от большинства фитопатогенных бактерий, возбудитель бактериального увядания выживает в почве и воде, сохраняя в ней жизнеспособность длительное время. В распространении вилта могут принимать участие насекомые.

В настоящее время нет единого мнения относительно распространённости и вредоносности возбудителя бактериального увядания в СССР. Так как заболевание вредоносно, широко распространено на различных культурах и имеет особенности проявления в различных климатических зонах, исследователи часто давали ему различное название: бактериальное увядание, вилт, слизистый бактериоз, коричневая гниль и многие др.

Заболевания очень вредоносны. Потери урожая отдельных культур могут достигать 50—100 %; до 25 % урожая земляного ореха на Яве, 20—22 % урожая перца в Индии, до 75 % урожая картофеля в США. В отдельные годы возникала опасность полной гибели табака в рядах Центральной и Южной Америки.

P. solanacearum имеет широкий спектр хозяев, поражает до 200 видов растений различных семейств, особенно чувствительны к нему пасленовые (картофель, томаты, табак, баклажаны и т. д.).

Распространение: в тропиках, субтропиках, а также в районах с высокими температурами и влажностью, а именно: в Северной и Южной Америке, Европе, Азии, Африке, Австралии, Новой Зеландии, на Филиппинах. Имеются сообщения о наличии данного заболевания и в областях с умеренным климатом.

Pseudomonas syringae van Hall 1902

Синонимы: Bacterium syringae (Van Hall) E. F. Smith 1905, B. cerasi (Griffin) Elliott 1930, B. citrarefaciens Lee 1917, B. citriputreale C. O. Smith 1913, B. hibisci Nakata and Takimoto 1923, B. holci Kendrick 1926, B. matthiolae Briosi and Pavarino 1923, B. spongiosum (Aderhold and Ruhland) Elliott 1930, B. trifoliorum Jones et al. 1923, B. utiformica (Clara) Burgwitz 1935, B. vignae Gardner and Kendrick 1923, B. viridificaciens Tisdale and Williamson 1923, Bacillus cerasus (Griffin) Holland 1920, B. spongiosus Aderhold and Ruhland 1905, Phytomonas syringae (van Hall 1902) Bergey, Harrison, Breed. Hammer and Hunton 1930, Ph. cerasi (Griffin) Bergey et al 1930; Ph. citriputreale (C. O. Smith) Bergey et al 1930, Ph. cerasi var. prunicola (Wilson) Bergey et al. 1939, Ph. hibisci (Nakata and Takimoto) Bergey et al. 1930, Ph. holci (Kendrick) Bergey et al. 1930, Ph. matthiolae Briosi and Pavarino Bergey et al. 1930, Ph. prunicola Wormald 1930, Ph. spongiosa (Aderhold and Ruhland) Magrou 1937, Ph. trifoliorum (Jones et al.) Burkholder 1926, Ph. utiformica Clara 1934, Ph. vignae (Gardner and
Возбудитель болезней ряда растений.

Палочки 0.7—1.2 × 1.5 мкм; подвижны посредством более 1 жгутика, грамотрицательны, образуют флюоресцирующий пигмент, оксидазоотрицательны. Поли-Р-оксибутират внутриклеточно не аккумулируют, вариабельны в отношении разжижения желатина, образования лецитиназы и левана, гидролиза твина (рис. 2.5), роста при 4 °С. Аргининдигидролазную систему не имеют, не обладают способностью к денитрификации. Штаммы не растут при 41 °С, оптимальная температура роста 25—30 °С. Не гидролизуют крахмал, не используют трегалозу, 2-кетоглюконат, герацинон, L-валин, β-аланин. В качестве источника углерода используют много соединений; не утилизируют D-тартраты, L-лейцин, L-тирозин, L-триптофан. Существует вариабельность в потреблении тех или иных веществ. Редкие штаммы требуют факторов роста. Большинство штаммов растет медленно в минеральной среде с источником углерода и относительно медленно в сложной среде. Питательный спектр более узок и более гетерогенен по сравнению с сапрофитными флюоресцирующими псевдомонадами. Индол и H₂S не образуют. На KA или MPA колонии серо-белые, прозрачные, округлые, с уплотненным и чуть приподнятым центром; гладкие, блестящие, с ровными или слабо волнистыми краями.

Сложный вид, состоящий из 41 патовара, различающихся между собой специализацией на растениях-хозяевах.

Первые симптомы болезни на сирени появляются ранней весной в виде коричневых водянистых пятен на листьях и молодых ветвях. В дождливую погоду пятна чернеют и увеличиваются в размере. Молодые листья чернеют быстро и полностью, в то время как пятна на более старых листьях увеличиваются медленно. Инфекция на молодых ветках распространяется вокруг ветки, опоясывая ее на несколько см. Стебель выше поражения ломается, и эта часть растения погибает. На более старых ветках пятна распространяются продольно к черешкам, вызывая гибель листьев; ветки остаются живыми. Поражения развиваются также на цветоножке, цветах; цветочные почки могут чернеть. Бактерии поражают, в первую очередь, паренхиму, распространяясь через межклеточное пространство коры, вызывая почернение, а затем
гнебь клеток, часто образуя каверны. Инфекция может распространяться через сосудистую систему, вызывая увядание верхних листьев и вдавленность почерневших участков стебля вдоль внутренних очагов поражения.

На цитрусовых возбудитель вызывает ожог ветвей и листьев, пятнистость плодов (черная ямка). Болезнь наблюдается только ранней весной и поздней осенью, когда снижается температура и идут дожди (17 °C и ниже). На плодах заболевание чаще всего проявляется при их хранении при низкой температуре.

Заболевание на плодах проявляется в образовании на них коричневых, затем чернеющих пятен диам. 0,6—1,8 см. Поражение не проникает в мякоть плода, ограничивается только кожей. Поэтому здесь вредоносность меньше, чем при заболевании ветвей и листьев. Однако при сильном развитии бактериоза на плодах товарная ценность их значительно снижается. У лимонов чаще поражаются плоды, у апельсиновых деревьев — листья и ветви.

У косточковых плодовых деревьев P. syringae pv. syringae вызывает бактериальный рак, некроз коры. При бактериальном раке поражаются различные части растения. Распускающиеся почки начинают чернеть, листья на таких побегах тоже чернеют, засыхают, но не опадают. Поочки, находящиеся в покоящемся состоянии, чернеют и не распускаются. Кроме того, поражаются цветочные побеги, которые чернеют и остаются на ветвях. На плодах образуются пятна. Поражение можно наблюдать на коре старых деревьев; при этом она сморщивается, отслipmapся от соседних тканей, образуя углубление, из которого иногда истекает застывающая камедь, которую не следует путать с более жидким экссудатом, характерным только для ожога плодовых деревьев, вызываемого Erwinia amylovora. При интенсивном развитии заболевания отделенные ветви, или даже целое дерево, отмирают.

Для бактериального рака характерна влажная мацерированная ткань древесины, издающая кислый запах, в отличие от бактериозов, вызываемых Xanthomonas campestris pv. pruni, Erwinia carotovora.

На яблонях болезнь проявляется в виде волдырей — подушечек, более светлых, чем окружающая ткань, с последующим отслоением коры и шелушением штамба. Естественная обсемененность плодовых деревьев на Украине составляет 4 %.

P. syringae pv. syringae вызывает раково-язвенное заболевание тополя, проявляющееся в образовании узловатых развороченных ран (рис. 2.6) с желтоватым оттенком по краям. Весной в коре появляются многочисленные трещины, из которых выступает бесцветный, позже красно-коричневый экссудат. Раны увеличиваются и окольцовывают ветвь или ствол, приводя их к усыханию. Цветочные почки не раскры-
ваются, или появившиеся сережки приобретают маслянистый темно-
коричневый цвет и опадают раньше времени. На листьях развиваются
темно- или серо-коричневые непрозрачные некрозы неправильной фор-
мы. Особенно чувствительны к данному заболеванию на Украине чер-
ный и бальзамический тополя в возрасте 4—8 лет.
Опасное контагиозное заболевание, наносит большой экономиче-
ский ущерб хозяйствам, обесценивает работы по полезащитному лесо-
разведению. Особенно вредоносно в Алтайском и Красноярском краях,
Прибской лесостепи. Приводит к усыханию до 70—95 % деревьев. Бак-
териоз яблони является самым опасным и распространенным за-
болеванием в Приморском крае. Сады там расположены в основном на
склонах, и степень поражения усиливается вниз по склону от 18 до
45 %.
Таким образом, круг хозяев у P. syringae pv. syringae очень шир-
рок: все виды сливы, груши, дуба, сирени, тополя, цитрусовые, ясень,
жасмин, томата, лебеда, грецкий орех, олеандр, миндаль и др. В посеве
бактерии быстро погибают. Их распространению способствуют дож-
ди, ветры, град.
Распространение: повсеместно.
Pseudomonas syringae pv. aceris (Ark 1939) Starr and Burkholder
1942
Син.: Phytomonas aceris Ark 1939.
Возбудитель бактериоза клена.
Палочки размером 0,3 — 0,8 × 0,8 — 2,5 мкм, подвижны посред-
ством 1—2 полярных жгутиков, грамотрицательны. Продуцируют
флюоресцирующий пигмент. Желатин разжижают. На МПА колонии
сери-белые, появляются через 24 ч. Молоко пептонизируют, но не
свертывают. Нитраты восстанавливают, индол и H2S не образуют. Ути-
лизируют с образованием кислоты глюкозу, фруктозу, галактозу,
арabinозу, ксилозу, сахарозу, мальтозу, лактозу, раффинозу, ман-
нит, глицерин и дульцит. Слабый рост наблюдается в бульоне с 6 %
NaCl. Оптимальная температура роста 13—31 °С.
На листьях сеянцев клена появляются многочисленные пятна раз-
личных размеров, вначале водянистые, окруженные желтой зоной;
позже они темнеют, становятся коричневыми или черными. На череш-
ках могут образовываться язвы, и пораженные листья опадают. Заболе-
вание наблюдается ранней весной при холодной дождливой погоде.
Распространение: США и Япония.
Pseudomonas syringae pv. antirrhini (Takimoto 1920) Young et al.
1978
Син.: Pseudomonas antirrhini Takimoto 1920, Bacterium antirrhini
(Takimoto) Elliott 1930, Phytomonas antirrhini (Takimoto) Magrou
1937, Xanthomonas antirrhini (Takimoto) Dowson 1943.
Возбудитель бактериальной пятнистости львиного зева.
Подвижные палочки 0,3 — 0,4 × 0,8 — 1,2 мкм, грамотрицатель-
ны, имеют капсулу, образуют леван. На мясном агаре образуют округ-
лые блестящие, сначала беловатые, со временем желтеющие колонии.
Желатин разжижают. В бульоне образуют муть и пленку. Молоко свер-
тывают и пептонизируют. Лакмусовое молоко и нитраты редуцируют.
Оптимальная температура роста 26—27 °С, максимальная 34, термина-
льная 51 °С.
На листьях львиного зева появляются округлые или неправильной
формы коричневые пятна с серо-белым центром. На стеблях образуют
удлиненные вдавленные пятна с ярким коричневым центром и красно-
вато-голубыми краями.
Распространение: бактериоз описан в Японии, зарегистрирован в
СССР.
**Pseudomonas syringae pv. apii** (Jagger 1921) Young et al., 1978


Возбудитель пятнистости сельдерея. Палочки 0,75—1,5 × 1,5—3,0 мкм, подвижны посредством 1—3 полярных жгутиков, грамотрицательны. В различных средах продуцируют флюоресцирующий пигмент. Разжижают желатин. На мясном агаре колонии округлые, блестящие, гладкие, приподнятые, края ровные, серовато-белые. Вывозят помутнение бульона и образование пленки. Молоко белопомутненное, но не свертывают, не образуют индол и H₂S. Крахмал не гидролизуют. Образуют кислоту при росте в средах, где источниками углерода являются глюкоза, галактоза, фруктоза, манноза, арабиноза, ксилоэоза, сахароза, маннит и глицерин. Не утилизируют рамнозу, лактозу, мальтозу, рафисинозу, салицин.

Поражают, главным образом, листья, на которых образуются небольшие, округлые или неправильной формы коричневые пятна, редко превышающие 5 мм в диаметр. Иногда пятен так много, что они вызывают усыхание листа, но чаще их вредное действие ограничивается уменьшением ассимиляционной поверхности листа, некоторой деформацией листовой пластинки. На черешках поражение наблюдается редко.

**Bacterium jaggeri** патогенна для сельдерея.

Распространение: бактериоз описан в США, встречается в СССР.

**Pseudomonas syringae pv. aptata** (Brown and Jamieson 1913) Young et al. 1978


Возбудитель бактериальной пятнистости листьев сахарной свеклы. Подвижные палочки, грамотрицательны, некислотоустойчивы, образуют флюоресцирующий пигмент, леван, оксидазоотрицательны. На агаре колонии белые, гладкие, блестящие, края ровные. Желатин разжижают, молоко свертывают, нитраты не восстанавливают, H₂S не образуют, индол образуют слабо, крахмал не гидролизуют. Выделяют кислоту при разложении декстрозы, галактозы, сахарозы. Слабо растут в бульоне с 7 %-ным NaCl.

Оптимальная температура роста 27—28 °С, максимальная 34—35, минимальная 1 °С. Бактерия чувствительна к засухе и к солнечному свету. Сохраняет свою вирulence в течение 2—3 лет. Относится к группе толерантных бактерий.

Возбудитель не проникает через неповрежденную кутикулу.

На сахарной свекле в естественных условиях заболевание проявляется в виде темно-коричневых, часто черных, неправильной формы пятен и полос 3—15 мм в диаметре на черешках, средних и больших жилках. В центре пятен часто образуются наросты пробковой ткани. При сильном поражении развивается мокрая гниль.

При искусственном заражении заболевают бобы, баклажаны, картофель, клевер, хризантемы. *P. syringae pv. aptata* вызывает также пятнистый бактериоз листьев настурции. При этом заболевании появляются водянистые, прозрачные, впоследствии буреющие пятна 2—5 мм в диаметр, засыхающие до дыр.

Растениями-хозяйками являются свекла, настурция, салат, фасоль, баклажаны, перец.

Распространение: бактериоз зарегистрирован в США, Англии, СССР, Корее, Австралии и других странах.
Pseudomonas syringae pv. atrofaciens (Mc-Culloch 1920) Young et al. 1978

Возбудитель базального бактериоза пшеницы.
Палочки 0,6 × 1,0 — 2,7 мкм, имеют капсулы, в культуре образуют длинные цепочки, подвижны посредством 1—4 полярных жгутиков, грамотрицательны. Продуцируют зеленый флюоресцирующий пигмент, оксидазоотрицательны. На мясном агаре колонии белые, позже серые, округлые, гладкие, блестящие. В бульоне образуют муть с ободком, иногда нежную пленку. Желатин разжижают. Молоко пеп-

Рис. 2.7. Базальный бактериоз зерновых:
а — колос, б — лист

tonизируют без свертывания, нитраты не восстанавливают, продуцируют H₂S и индол. Гидролизуют крахмал. Образуют кислоту в среде с сахарозой, декстroseй, галактозой, ксилозой, маннозой, глицерином. Не ферментируют лактозу, мальтозу, салицин, дульцит, эскулин, инулин. Оптимальная температура роста 25—28 °C, максимальная 36—37, минимальная ниже 2 °C.

Базальный бактериоз проявляется на зернах, чешуйках колосков и листьях (рис. 2.7). Вывозяет побурение основания чешуек. При слабом поражении темнеет лишь ее внутренняя часть, тогда болезнь внешнее ничем не проявляется. На листьях образуются коричневые или беловатые пятна. Возбудитель вызывает сухую гниль оберточного листа и колоса, побурение колеоптиле, покраснение чешуек и зерен, карликовость растений, а также корневую гниль озимой пшеницы. При заражении до молочной спелости заболевание переходит на зерно, которое делается щуплым, недоразвитым, зародыш погибает. Во время эпифитотии базальный бактериоз поражает 10—80 % колосьев.

242
Распространение: широкое в различных странах (США, Канада, СССР, Австралия, страны Африки и др.)

**Pseudomonas syringae pv. atropurpurea** (Reddy and Godkin, 1923)

Young et al., 1978.


Возбудитель бактериоза костра и пырея.

Заболевание проявляется в виде округлых, несколько удлиненных оливково-зеленых водяннистых пятен с коричневым центром. Со временем пятна становятся темно-коричневыми, пурпурно-коричневыми, почти черными, могут слияться, захватывая большую часть пластинки листа. Вокруг молодых пятен может образовываться ореол.

Поражает пырей ползучий, костер безостый, овес, райграс английский и многие другие растения семейства злаковых.

При сильном поражении верхние узлы отмирают, может погибнуть все соцветие. Заболевание передается при ранении растения и через устьица.

Распространение: в ряде областей США. Бактериоз обнаружен на различных видах костра в СССР.

**Pseudomonas syringae pv. berberidis** (Thornberry and Anderson 1931)

Young et al., 1978


Возбудитель бактериоза барбариса.

Палочки размером 0,5 — 1,0 × 1,5 — 2,5 мкм, подвижны посредством 2—4 полярных жгутиков, имеют капсулу, грамотрицательны, продуцируют флуоресцирующий пигмент. На КА округлые, белые, опалесцирующие с ровными краями колонии. В бульоне образуют муть с пленкой, желатин не разжижают. Молоко оставляют без изменения, нитраты не восстанавливают, индол и H2S не образуют. Образуют кислоту из глюкозы, сахарозы, галактозы. Рамнозу и мальтозу не утилизируют, крахмал не гидролизуют. Оптимальная температура роста 18 °С, максимальная 30, минимальная 7 °С.

Возбудитель вызывает образование темных водяннистых пятен на листьях, черешках, молодых побегах. Поражения на листьях бывают 2—5 мм в диам., округлые или угловатые, со временем становятся темно-пурпурными. Поражаются листья всех возрастов. При сильной пятнистости листья опадают.

На ветках появляются такие же пятна, сначала округлые, затем продолговатые. На цветках и ягодах поражения не обнаружено. Монофаг.

Распространение: бактериоз обнаружен в США. Зарегистрирован в СССР в Московской, Ленинградской и Смоленской областях.

**Pseudomonas syringae pv. cannabina** (Sutic and Dowson 1959) Young et al., 1978

Возбудитель бактериоза конопли.

Вызывает пятнистость стеблей и листьев конопли. На стеблях проявляется в виде длинных серо-белых полос, немного выпуклых, достигающих в дл. 10 и более см. На листьях образуются угловатые коричневые, затем черные, окаймленные желтоватым водяннистым ореолом пятна. Пятна чаще всего располагаются вдоль средней жилки. При высыхании они пролетрипляются. Часто наблюдается деформация листовой пластинки. На стеблях поражение охватывает все ткани, вплоть до древесины, вызывая их отмирание. Растениями-хозяевами возбудителя являются конопля, фасоль, вика.
Распространение: бактериоз впервые обнаружен в Италии. Зарегистрирован в СССР.

*Pseudomonas syringae pv. ciccaronei* (Ercolani and Caldarola 1972)
Young et al., 1978
Возбудитель бактериоза сладкого рожка.
Палочки размером 1,6 × 0,8 мкм, подвижны посредством 2—3 жгутиков, грамотрицательны, флюоресцирующие, каталазоположительны. Образуют округлые блестящие прозрачные колонии. Не образуют леван, не восстанавливают нитраты, не разжижают желатин, не имеют лецитиназы, не образуют индол и H₂S. Образуют кислоту из глюкозы и сахарозы, не образуют из лактозы и салицина, гидролизуют твин 80. Оптимальная температура роста 24—26 °C.

Заболевание проявляется в образовании на листьях небольших некротических темных пятен, окруженных хлоротической каймой, особенно хорошо заметной с верхней стороны листа. Пятна разбросаны по всей поверхности листа.

Распространение: Италия.

*Pseudomonas syringae pv. coronafaciens* (Elliott 1920) Young et al., 1978
Возбудитель бурого (красного) бактериоза овса.
Палочки 0,65 × 2,3 мкм, подвижны посредством 1 или нескольких полярных жгутиков, грамотрицательны, оксидазоотрицательны, образуют леван. Капсулу имеют, продуцируют флюоресцирующий пигмент. На мясном агаре колонии округлые, белые, гладкие, с слабо приподнятой краями. На бульоне муть средней интенсивности с белой пленкой. Медленно разжижают желатин. Молоко свертывают и пептонизируют. Слабо восстанавливают нитраты, не образуют индол и H₂S. Слабо гидролизуют крахмал. Утилизируют глюкозу, сахарозу, левулезу с образованием кислоты. Оптимальная температура роста 24—25 °C, минимальная 1, максимальная 31 °C.

Болезнь известна под названием «halo-blight». При этом заболевании на листьях, реже на метелках, влагалищах, чешуйках цветов, появляются светло-зеленые пятна 4—5 мм в диам., вдавленные в центре. Пятна разрастаются, ткань в середине засыхает, становится коричневой или серой. Вокруг пятна образуется ореол светло-зеленой или желтоватой ткани 0,5—2 см в диам. Они могут сливаться. Иногда пятнистость располагается по краям пластинки продольными полосками, в сухую теплую погоду пораженная ткань приобретает коричневую окраску, засыхает. Обычно она окруженна коричневой или узкой желтой каймой. Поражение может иметь также красно-коричневый цвет.

Посевы овса могут быть на 34 % поражены бурым бактериозом. При искусственном заражении патогена для ржи, ячменя, пшеницы.

Распространение: широкое (США, Канада, Новая Зеландия, Румыния, СССР и др.).

*Pseudomonas syringae pv. delphinii* (Smith 1904) Young et al. 1978
Возбудитель черной бактериальной пятнистости шпорника.
Палочки 0,6 — 0,8 × 1,5 — 2,0 мкм, имеют капсулу, подвижны посредством 1—6 жгутиков, грамотрицательны, продуцируют флюоресцирующий пигмент. На агаре белые, округлые, гладкие, блестящие,
иногда слабовязкие колонии. В бульоне хороший рост, имеется пленка. Желатин разжижают. Молоко пептонизируют без коагуляции. Нитраты не восстанавливают. Не образуют индоль и H₂S. При росте в среде с глюкозой, сахарозой, галактозой, левулезой образуют кислоту. Крахмал гидролизуют слабо. Оптимальная температура роста 25 °C, максимальная 30, минимальная 1 °C. Слабый рост в бульоне с 4 %-ным NaCl.

На листьях появляются водянистые, неправильной формы, угловатые черные пятна. На нижней поверхности листа они коричневые. С нижней стороны пятна вдавленные, с верхней — несколько выпуклые. Пятна могут быть по всей поверхности листовой пластинки, но часто они бывают на концах лопасти. Пя́тна развиваются также на цветочных почках, лепестках и стеблях. В результате поражения растение или отдельные его части принимают уродливый вид. Пятна на листьях имеют тенденцию к образованию концентрической зональности.

Па́рения-хозяева — шпорники и борец.
Распространение: широкое (США, Канада, Франция, Австралия, Бразилия, СССР).

Pseudomonas syringae pv. dysoxyli (Hutchinson 1949) Young et al., 1978

Возбудитель бактериоза растений семейства Meliaceae.
Неспороносные палочки, подвижны посредством 1—2 полярных жгутиков, короткие, с округлыми краями, размером 0,8×0,5 мкм, грамотрицательные, продуцируют водорастворимый коричневый пигмент. Колонии вариабельной формы, серого цвета, прозрачные, гладкие, края ровные или волнистые. Образуют кислоту из глюкозы, фруктозы, сахарозы, раффинозы и маннита. Не образуют индоль и H₂S, не восстанавливают нитраты. Оптимальная температура роста 25 °C.

Возбудитель вызывает пятнистость листьев, черешков, стеблей; никогда не наблюдали бактериоза на плодах. Вначале заболевание проявляется в виде маслянистых округлых просвечивающихся пятен, затем они становятся серо-коричневыми, увеличиваются в размере. Распространение: Новая Зеландия. Дерево произрастает в Новой Зеландии, где бактериозом поражаются до 99 % взрослых растений; особенно распространено заболевание на севере острова; болеют круглый год, однако интенсивность заболевания усиливается летом и снижается зимой. Монофаг.
Передается бактериоз посредством больных тканей, дождем; возможна передача на дальние расстояния при помощи насекомых, птиц, животных.
Распространение: Новая Зеландия.

Pseudomonas syringae pv. eriobotryae (Takimoto 1931) Young et al., 1978
Синонимы: Bacterium eriobotryae Takimoto 1931, Phytomonas eriobotryae (Takimoto) Burkholder 1939, Pseudomonas eriobotryae (Takimoto) Dowson 1943.

Возбудитель бактериоза мушмулы японской.
Палочки 0,7 — 0,9 X 2,2 — 3,0 мкм, подвижны посредством 1—2 жгутиков, грамотрицательные. Образуют пленку. На листьях появляются спустя 3 сут после посева, белые, прозрачные, края ровные. Вывозят бактериозу, образуют в нем пленку и кольцо. Желатин не разжижают, молоко пептонизируют без коагуляции, нитраты не восстанавливают. Индоль и H₂S не образуют, крахмал не гидролизуют. Не образуют кислоту при росте в средах с декстрозой, сахарозой, лактозой, глицерином. Оптимальная температура роста 25—26 °C, максимальная 32 °C.
Возбудитель вызывает гниль почек.
Распространение: Япония.
_Pseudomonas syringae pv. glycinea_ (Coerper 1919) Young et al., 1978
Возбудитель угловатой пятнистости сои.
Палочки 1,2 — 1,5 × 2,3 — 2,9 мкм, подвижны посредством полярного жгутика, грамотрицательны. Продуцируют флюоресцирующий пигмент, не разжижают желатин, образуют леван, оксидазопатрицательны. На МПА колонии круглые, гладкие, блестящие, края в основном ровные, иногда слабо волнистые. Индол и H₂S не образуют. Молоко свертывают, но не пепторизируют, не восстанавливают нитраты. Крахмал не гидролизуют. Образуют кислоту в средах с декстрозой и сахарозой. Оптимальная температура роста 24—25 °C, максимальная 35 °C.
Заболевание вызывает преждевременное опадение листьев, уменьшение их ассимиляционной поверхности на 40—50 %, что в конечном счете сказывается на величине урожая, может быть причиной гибели всходов и взрослых растений. У больных растений повышается интенсивность дыхания и транспирация. Снижается интенсивность фотосинтеза и количество хлорофилла в листьях. Больное растение содержит меньше моносахаридов, дисахаридов, жира и азота. Возбудитель вызывает заболевание всех надземных частей сои (от сеянцев до взрослых растений), но значительно чаще угловатая пятнистость встречается на листьях (рис. 2.8). На последних пятна первоначально мелкие, маслянистые, особенно с нижней стороны. Пораженная ткань светло-коричневого цвета, затем она приобретает шоколадный цвет, просвечивает в проходящем свете. Поражённые участки листа обычно имеют желтовато-оранжевый ореол. Пятна часто размещаются вдоль жилок листа, по краям листьев. Со временем больные участки увеличиваются в размере, приобретают различные оттенки коричневого и черного цветов. Края в местах поражения выпадают, и листья принимают уродливую форму (рис. 2.9). Иногда с нижней стороны листа выступает экссудат, который застывает и приобретает вид тонкой серебристой пленки. На пораженных семядолях образуются серо-коричневые, серо-черные, вначале маслянистые, затем въедающие пятна. Часто больная семядоля уже, меньше здоровой, места поражения более темноокрашены.
Пятна могут быть гладкие, плотные в центре и на краю семядоли; могут быть поверхностными либо продвигаться вглубь семядоли на 1—3 мм. В случаях поражения стеблей на них развиваются продолговатые шоколадные, со временем темнеющие пятна, иногда растрескивающиеся дл. до 2,5 см.

На бобах пятна округлые, темно-коричневые, иной раз черноватые, сухие или влажные, слабо маслянистые. Для больных семян характерна меньшая, по сравнению со здоровыми, величина. Обычно они тусклые, часто сморщеные. На семенах встречаются серо-коричневые сухие пятна, трещины. Поверхность больных семян иногда приобретает зеленовато-серый оттенок (рис. 2.10).

Не всегда удается отличить по внешнему виду больные семена от здоровых и определить вид возбудителя.

Широко распространена на посевах сои, где приносит наивысший вред по сравнению с другими возбудителями. Поражение бактериозом зависит в значительной степени от сорта и климатических условий. Так, некоторые сорта сои на Черновицкой опытной станции были поражены на 75—100 %, в то время как в условиях Киева эти же сорта оказались либо совершенно здоровыми, либо пораженными на 2—4 %. Угловатая пятнистость поражает растения сои любого возраста. Однако массовое проявление этого бактериоза наблю-
дает во второй половине лета, когда происходит вторичное заражение растений.

Монофаг. При искусственном заражении бактерия слабо вирулентна для люпина, конских бобов, чечевицы.

Распространение: бактериоз широко распространен во всех районах сосевания (США, Канаде, Германии, Австрии, Чехословакии, Болгарии, СССР, Монголии, Южной Африке, Бразилии и др.).

Pseudomonas syringae pv. helianthi (Kawamura 1934) Young et al., 1978


Возбудитель бактериоза подсолнечника.
Палочки размером 1,0 — 1,4 × 1,6 — 2,4 мкм, подвижны посредством полярного жгутика, грамотрицательны. На мясном агаре колонии белые, округлые, края ровные. В бульоне бактерии образуют муть, пленку. Желатин не разжижают, молоко пептонизируют, индол и H₂S не образуют, крахмал гидролизуют. Образуют кислоту при росте на сахарозе и глицерине, не утилизируют лактозу и мальтозу. Оптимальная температура роста 27—28 °C, минимальная 35,5 °C, минимальная 12 °C. Возбудитель хорошо растет при pH 6,4, не растет при pH 5,4 и 8,8.

Вызывает пятнистость на листьях подсолнечника. Поражает землянику, грушу.

Распространение: Япония, Румыния.

Pseudomonas syringae pv. japonica (Mukoo 1955) Dye et al. 1980
Син.: P. striafaciens var. japonica Mukoo 1955

Возбудитель бактериоза злаковых.
Бактерии паразитируют на ржи, ячмене, пшенице, рисе и многих других представителях злаковых.

Распространение: Япония.

Pseudomonas syringae pv. lachrymans (Smith and Bryan 1915) Young et al. 1978

Возбудитель угловатой пятнистости огурцов.
Палочки размером 0,8 × 1,0 — 2,0 мкм, подвижны посредством 1—5 полярных жгутиков, грамотрицательны, образуют леван (рис. 2.11). Некоторые штаммы образуют флюоресцирующий пигмент. На МПА колонии круглые, беловатые, гладкие, блестящие, слегка выпуклые, имеют гонкий ровный край. Разжижают желатин. Молоко не свертывают, пептонизируют. Нитраты не восстанавливают. Индол и H₂S не образуют. Образуют кислоту в средах с глюкозой, фруктоzą, маннозой, арабинозой, ксилоzą, сахарозой и маннитом. Не ферментируют мальтозу, рамнозу, лактозу, раффинозу, глицерин и салицин. Оптимальная температура роста 25—27 °C, минимальная 1, максимальная 35 °C.

Поражает семядоли, листья, цветы и плоды (рис. 2.12). Поражение всходов происходит при посеве зараженными семенами. При этом на семядолях появляются мелкие светло-коричневые пятна. Затем поражение охватывает почти всю поверхность семядоли, она уменьшается в размере. Больные всходы имеют изуродованные семядоли. При сильном поражении всходы погибают. На листьях болезнь проявляется
в виде угловатых маслянистых темно-серых или коричневых пятен. Пятна могут занимать большую часть листовой поверхности, затем они продырявливаются. На плодах образуются округлые язвы. Молодые

Рис. 2.11. Образование левана. P. syringae pv. lachrymans

плоды искривляются, приобретают уродливую форму, их товарная ценность теряется, снижается урожай. На язвах в сырую погоду образуется экссудат, поэтому возбудитель называют слезоточивым (lachrymans).

Угловатая пятнистость огурцов — наиболее вредоносное заболевание этой культуры как в открытом, так и в закрытом грунте. В некоторых случаях недобор урожая от болезни может составлять 50% и более.

Бактерия-возбудитель приурочена к паразитированию на растениях только семейства тыквенных. Поражает огурцы и дыни, несколько слабее тыкву. Слабо или совсем не поражает патиссоны, арбузы, крунеки.

Распространение: широкое (США, Канада, ГДР и ФРГ, Франция, Италия, Англия, СССР и др.).

Pseudomonas syringae pv. lapsa (Ark 1940) Young et al. 1978.
Син.: Phytomonas lapsa Ark 1940, Pseudomonas lapsa (Ark 1940) Starr and Burkholder 1942.

Рис. 2.12. Угловатая пятнистость огурцов
Возбудитель гнили листьев, стебля кукурузы и сахарного тростника.

Палочки 0,56 × 1,55 мкм, подвижны посредством 1—4 полярных жгутиков. Продуцируют флюоресцирующий пигмент. Используют с образованием кислоты декстрозу, сахарозу, мальтозу, лактозу, арабинозу, ксилоzu, галаクトозу, раффинозу, маннит, глицерин. Желатин разжигают, нитраты восстанавливают. Слабый рост в бульоне с 5 %-ным NaCl.

Возбудитель гнили листьев и стебля кукурузы. Растения часто ломаются и падают на землю.

Поражает кукурузу и сахарный тростник.

Распространение: США.

Pseudomonas syringae pv. maculicola (Mc-Culloch 1911) Young et al. 1978


Поражает бактериальной пятнистостп капусты.

Палочки 0,9 × 1,5—3,0 мкм, подвижны посредством 1—5 полярных жгутиков, грамотрицательны. Образуют флюоресцирующий пигмент. На КА колонии вначале мелкие, круглые, блестящие, гладкие, в проходящем свете прозрачные, опалесцирующие, с возрастом становятся грязно-белыми, центр уплотняется и приподнимается, края слабо волнистые. На МПБ бактерии образуют муть без пленки. Слабо разживают желатин. Пептонизируют молоко без свертывания, нитраты не восстанавливают, H2S не образуют, индол образуют слабо. Крахмал гидролизуют слабо. Оптимальная температура роста 24—25 °С, максимальная 29, минимальная ниже 0 °С.

Ферментируют с образованием кислоты глюкозу и сахарозу, но не лактозу, мальтозу, салицин. Слабый рост в бульоне с 4 %-ным NaCl.

Поражает, главным образом, цветную капусту на всех фазах ее роста и развития, начиная от проростков и кончая семенами. Основным признаком заболевания являются темные маслянистые пятна на пораженных семядолях, листьях, стеблях, головках, цветоносах, стручках (рис. 2.13).

Пятна на стручках образуются как на внешней, так и на внутренней поверхности, откуда инфекция переходит на семена. Возбудитель вызывает также потемнение сосудов черешков и корней, ослищение стебельков и корешков проростков.

Вред от бактериоза выражается в уменьшении ассимиляционной поверхности листьев, снижении качества и уменьшении количества товарных головок и семян цветной капусты. Могут быть поражены до 30—50 % растений при благоприятных для болезни условиях.
Распространение: встречается во многих странах (США, Финляндия, Болгария, Великобритания, СССР, Италии, Тайване и др.).

**Pseudomonas syringae pv. mellea** (Johnson 1923) Young et al. 1978

Син.: Bacterium melleum Johnson 1923, Phytomonas mellea (Johnson) Bergey et al. 1930, Pseudomonas melleum (Johnson) Dowson 1939.

Возбудитель висконсинской бактериальной пятнистости табака.

Палочки 0,5—0,8 × 1,0—2,4 мкм, образуют капсулу, подвижны посредством 1—7 полярных жгутиков, грамотрицательны, образуют флюоресцирующий пигмент, на бульоне — помутнение с образованием пленки. На агаре колонии круглые, гладкие, блестящие, приподнятые, желтоватые. Желатин разжижает, молоко пептонизируют, нитраты не восстанавливают, индол и H₂S не образуют, кислоту на сахарах не образуют. Оптимальная температура роста 26—28°C, максимальная 35—36, минимальная 7—9°C, рост угнетается в присутствии 4 %-ного NaCl.

В начале заболевания появляются небольшие округлые пятна, окруженные желтовато-зеленым ореолом. Ореол может и не быть. Через некоторое время пятна увеличиваются в размере, становятся коричневыми, а затем беловатыми. Поражение может быть ограничено жилками или развиваться идоль жилки, образуя удлиненные пятна. Старые поражения имеют коричневый или коричневато-белый цвет. Заболевают, главным образом, нижние листья. Данный возбудитель отличается от P. tabaci (основного возбудителя бактериоза табака) наличием капсулы, желтым цветом колоний, не образует кислот на декстрозе, сахарозе и других сахараах.

Поражает различные виды табака.

Распространение: США, Румыния, Бельгия, СССР и другие страны.

**Pseudomonas syringae pv. mori** (Boyer and Lambert 1893) Young et al. 1978


Возбудитель бактериоза (ожога) шелковицы.

Палочки размером 0,9—1,3 × 1,8—4,5 мкм, подвижны при помощи нескольких полярных жгутиков, не имеют капсулы, грамотрицательны. На агаре колонии белые, округлые, прозрачные, гладкие, плоские, края ровные. Оксидазоотрицательны, образуют леван, желатин не разжижает, молоко пептонизируют, не восстанавливают нитраты, индол и H₂S не образуют. Образуют кислоту из ксилозы, декстрозы, маннозы, сахарозы, глицерина и не образуют из лактозы, мальтозы, салицины. Крахмал не гидролизуют или гидролизуют слабо. Растут при температуре 1—35°C.

Заболевание наиболее сильно проявляется весной и в начале лета, затем болезнь затухает. Поражаются листья, молодые побеги, почки, черешки, корни только кустовой шелковицы в случаях сильного поражения. На листьях образуются вначале водянистые угловатые пятна, затем они приобретают коричневый или черный цвет, окруженные светлым ореолом. Пятна впоследствии продеревиваются. На их поверхности, особенно в сырую погоду, выступает экссудат. Сильно пораженные листья желтеют, скручиваются. При поражении черешков листья могут опадать. Жилки листьев иногда чернеют. На молодых побегах развиваются удлиненные пятна, окруженные водянистым ореолом. Побеги могут сильно искривляться. При отмирании пораженной ткани вследствие роста соседних клеток образуются трещины, язвы. При одностороннем поражении побеги нагибаются, засыхают и погибают. Взрослые листья
деревья, в отличие от саженцев, не погибают, но часто уродуются и дают плохой урожай. У больных растений нарушается метаболизм. Снижается качество и количество урожая листьев, в листьях уменьшается содержание аскорбиновой кислоты, нарушаются окислительно-восстановительные процессы. Гусеницы, вскармленные больным листом, дают некошмарные по качеству контрольные.

Источником заражения являются больные черенки, больные саженцы, непереработанные растительные остатки, пораженные ветви взрослых деревьев. Бактерии могут проникать в растения через устьица и ранки. Поражаемыми растениями являются виды рода Morus. Наиболее сильно страдает японская шелковица.

Распространение: все районы выращивания тутового дерева: в Италии, Франции, Англии, США, Канаде, Бразилии, Болгарии, СССР, Японии, Корее, Южной Африке, Австралии и др.

*Pseudomonas syringae pv. mors-prunorum* (Wormald 1931) Young et al. 1978


Возбудитель бактериального рака косточковых плодовых деревьев. Палочки размером 0,3—0,5 х 0,8—2,5 мкм, подвижны посредством 1—4 полирных жгутиков, грамотрицательны, капсулу не имеют. Штаммы возбудителя медленно растут на КА и МПА и образуют видимые колонии лишь на вторые—третьи сутки. Колонии правильно округлые, белого цвета, окруженные узким прозрачным опалесцирующим ободком. Поверхность блестящая, край ровный. На бульоне нежный рост, желатин разжижает, нитраты не восстанавливают, леван образуют, крахмал не гидролизуют. Молоко слабо свертывают, индол не образуют. Образуют кислоту в присутствии декстрозы, сахарозы, глицерина, оптимальная температура роста 25 °C, максимальная 35 °C.

На стволах и ветках сливы — раковые образования или плоская пораженная поверхность, часто с трещинами, что приводит к гибели деревьев. Листья приобретают бледно-зеленую с желтизной окраску, могут засыхать.

На абрикосе поражение листьев в виде «ожога». На черешне — пятнистость с желтоватой каймой и выпадением ткани листа. Встречаются также поражение почек и соцветий, которые в конечном счете увядают и засыхают.

Распространение: заболевание впервые описано в Англии, Дании, СССР. Из регионов УССР встречается в Закарпатье.

*Pseudomonas syringae pv. panici* (Elliott 1923) Young et al. 1978


Возбудитель полосатого бактериоза проса. Палочки размером 0,69—1,1 х 1,66—2,6 мкм, подвижны посредством 1—3 полирных жгутиков, капсулу имеют, грамотрицательны. На МПА колонии круглые, белые, гладкие, блестящие, вначале с гладким, затем слабо волнистым краем, в бульоне образуют муть с нежной пленкой. По биохимическим свойствам принадлежит к группе флюоресцирующих бактерий. Желатин разжижает медленно, молоко пептонизируют, нитраты восстанавливают, NH₃ и H₂S образуют, индол нет. Не образуют кислоту на глюкозе, сахарозе, мальтозе, лактозе, манните и глицерине. Крахмал гидролизуют медленно. Оптималь-
ная температура роста 33—34 °C, максимальная 45, минимальная 5,5 °C.

Болезнь характеризуется появлением на листьях, влагалищах и стеблях продольных водянистых полос. Инфицированная ткань коричневая. При сильном поражении главный стебель и верхние листья отмирают. Часто на поверхности пораженных органов появляется экссудат в виде тонких белых чешуек. Сильно пораженные растения отстают в росте, стебли их чернеют, размачиваются. Метелки могут опадать, оказываются пустыми.

Поражает просо, щетинник и чумизу.
Распространение: США, Болгария, СССР и другие страны.
_Pseudomonas syringae pv. papulans_ (Rose 1917) Dhanvantari 1977
Возбудитель пузырчатой пятнистости яблони.

Аэробные палочки, подвижны посредством 1—7 полярных жгутиков, грамотрицательны, образуют на агаре белые, округлые, блестящие колонии с зеленым пигментообразованием. Утилизируют глюкозу, арабинозу, галактозу, фруктозу, маннозу, рибозу, слизозу, сахарозу, мелобиозу, глицерин, сорбит и сахарозу с образованием кислоты. Гидролизуют твин 80, крахмал не гидролизуют, имеют каталазу и уреазу, тиросиназа отсутствует. Не образуют индол и H2S, не восстанавливают нитраты, устойчивы к 4—5 %-ному NaCl, утилизируют аспарагин как единственный источник углерода и азота. Максимальная температура роста 34 °C.

Бактерии патогенны для персика.
Распространение: возбудитель вызывает пузырчатую пятнистость яблони в США, пузырчатость коры и рак яблони в США, Канаде и Англии.

_Pseudomonas syringae pv. passiflorae_ (Reid 1938) Young et al. 1978
Син.: Phytomonas passiflorae Reid 1938, Pseudomonas passiflorae (Reid) Bukholder 1948.
Возбудитель бактериоза пассифлоры.
Палочки размером 0,45 X 1,5 мкм, имеют капсулу, подвижны посредством 1—5 полярных жгутиков, грамотрицательны. На агаре колонии сероватые, плоские, блестящие, гладкие, просвечивающие. Бактерии вызывают помутнение бульона с образованием белой пленки. Желатин разжижают. Молоко не свертывают, нитраты не восстанавливают, индол и H2S не образуют. Продуцируют кислоту при росте в присутствии сахарозы, галактозы, крахмала, но не лактозы, раффиозы, глюкозы, маннита. Крахмал не гидролизуют.
При этом заболевании на фруктах развиваются четко очерченные, неправильно округлые маслянистые пятна, коричневые поражения с бледно-желтым ореолом; на листьях водянистые ярко-коричневые угнетенные участки, окруженные неравномерно разрастающейся тканью на молодых стеблях; на более старом дереве — темно-зеленые округлые гладкие или темно-коричневые поражения в виде трещин. Коря сухая и пористая (ноздреватая), имеющая продольные трещины; легко отделяется от расположенной под ней части дерева, на которой находятся темно-коричневые полосы.
Распространение: Новая Зеландия.

_Pseudomonas syringae pv. persicae_ (Prunier et al. 1970) Young et al. 1978
Возбудитель бактериальной болезни персикового дерева.
Заболевание начинается с локализованных некрозов на молодых ветвях. При сильном проявлении заболевания ветки могут полностью усыхать. Бактериоз развивается также на листьях, стволах, плодах. Симптомы сходны с вызываемыми другими возбудителями рода _Pseudomonas._
Распространение: Италия.
Пseudomonas syringae pv. phaseolicola (Burkholder 1926) Young et al. 1978
Син.: Phytomonas medicaginis var. phaseolicola Burkholder 1926, Ph. puerarlae (Hedges) Bergey et al. 1930, Bacterium medicaginis var. phaseolicola (Burkholder) Link and Hull, 1927, B. puerarlae Hedges 1927, Pseudomonas medicaginis var. phaseolicola (Burkholder) Stapp and Kotte 1929, P. phaseolicola (Burkholder) Dowson, 1943, Xanthomonas medicaginis var. phaseolicola Burkholder 1943.

Возбудитель угловатой пятнистости фасоли.
Палочки размером 0,7—1,5 × 1,5—3 мкм, подвижны с помощью жгутика, грамотрицательны, оксидазоотрицательны, образуют леван и флюоресцирующий пигмент. На МПА колонии округлые, серо-белые, приподнятые в центре, края прозрачные, голубоватые, ровные или слабо волнистые. На бульоне образуют муть и тонкую пленку.
Желатин большинство штаммов разжижает медленно, не восстанавливают нитраты. Молоко не свертывают, часть штаммов пептонизируют его. Не образуют индол и H₂S. Гидролизуют крахмал. Образуют кислоты из декстрозы, галактозы, левуленес, маннозы, арабинозы, ксилоэзы, сахара, глицерина. Не образуют кислоту из рамнозы, мальтозы, лактозы, раффинозы, галактозы, маннита, салицила. Слабый рост в бульоне с 4%ным NaCl. Оптимальная температура роста 20—23 °C, минимальная 2,5, максимальная 33 °C.

Бактерии обнаружены в природе в вирулентной шероховатой форме. Жизнеспособность возбудителя на искусственных средах сохраняется долго, штаммы более 20 лет растут в условиях коллекционной культуры. Бактериоз поражает все надземные органы растения. Заболевание, вызываемое P. syringae pv. phaseolicola, называют также ореольным поражением, жировой пятнистостью. Обнаруживается на ранних фазах роста на семядолях, на которых образуются бурьые мелкие пятна в виде бородавок, расплывчатые маслянистые пятна.
На листьях пятна сначала мелкие, угловатые, маслянистые, темно-зеленые, просвечиваются на свет, располагаются между жилками листа. Затем они становятся красно-коричневыми (рис. 2.14). Очаги поражения могут сливаться, четкость углов остается. При этом бактериоз выделяется грязно-белый экссудат, который подсыхает и хорошо виден на нижней стороне листа в виде серой тонкой пленки. Диагностическим признаком заболевания является наличие больших хлоротических зон вокруг поражения. Можно наблюдать слабое увядание кончиков листьев, которые постепенно коричневеют.
Поражение на стеблях характеризуется образованием продольных красновато-бурых трещин и язв. На побегах вначале появляются маслянистые пятна, затем они приобретают различные оттенки коричневых тонов. На семенах желтоватые пятна, язвочки, напоминающие уколы насекомых. Семена сгораются, остаются недоразвитыми и мелкими.
При дождливой погоде и низкой температуре болезнь развивается очень быстро. Если поражаются первые, настоящие, листья,
растения не успевают зацвести, погибают, особенно восприимчивые сорта.
Поражает фасоль. При искусственном заражении на сое образуются некротические пятна с большим светло-зеленым с желтязной ореолом. Слабые признаки поражения имеются на люпине синем и нуте.
Распространение: широкое в районах выращивания фасоли (США, странах Европы, Бразилии, Австралии, СССР и др.).


Возбудитель бактериального ожога гороха.
Палочки размером 0,6—0,8 × 1,1—3,2 мкм, капсула не имеется, подвижны посредством полярного жгутика, грамотрицательны, некислотоустойчивы, образуют леван и флюоресцирующий пигмент. На гаагро колонии серовато-белые, округлые, слабо приподнятые. Желатин разжигают, молоко свертывают и пептонизируют, нитраты не восстанавливают, индол и H2S не образуют, гидролизуют. Образуют кислоту при росте в среде с декстрозой, галактозой, сахарозой. Оптимальная температура роста 27—28 °С, максимальная 37,5, минимальная 7 °С.

Возбудитель поражает все надземные органы растения — стебли, черешки, листья, прилистники и бобы, вызывая темно-зеленые водянистые поражения, которые увеличиваются при повышенной влажности, становятся коричневыми.
Пятна на различных органах гороха могут иметь более темную середину, а вокруг — мокнущую жировую кайму. Поражаются чаще молодые сочные органы и листья нижних ярусов. Обычно заболевание начинается на листьях нижнего яруса и постепенно распространяется на верхние (рис. 2.15). Возбудитель проникает в растения через устьица или ранки. Затем бактерии распространяются под эпидермисом в паренхиме коры; они постепенно разрушают клеточную стенку, проникают в сосудистые пучки, вызывая увядание гороха. В семена возбудитель попадает по сосудам плодоножки. На них образуются округлые желтоватые пятна. У созревших семян пятно часто расположено вокруг рубчика.

Возбудитель поражает также душистый горошек, чину, вигну.
Распространение: широкое (в США, Канаде, Уругвае, Англии, Ирландии, Венгрии, Румынии, СССР, Австралии, в Северной и Южной Африке и других странах).

Pseudomonas syringae pv. primulae (Ark and Gardner 1936) Young et al., 1978

Возбудитель бактериальной пятнистости примулы.
Палочки размером 0,51—0,73 × 1,0—3,16 мкм, не имеют капсулы, подвижны посредством полярного жгутика, грамотрицательны, продуцируют флюоресцирующий пигмент. На МПА колонии желтоватые, округлые, гладкие, блестящие с ровными краями. Желатин разжиживают, молоко свертывают, нитраты не восстанавливают, индол и H2S не образуют. Растут в среде Ушинского и Ферми, в бульоне с 5 %-ным NaCl; не растут в среде Кон. Образуют кислоту из декстрозы, лактозы, сахарозы, мальтозы, галактозы, арабинозы, глицирина, маннита. Крахмал не гидролизуют. Оптимальная температура роста 19—22 °С, максимальная 34, минимальная 10 °С.

На молодых листьях поражения в виде небольших водянистых пятен, которые становятся неправильно круглыми, коричневыми. На бого
лее старых листьев больные участки окружены ярким желтым ореолом. Пятна могут сливаться, захватывая большие участки листовой поверхности или же весь лист. Монофаг.

Распространение: США.

**Pseudomonas syringae pv. ribicola** (Bohn and Maloit 1946) Young et al. 1978

Возбудитель бактериоза смородины.

Палочки размером 0,4 — 0,9 × 0,9 — 1,7 мкм, подвижны посредством 2—5 полярных жгутиков, грамотрицательны, капсулы нет. Продуцируют флюоресцирующий пигмент. На агаре колонии белые, округлые, гладкие, блестящие, края ровные. Желатин разжижает медленно. Молоко остается без изменения. Нитраты восстанавливают. Индол и H2S не образуют. Продуцируют кислоту из декстрозы, галактозы, левулезы, ксилозы, маннита; не образуют из лактозы, мальтозы, декстрина, гликогена, инулина, крахмала. Крахмал не гидролизуют. Оптимальная температура роста 20—25 °C, максимальная 30—32,5 °C, минимальная 3,5 °C.

Бактериоз проявляется в виде пятнистости, которая приводит к опаданию листьев. Пятна на листьях небольшие, круглые, с темно-коричневым центром, окружены узким или широким ореолом. Пятна могут развиться после града на черешках и молодых побегах. На плодах пятна диам. 1 мм или меньше, коричневые, приподнятые, плоды преждевременно созревают.

Распространение: США

**Pseudomonas syringae pv. savastanoi** (Smith 1908) Young et al. 1978


Возбудитель туберкулеза маслины.

Палочки размером 0,4 — 0,5 × 1,2 — 1,5 мкм, подвижны посредством 1—4 полярных жгутиков, грамотрицательны. На агаре колонии прозрачны, белые, круглые, плоские, с ровными краями, растут медленно. Бульон слабо мутнеет с образованием тонкой пленки. Леван не образуют, желатин не разжижают, молоко только пептонизируют, нитраты не восстанавливают. Индол образуют слабо, не образуют H2S, крахмал не гидролизуют. Продуцируют кислоту из сахарозы, декстрозы, галактозы. Оптимальная температура роста 25—26 °C, максимальная 34—35, минимальная 1 °C.

Туберкулез маслины проявляется в образовании в большом количестве на корнях, стволах, ветвях и листьях быстро разрастающихся наплывов, наростов, которые вначале округлой формы, затем становятся приплюснутыми, растрескиваются. Наросты сначала мягкие, затем твердеют, постепенно внутри ткань разлагается, образуя лабиринтообразные пустоты — каверны, которые заполнены большим количеством бактерий. Последние, попав на раны, ссадины дерева, вызывают вторичное заражение. Проникая через древесину в сосуды, бактерии по ним достигают других частей дерева и вызывают образование новых наростов.

Больные побеги плохо растут, становятся карликовыми, бесплодными или отмирают. Это отражается на урожайности. Зараженное дерево обычно не выздоравливает. Монофаг.

Распространение: бактериоз известен в Италии, Франции, Испании, Португалии, по всему Средиземноморскому побережью, в Алжире, Тунисе, Аргентине, США, в СССР (Крым.).
**Pseudomonas syringae pv. sesami** (Malkoff 1906) Young et al. 1978  

Возбудитель бактериоза кунжута.  
Палочки 0,6—0,8 × 1,2—3,8 мкм, подвижны при помощи 2—5 полярных жгутиков, грамотрицательны, капсулы нет. Продуцируют флюоресцирующий пигмент. На агаре колонии белые, круглые, гладкие, края ровные. В бульоне быстро растут, плёнки не образуют. Желатин разжижают, леван образуют, молоко только пептонизируют, нитраты не восстанавливают. Индол и H₂S не образуют. Продуцируют кислоту из декстрозы, не образуют из лактозы, сахарозы, глюкозы.

Болезнь появляется, когда растение кунжута имеет высоту 1,0—1,5 см. Поражения развиваются, главным образом, у основания черешка и распространяются на лист, где образуются угловатые темно-коричневые пятна, а с нижней стороны листа выступает эксудат. Центр пятна становится темным с грязно-коричневым краем. Ткань пятен высыхает, продырявляется. При сильной инфекции листья опадают. Болезнь протекает быстро, в течение 3—4 сут все листья могут быть поражены, стебель часто загнивает.

Распространение: Болгария, Италия, США, Бразилия, Индия, Япония, Корея. В СССР отмечен на Северном Кавказе.

**Pseudomonas syringae pv. striafaciens** (Elliott 1927) Young et al. 1978  
Син.: Bacterium striafaciens Elliott 1927, Phytomonas striafaciens (Elliott) Bergey et al. 1930, Pseudomonas striafaciens (Elliott) Starr and Burkholder 1942.

Возбудитель полосатого бактериоза овса и ячменя.  
Палочки размером 0,66 × 1,76 мкм, имеют капсулу, подвижны при помощи нескольких полярных жгутиков, грамотрицательны, продуцируют флюоресцирующий пигмент. Образуют на агаре белье слабоприподнятые колонии с цельными или слегка волнистыми краями. В бульоне вызывают помутнение, кольцо и тонкую пленку. Желатин разжижают, молоко свертывают и пептонизируют, редукция нитратов слабая, индол не образуют. Продуцируют кислоту из декстрозы, левулезы, сахарозы, но не из мальтозы, лактозы, глицерина и маннита.

Болезнь начинается с появления на листьях вдавленных водянистых полос с узкими и жёлтыми краями. Со временем пятна становятся бурыми, охватывая всю пластинку листа. Вдоль полос появляются капли эксудата, которые застывают в виде белой пленки. Поражаются в основном листья, но полосы можно наблюдать на стеблях, влагалищах, чешуйках метелок. Растение обычно засыхает.

В естественных условиях возбудитель вызывает бактериоз овса и в слабой степени ячменя.

Распространение: бактериоз зарегистрирован в США, Канаде, СССР, Австралии и других странах.

**Pseudomonas syringae pv. tabaci** (Wolf and Foster 1917) Young et al. 1978  
Син.: Bacterium tabacum Wolf and Foster 1917, B. tabacum emend. Wolf and Foster 1918, Phytomonas tabacae (Wolf and Foster) Bergey et al. 1923, Ph. tabaca (Wolf and Foster) Bergey et al. 1930, Pseudomonas tabaci (Wolf and Foster) Stevens 1925.

Возбудитель бактериальной рябухи (дикого ожога) табака.
Палочки размером 1,2 x 3,3 мкм, подвижны при помощи нескольких полярных жгутиков, грамотрицательны. Продуцируют флюоресцирующий пигмент. На агаре колонии белые, круглые, блестящие, приподнятые в центре, с прозрачными краями. Желатин разжижают, молоко свертывают и пептонизируют, нитраты восстанавливают, образуют леван, не образуют индол и H2S. Продуцируют кислоту на декстрозы, сахарозы, галактозы, маннозы, левулозы, ксилозы, L-арабинозы, но не лактозы, мальтозы, салицина. Оптимальная температура роста 24—28 °С, максимальная 38, минимальная около 4 °С.

Болезнь чаще наблюдается на листьях, поражаются также чашелистники, семенные коробочки. На молодой рассаде по краям листьев появляются маслянистые мокнущие пятна, хорошо видимые утром.

Днем пятна подсыхают, приобретают бурую, черную окраску. Сырая погода способствует развитию заболевания.

На более старых листьях в поле появляются круглые хлоротические пятна до 1 см в диам. Через несколько суток ткань пятна начинает отмирать, некротические пятна сливаются. Центральная часть таких больших пятен обычно приподнята, более темноокрашена, на остальной наблюдается концентрические круги. В сырую погоду вокруг пятна образуется хлоротический ореол, исчезающий в сухую погоду. На черешках листьев иногда развиваются светло-коричневые вдавленные пятна, на пораженных семенных коробочках — небольшие бурые, тоже вдавленные пятна.

Р. syringae pv. tabaci является возбудителем вредоносной и широко распространенной на табачных плантациях болезни.

Растениями-хозяевами возбудителя являются табак, томаты, петуния, баклажаны, вигна, соя и многие др. (рис. 2.16).

Распространение: во всех районах возделывания табака и махорки, где летом выпадает достаточное количество осадков: в США, странах Европы, Южной Африки, Аргентины, Бразилии, Новой Зеландии и СССР (Западная Грузия, Краснодарский край, Украинская ССР).
Pseudomonas syringae pv. tagelis (Hellmers 1955) Young et al. 1978.
Возбудитель бактериоза барцатцев прямостоячих.
Палочки 1.5 — 3.1 × 0.5 — 0.9 мкм, подвижны посредством 1—2 полярных жгутиков, грамотрицательны, имеют тонкую капсулу. Колонии округлые, блестящие, серые, не образуют флюоресцирующий пигмент. Оптимальная температура роста 27—28 °С, максимальная 33—35 °С. Образуют кислоту из ксилоэзы, фруктоэзы, глюкозы, галактозы, маннозы, сахарозы, раффиноэзы, глицерина. Лактозу, мальтозу, салицин, декстрин, инулин, этанол и сорбит не ферментируют. Индол и H₂S не образуют, нитраты не восстанавливают.
Поражаются, главным образом, листья, реже чашелистики цветов, только при сильном поражении можно наблюдать пятна и на лепестках цветов, стебли не поражаются. На растении образуются округлые или угловатые, мелкие и крупные (0.3—2 см в диам.) черно-коричневые пятна, не имеющие желтого ореола.
Распространение: Дания.

Pseudomonas syringae pv. theae (Hori 1915) Young et al. 1978
Син.: Bacillus theae Hori and Bokura 1915.
Возбудитель бактериоза растения чая.
Палочки размером 0.8—1.0 × 1.4—1.8 мкм, подвижны посредством 5—8 жгутиков, грамотрицательны. На желатине вырастают блестящие колонии серо-белого цвета, через 2 сут становятся темно-коричневыми. Желатин разжижают, молоко не свертывают, слабо образуют индол. Глюкозу и сахарозу не ферментируют.
Заболевание проявляется в образовании коричневых пятен на старых листьях, ветках и черешках чайного куста.
Распространение: Япония.

Pseudomonas syringae pv. tomato (Okabe 1933) Young et al. 1978
Син.: Bacterium tomato Okabe 1933, B. punctulans Bryan 1933, Phytomonas tomato (Okabe) Magrou 1937, Ph. punctulans (Bryan) Magrou 1937, Pseudomonas tomato (Okabe) Alstatt 1944, P. punctulans (Bryan) Nagel 1944.
Возбудитель бактериальной пятнистости томатов.
Палочки размером 0.69—0.97 × 1.8—6.8 мкм, подвижны посредством 1—3 полярных жгутиков, грамотрицательны. Продуцируют флюоресцирующий пигмент. На агаре белые, округлые, слабо приподнятые с гладкой блестящей поверхностью колонии. На бульоне мутная с пленкой, образуют леван. Желатин разжижают. Молоко свертывают, нитраты восстанавливают, индол и H₂S не образуют. Образуют кислоту из декстрозы, сахарозы, маннита, глицерина: не образуют из лактозы и мальтозы. В присутствии 3 %-ного NaCl растут слабо. Оптимальная температура роста 20—25 °С.
Заболеванию подвержены в первую очередь листья, особенно молодые. На последних образуются водянистые, желтовато-коричневые, позже темно-коричневые, неправильно круглые пятна. Центр поражения приподнят, оно приобретает желто-зеленый ореол. Пятна сливаются, сморщиваются, край пятна неровный. На плодах образуются мелкие черные, слабо приподнятые, относительно поверхностные поражения.
Помимо томатов поражает дыни.
Данный бактериоз распространен, часто носит эпидемический характер, может принести значительные экономические потери при благоприятных для болезни условиях.
Распространение: США, Тайвань и др.

Pseudomonas syringae pv. viburni (Thornberry and Anderson 1931) Young et al. 1978
Син.: Phytomonas viburni Thornberry and Anderson 1931, 9* 259
Bacterium viburni (Thornberry and Anderson) Burgwitz 1935, Pseudomonas viburni (Thornberry and Anderson) Stapp 1935.

Возбудитель бактериальной пятнистости калины.

Палочки размером 0,5—1,0 × 1,0—2,0 мкм, есть капсула, подвижны посредством 2—4 полярных жгутиков. Продуцируют флуоресцирующий пигмент. На агаре колонии нежные, серые, округлые с ровными краями. Образуют муту и пленку в бульоне. Желатин не расщепляют. Молоко не пептонизируют, нитраты не восстанавливают. Индол и H₂S не образуют, крахмал не гидролизуют. Не ферментируют ксилоzu, рамнозу, глюкозу, фруктозу, лактозу, мальтозу, сахарозу, раффинозу, декстрин, инулин, глицерин, маннит, сорбин, дульцит, салицин. Оптимальная температура роста 25 °C, максимальная 35, минимальная 12 °C.

Поражения развиваются прежде всего на листьях и молодых ветвях. На листьях они сначала водянистые, округлые, затем развиваются неправильной формы вдавленные коричневые пятна 2—4 мм в диам. Центральная часть пятна просвечивает на свет. На молодых ветвях поражения водянистые, удлиненные, вначале поверхностные, затем несколько вдавливаются, но ограничиваются только корой. Поражают различные виды калины.

Распространение: США.

Pseudomonas viridiflava (Burkholder 1930) Dowson 1939

Sin.: Phytomonas viridiflava Burkholder 1930, Bacterium viridiflavum (Burkholder) Burgwitz 1935

Обычный эпифит и потенциальный патоген, который при определенных условиях вызывает поражение фасоли.

Палочки 0,6—1,2 × 1,35—3,6 мкм, подвижны посредством 1—2 жгутиков, грамотрицательны, не образуют леван, расщепляют желатин, не гидролизуют крахмал, пептонизируют молоко без свертывания, нитраты не восстанавливают. Слаабо образуют H₂S, не образуют индол. Колонии желтоватого цвета на среде с 5 %-ной сахарозой и золотисто-коричневого — с дрожжевым экстрактом или глицерином. У некоторых штаммов можно наблюдать голубовато-зеленый нерастворимый пигмент. В декстрозном бульоне образуется оранжево-желтый пигмент.

Штаммы способны утилизировать разнообразные органические субстраты.

Вариабельность в морфологии колоний: колонии обычного типа, выпуклые, кремово-желтые, другие — плоские, матовые, серые. Не образуют лецитиназу, гидролизуют эскулин. Не аккумулируют поли-β-оксибутират в качестве источника углерода, продукцируют флуоресцирующий пигмент, каротиноиды; феназиновый, оранжевый пигменты не продуцируют. Не имеют аргининдигидролазную систему, оксидазо-отрицательны, не способны к денитрификации, не утилизируют 2-кетоглюконат, β-аланин, гепарил.

Поражение на зеленых стручках фасоли имеют красно-коричневый цвет. При инокуляции молодых растений бактерии быстро распространяются по растению, вызывая некрозы. Часть растения, выше места введения, может погибнуть. Меняет четкую границу между здоровой и пораженной тканью. Здоровая ткань, однако, может образовывать галлы, которые иногда в 2 раза больше в диам., чем стебель. В местах поражения могут выступать красновато-коричневые капли экссудата. Возбудитель быстро теряет вирулентность при хранении.

Кроме фасоли поражает вигну, сою, хризантемы, петрушку, томаты и другие виды.

Распространение: Англия, Швеция, США, Кения.

260

Виды с неустановленной естественной связью с хорошо описанными видами рода Pseudomonas

**Pseudomonas amygdali** Psallidas and Panagopoulos 1975

Возбудитель бактериоза миндального дерева. Палочки 0,7 × 1,7 мкм, подвижны посредством 1—6 жгутиков, расположенных полярно.

Температурные границы роста 3—32 °С.

Не образуют флюоресцирующий пигмент. Образуют кислоту из глюкозы, маннозы, галактозы, фруктозы, сахарозы, маннита, сорбита, D-рибозы, L-арabinозы. Не ферmentируют ксилоэозу, лактозу, мальтозу, мелиобиозу, трегалозу, раффинозу, инулин, салицин, дульцит, инозит и ряд других соединений. Некоторые изоляты имеют уреазу. Лецитиназу и аргининдигидролазную систему не имеют, не гидролизуют желатин, казеин, эскалин, крахмал. Нитраты не восстанавливают.

Реакция сверхчувствительности на табаке положительна. На миндальном дереве образуют некрозы и разрастание ткани. Monoфаг.

Распространение: Греция.

**Pseudomonas andropogonis** (Smith 1911) Stapp 1928


Возбудитель бактериоза сорго, суданской травы, кукурузы, клевера.

Палочки размером 0,5—0,7 × 1—2 мкм, с 1—2 полярными жгутиками. Не продуцируют флюоресцирующий пигмент. Большинство штаммов оксидазоотрицательные. Желатин разжигают, нитраты восстанавливают, аргининдигидролазная система отсутствует. Утилизируют глюкозу, фруктозу, маннозу, галактозу, аденин, глицерин, сорбит, маннит. Сахарозу, мальтозу, раффинозу, салицин, дульцит не ферментируют.

**Pseudomonas asplenii** (Ark and Tompkins 1946) Savulescu 1947

Син.: Phytoplasma asplenii Ark and Tompkins 1946.

Возбудитель пятнистости листьев костенца. Палочки размером 0,3—0,5 × 1,2—2,4 мкм, подвижны посредством 1—3 полярных жгутиков, грамотрицательные. В культуре продуцируют флюоресцирующий пигмент. На МПА колонии серовато-белые, гладкие. Желатин разжигают, нитраты не восстанавливают, молоко не свертывают, индол и H₂S не образуют, крахмал не гидролизуют. Образуют кислоту из декстрозы, сахарозы, мальтозы, арабинозы, ксилоэозы, глициности, галактозы, фруктозы, но не раффинозы. Оптимальная температура роста 22—30 °С.

Болезнь начинается с образования небольших водянистых просвечивющих пятен на одной или обеих сторонах листа, чаще на верхней. При теплой и влажной погоде пятона быстро увеличиваются, могут поразить весь лист. Возможна гибель растения в случае сильного поражения бактериозом.

Распространение: США.

**Pseudomonas avenae** Manns 1909

Син.: Pseudomonas alboprecipitans Rosen 1922.

Возбудитель бактериоза овса и лисохвоста.
Палочки 0,6 × 1,6 мкм, имеют полярный жгутик. Флюоресцирующий пигмент не образуют. Нитраты восстанавливают. Кислоту образуют из декстрозы, галактозы, маннита, слабо из глицерина. Не ферментируют сахарозу, лактозу и мальтозу. Оксидазоотрицательны. Слабо гидролизуют крахмал. Оптимальная температура роста 36 °С.

Заболевание проявляется в виде пятнистостей на листьях. Пятна имеют желтый ореол.

Распространение: США, Канада, СССР, ряд стран Западной Европы.

*Pseudomonas cattleyae* (Pavarino 1911) Savulescu 1947


Возбудитель бактериальной пятнистости семейства орхидных и некоторых других растений.

Палочки 0,4—0,6 × 2,4 мкм, подвижны посредством 1—2 жгутиков, грамотрицательны. На МПА колонии серовато-белые, гладкие, быстрорастущие. Желатин не разжижают, но образуют нитраты и H2S. Индол и HaS не образуют. Кислоту продуцируют из арабинозы, декстрозы, галактозы, лактозы, левулезы, сахарозы, ксилоэзы, дульциита, глицерина, маннита. Не образуют кислоту из рафичинозы.

При заболевании на листьях образуются небольшие темные водянистые пятна, быстро увеличивающиеся в размере; с возрастом они становятся темно-коричневыми. Может быть поражена значительная часть листа, при благоприятных условиях поражается верхушка растения.

Распространение: Италия и США.

*Pseudomonas cissicola* (Takimoto 1939) Burkholder 1948

Син.: *Aplanobacter cissicola* Takimoto 1939.

Возбудитель бактериальной пятнистости циссуса.

Палочки размером 0,5—0,9 × 1,0—2,0 мкм, имеют капсулу, неподвижны.

На КА колонии белые, округлые, гладкие. Желатин не разжигают, но не свертывают, нитраты не восстанавливают, не образуют индол и H2S, крахмал не гидролизуют. Нет кислоты из сахарозы, декстрозы, лактозы, глицерина. Оптимальная температура роста 30 °C.

Заболевание проявляется в виде черных пятен на листьях. Растением-хозяином возбудителя является *Cissus japonica*.

Распространение: Япония.

*Pseudomonas corrugata* Roberts and Scarlett 1981


Возбудитель пустостебельности томатов.

Палочки, подвижны посредством 1 полярного жгутика, аккумулируют поли-β-оксибутират. Колонии морщинистые, желтоватые, иногда с зеленым центром. Со временем они могут стать желто-коричневыми. Возбудитель образует желто-зеленый нефлюоресцирующий пигмент. Желатин гидролизует, имеет лецитиназу, леван не образует. Растет при 37 °C, не растет при 41 °C.

Способность вызывать гниль ломтиков лука, непосредственно утилизировать α-арabinозу, целлобиозу, адипат, мезо-тартраты, отсутствие пектатного гидролиза отличают *P. corrugata* от *P. cepacia* и *P. gladioli*.

Возбудитель поражает томаты. Особенно распространен и вредоносен в теплицах.

Распространение: Англия, Франция и др.

*Pseudomonas rubrilineans* (Lee, Purdy, Barnum, Martin. 1925) Stapp 1928

Син.: *Phytomonas rubrilineans* Lee, Purdy, Barnum, Martin 1925.

262
**Bacterium rubrilineans** (Lee et al.) Elliott 1930, *Xanthomonas rubrilineans* (Lee et al.) Starr and Burkholder 1942.

Возбудитель бактериоза сахарного тростника, суданки, кукурузы и некоторых других растений.

Палочки размером 0,7 × 1,6 мкм, не имеют капсулы, подвижны посредством полярного жгутика, грамотрицательны, оксидазоположительны. Факультативные анаэробы. На МПА колонии темно-желтого цвета, небольшие, гладкие, блестящие. Желатин разжижают, молоко пептонизируют без свертывания. Нитраты восстанавливают, H₂S образуют. Кислоту образуют из глюкозы, фруктозы, галактозы, глицерина, сорбиты, арабинозы и маннита, не образуют из лактозы, мальтозы, сахарозы, раффиноэ, салицина.

На молодом сахарном тростнике заболевание проявляется в виде длинных узких темно-красных полос на листьях. Начинается бактериоз в появлении водянистых темно-зеленых полос, идущих вверх и вниз по листу. Только при сильном развитии болезни наблюдается поражение обертки листа. Чаще болеют растения среднего яруса. Если заболевают центральные побеги, может наступить гниль верхушки. Возбудитель проникает в растение через устьица.

Растениями-хозяевами являются сахарный тростник, сорго, суданская трава, кукуруза.

Распространение: заболевание обнаружено в США, на Кубе, Бразилии, Колумбии, Гавайях, Филиппинах, Японии, Австралии, Индии, Африке.

**Pseudomonas rubrisubalbicans** (Christopher and Edgerton 1930) Krasilnikov 1949


Возбудитель бактериоза сахарного тростника и других растений.

Палочки, имеющие капсулу, подвижны посредством нескольких полярных жгутиков, аэроб, грамотрицательны, оксидазоположительны. На агаре колонии серо-белого цвета, блестящие, приподнятые, прозрачные. Желатин не разжижают, H₂S не продуцируют. Используют глюкозу, фруктозу, галактозу, арабинозу, лактозу, маннит, глицерин, сорбит, декстрозу, не утилизируют мальтозу, сахарозу, раффиноэ, манноэ.

Оптимальная температура роста 30 °С.

На листьях развиваются, главным образом, красные, иногда белые полосы, или белеют края листьев. Полосы идут параллельно жилкам листьев и могут быть от маленьких до 1 м в дл. Эксудат не выделяется на листьях.

Растениями-хозяевами бактерии являются сахарный тростник, сорго и др.

Распространение: США.

**Pseudomonas woodsii** (E. F. Smith, 1911) Stevens 1925


Возбудитель пятнистости гвоздики.

Палочки размером 0,47—1,05 × 1,05—2,1 мкм, грамотрицательны, не образуют спор, подвижны посредством одного или нескольких полярных жгутиков.

На МПА колонии небольшие округлые, кремовые, в бульоне хорошо растут. Желатин не разжижают. Молоко подщелачивают, но не свертывают. Нитраты не восстанавливают. Индол не образуют, H₂S образуют слабо. Кислоту продуцируют из декстрозы, левулезы, галак-
тозы, арабинозы, ксилозы, рамнозы, лактозы, глицерина, маннита. Не образуют кислоту из сахарозы, мальтозы и салицина. Крахмал не гидролизуют.

Заболевание проявляется, главным образом, в виде пятнистости листьев. Пятна вначале мелкие, светло-коричневые с водянистой каймой, затем вдавленные, коричневые до 8—12 мм в диаметре. При большой влажности бактерии образуют капли экссудата. Листья желтеют, вянут и погибают. Естественное поражение наблюдается на стеблях и цветочных почках.

Распространение: Канада, США, Италия, Болгария и некоторые другие страны.

Род Xanthomonas

Палочки размером 0,4—0,7 × 0,7—1,8 мкм. Не продуцируют внутримикробиальные образования. Грамотрицательны. Подвижны посредством одного полярного жгутика, редко — двух. Облигатные аэробы, имеют строго дыхательный тип метаболизма, O2 — конечный электронный акцептор. Не являются денитрификаторами и не восстанавливают нитраты. Оптимальная температура роста 25—30 °C, максимальная 30 — 39 °C.

Рис. 2.17. Колонии бактерий рода Xanthomonas:
а — S-форма; б — R-форма

Колонии на агаровых средах обычно желтые гладкие, слизистые, встречаются шероховатые (рис. 2.17). Тест на оксидазу отрицателен или слабо положителен. Каталазоположительны. Хемоорганотрофы, способные использовать различные углеводы и соли органических кислот в качестве источника углерода. Не используют аспаргин в качестве единственного источника углерода и азота. Ингибитором роста культуры является 0,1 % трифенил тетразолий хлорид.
Требуют факторов роста, а именно: метионин, глютаминовую, никотиновую кислоты или их комбинации. Все виды фитопатогены.

С бактериями рода Xanthomonas имеет много сходных черт Pseudomonas maltophilia (состав жирных кислот ЛПС клеточной стенки, активность ряда ферментов и т. д.). Эти данные, а также результаты гибридизации нуклеиновых кислот свидетельствуют о необходимости пере­носа этого вида в род Xanthomonas или новый род.

Типовый вид Xanthomonas campestris (Pammel 1895) Dowson, 1939.

Нет данных о наличии фимбрий и пил. Продуцируют желтый пиг­мент за исключением видов X. campestris pv. manihotis и X. campestris pv. ricini. Установлено, что пигменты бактерий рода Xanthomonas не каротиноидной природы, а представляют собой высокоспецифические бромированные ариловые полиены, ксантомонадины.

Все виды бактерий рода Xanthomonas относятся к возбудителям бактериальных болезней. Передаются различными путями: семенами, с растительными остатками, многолетними растениями, при помощи насекомых. Зараженность семян может быть внутренняя и внешняя. Передача инфекции происходит также в результате деятельности человека.

Xanthomonas albilineans (Ashby 1929) Dowson 1943


Возбудитель ожога листьев сахарного тростника.

Палочки 0,25—0,3 × 0,6—1,0 мкм, подвижны посредством полярного жгутика, грамотрицательны. На агаре образуют темно­желтые колонии, блестящие с ровными краями. Желатин не разжижают, молоко оставляют без изменения, нитраты не восстанавливают, не образ ­уют, NH₃, индол, H₂S. Кислоту образуют из глюкозы, сахарозы, ман ­ нозы, ксилоzy. Крахмал не гидролизуют. Не образуют мукополис­ковых колоний на питательном агаре с добавлением 5 % глюкозы, продуцируют ксантомонадины, гидролизуют эскулин, не обладают уреазной актив­ностью, каталазоположительны. Не имеют аргининдигидролэзной си­ стемы, лизин- и орнитиндекарбоксилазы.

Требует факторов роста — метионина и глютаминовой кислоты. Не переносит концентрации NaCl выше 0,5 %. Оптимальная темпе­ратура роста около 25 °C, максимальная 37 °C.

Вызывает сосудистое заболевание, проявляющееся в острой и хро­нической форме. Они различны в проявлении, но могут переходить одна в другую. При острой форме заболевания растения быстро увядают и погибают. Наиболее характерным внешним симптомом хронической формы являются прямые узкие, хорошо видимые беловатые полосы, которые тянутся на всю длину листа. На более старых листьях полосы расширяются и теряют свою строгую форму, развиваются неправильной формы красноватые полосы, позднее пораженная ткань листа вянет. Такое усыхание характерно при сухой погоде. Другой симптом хрониче­ской формы — образование боковых побегов, на которых также об­разуются полосы на листьях. Побеги, достигнув определенной длины, отмирают. Покраснение сосудистых пучков при поперечном срезе так­же является симптомом болезни.

Поражает также просо, сорго, кукурузу.

Распространение: Япония, Австралия, Ява, Филиппины, Мадагас­кар, Бразилия и другие страны.

Xanthomonas ampelina Panagoulos 1969

Возбудитель бактериоза виноградной лозы.
Палочки подвижны посредством полярного жгутика, каталазоположительны. Растут медленно, продуцируют коричневый диффундирующий пигмент на галактозо-меловом агаре с добавлением дрожжевого экстракта. Предполагают природу пигмента, отличную от ксантомонадинов. Нет мукоидного роста на питательном агаре с добавлением 5 %-ной глюкозы. Не гидролизуют желатин, эскулин, крахмал. Не образуют индол, не все штаммы образуют H$_2$S. Обладают урезной активностью. Продуцируют кислоту из арабинозы, галактозы. Не образуют или образуют слабо из глюкозы, сахарозы, маннозы, трегалозы, целлобиозы, фруктозы, лактозы, мальтозы, ксилоэзы, рибозы, мелобиозы, раффинозы, адонита, маннита, сорбита, дульциита, рамнозы, салицина, инулина. Максимальная температура роста 30 °C. Максимальное содержание NaCl в среде 1,0 %.

X. ampelina имеет ряд признаков (наличие нитевидных клеток, присутствие уреазы, утилизация тартратов, слабое образование кислот из глюкозы, состав ферментов синтеза ароматических аминокислот), которые являются атипичными для бактерий рода Xanthomonas.

Вызывает пятнистость, язвенно-раковое заболевание виноградной лозы, увядание.

Распространение: США, европейские страны.  

Xanthomonas axonopodis Starr and Garces 1950  
Возбудитель гоммоза (камедетечения) у ряда растений семейства злаковых.

Палочки 0,4 × 1—3 мкм. Растут медленно, небольшие желтые колонии появляются на седьмые сутки. Нет мукоидного роста в агаре с добавлением 5 %-ной глюкозы, каталазоположительны, имеют полярный жгутик, продуцируют ксантомонадины, гидролизуют эскулин и крахмал, не гидролизуют желатин, образуют H$_2$S из пептона, индол не образуют, не образуют урезной активностью, не имеют аргининдиgidгидролазную, лизин- и орнитиндекарбоксилазную активности. Образуют кислоту из глюкозы, сахарозы, трегалозы; не образуют из арабинозы, маннозы, галактозы, целлобиозы, фруктозы, лактозы, мальтозы, раффинозы, декстрината глицирина, адонита, маннита, сорбита, дульциита, рамнозы, салицина, инулина. Плохо растут на питательном агаре; для роста им необходимы аминокислоты, но точные требования не изучены. Не восстанавливают нитраты. Оптимальная температура роста 30 °C. Максимальная температура роста составляет 35—37 °C, максимальное содержание NaCl в среде — 1,0 %. Оптимум pH 6,6—7,6, минимум — 5,8.

Распространение: Колумбия.  

Xanthomonas beticola (Smith, Brown, Townsend) Savulescu 1947  
Возбудитель туберкулеза свеклы.

Короткие палочки, для которых характерно активное поступательно-вращательное движение. Колонии плоские, слизистые (рис. 2.18), имеют не совсем ровные края, у них отсутствует зеленоватый оттенок, характерный для большинства видов ксантомонад.

Восстанавливают нитраты, свертывают молоко без пептонизации, на средах с источниками углерода образуют не только кислоту, но и газ.

При туберкулезе свеклы происходит разрастание ткани с образованием наростов — бугорков. Поражаются столовые, сахарные и корневые сорта.  

266
Опухоли отличаются от наростов корневого рака. Туберкулезные опухоли имеют неправильную форму, шероховатую поверхность, расположаются чаще на верхней части корнеплода. При корневом раке образуются шарообразные, с более гладкой поверхностью, наросты, которые как бы сидят на ножке. Но главное — при корневом раке внутренняя ткань опухоли плотная, светлая. Ткань наростов туберкулеза более рыхлая, с кавернами, которые заполнены серовато-желтой

Рис. 2.18. Колонии Xanthomonas beticola различных типов (а и б)
гилью, содержащей возбудителя. Для X. beticola характерна узкая специализация.

Больные корнеплоды быстро разлагаются под влиянием вторичной инфекции. Поэтому они являются источником гнили в овощехранилищах. У них значительно снижается сахаристость.

Распространение: США. С 1944 г. бактериоз обнаружен в различных областях СССР.

Xanthomonas fragariae Kennedy and King 1962

Возбудитель угловатой пятнистости листьев земляники.

Мукоидный рост на агаре с добавлением 5 % глюкозы, ксантомонадины продуцируют, гидролизуют желатин и крахмал, не гидролизуют эскулин, не образуют H₂S, не имеют уреазной активности, каталазоположительны. Образуют кислоту из глюкозы, сахарозы, маннозы, фруктозы, но не из лактозы, мальтозы, ксилоэозы, рибоэозы, меллибиозы, раффинозы, мелезитозы, декстрина, арабинозы, галактозы, трегалозы, целлобиозы, глицерина, адонита, маннита, сорбита, дульцита, рамноэзы, салицина, инулина. Требуют факторов роста в виде аминокислот, восстанавливают нитраты, не образуют индол. Аргининдигидролаза, лизин+, орнитин декарбоксилаза отсутствуют. Максимальная температура роста 33 °C, максимальное содержание NaCl в среде 0,5—1,0 %.

Распространение: Италия.

Xanthomonas campestris (Pammel, 1896) Dowson 1939

Син.: Bacillus campestris Pammel 1895, Pseudomonas campestris (Pammel) E. F. Smith 1897, Bacterium campestris (Pammel) E. F Smith 1897, P. campestris (Pammel) Chester 1897, Phytomonas campestris (Pammel) Bergey et al. 1923.

Возбудитель сосудистого бактериоза многих растений.

Многие штаммы вида нуждаются в факторах роста (метионин, глютаминовая и никотиновая кислоты).

В вид X. campestris в настоящее время включено 125 патоваров [107]; наиболее распространенные в наших широтах даны несколько подробнее. Типовые штаммы патоваров представлены в таблице.

Xanthomonas campestris pv. campestris (Pammel (1895) Dowson 1939

Возбудитель сосудистого бактериоза широкого круга растений. Палочки размером 0,4 — 0,5 × 0,7 — 3,0 мкм, имеют капсулу, подвижны посредством полярного жгутика, грамотрицательны. На агаре колонии желтые, небольшие, округлые, гладкие, блестящие с ровными краями. Желатин разжижает. Молоко свертывают и пептонизируют, нитраты не восстанавливают. Выделяют NH₃ и H₂S. Кислоту образуют из декстрозы, левулезы, галактозы, арабинозы, ксилоэозы, мальтозы, сахарозы, раффинозы, глицерина, маннита. Не образуют из рамнозы, лактозы, дульцита, салицина. Гидролизуют крахмал. Мукоидный рост на питательном агаре с добавлением 5 %-ной глюкозы. Образуют ксантомонадины. Гидролизуют эскулин. Не обладают уреазной активностью. Хорошо растут на питательном агаре. Образуют каталазу. Не содержат аргининдигидролазную активность ферментов, лизин- и орнитин-декарбоксилазы. Оптимальная температура роста 35—39 °C, минимальная 5 °C. Могут расти при 5 %-ной концентрации NaCl.

Возбудитель вызывает сосудистое заболевание, в результате которого растения отстают в росте, наблюдается пожелтение листьев и почернение сосудов (рис. 2.19: 2.20). Поражаются растения любого возраста, главным образом, через поры листьев, но заражение может происходить и через пораненные места.

Характерны темноокрашенные сосуды листьев, черешков и кочерьг. Заболевание сильнее проявляется в фоне формирования розетки листьев и головок, чем в фазе образования стручков и созревания семян.
Растения, пораженные в молодом возрасте, могут погибнуть в течение нескольких недель. Увядание одного или нескольких нижних листьев также является важным симптомом заболевания. Инфицированные листья могут опадать один за другим. Печернение сосудистой системы видно только при поперечном срезе. На пораженных корнях репы, редиса, хрена обыкновенного, брюквы развивается сухая гниль, которая обычно переходит в мягкую.

Растениями-хозяевами возбудителя являются: капуста, пастушья сумка, перечник, левкой, редька посевная, жерушник.

Распространение: во многих странах с влажным умеренным или теплым климатом (страны Европы, Япония, Австралия, Новая Зеландия, Северная Африка, Аргентина, Бразилия и др.).

Рис. 2.19. Сосудистый бактериоз капусты (искусственное заражение)

Рис. 2.20. Бактериоз сосудов черешка листа цветной капусты (схематично)

Xanthomonas campestris pv. alfalfaе (Riker, Jones and Davis 1935) Dye 1978


Возбудитель пятнистости листьев люцерны и некоторых других растений

Палочки 0,45 × 2,4 мкм, подвижны посредством полярного жгутика, грамотрицательны. Разжижают желатин. Колонии бледно-желтые, гладкие, блестящие. Молоко свертывают. Ферментируют арабинозу, салицин, глюкозу, мальтозу, лактозу с образованием кислоты. Крахмал гидролизуют. Оптимальная температура роста 24—32 °C.

Возбудитель вызывает на листьях люцерны небольшие водянистые пятна, которые со временем становятся темно-коричневыми. Пятна часто окружены желто-коричневым ободком.

В бактерия поражают донник, горох, фасоль, пажитник.

Распространение: США.

Xanthomonas campestris pv. barbareae (Burkholder 1941) Dye 1978

Син.: Phytomonas barbareae Burkholder 1941.

Возбудитель бактериоза сурепки.

Палочки 0,4 — 0,95 × 1,0 — 3,15 мкм, подвижны при помощи полярного жгутика, грамотрицательны. Разжижают желатин. Обра-
зуют H₂S, не образуют индол. Ферментируют с образованием кислоты глюкозу, ксилоzu, мальтозу, сахарозу и глицерин. Рамнозу, салицин, аспарагин не утилизируют. Колонии желтые, гладкие, блестящие.

Заболевание характеризуется появлением водянистых темных пятен на листьях и стеблях с признаками гнили.

Распространение: США.

Xanthomonas campestris pv. begoniae (Takimoto 1934) Dye 1978
Син.: Bacterium begoniae Takimoto 1934, B. begoniae Buch ald, 1933, B. flavozonatum Mc-Culloch 1937, Pseudomonas begoniae (Takimoto) Stapp 1938, Phythomonas begoniae (Takimoto) Burkholder 1939, Ph. flavae begoniae Wieringa 1935, Xanthomonas flavozonatum (Mc-Culloch) Dowson 1939.

Возбудитель бактериальной пянистости бегонии.
Палочки 0,5—0,6×1,2—2,0 мкм, подвижны посредством полярного жгутика, грамотрицательны. Желатин разжижают, молоко пептонизируют, нитраты не восстанавливают, слабо образуют H₂S. Ферментируют с образованием кислоты глюкозу, сахарозу, лактозу, маннит и глицерин. Оптимальная температура роста 27 °C, максимальная 37 °C.

Колонии на агаре желтые, блестящие, гладкие.
При бактериозе появляются на листьях и стеблях вначале мелкие водянистые, просвечивающие на свет пятна, которые затем увеличиваются в размерах. Сосу́дистая система также может поражаться.

Распространение: широкое (в Европе, Америке, Азии).

Xanthomonas campestris pv. carotae (Kendrick 1934) Dye 1978

Возбудитель бактериального ожога моркови.
Палочки 0,42—0,85 × 1,38—2,75 мкм, подвижны посредством 1—2 полярных жгутиков Желатин разжижают, грамотрицательны. Нитраты не восстанавливают, крахмал не гидролизуют. Образуют кислоту из глюкозы, ксилоzu, сахарозы, лактозы, раффинозы, трегалозы, глицерина, не образуют кислоту из мальтозы, рамнозы. На агаре колонии округлые, гладкие, блестящие, с ровными краями, желтые. Оптимальная температура роста 25—30 °C.
При заболевании на дольках листа образуются мелкие, неправильной формы желтые пятна, с тем временем темнеющие, засыхающие в центре. Нередко поражение охватывает края листьев, в результате чего дольки последних скручиваются. При сильном поражении верхние листья могут стать совершенно хлоротичными, а нижние — деформированными. На черешках листьев заболевание проявляется в виде удлиненных желтобурых полос.

Распространение: бактериоз отмечен в США, Канаде, СССР, Австралии и других странах.

Xanthomonas campestris pv. citri (Hasse 1915) Dye 1978
Син.: Pseudomonas citri Hasse 1915, Bacterium citri (Hasse) Doldge 1916, Bacillus citri (Hasse) Holland 1920, Phytomonas citri (Hasse) Bergey et al. 1923.

Возбудитель рака цитрусовых.
Палочки размером 0,5 × 0,75 × 1,5—2,0 мкм, подвижны посредством полярного жгутика, грамотрицательны. Желатин разжижают, молоко свертывают, нитраты не восстанавливают, образуют H₂S.

Не образуют кислоту из лактозы, галактозы, левулозы, сахарозы, глицерина, маннита. Колонии на агаре желтые, округлые, с ровными краями, блестящие, гладкие. Оптимальная температура роста 25—34 °C.
Поражает листья, ветки, плоды с образованием маленьких водянистых пятен. Ткань разрастается, приподнимается, окрашивается в желто-зеленый цвет. В результате разрастания ткань в центре разрывается, образуются кратерообразные углубления с приподнятыми краями и характерным светлым ореолом.
Пятна на плодах такие же, но без светлого ореола, кратерообразные углубления более заметны.
Распространение: Индия, Китай, Япония, Австралия, Филиппины, США и некоторые другие страны.
Карантинный объект для СССР
Xantomonas campestris pv. corvina (Miller, Bollen, Simmons, Gross and Bars 1940) Dye 1978
Син.: Phytomonas corylina Miller et al. 1940. Xanthomonas corylina (Miller et al.) Starr and Burkholder 1942.
Возбудитель бактериального ожога орешника.
Палочки размером 0,5—0,7 × 1,1—3,8 мкм, подвижны посредством полярного жгутика, образуют колонии на агаре лимонно-желтого цвета, гладкие, блестящие. Желатин разжигают, нитраты не восстанавливают, образуют H₂S. Ферментируют с образованием кислоты глюкозу, фруктозу, галактозу, лактозу, саха́розу, мальтозу, ксилоzu, раффиноzu, маннит.
Поражаются почки, листья, стебли, побеги. Весной почки становятся коричневыми и не распускаются. Побеги часто ломаются и обвиваются. Листья покрываются угловатыми мокнущими пятнами. Кора часто дает трещины, на поверхности орехов — черные или коричневые пятна, иногда поражается и ядро. Растения-хозяева — разные виды рода Corylus.
Распространение: США.
Xanthomonas campestris pv. cucurbitae (Bryan 1926) Dye 1978
Возбудитель бактериального заболевания тыквы, огурцов и других представителей семейства тыквенных.
Палочки 0,4—0,6 × 0,5—1,5 мкм, подвижны с помощью полярного жгутика, грамотрицательны. Колонии округлые, слизистые, желтовато-зеленого цвета, края ровные. Желатин разжигают, нитраты не восстанавливают, H₂S выделяют, не выделяют нипол, продукция тирозиназу, каталазу, леван, ксилитиназу, не образуют аргининдиgidролазу, лизинкарбоксилазу, пироксидазу. Бактерии ферментируют глюкозу, лактозу, мальтозу, саха́розу, маннозу, ксилоzu, галактозу, тригаллоzu, целлобиозу, маннит, сорбит, дульцит и салицин с образованием кислоты. Оптимальная температура роста 25—30 °C.
На листьях округлые, удлиненные или угловатые хлоротичные пятна, которые некротизируются, становятся светло-бурыми. Некрозы всегда имеют желтый ободок, никогда не выпадают.
При искусственном заражении на зеленых плодах томатов образуется мокрая гниль. На листьях табака возбудитель вызывает РС.
Распространение: США, Индия и др. В СССР широкого распространения не имеет.
Xanthomonas campestris pv. dieffenbachiae (Mc-Culloch and Pirone 1939) Dye 1978
Возбудитель бактериальной пятнистости листьев диффенбахии.
Палочки 0,3—0,4 × 1,0—1,5 мкм, имеют капсулу, подвижны посредством полярного жгутика, грамотрицательны. Колонии желтые, округлые, блестящие, гладкие с ровными краями. Желатин разжижают, молоко пептонизируют нитраты не восстанавливают, выделяют NH₃ и H₂S. Образуют кислоту на декстрозе, сахарозе, лактозе, галактозы, глицерина. Оптимальная температура роста 30—31 °C.

Распространение: США (теплицы).

*Xanthomonas campestris pv. glycines* (Nakano 1919) Dye 1978


Возбудитель пустульного бактериоза или ржаво-буровой пятнистости сои и некоторых других растений семейства бобовых и гречишных.

Палочки размером 0,5—0,9 × 1,4—2,3 мкм, подвижны посредством полярного жгутика, грамотрицательны, имеют капсулу. Колонии на КА желтые, слипистые, выпуклые, гладкие, блестящие с ровными краями; через 14—21 сут роста могут претерпевать изменения в структуре. Сбраживают без образования газа лактозу, маннит декстрозу, мальтозу, сахарозу, раффиинозу, ксилиозу, арабинозу, фруктозу, галактозу, глицерин, декстрин; оставляют без изменения рамнозу, салицин, дульцит, целлюлозу, винную, салициловую, бензойную кислоты, инулин; образуют щелочь в яблочной, лимонной, уксусной, муравьиной, яблочной кислотах. Образуют NH₃ и H₂S, индол не продуцируют, нитраты не восстанавливают, разжижают желатин, свертывают и пептонизируют молоко.

Особенностью заболевания является слабая приподнятость центра пораженного участка, образование так называемых пустул, почему заболевание и было названо пустульным (рис. 2.21).

Пустульный бактериоз наблюдается на всех надземных органах, но чаще поражаются листья. Стебли и бобы заболевают значительно реже. На листьях образуются красновато-коричневые или зеленовато-коричневые пятна, которые слабо просвечивают на свет. Они увеличиваются в размерах. Таинь в местах поражения приподнимается. Со временем пустулы лопаются. Изредка наблюдается покоричневение жилок листа. На семядолях коричневые растекающиеся пятна, которые могут быть поверхностными или глубинными. На стебле сухие коричневые или шоколадно-красные полосы. В местах поражения стебель может ломаться. Бобы при поражении имеют коричневые округлые или неправильной формы пятна. Возможен переход поражения на семена.
Растениями-хозяевами возбудителя являются соя, фасоль и некоторые другие.
Распространение: широкое в США, Индии, СССР и других странах.

*Xanthomonas campestris pv. holcicola* (Elliott 1930) Dye 1978


Возбудитель штриховатой пятнистости листьев сорго и суданской травы.

Подвижные палочки 0,4—0,9 × 1,0—2,4 мкм, имеют капсулу, грамотрицательны. Колонии растут медленно; желтые, круглые, приподнятые, чрезвычайно вязкие. Желатин разжижают медленно, крахмал гидролизуют, молоко пептонизируют. H₂S выделяют, индол не образуют. Наблюдается вариабельность в использовании углеводов различными штаммами. Оптимальная температура роста 28—30 °C.

Бактерия поражает сорго и суданскую траву во всех фазах их роста. На листьях образуются продольговатые узкие полосы красно-коричневого цвета. Признаком бактериоза в ранней фазе заболевания является образование эксудата, который выступает на нижней поверхности пораженных листьев в виде светло-желтых капель. При сильной степени поражения большая часть поверхности всех листьев становится темно-красной и подсыхает.

При искусственном заражении поражает только кукурузу.

Распространение: США, Австралия, СССР и др.

*Xanthomonas campestris pv. hyacinthi* (Wakker 1883) Dye 1978


Возбудитель желтой болезни гиацинтов.

Палочки 0,4—0,6 × 0,8—2,0 мкм, подвижны с помощью полярного жгутика, грамотрицательны. Колонии желтые, гладкие, блестящие. Желатин разжижают, молоко пептонизируют и свертывают, нитраты не восстанавливают, H₂S выделяют. Образуют кислоту из глюкозы, сахарозы, левулезы, галактозы и мальтозы. Оптимальная температура роста 28—30 °C.

Проявляется на листьях в виде водянистых желтых буреющих полос.сосуды заполняются бактериями, которые переносят в парсики. Во влажную погоду на поверхности листьев выступает желтая слизь. Бактерии закупоривают сосуды, прекращают приток воды к листьям, поэтому увядание служит одним из признаков желтой болезни. Через сосуды бактерии попадают также в луковицы, на которых появляются желтые пятна. При сильном поражении луковицы загнивают. Монофаг.

Распространение: Голландия, Швеция, Франция, Великобритания, Италия, США, Япония.

Бактерия является карантинным объектом для СССР.

*Xanthomonas campestris pv. incanae* (Kendrick and Baker 1942) Dye 1978


Возбудитель бактериоза левкоя.

Палочки 0,4—0,8 × 0,6—2,5 мкм, подвижны с помощью полярного жгутика, грамотрицательны. Колонии блестящие, желтые, округлые, приподнятые. Желатин разжижают, нитраты не восстанавливают, образуют кислоту из глюкозы, лактозы, сахарозы, маннита, ксилоэз, 273
манноуз, раффинозы, глицерина и трегалозы. Устойчивы к 3 %-ному NaCl.
Поражается сосудистая система, проростки становятся вялыми, растения падают. На более старых растениях темные пятна появляются на главном стебле и боковых ветвях. Болезнь представляет особую опасность для семян.
Распространение: США.
**Xanthomonas campestris pv. juglandis** (Pierce 1901) Dye 1978
Возбудитель бактериальной пятнистости грецкого ореха.
Палочки 0,3—0,5 × 1,5—3,0 мкм, подвижны, имеют полярный жгутик, грамотрицательны. На агаре колонии темно-желтые, округлые, слизистые, блестящие с ровными краями. Желатин разжигает, молоко свертывает и пептонизируют. Нитраты не восстанавливают. Кислоту образуют из декстрозы, манноуз, лактозы, мальтозы. Оптимальная температура роста 28—32 °С.
Листья, ветви и плоды покрываются небольшими черными угловатыми пятнами, которые со временем сливаются. Сильно пораженные ветви отмирают, на древесине появляется слизь. Гниль проникает внутрь, ядро чернеет, опадает. Особенно легко заражаются 1—2-годичные деревца.

Бактерии поражают все виды рода Juglans.
Распространение: США, Мексика, Чили, Южная Африка, Новая Зеландия, Австралия, европейские страны и СССР.
**Xanthomonas campestris pv. malvacearum** (Smith 1901) Dye 1978
Возбудитель гоммоза хлопчатника.
Палочки 0,3—0,6 × 1,3—2,7 мкм, подвижны посредством полярного жгутика, грамотрицательны. Колонии округлые, желтые, приподнятые, гладкие, слизистые, блестящие. Желатин разжигают, молоко свертывают и пептонизируют, нитраты не восстанавливают, выделяют H₂S. Образуют кислоту из декстрозы, сахараозы, мальтозы, лактозы, галактозы, раффинозы, глициршина. Оптимальная температура роста 25—30 °С.
Поражаются семядоли, листья (рис. 2.22), стебли, прицветники, коробочки и волокно. Основной признак заболевания — появление темно-зеленных маслянистых пятен, камеди. Особенно опасна стеблевая форма гоммоза, когда на стебле образуются темные пятна, затем перетяжки, и стебель ломается. Болезнь может переходить на волокно, которое желтеет, качество его сильно снижается.

Рис. 2.22. Гоммоз хлопчатника
Потери от гоммоза могут составлять 15—60 % валового сбора.
Одно из самых вредоносных заболеваний хлопчатника
Распространение: во всех хлопкосеющих районах мира.
*Xanthomonas campestris pv. oryzae* (Ishiyama 1922) Dye 1978
Возбудитель ожога риса.
Палочки 0,5—0,8 × 1,0—2,0 мкм, подвижны посредством полярного жгутика, грамотрицательны. Желатин не разжижают. Колонии круглые, гладкие, слизистые, блестящие с ровными краями. Нитраты не восстанавливают, образуют H₂S. Ферментируют глюкозу, лактозу и сахарозу. Оптимальная температура роста 26—30 °C.
На листьях вдоль срединной жилки — маслянистые, постепенно желтеющие пятна. В местах поражения выделяются капельки эксудата.
Листья засыхают.
Распространение: Япония, Китай, СССР.
*Xanthomonas campestris pv. oryzicola* (Fang, Ren, Cher, Chuc, Faan and Wu 1957 Dye 1978
Син.: Xanthomonas oryzicola Fang et al. 1957.
Возбудитель бактериоза листьев риса.
Палочки 1,2 × 0,3—0,5 мкм. Колонии желтые, круглые, гладкие с ровными краями, выпуклые, вязкие. Желатин разжижают, молоко пептонизируют, нитраты не восстанавливают, образуют H₂S и NH₃. Продуцируют кислоту из глюкозы, сахарозы, ксилоэозы и маннозы, но не лактозы, маннита и глицерина.
Бактерии вызывают на листьях риса сначала водянистые, затем желто-бурые полосы. На пораженных местах выделяется эксудат.
Распространение: Китай.
*Xanthomonas campestris pv. papavericola* (Bryan and Mc-Whorter 1930) Dye 1978
Возбудитель бактериальной пятнистости листьев и коробочек мака.
Палочки 0,6—0,7 × 1,0—1,7 мкм, подвижны с помощью полярного жгутика, грамотрицательны. Колонии желтые, круглые, гладкие с ровными краями. Желатин разжижают, молоко свертывают и пептонизируют. Нитраты восстанавливают, образуют H₂S. Ферментируют с образованием кислоты глюкозу галактозу, сахарозу, лактозу, мальтозу, глицерин и маннит. Оптимальная температура роста 25—30 °C. Не растет в бульоне с 5 %-ным NaCl.
На листьях, стеблях, коробочках образуются черные пятна.
Распространение: США, Канада, Болгария.
*Xanthomonas ampestris pv. pelargonii* (Brown 1923) Dye 1978
Возбудитель бактериальной пятнистости листьев пеларгонии.
Палочки 0,67 × 1,02 мкм, подвижны, имеют полярный жгутик, грамотрицательны. Колонии кремового цвета, круглые, блестящие. Желатин разжижают слабо. Молоко свертывают и слабо пептонизируют, нитраты не восстанавливают, выделяют H₂S и NH₃. Слабо образуют кислоту из глюкозы, сахарозы и глицерина. Нет роста в бульоне с 3,5 %-ным NaCl. Оптимальная температура роста 27 °C.
На листьях образуются округлые или неправильной формы коричневые пятна, которые со временем увеличиваются.

Кроме пеларгонии возбудитель патогенен для герани.

Распространение: США, Италия, Венгрия.

*Xanthomonas campestris pv. phaseoli* (Smith 1897) Dye 1978


Возбудитель бурой пятнистости фасоли и некоторых других растений семейства бобовых. Син. названия: жировая болезнь, ржавчина, бактериальный ожог, обыкновенная пятнистость, маслянистая пятнистость, бурая пятнистость.

Палочки размером 0,3—0,6 × 1,9—3,0 мкм, подвижны посредством полярного жгутика, грамотрицательны, каталазоположительны. Имеют капсулу. На твердых питательных средах развиваются медленно. Первые признаки роста — в виде мелких, почти точечных выпуклых колоний с гладким краем — появляются на третьи — седьмые и даже десятые сутки. Цвет колоний в это время кремовато-серый. С ростом они приобретают желтую окраску с зеленоватым оттенком. В бульоне растут медленно, образуя слабую равномерную муть. Иногда появляется тонкое присеночное кольцо на дне. На дне образуется желтый вязкий осадок. Желатин разжижают медленно. Гидролизуют крахмал. Индол не образуют, H₂S продуцируют в значительном количестве. Молоко пептонизируют или свертывают. На ломтиках моркови возбудитель образует слизь, мачерирует ткань. Сведения о ферментации углеводов разноречивы. Нитраты не восстанавливают. Слабый рост в бульоне с 4%-ым NaCl.

Возбудитель поражает все надземные органы фасоли. Наиболее характерно проявляется на листьях, на которых образуется типичная пятнистость.

Начальная фаза заболевания листа характеризуется появлением светло-желтого, хлоротического небольшого пятна округлой формы. Растет, пока буреет, приобретая разнообразную форму: округлую, продолговатую. Характерной особенностью является наличие желтой каймы, иногда темно-зеленой или темно-коричневой, окруженной тонким зеленоватым кольцом (рис. 2.23). Пораженные участки листа сгоршаются, могут продырявляться. Постепенно весь лист желтеет, отмирает, часто опадает. Листья могут опадать в таком количестве, что напоминают осенний листопад. Кроме пятнистости возбудитель вызывает скручивание и искривление жилок листьев. На стеблях заболевания характеризуется появлением продолговатых коричневых пятен.
со ржавым оттенком. Наиболее опасен бактериоз стебля в стадии всходов, когда поражается подсемядольное колено. На бобах образуются мелкие разрастающиеся пятна темно-зеленого цвета.

На семенах желтоватые, буроватые, ржаво-коричневые пятна разной величины и формы. Если зерно поражается зеленым, оно остается недоразвитым, сморщенным и щуплым. Однако больные семена могут оставаться внешне здоровыми.

Хозяевами возбудителя являются фасоль, люпин и некоторые другие растения семейства Fabaceae.

Распространение: США, Канада, европейские страны, СССР, Китай, Австралия, Южная Африка.

Xanthomonas campestris pv. pruni (Smith 1903) Dye 1978


Возбудитель бактериальной пятнистости листьев косточковых плодовых деревьев.

Подвижные палочки, имеющие полярный жгутик, есть капсула, грамотрицательны. Колонии желтые, слизистые, гладкие, блестящие. Желатин разжигают, молоко свертывают и пептонизируют, нитраты не восстанавливают, NH₃ выделяют, индол и H₂S не выделяют. Кислоту образуют из декстрозы, галактозы, лактозы, маннозы, раффинозы, рамнозы. Оптимальная температура роста 25 °C.

Поражаются все органы косточковых плодовых деревьев. На листьях появляются мелкие пятна, которые принимают бурый, красноватый цвет. Участки пораженной ткани могут выпадать. На плодах небольшие вдавленные сливающиеся пятна. На ветвях образуются небольшие коричневые или черные язвы. Больные ветви могут отмирать.

Поражаются все косточковые, особенно абрикосы и сливы.

Распространение: широкое в США, Канаде, Бразилии, Австралии; зарегистрирован в Японии, Корее, Новой Зеландии, СССР, Италии, Англии.

Xanthomonas campestris pv. ricini (Yoshi and Takimoto 1928) Dye 1978


Возбудитель пятнистости листьев клещевины.

Палочки 0,4 — 0,9 × 1,3 — 2,6 мкм, подвижны с помощью полярного жгутика, грамотрицательны. Желатин разжигают. Колонии лимонно-желтого цвета, есть беспигментные штаммы. Молоко пептонизируют без свертывания, нитраты не восстанавливают. Оптимальная температура роста 29—30 °C.

На листьях образуются многочисленные, неправильной формы коричневые водянистые пятна 2—5 мм в диам. Подобные пятна образуются на стеблях при искусственном заражении. Увядания растений не происходит.

Распространение: Япония, Корея, некоторые африканские страны, СССР.

Xanthomonas campestris pv. translucens (Jones, Johnson and Reddy 1917) Dye 1978

Син.: Bacterium translucens Jones, Johnson, Reddy 1917, Pseudomonas translucens (Jones, Johnson, Reddy) Stapp 1928, Phytomonas
translucens (Jones, Johnson, Reddy) Bergey et al. 1930, Xanthomonas translucens (Jones, Johnson, Reddy) Dowson 1939.

Возбудитель черного бактериоза пшеницы.
Палочки 0,5 — 0,8 × 1,0 — 2,5 мкм, подвижны посредством полярного жгутика, грамотрицательны, образуют капсулу. Колонии круглые, гладкие, желтые, блестящие, края ровные. Желатин разжижают, нитраты не восстанавливают, молоко свертывают и пептонизируют, $\text{NH}_3$ и $\text{H}_2\text{S}$ выделяют. Образуют кислоту из декстрозы, сахарозы, лактозы, мальтозы, глицерина и маннита. Не гидролизуют крахмал. Оптимальная температура роста 26 °C.

Черный бактериоз поражает колосья, листья, стебли. На колосьях наблюдается почернение верхней части чешуй, почернение или покричневение всего колоса, появление коричневых боковых полос вдоль чешуй. На стеблях образуются черные продольные полосы. На листьях полосы прозрачные, затем желтые, бурь. Поражение зерна проявляется в виде его щуплости, желтой полосатости.

Урожай пшеницы под влиянием черного бактериоза снижается на 15—90 %. Кроме пшеницы поражаются ячмень, рожь.

Распространение: США, Канада, Мексика, СССР, Бельгия, Франция, Швеция, Китай, Австралия и другие страны.

Xanthomonas campestris pv. vesicatoria (Doidge 1920) Dye 1978

Возбудитель черной бактериальной пятнистости томатов.
Палочки 0,6 — 0,7 × 1,0 — 1,5 мкм, подвижны посредством полярного жгутика, грамотрицательны. Колонии на агаре круглые, желтые с ровными краями, слизистые, блестящие, гладкие. Желатин разжигают, нитраты не восстанавливают. Индол не образуют, выделяют $\text{H}_2\text{S}$, продуцируют кислоту из глюкозы, сахарозы, лактозы, галактозы, глицерина и декстрина. Оптимальная температура роста 30 °C.

Поражаются листья, черешки, стебли и плоды томатов. На листьях пятна слегка выпуклые, темные, округлые или неправильной формы. На черешках и стеблях пятна удлиненные, черные. На плодах болезнь существует в виде пятен, которые могут запачкать поверхность плодов. Пораженные плоды увядает, плоды могут изъять. Помимо томатов поражаются перец, картофель, морковь, дурман, физалис.

Распространение: широкое (в США, Канаде, Аргентине, Болгарии, Румынии, СССР, Италии, Японии, Австралии, Африке).

Xanthomonas campestris pv. vignicola (Burholder 1944) 1978
Син.: Xanthomonas vignicola Bukholder 1944.

Возбудитель бактериоза коровьего горошка.
Палочки 0,7 × 1,76 мкм, подвижны, имеют полярный жгутик, грамотрицательны. Колонии желтые, гладкие, блестящие с ровными краями. Желатин разжигают. Нитраты не восстанавливают, $\text{H}_2\text{S}$ образуют. Не утилизируют аспарагин и тирозин. Ферментируют с образованием кислот глюкозу, галактозу, лактозу, сахарозу, раффиозу. Оптимальная температура роста 27—30 °C.

Возбудитель вызывает образование язв на стеблях коровьего горошка. Поражает также фасоль.

Распространение: США
Другие патовары:

X. campestris pv. cassavae (Wiehe and Dowson 1953) Maraite and Weyns 1979.
X. campestris pv. celebensis (Gau mann 1923) Dye 1978.

Cassia tora, C. occidentalis, Cicer arietinum, Pisum sativum (fam. Leguminosae).
Musa spp. (fam. Musaceae).
Centella asiatica (fam. Umbelliferae).
Clerodendron phlomoides (fam. Verbenaceae).
Clitoria biflora (fam. Leguminosae).
Convolvulus arvensis (fam. Convolvulaceae).
Eleusine coracana (fam. Gramineae).
Coriandrum sativum, Foeniculum vulgare (fam. Umbelliferae).
Cyamopsis tetragonoloba (fam. Leguminosae).
Desmodium diffusum (fam. Leguminosae).
Desmodium gangeticum (fam. Leguminosae).
Desmodium laxiflorum, Tamarindus indica (fam. Leguminosae).
Desmodium rotundifolium (fam. Leguminosae).
Duranta repens (fam. Verbenaceae).
Erythrina indica (fam. Leguminosae).
Hibiscus esculentus (fam. Malvaceae).
Eucalyptus citriodora, E. maculata (fam. Myrtaceae).
Euphorbia acalyphoides (fam. Euphorbiaceae).
Corchorus fascicularis (fam. Tiliaceae).
Ficus carica (fam. Moraceae).

X. campestris pv. lespedezae (Ayers, Lefebvre and Johnson 1939) Dye 1978.
X. campestris pv. manihotis (Berthet and Bondar 1915) Dye 1978.
X. campestris pv. merremiae Pant and Kulkarni 1976.
X. campestris pv. phormiicola (Takimoto 1933) Dye 1978.

Corchorus acutangulus (fam. Tiliaceae).
Arctium lappa (fam. Compositae).
Corchorus olitorius (fam. Tiliaceae).
Passiflora edulis (fam. Passifloraceae).
Crotalaria juncea (fam. Leguminosae).
Pedalium murex (fam. Pedaliaceae).
Phleum pratense (fam. Gramineae).
Phormium tenax (fam. Liliaceae).
Phyllanthus niruri (fam. Euphorbiaceae).
Physalis alkekengi var. francheti (fam. Solanaceae).
Physalis minima, P. peruviana (fam. Solanaceae).
Pisum sativum (fam. Leguminosae).
Plantago spp. (fam. Plantaginaceae).
Euphorbia pulcherrima, E. milii, Manihot esculenta (fam. Euphorbiaceae).
Punica granatum (fam. Punicaeae)
Brassica spp., Raphanus sativum (fam. Cruciferae), Capsicum annuum, Lycopersicon esculentum, Nicotiana tabacum (fam. Solanaceae)
Lupinus termis, Mucuna pruriens (syn. Stizolobium alterium), Rhynchosia memnonia (fam. Leguminosae).
Secale cereale, Hordeum spp., Triticeum spp. (fam. Gramineae).
Sesamum orientale (fam. Pedaliaceae).
Sesbania aegyptiaca (fam. Leguminosae).
Spermacoce hispida (fam. Rubiaceae).
X. campestris pv. undolosa (Smith, Jones and Reddy 1919) Dye 1978.
X. campestris pv. vasculorum (Cobb 1893) 1978.

Prostate

Caesalpina sepiaria, Tamarindus indica (fam. Leguminosae).
Taraxacum bicorne (fam. Compositae).
Belamcanda sp., Iris spp. (fam. Iridaceae).
Camellia sinensis (fam. Theaceae).
Triumfetta pilosa (fam. Tiliaceae).

Trichodesma zeylanicum (fam. Boraginaceae).


Vernonia cinerea (fam. Compositae).
Lablab purpureus (syn. Dolichos lablab), Vigna radiata (fam. Leguminosae).
Dactyca spp. (fam. Compositae).

Vitis carinosa (fam. Vitaceae).

Vitis trifolia (fam. Vitaceae).

Vitis woodrowii (fam. Vitaceae).

Zantedeschia aethiopica (fam. Araceae).
Xanthomonas populi (Ride 1958) Ride and Ride 1978
Возбудитель бактериального рака тополя.
Вид предположительно отнесен к роду Xanthomonas.
Некоторые клетки подвижны с полярно расположенным жгутиком.
На питательном агаре с 5 %-ной глюкозой — мукоидный рост, желатин не гидролизуют, не образуют H₂S, ур азная активность отсутствует.
Образуют кислоту из глюкозы, сахарозы, маннозы, галактозы, трегалозы, фруктозы; не образуют из арабинозы, целлобиозы. Максимальная температура роста 27,5 °С. Возбудитель чувствителен к NaCl; максимальное содержание в среде 0,4—0,6 %.
Оксидазоотрицательны, каталазоположительны, не восстанавливают нитраты. Дают реакцию сверхчувствительности на табаке.

Семейство Rhizobiaceae Conn 1938
Неспороносные клетки, обычно палочковидные, подвижны посредством одного полярного, субполярного или двух — шести перитрихальных жгутиков, грамотрицательные. Аэро́бы Используют многие углеводы. При росте на углеводсодержащих средах образуют значительное количество внеклеточной слизи.

Таблица 2.1. Дифференциальные признаки родов семейства Rhizobiaceae [107]

<table>
<thead>
<tr>
<th>Свойство</th>
<th>Rhizobium</th>
<th>Bradyrhizobium</th>
<th>Agrobacterium</th>
<th>Phyllobacterium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Жгутик</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>моногрих</td>
<td>D</td>
<td>+</td>
<td>—</td>
<td>D</td>
</tr>
<tr>
<td>лофотрих</td>
<td></td>
<td>—</td>
<td>—</td>
<td>D</td>
</tr>
<tr>
<td>перитрих</td>
<td></td>
<td></td>
<td>D</td>
<td>—</td>
</tr>
<tr>
<td>Образование клубеньков на корнях, листьях</td>
<td>+</td>
<td>+</td>
<td>—*</td>
<td>D</td>
</tr>
<tr>
<td>Нитрогеназная активность</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>Способность к гипертрофии</td>
<td>—</td>
<td></td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>Образование 3-кетолактозы</td>
<td>—</td>
<td></td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>Быстрый рост на агаре с маннитом</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Образование шелочи на средах с сахарами</td>
<td>+</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Образование H₂S</td>
<td>D</td>
<td>—</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Чувствительность к биотину</td>
<td></td>
<td></td>
<td></td>
<td>O</td>
</tr>
<tr>
<td>Молярная доля Г + II в ДНК, %</td>
<td>59—64</td>
<td>61—65</td>
<td>57—63</td>
<td>60—61</td>
</tr>
</tbody>
</table>

П р и м е ч а н и е. * — генетически модифицированные штаммы могут образовывать клубеньки и обладать нитрогеназной активностью; D — у 90 % и более штаммов реакция положительная; O — данные отсутствуют.
Все виды, за исключением Agrobacterium radiobacter, вызывают разрастание тканей растений. Штаммы ризобиумов образуют клубеньки на корнях бобовых. Штаммы филобактерий образуют наросты на листьях растений семейства мареновых. Штаммы агробактерий вызывают разрастание в виде галлов на корнях и стеблях многих видов растений. Бактерии этого семейства выделены из клубеньков и галлов; эти микроорганизмы трудно идентифицировать, если они выделены из почвы. Необходимо удостовериться в патогенности изолятов при помощи определенных тестов с инокуляцией растений.

Некоторые штаммы ризобиумов и агробактерий имеют сходный состав оснований ДНК. В состав семейства входит 4 рода.

Отличительные свойства бактерий родов Rhizobium, Bradyrhizobium; Agrobacterium и Phyllobacterium даны в табл. 2.6.

Выраженными фитопатогенными свойствами обладают штаммы рода Arobacterium. Представители других родов этого семейства иногда могут вызывать патологический процесс у бобовых при резком изменении условий, например, при недостатке микроэлементов в почве. Некоторые виды родов Rhizobium и Bradyrhizobium могут быть причиной хлороза листьев и гнилей бобовых.

Род Agrobacterium Conn 1942

Типовой вид: Agrobacterium tumefaciens (Smith at Townsend 1907) Conn 1942.

Палочки 0,6 — 1,0 × 1,5 — 3,0 мкм, подвижны посредством одного — трех перитрихально расположенных жгутиков, грамотрицательны, неспоровые. Встречаются клетки с субполярным расположением жгутиков. Характерно наличие большого количества фимбрий. Аэрообы. Некоторые штаммы способны к анаэробному дыханию в присутствии нитратов. На КА образуют несколько приподнятые колонии, влажно-блестящие, светло-бежевые с ровным просвечивающимся краем. На сред. Лиске — круглые, приподнятые, слизистые, матовые, с ровным просвечивающимся краем. Колонии не пигментированы, обычно с возрастом становятся бороздчатыми. Иногда можно наблюдать образование шероховатых колоний (рис. 2.24). Рост на средах с углеводами сопровождается обильным образованием внеклеточной полисахаридной слизи.

Желатин не разжижают, или разжижают очень медленно. Реакция на каталазу, оксидазу, уреазу, как правило, положительная.

В качестве источников углеродного питания используют многие простые углеводы и аминокислоты, но не используют целлюлозу, крахмал, агар, хитин.

Оптимальная температура роста 25—30 °C, максимальная 37, летальная 50—52 °C. Оптимальный диапазон рН 6,0—9,0.

Представлен 4 видами, из которых A. tumefaciens, A. rhizogenes, A. rubi являются патогенными для растений. Опухоль индуцирующая способность коррелирует с наличием больших плазмид в клетках.

Агробактерии обитают в почвах. Вирулентные агробактерии содержатся, главным образом, в почвах, загрязненных продуктами распада больных растений.

Род Agrobacterium разделен на группы А и Б. В группу A входят бактерии, которые используют аминокислоты, нитраты и соли аммония как единственный источник азотного питания; образуют 3-кетолактозу. Бактерии, представляющие группу Б, не обладают этими свойствами. По способности поражать растения род Agrobacterium делятся на бактерии, образующие опухоли типа корончатых галлов, и бактерии, вызывающие фитопатогенные свойства, обладающие обычной способностью поражать растения.
вающие пролиферацию тканей растений в виде волосяного корня. [3, 13, 15, 67, 90, 107, 122, 144, 153, 159]

Agrobacterium tumefaciens (Smith et Townsend 1907) Conn 1942

Возбудитель корневого рака плодовых деревьев (корончатые галлы).

Рис. 2.24. Колонии гладкой (а), переходной (б) и шероховатой (в) форм Agrobacterium tumefaciens

Бактериальный рак широко распространен во многих странах мира. Он вызывает опухолеобразование двудольных растений во всех районах возделывания. Более 1000 видов высших растений, составляющих 60% видов голосеменных и двудольных, реагирует на действие этой бактерии образованием опухолей.

Наиболее часто бактериальный рак встречается на винограде, плодовых (черешня, персик, алыча, слива, вишня, дикая слива, яблоня, груша), ягодниках (смородина), технических (олеандр, хлопчатник, конские бобы) и цветочно-декоративных культурах (хризантема, роза), лесных породах (ива, береза, тополь). Однако встречаются штаммы, приуроченные к определенным видам растений. Круг поражаемых растений может ограничиваться отдельными видами и сортами растений.

Томаты, дурман, коланхое, кормовые бобы, свекла, подсолнечник, морковь являются признанными индикаторными растениями для выявления патогенности бактерии (рис. 2.25, 2.26). Ни одно из названных растений не является «универсальным» для выявления вирулентных
свойств штаммов A. tumefaciens. Для выявления опухолеобразующих агробактерий используют 2—3 вида индикаторных растений, в том числе и растение, из которого первоначально выделен возбудитель.

Отмечена сезонность в поражении растений. Инфекционный процесс на плодовых проявляется в августе, более ранние и более поздние инокуляции плодовых в полевых условиях не приводят к развитию опухолей.

В отличие от других возбудителей бактериальных болезней, A. tumefaciens не убивает растительные клетки, а, наоборот, стимулирует их деление, благодаря внедрению в геном растительной клетки части специфической плазмиды бактерии. Однако клетки, делящиеся под воздействием плазмиды, не проходят характерных для растений этапов дифференциации. Они значительное время находятся в фазе, практически идентичной меристематическому состоянию.

Образовавшиеся опухоли не приводят к быстрой гибели растения, но подавляют их общий рост, жизнеспособность и повышают восприимчивость к грибковым и другим инфекциям, что приводит к снижению урожая (особенно винограда); через некоторое время наблюдается истощение растений, усыхание и гибель. Наибольший вред бактериальный рак причиняет в странах с суровым для винограда климатом.

В опухолевых тканях образуются необычные аминокислоты — октопин, нопалин или подобные им. Эти аминокислоты могут служить единственным источником азотного и углеродного питания бактерий. Диаметр опухолей на определенных растениях превышает диам. корня в 10 раз. Типичная неорганизованная опухоль представляет собой массу клеток полуокруглой формы, которая может иметь гладкую или
шероховатую поверхность, быть паренхиматозной или одревесневшей. Форму, величину и характер развития опухолей определяют следующие факторы: штамм бактерии (октопиновые штаммы A. tumefaciens индуцируют круглые шероховатые неорганизованные опухоли, нопалиновые — гладкие неорганизованные опухоли, из которых часто развиваются листовидные структуры — генетические факторы растения-хозяина); физиологическое состояние клеток растения-хозяина (молодые ткани растения имеют меньшую массу, чем старые, способность к опухолеобразованию ослабевает с увеличением возраста растения).

Особенно поражаются импортные сорта винограда, реже — местные.

Распространение: в СССР наблюдается на юге Украины, в Азербайджане, Молдавии, Армении.

Меры борьбы:
1. Тщательная выбраковка больных ростков в питомнике.
2. Уничтожение патогена в почве стерилизацией хлорпикрином.
3. Подавление инфекции антибиотиками и метаболитами — ванкомицином, циклогексимидом, ауреомицином и др. (однако это экономически невыгодно).
4. Широкое использование агроцина, выделяемого A. radiobacter, который убивает большинство авирулентных штаммов A. tumefaciens (черенки и семена, восприимчивые к бактериальному раку, замачивают в концентрированной суспензии клеток штамма K-84 перед посадкой посадочного материала).
5. Применение конкурентных вирулентных и авирулентных штаммов агробактерий.
6. Обработка растений (черенков) стабильными бактериофагами.
7. Подавление развивающихся опухолей в молодых деревьях эмульсией жидкого углеводорода.
8. Закладка питомников на землях, прежде не занимаемых плодовыми садами.
9. Обязательная дезинфекция корней при выпуске посадочного материала 1 %-ным раствором медного купороса в течение 3 мин с последующей промывкой водой.
10. Уничтожение майских жуков и других насекомых, личинки которых подгрызают корни и способствуют распространению рака.
11. Обязательная дезинфекция ножей после обрезки.

Agrobacterium rhizogenes (Riker, Banfield, Wright, Keitt, Sagen 1930) Conn 1942.


Возбудитель заболевания косматого или волосянистого корня многих растений, в том числе плодовых.

Морфология клеток и колоний аналогична описанной для рода. A. rhizogenes проникает в растение только через поврежденные участки корней или при окулировке. Сохраняется в почве в течение зимы. Болезнь сильнее распространяется в сырую, дождливую погоду. При искусственном заражении растений симптомы проявляются через 4 мес.

Поражает многие растения: яблоню, малину, персик, свеклу, томаты, фасоль и др.

Распространение: США, Канада, европейские страны.
Agrobacterium rubi (Hildebrand 1940) Starr, Weiss 1943
Син.: Phytomonas rubi Hildebrand 1940, Bacterium rubi Hildebrand 1940, Pseudomonas rubi Hildebrand 1940.
Возбудитель заболевания малины.
При заболевании на ветвях появляются гранулированные опухоли, которые быстро увеличиваются в размерах и покрывают всю поверхность ветви. Через некоторое время опухоли темнеют до коричневого цвета, их разрастание часто влечет за собой расщепление или разрастание тканей ветвей и их высыхание. Такие ветви не плодоносят.
Распространение: повсеместно.

СЕКЦИЯ 5
Семейство Enterobacteriaceae Rahn 1937
Типовой род: Escherichia.
Палочки размером 0,3 — 1,0 × 1,0 — 6,0 мкм, подвижны при помощи перитрихально расположенных жгутиков, грамотрицательны, некислотоустойчивы, не образуют спор. Факультативные анаэробы. Хорошо растут на средах с пептоном, мясном бульоне и других средах. В качестве факторов роста используют глюкозу, витамины и (или) аминокислоты. Хемооксигенотрофы, метаболизм дыхательный и ферментативный. Образуют кислоту, газ при ферментации D-глюкозы, других углеводов и многоатомных спиртов. Преимущественно каталазоположительные, оксидазонегативные. Нитраты восстанавливают до нитритов, за исключением нескольких видов бактерий родов Erwinia и Yersinia. ДНК-ДНК гомология между родами составляет 20 и более процентов, за исключением бактерий родов Proteus, Providencia и Yersinia.
В большинстве случаев штаммы серологически неоднородны.
Фитопатогенными свойствами обладают все виды рода Erwinia. К условно-патогенным для растений можно отнести некоторых представителей родов Klebsiella, Escherichia, Proteus, Enterobacter и др.

Род Erwinia Winslow, Broadhurst, Buchanan, Krumwiede, Roders and Smith 1920
Типовой вид: Erwinia amylovora (Burrill 1882) Winslow, Broadhurst, Buchanan, Krumwiede, Roders and Smith 1920.
Ровные палочки размером 0,5 — 1,0 × 1,0 — 3,0 мкм, одиночные или соединены попарно, реже в виде цепочек, не образуют спор, подвижны (за исключением E. stewartii), грамотрицательны, факультативные анаэробы. Оптимальная температура роста 27—30 °С, максимальная 32—40 °С. Оксидазонегативные, галактозоположительные. Колонии на КА серовато-белые, выпуклые с конусовидным центром, ровным краем. С возрастом возможна морфологическая диссоциация (рис. 2.27).
Образуют кислоту на среде с фруктозой, галактозой, D-глюкозой, β-метилглюкозидом и сахарозой. Используют соли уксусной, фумаровой, глюконовой, молочной кислот, не усваивают бензойную, щавелевую или пропионовую кислоты.
Представители этого рода чрезвычайно опасны для растений, часто являются причиной эпифитотий.
Условно патогенные бактерии. Могут вызывать заболевания человека и насекомых. Некоторые виды постоянно встречаются на поверхности растений и покровах животных, не вызывая их заболевания. Большинство из них не выживает в почве, но долго сохраняются в рас-
тильных остатках. Являются продуцентами веществ, полезных для человека.

На растениях Erwinia spp. вызывают гнили, увядание с опаданием листьев, язвы (рис. 2.28, 2.29).

Обычно образуют кислоту из маннита, маннозы, рибозы и сорбита, реже из адонита, декстрина, дульцита и мелицитозы. Газ образуют слабо или не образуют. Не содержат аргинин- и орнитиндекарбоксилазной, а также уреазной и липазной активностей (за исключением 5 % штаммов E. carotovora и E. chrysanthemi). В аэробных условиях образуют путресцин. Не декарбоксилируют глутаминовую кислоту. Амилаза отсутствует. Пектатлиазу образуют штаммы E. carotovora,

Рис. 2.27. Колонии бактерий рода Erwinia:
а — гладкая форма, б, в — измененные формы


Erwinia amylovora (Burrill 1882) Winslow, Broadhurst, Buchanan, Krumwiede, Roders and Smith 1920

Син.: Micrococcus amylovorus Burrill 1882, Bacterium amylovorus (Burrill) Chester 1897, Bacillus amylovorus (Burrill) Trevisan 1889.

Возбудитель ожога плодовых.

Характеристика дана в табл. 2.2—2.4.

Колонии на КА круглые (диам. 4 мм), гладкие, плоскоприподнятые с редкими радиальными бороздками, серо-белые, полупрозрачные, более уплотненные к центру, маслянистой консистенции. На МПА + 5 % сахароза колонии круглые с радиальными лучами, уплот-
ненным центром или центральными кольцами, куполообразные с зернистой структурой, белые, блестящие, мукоидные (типа левана), слизистые. Растут быстро: появляются на вторые сутки при условии наличия в среде дрожжевого экстракта или других стимуляторов роста. Образуют S- и R-формы. В клетках выявлены поламины — спермидин и путресцин, но не спермин. Не брасуют оксидазу, тирозиназу.

Важным для практики является антигенная однородность штаммов. Диагностическим признаком считается образование экссудата на незрелых плодах дикой груши (рис. 2.30).

Тип поражения — некрозы. Названия «ожог плодовых» дано на основании внешних признаков: пораженные деревья имеют вид обгоревших. Поражаются, главным образом, цветки, побеги, ветви и плоды. Цветки внезапно увядают, коричневеют и чернеют, но остаются на деревьях. На коре выделяется экссудат в виде капель молочно-белого цвета. На воздухе он буреет. Кора растрескивается. В сухую погоду кора полыхает и четко отделяется от здоровой ткани. Пораженные побеги перегибаются в виде крючка, что является характерным признаком ожога плодовых. Плоды, пораженные весной, становятся красно-коричневыми, смираются и остаются на ветках. Наиболее интенсивно развитие заболевания весной во время цветения и осенью при вторичном цветении. Симптомы ожога плодовых близки к симптомам некроза коры, вызываемого Pseudomonas syringae. Поэтому для определения этиологии обязательным является выделение возбудителя в чистую культуру.

Очень вредоносное заболевание. В штате Калифорния (США) только за один год убытки были оценены в 2 млн долларов. Не менее опасно это заболевание и в других регионах мира. Считается что ни одна болезнь плодовых деревьев не причиняет такого ущерба, как ожог. Вредоносность усиливается тем обстоятельством, что E. amylovora поражает широкий круг растений. Особенно страдают розоцветные. Всего зарегистрировано 170 видов чувствительных к нему растений.

В природе возбудитель сохраняется в пораженных растениях и насекомых. Переносится с посадочным материалом, готовой продукцией, ветром, насекомыми-опылителями.

Распространение: широкое в США, Канаде, Чили, Гватемале, Мексике, Новой Зеландии, Египте; в Европе впервые зарегистрирован в Англии, затем Бельгии, Германии, Дании, Нидерландах, Польше, Испании, Франции. Отмечен в Турции и СССР. Однако в этих странах не выделена чистая культура возбудителя.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Подвижность</td>
<td>+</td>
</tr>
<tr>
<td>Анаэробный рост</td>
<td>+</td>
</tr>
<tr>
<td>Потребность в факторах роста</td>
<td></td>
</tr>
<tr>
<td>Образование пигмента</td>
<td></td>
</tr>
<tr>
<td>розового</td>
<td></td>
</tr>
<tr>
<td>голубого</td>
<td></td>
</tr>
<tr>
<td>желтого</td>
<td></td>
</tr>
<tr>
<td>Мукоидный рост</td>
<td>+</td>
</tr>
<tr>
<td>Рост при 36 °C</td>
<td></td>
</tr>
<tr>
<td>Образование H₂S из цистина</td>
<td></td>
</tr>
<tr>
<td>Редукция веществ из сахараозы</td>
<td></td>
</tr>
<tr>
<td>Тест на ацетон</td>
<td></td>
</tr>
<tr>
<td>Наличие уреазы</td>
<td></td>
</tr>
<tr>
<td>Разложение пектата</td>
<td></td>
</tr>
<tr>
<td>Окисление глюконата</td>
<td></td>
</tr>
<tr>
<td>Выделение газа из D-глюкозы</td>
<td></td>
</tr>
<tr>
<td>Гидролиз казеина</td>
<td></td>
</tr>
<tr>
<td>Рост в бульоне + KCN</td>
<td></td>
</tr>
<tr>
<td>Гидролиз хлопкового масла</td>
<td></td>
</tr>
<tr>
<td>Наличие дезаминазы фенилаланина</td>
<td></td>
</tr>
<tr>
<td>Тест на индол</td>
<td></td>
</tr>
<tr>
<td>Рост в 5%-ном NaCl</td>
<td></td>
</tr>
<tr>
<td>Наличие дезоксирибонуклеазы</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>------------</td>
<td>---------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Мелибиоза</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Инозитол</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Раффиноза</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Инулин</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Крахмал</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Мальтоза</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>L-Арабиноза</td>
<td>1</td>
</tr>
<tr>
<td>Сорбит</td>
<td>1</td>
</tr>
<tr>
<td>Рибоза</td>
<td>1</td>
</tr>
<tr>
<td>Манноза</td>
<td>1</td>
</tr>
<tr>
<td>Маннит</td>
<td>1</td>
</tr>
<tr>
<td>Целлобиоза</td>
<td>1</td>
</tr>
</tbody>
</table>

Примечание: + - у 90% и более штаммов реакция положительная; - - у 90% и более штаммов реакция отрицательная; d - у 11-89% штаммов реакция положительная, w - слабый рост.
<table>
<thead>
<tr>
<th>Соединение</th>
<th>Лактоза</th>
<th>Рамноза</th>
<th>Эскулин</th>
<th>Салицин</th>
<th>Ксилооза</th>
<th>Трегалоза</th>
<th>Дульцит</th>
<th>Глицерин</th>
<th>Адонит</th>
<th>Декстрин</th>
<th>Мелезитоза</th>
<th>α-Метилглюкозид</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. mesolovar</td>
<td>+ + d</td>
<td>d</td>
<td>+ +</td>
</tr>
<tr>
<td>E. stercoralis</td>
<td>+</td>
</tr>
<tr>
<td>E. coll.</td>
<td>+</td>
</tr>
<tr>
<td>E. coli</td>
<td>+</td>
</tr>
<tr>
<td>E. aerogenes</td>
<td>+</td>
<td>d</td>
<td>+</td>
</tr>
<tr>
<td>E. hirae</td>
<td>d</td>
<td>+</td>
</tr>
<tr>
<td>E. carotolovars</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>E. rhamon</td>
<td>+ + + + d</td>
<td>+</td>
</tr>
<tr>
<td>E. anubas</td>
<td>+</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>E. berdikola</td>
<td>d</td>
<td>+</td>
</tr>
<tr>
<td>E. sattius</td>
<td>+</td>
</tr>
<tr>
<td>E. garcium</td>
<td>d</td>
<td>d</td>
<td>+</td>
</tr>
<tr>
<td>E. indicens</td>
<td></td>
</tr>
<tr>
<td>E. rubri</td>
<td></td>
</tr>
<tr>
<td>E. voio</td>
<td></td>
</tr>
<tr>
<td>E. milio</td>
<td></td>
</tr>
<tr>
<td>E. philo</td>
<td></td>
</tr>
<tr>
<td>E. amylovar</td>
<td></td>
</tr>
</tbody>
</table>

Примечание: «—» — у 90% и более штаммов реакция положительная; «—» — у 90% и более штаммов реакция отрицательная; «+» — у 91—89% штаммов реакция положительная; (+) — слабоположительная реакция.
2.29. Головка цветной капусты, пораженная возбудителем мягкой гнили

Таблица 2.4. Усвоение некоторых органических веществ видами рода Erwinia [107]

<table>
<thead>
<tr>
<th>Вид</th>
<th>Цитраты</th>
<th>Фумараты</th>
<th>Лактаты</th>
<th>Тартраты</th>
<th>Цитратоиды</th>
<th>Малонаты</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. amylovora</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. tracheiphila</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. mallotivora</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. rubrifaciens</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. quercina</td>
<td>+</td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. salicis</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. herbicola</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>E. ananas</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>E. rhapontici</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>E. carotovora</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>E. chrysanthemi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>E. cypripedii</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>E. nuriflouens</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>E. stewartii</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>d</td>
</tr>
<tr>
<td>E. uredovora</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>d</td>
</tr>
</tbody>
</table>

Примечание: «+» — у 90 % и более штаммов реакция положительная; «—» — у 90 % и более штаммов реакция отрицательная; «d» — у 11—89 % штаммов реакция положительная.

295
Бактерия является карантинным объектом для СССР.

Меры борьбы (помимо общих). В связи с тем, что ожог плодовых является карантинным объектом для СССР, при его обнаружении необходимо немедленно сжечь зараженные деревья и всю растительность вокруг них. Использование химических препаратов носит ограничительный характер; используют 0,4 % броипол и 0,2 % монкоцеб. Профилактическое значение имеет многократная обработка деревьев во время цветения медсодержащими препаратами, обрезка деревьев, выведение устойчивых сортов. Борьба с ожогом плодовых требует системы мероприятий.

**Erwinia ananas** Serreno 1928


Возбудитель бурой гнили ананая.

Свойства представлены в табл. 2.2—2.4.

Клетки размером 0,6 × 0,9 мкм, некислотоустойчивы, подвижны с 4—6 жгутиками. На КА образуют округлые, выпуклые, расползающиеся колонии, блестящие, светло-желтые. На картофеле слизь от светло-желтого до оранжевого цвета. На МПБ помутнение и нежная желтая пленка. Оптимальная температура роста 30—35 °С, максимальная 45, минимальная 6, точка отмирания 56—57 °С.

На пораженной ткани появляются фиолетовые крапинки, мякоть отвердевает и засыхает. Поражаются ткань до сосудистых пучков, что наиболее опасно во время созревания анаанасов.

Распространение: Филиппинские острова и Гаити, Восточная Индия, Центральная и Южная Америка, Африка.

**Erwinia araliavora** (Uyeda) Magrou 1937

Син.: Bacillus aralivorus Uyeda 1908.

Возбудитель загнивания корней женьшеня.

Палочки, 0,7 — 0,9 × 1,8 — 2,0 мкм с 6—12 перитрихиально расположенными жгутиками, грамотрицательны. Аэроб. Колонии серо-белые. Желатин не разжижает, молоко не свертывают, не образуют H₂S, образуют индол и амилазу, восстанавливают нитраты. Оптимальная температура роста 25—28 °С, максимальная 40, термальная точка гибели 55 °С. Цвет пораженных участков женьшеня от красно-коричневого до темно-коричневого. На листьях появляются желто-коричневые или бурье полосы. Листья увядают.

Распространение: заболевание выявлено в Японии и Корее. На основании внешних признаков обнаружено в США, СССР.

**Erwinia asteracearum** (Pavarino 1912) Magrou 1937

Син.: Bacillus asteracearum Pavarino 1912.

Возбудитель бактериоза астр.

Клетки размером 0,5 — 0,6 × 5,0 — 6,0 мкм, грамположительны, факультативный анаэроб. Колонии соломенно-желтые.
Поражает цветы и листья астр. На нижней стороне листовой пластинки появляются пятна коричневого цвета, цветки также буреют и засыхают.

Распространение: выделен в Италии.

**Erwinia bussei** (Migula 1900) Magrou 1937

Син.: Bacillus betae Busse 1897, B. bussei Migula 1900, Erwinia betae (Busse 1897) Kucherenko 1975.

Возбудитель заболевания сахарной свеклы.

Подвижные короткие палочки с закругленными концами 0,7 — 0,8 × 1,5 — 1,75 мкм, одиночные, неспороносные. Колонии на КА серые, блестящие, гладкие, со слегка приподнятым центром, полупрозрачные, с волнистым голубоватым краем, маслянистой консистенции. Ферментируют углеродсодержащие соединения с образованием кислоты и газа. Растут на среде с цитрами, не обладают пектолитическими свойствами, разлагают аригин в азотосбых условиях.

Возбуждает гниль корнеплодов свеклы. Из почерневших от поражения сосудов выделяется бесцветный, темнеющий на воздухе экзудат. Заболевание воспроизведено экспериментально в Германии и на Украине во время вегетации и хранения сахарной свеклы.

Распространение: повсеместно.

**Erwinia cacticida** (Johnston and Hitencocl) 1923 Magrou 1937

Син.: Bacillus cacticidus Johnston and Hitencocl 1923.

Возбудитель заболевания кактусовых.

Колонии грязно-белые, округлые, приподнятые. Усваивают без выделения газа глюкозу, сахарозу, маннит, салицин. Не образуют кислоту из мальтозы, лактозы, дульцита, арабинозы; подкисляют молоко. Свойства описаны плохо, поэтому систематическое положение точно не определено.

Относится к мягкогнилостной группе бактерий.

Первоначально симптомы проявляются в виде округлых черных, окаймленных светло-пурпурной каймой пятен, огражденных от здоровой ткани хлоротичной зоной. Паренхима разлагается, становится темно-коричневой, выделяется газ. Переносчики — минирующие насекомые.

Распространение: США, Австралия.

**Erwinia carotovora** (Jones 1901) Bergey, Harrison, Breed, Hammer and Hunton 1923

Возбудитель гнили растений, особенно овоцых.

Свойства представлены в табл. 2.2—2.4.

Он отличается от E. amylovora и близких ему видов содержанием полиаминов в клетках и жирных кислот в ЛПС. Клетки E. carotovora содержат преимущественно путресцин. Описаны также штаммы, вызывающие гнили корневой шейки зерновых, плодовых.

Особо опасен при хранении овощей и картофеля. Кроме гнилей может вызывать сосудистое или паренхиматозное поражение картофеля, капусты.

В настоящее время этот вид разделен на два подвида — E. carotovora subsp. carotovora и E. carotovora subsp. atroseptica.

**Erwinia carotovora subsp. carotovora** (Jones 1901) Dye 1969


Различия по фенотипическим признакам между двумя подвидами отражены в табл. 2.5. Образуют незначительные количества газа. Хорошо растут в анаэробных условиях, особенно после выделения из пораженных тканей растений.

<table>
<thead>
<tr>
<th>Свойство</th>
<th>E. carotovora subsp. carotovora</th>
<th>E. carotovora subsp. aroideae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мукoidalный рост</td>
<td>d</td>
<td>−</td>
</tr>
<tr>
<td>Рост при 36 °C</td>
<td>⊕</td>
<td>⊕</td>
</tr>
<tr>
<td>Редуцирующие вещества из сахарозы</td>
<td>⊕</td>
<td>⊕</td>
</tr>
<tr>
<td>Гидролиз казеина</td>
<td>⊕</td>
<td>d</td>
</tr>
<tr>
<td>Гидролиз хлопкового масла</td>
<td>⊕</td>
<td>⊕</td>
</tr>
<tr>
<td>Образование кислоты из инозита</td>
<td>d</td>
<td>−</td>
</tr>
<tr>
<td>Мальтозы</td>
<td>−</td>
<td>⊕</td>
</tr>
<tr>
<td>Глицерина</td>
<td>⊕</td>
<td>⊕</td>
</tr>
<tr>
<td>α-метилглюкозид</td>
<td>−</td>
<td>⊕</td>
</tr>
<tr>
<td>Утилизация галактуроната</td>
<td>⊕</td>
<td>⊕</td>
</tr>
</tbody>
</table>

Примечание: «+» — у 90 % и более штаммов реакция положительная; «−» — у 90 % и более штаммов реакция отрицательная; d — у 11—89 % штаммов реакция положительная.

Erwinia carotovora subsp. betavasculorum Thomson, Hildebrand and Schroth 1981

Возбудитель мягкой гнили свеклы.

Растет при 36 °С, использует инозит, мальтозу, глицерин, метилглюкозид, лактозу, этанол, L-лизин, D-аспарагин. Не усваивает галактуронат, целлобиозу, меллобиозу, меланит и раффинозу; не образует индол, газ из глюкозы. Устойчив к эритромицину.

Систематическое положение E. carotovora и его подвидов требует уточнения.
Erwinia chrysanthemi Burkholder, Mc-Fadden, Dimock 1953
Возбудитель бактериоза хризантемы.
Свойства приведены при описании рода и в табл. 2.2—2.4.
Характерный рост наблюдается на картофельно-глюкозном агаре (pH 6,5), на котором на третьи—пятые сутки образует выпуклые колонии, волнистые, коралловые по краям. Клетки содержат путресцины и спермидин, чем сильно отличается от E. carotovora и идентичен E. amylovora. Состав жирных кислот ЛПС также отличается от E. carotovora. Поражает ряд растений.

Erwinia cancerogenes Urosevic 1966
Возбудитель ракового заболевания тополя.
Систематическое положение не совсем определено.
Образует декарбоксилазы аргинина и орнитина, что более характерно для P. enterobacter.

Erwinia edgeworthiae (Hori and Bokura 1925) Magrou 1937
Син.: Bacillus edgeworthiae Hori and Bokura 1925.
Возбудитель заболевания растений семейства ягодковых.
Полосковидные клетки 1,2 — 1,4 X 1,4 — 2,0 мкм, неспороносные, с перитрихиально расположенными жгутиками, грамотрицательны. Факультативные анаэробы. Колонии на МПА светло-серые, с возрастом приобретают соломенный цвет. Не утилизируют сахара. Молоко свертывают, образуют индол и NH3. Нитраты восстанавливают. Температурный оптимум 32 °С.
Возбуждает гниль корней, ткань при этом буреет, листья желтеют, стебли легко выдергиваются из земли.
Распространение: Япония.

Erwinia erivanensis Kalantarian 1925 Bergey et al. 1930
Син.: Bacterium erivanense Kalantarian 1925, Bacillus erivanense (Kalantarian 1925) Stapp 1928.
Возбудитель заболевания сеянцев хлопчатника.
Неспороносные палочки с перитрихиально расположенными жгутиками; факультативные анаэробы, грамотрицательны. Колонии желтые с серым прозрачным ореолом. На МПБ растут равномерно. Через 2—3 суток на дне появляется осадок, а на поверхности — слабая пленка. Желатин разжижают, молоко свертывают и пептонизируют. Нитраты не восстанавливают, индол образуют. Усваивают сахарозу, глюкозу, маннит с выделением газа и образованием кислоты.
Возбуждает корневую гниль сеянцев хлопчатника. Корневая шейка утолщается, кора усохших корней чернеет.
Распространение: впервые выделен в Армении.

Erwinia herbicola (Lohnis 1911) Dye 1964
Син.: Bacterium herbicola Lohnis 1911, Argobacterium gypsophilae (Brown) Starrand Weiss 1943, A. gypsophilae Brown, Bacillus erivanensis (Kalantarian) Stapp 1928, B. erivanense, B. mangiferae Doidge 1915, B. milletiae Kawakami and Yoshida 1920, B. vitivorus (Baccarini 1894),

Колонии на МПА, КА круг­лые с ровным краем, в центре имеется компактное пуговицеобраз­ное уплотнение, гладкие, блестящие, обычно золотисто-желто­го цвета. Описаны бесшероховатые формы: пигмент слабо растворим в этиловом спирте. Часто образу­ют шероховатые формы: мелкие хрящевидные желтоватые смор­щененные наросты, с трудом отделяющиеся от поверхности агара. Желатин разжижают не все штаммы. При росте на сахарах образу­ют молочную кислоту, фиксируют азот атмосферы. Неоднород­ны по антигенному составу.

Вызывают заболевания челове­ка, животных и растений. При этом симптомы заболевания могут быть разные. Так, на кок-сагизе бактерии вызывают увядание, на вербовых — слабый некроз или пожелтение листьев, на кашне и других — разрастание ткани. Увядание кок-сагиза начинается с внезапной потери тургора цветоносом, который перегибается и быстро засыхает. Обычно массовое заболевание начинается в период массового цветения растений при высокой влажности. На листьях вербовых появляются сначала кlorотические продольные полоски, на которых в нескольких мес­тах могут появляться некрозы. Иногда аналогичные симптомы появ­ляются при поражении листьев вербовых слабоагрессивными изоля­тами P. syringae pv. atrophaciens. Разрастания на растениях отмечены в виде небольших галл.

**Erwinia horticola** Beltjukova, Gwozdjak, Pastuschenko, Zujkova 1972

Возбудитель заболевания черного бактериоза древесных пород.

Палочки небольшие, толстые, элипсоидальные, неспоровые, подвижные с перитрихальным расположением жгутиков, грамотри­цательны. Бактерии хорошо растут на МПА и КА. На МПА колонии круглые (диам. 4—5 мм), конусовидные, с запавшей, иногда шерохо­ватой вершиной, слабоволнистым краем; гладкие, блестящие, серые, полупрозрачные. На КА колонии выпуклые, серо-белые, диам. 5—7 мм (рис. 2.31). На МПБ уже через 16 ч виден равномерный рост. Фа­культативные анаэрообы, растут на МПБ—7%­ном NaCl, восстанавливают нитраты, реакция Фогес — Проксенаур отрицательна. Не
разжижают желатин и не пептонизируют молоко, только медленно его коагулируют, образуют индол, NH₃, H₂S, кислоту из ряда сахаров на минеральной среде Омелянского. Усикивают эскулин, соли кетоглutarовой, молочной, муравьиной, яблочной, лимонной и янтарной кислот, аминокислоты и амины, аспарагин, аспарагиновую и глутаминовую кислоты, гистидин. Бактерии не используют лактозу, ионзит, этиловый спирт, углеводороды, винную и сульфаниловую кислоты. Не образуют амилазу, лецитиназу, левансахаразу, протопектинаzu, целлюлазу, оксидазу, желатиназу, уреазу, внеклеточные нуклеазы. Выявлены аргинин- и лизиндекаробсилазные активности. Штаммы серологически неоднородны.

Черный бактериоз чаще встречается на деревьях в возрасте 20—40 лет. Поражаются стволы, ветви и листья (рис. 2.32). Болезнь может протекать быстро, тогда дерево погибает в течение одного сезона, чаще в первой половине лета, или медленно, годами. На листьях появляются некрозы. Более чувствителен край листа. Ветви отмирают даже при неполном охвате их некрозом. Поражение на ветках вначале имеет вид мокнущих пятен, которые чаще всего расположены вблизи спящих почек. Распространение болезни происходит по элементам коры сначала без видимых внешних признаков. Со временем пораженные участки западают, кора трескается. Цвет пораженной ткани зависит от породы и интенсивности протекания инфекционного процесса: на грань со здоровой тканью красноватая, по мере удаления — светло-бурая, бурая до черной. Из пораженных участков в светлую погоду выделяется экссудат, который, растекаясь по стволу (ветке), порождает новые очаги, проявляющиеся в виде мокнущих пятен. При этом обычно поражаются верхние элементы коры, которые отмирают.

Возбудитель черного бактериоза выявлен на плодовых (особенно яблони), буке, дубе. В эксперименте поражает многие виды древесных и сельскохозяйственных растений.

Распространение: обнаружен в СССР на плодовых и лесных древесных породах.

*Erwinia ixiæ* (Severini 1913) Margou 1937

Син.: *Bacillus ixiæ* Severini 1913.

Возбудитель заболевания луковичных культур.

Неспороносные палочки, подвижны посредством перитрихиально расположенных жгутиков, грамотрицательны. Факультативные анаэробы. Колонии белые, гладкие, слабо-зернистые, непрозрачные. Молоко свертывают, но не пептонизируют, желатин не разжижают, интраты не восстанавливают. Патогенность доказана при искусственном заражении растений.

Возывает мокрую гниль клубней. Внешние симптомы: потемнение листвьев и цветоносов, которые постепенно засыхают. При сильной инфекции листва покрываются ржавыми пятнами и легко отрываются.

Рис. 2.32. Черный бактериоз плодовых (искусственное заражение)
Поражает крокусы, гладиолусы, гиацинты, картофель. Распространение: Италия, Голландия. 
**Erwinia lilii** (Uyeda 1919) Magrou 1937
Син.: *Bacillus lilii* Uyeda 1919.
Возбудитель бактериоза лилии.
Свойства описаны слабо. Неспороносные подвижные палочки 0,6 — — 0,7 × 0,8 — 1,0 мкм. Жгутики расположены перитрихально, грам-положительны. Факультативный анаэроб. Колонии округлые, блестящие, серого цвета. Не используют сахаров. Молоко свертывает, но не пептонизирует, образуют NH₃, Н₂, индол; восстанавливают нитраты, желатин разжижают слабо.
Поражает листья, стебли и луковицы лилий. Наиболее вредоносен при поражении луковиц. Пятна вначале округлые, затем продольные, коричневые. Поражает представителей семейства лилейных. Наиболее устойчив вид * Lilium speciosum*, очень неустойчивы виды *L. tigrinum*, *L. aurantium*, *L. venustrum*.
Распространение: Япония. 
**Erwinia multivora** Sezerbin — Parfeuenko 1963
Возбудитель водянки древесных лесных пород. Палочки 0,7 — 0,9 × 1,5 — 1,6 мкм, одиночные, реже соединенные парами; перитрих, образуют капсулы и зооглеи, факультативные анаэробы. На МПА колонии белые, гладкие, блестящие, округлые, с несколько неровным краем. На МПБ образуют слабую муть, на поверхности слабые следы пленки или кольца; выделяют H₂S, но не индол и NH₃, восстанавливают нитраты. Молоко пептонизируют, желатин разжижают. На сахарозе, галактозе, мальтозе, глюкозе, левулозе, лактозе, манните образуют кислоту и газ, обладают амилазной активностью.
Заболевают лиственные и хвойные породы. На хвойных (пихта) часто первым внешне заметным признаком болезни является изменение окраски хвои: первоначально она желтеет, затем приобретает оранжево-красную или розово-красную окраску, засыхает. На стволах образуются короткие водяные побеги. У основания отмерших сучков на коре наблюдаются мокрые черные пятна, причем сам сучок часто бывает тоже мокрым и трухлявым. Иногда отмирание коры наблюдается в нижней части стволов пихт с окольцеванием больше половины окружности. Часто на пораженных участках кора отваливается. На дубе симптомы следующие: на листьях — пятна бурого цвета неправильных очертаний, обычно расположенные между жилками. Сначала пятна появляются в виде небольшой светлой полупрозрачной с маслянистым оттенком точки, вокруг которой начинается дальнейшее поражение листовой пластинки в виде ясно выраженных концентрических кругов. Пораженная часть листовой пластинки буреет, но границы концентрических колец остаются заметными. На коре молодых деревьев появляются черные пятнышки. Пораженные участки сливаяются, кора становится темно-буровой, затем красно-буровой. Весной, до распускания листьев, и осенью из пораженных участков выделяется экссудат черного цвета. Часто отмечает верхушка молодых деревьев, или их рост замедляется, и они становятся карликовыми; на верхушке — розеткообразование, на побегах появляется много прорастающих почек. Усыхание дуба идет сверху, начиная с отдельных ветвей. Бактерии поражают и желуди. Пораженные семядоли становятся бурыми и влажными, липкими на поверхности, с кислым запахом. Распространение: поражает многие лесные древесные породы на Северном Кавказе. 
**Erwinia nimipressuralis** Carter 1945
Возбудитель заболевания лесных древесных пород.
Утилизируют карбогидраты с образованием большого количества газа, образуют аргининдекарбоксилазу и липазу. Не используют сахарозу и раффинозу, серологически неоднородны (рис. 2.33).

**Электронная микроскопия бактерий представлена на рис. 2.34—2.35.**

Выделен из мокрой древесины ильма, бука, тополя, хвойных.

Распространение: США, Чехословакия, СССР.
**Erwinia quercina** Hildebrand and Schroth 1967
**Erwinia serbinowi** (Potebnia 1915) Magrou 1937
**Еrwinia serbinowi** (Potebnia 1915), **B. beticola** (Serbinow, 1913) Stapp 1928, **Bacterium beticola** Serbinow 1913.
**Возбудитель капельной болезни желудей дуба.**

Свойства, типичные для рода, представлены в табл. 2.2—2.4.

Клетки немного крупнее, чем у других представителей рода, размером 0,5 — 1,5 X 1,0 — 3,0 мкм. Хорошо растут на КА, особенно с добавлением глюкозы, пептона и карбоната кальция. Уже через 24 ч видны круглые приподнятые с ровным краем белые колонии. На МПБ вызывают равномерное помутнение. Оптимальная температура роста 27—32 °C. В качестве азотного питания используют аммонийные соли и пептон, но не нитраты. Не обладают экзо-DНК-азной, тирозиназной, уреазной, амилазной, лизиндекарбоксилазной и экзоцеллюлазной активностями. На табаке не вызывают реакцию сверхчувствительности.

Рис. 2.33. Антигенная неоднородность Erwinia niimpressuralis (агар-препарат в геле). Цифрами указаны номера штаммов в центре сыворотка, в боковых лунках антиген по Грассе.

Возбудитель бурого бактериоза сахарной свеклы.

Неспороносные подвижные палочки размером 0,4 — 0,75 X 1 мкм с перитрихальным расположением жгутиков, грамотрицательны. Не образует H₂S и NH₃, возможно, и индол. Образует флуоресцирующий

Распространение: заболевание выявлено в северной Калифорнии (США) на видах Quercus agrifolia и Q. wislizenii. Листовая форма капельной болезни желудей обнаружена на Украине.

**Erwinia serbinowi** (Potebnia 1915) Magrou 1937}
**Erwinia serbinowi** (Potebnia 1915), **B. beticola** (Serbinow, 1913) Stapp 1928, **Bacterium beticola** Serbinow 1913.
**Возбудитель бурого бактериоза сахарной свеклы.**

Неспороносные подвижные палочки размером 0,4 — 0,75 X 1 мкм с перитрихальным расположением жгутиков, грамотрицательны. Не образует H₂S и NH₃, возможно, и индол. Образует флуоресцирующий
пигмент. На мясопептонном желатине сначала белые, круглые, позже коричневые колонии. Желатин разжижает, образуют газ из желатина и сахаров. Обычно не растут на картофеле. Эта характеристика бактерий недостаточна для определения систематического положения данного вида.

Выделен в чистую культуру. Монофаг.
Распространение: СССР.

Рис. 2.34. Клеточная оболочка E. nimipressuralis

Рис. 2.35. Жгутики на делящейся клетке E. nimipressuralis

Erwinia salicis (Day 1924) Chester 1939
Возбудитель заболевания ивовых.
Свойства представлены в табл. 2.2—2.4.
Плохо растут на МПА без добавления факторов роста, содержащихся в автолизате, гидролизате или экстракте дрожжей. На глюкозо-
дрожжевом агаре колонии круглые, с ровным краем, слабо выпуклые, гладкие, белые, полупросвечивающиеся. Аналогичные колонии на МПА и КА, только размер их меньше и растут медленнее. На желатине рост в виде древовидных разветвлений. На картофеле образуют желтый пигмент. Плохо растут на МПБ с добавлением сахара. Бактерии образуют H₂S из цистина, но не из пептона и тиосульфата. Оптимальная температура роста 26—27 °C, максимальная 34 °C.

Симптомы: весной листья и молодые побеги увядают и коричневеют. Коричневые листья остаются висеть на дереве. Болезнь распространяется на другие ветки, и при благоприятных условиях для развития заболевания дерево через 2—3 года погибает. Болезнь развивается по всему дереву. Из трещин коры вытекает бесцветный эксудат, буреющий на воздухе. На поперечном срезе веток в начале поражения видны водянистые пятна, спустя некоторое время они становятся коричневыми. Поэтому поражение названо «болезнью водянистых знаков». Бактериальная масса заполняет сосудистую систему, откуда выделен возбудитель заболевания.

Считается одним из самых опасных заболеваний ивы.

Распространение: Англия.

Erwinia stewartii (Smith 1898) Dye 1963
Син.: Pseudomonas stewartii Smith 1898.
Свойства приведены при характеристике рода и в табл. 2.2—2.4.
Характерен медленный рост на МПА, КА. Он значительно ускоряется при добавлении в среду глюкозы или сахарозы.

Возбудитель сосудистого вилта кукурузы и близких видов. Переносчиком болезни является Chaetocnema pulicaria.

Erwinia tracheiphila (Smith 1895) Bergey, Harrison, Breed, Hammer and Hunton 1923
Син.: Bacillus tracheiphilus Smith 1895, B. tracheiphilus f. cucumis Smith 1920, Bacterium tracheiphilum (Smith 1895) Chester 1897.
Возбудитель сосудистого заболевания тыквенных.
Характеристика представлена в табл. 2.2—2.4. Требуют факторов роста в виде экстракта дрожжей. Без этих добавок растет очень медленно. Колонии на МПА и КА мелкие, круглые, гладкие, блестящие, белые, с сетчатой структурой. Оптимум рН 6,75—7,6. Оптимум температуры роста 25—30 °С; не растут ниже 8 и выше 34, погибают при 43 °С. Сохраняются хорошо, не теряя вирулентных свойств, но на МПА, КА необходимы частые пересевы, реже — на питательном агаре с дрожжевым экстрактом и глюкозой.
Симптомы типа гнилей не описаны. Вначале на листьях появляются потемневшие участки, лист теряет тurgор и засыхает. Потеря тurgора наблюдается во второй половине дня; он может восстанавливаться ночью, однако через несколько дней лист обвисает и засыхает. Стебли остаются зелеными. Важным признаком заболевания является серовато-белый слизистый эксудат, вытекающий из срезанного стебля. В стебле могут образовываться пустоты, заполненные бактериальной слизистой массой.

E. tracheiphila — раневой паразит, поражает, главным образом, огурцы, для которых является очень опасным возбудителем заболевания. Восприимчивы к нему также дыни, тыквы и кабачки, но не арбузы.
Переносчиками являются огуречные жуки — полосатый Diabrotica vittata и двенадцатиточечный D. duodecempunetata, которые отсутствуют в СССР. В отдельные годы очень вредоносен.
Распространение: впервые описано в США. Выявлено в Канаде, Новой Зеландии, Китае, Японии, Африке, Англии, Дании, Франции.
В СССР точно не установлено, считается объектом внешнего карантина.
Меры борьбы: уничтожение жуков — переносчиков возбудителей заболевания. В США для борьбы с бактериями используют антибиотики: стрептомицин и тетрамицин.
Erwinia toxicia Korobko 1973
Возбудитель сосудистого заболевания огурцов. Неспороносные, с перитрихимальным расположением жгутиков палочки 0,6 — 0,9 × 1,0 — 1,7 мкм, грамотрицательны.
Колонии на КА мелкие, однородные, равномерно приподнятые, блестящие, спустя 3—4 сут округлые, достигают 10—12 мм в диам. с четко очерченным конусовидным центром, перламутровым блеском. Утилизируют без образования газа глюкозу, маннозу, ксилоzu, галактозу, лактозу, мальтозу (слабо), сахарозу, трегалозу (слабо), целлюлозу, маннит, сорбит, дуццит, салицил. Молоко свертывает, желатин не разжижает, нитраты восстанавливают. Усваивают ряд аминокислот, винную и лимонную кислоты. Бактерии образуют протопектолитические ферменты, каталазу, уреазу и лизиндекарбоксилазу и не образуют оксидазу, тирозиназу, левансахаразу, аргининдигидролазу, гидролазу, лецитиназу, внеклеточную ДНК-азу и пероксидазу. Штаммы серологически неоднородны, не обладают серологическим родством со штаммами других видов рода Erwinia.
Заболевание на огурцах проявляется, главным образом, в закрытом грунте в фазе цветения и плодоношения, вызывая увядание стебля, листовых черешков и пластинок. Под воздействием возбудителя сосудистая система приобретает бурый, красно-бурый цвет. На поверхности стебля наблюдаются водянисто-маслянистые полосы, которые со временем буреют и растрескиваются. Поражается также сосудистая система плодов. Такой плод имеет хлоротический вид, на поверхности образуются водянистые волдыри, которые со временем западают и вокруг них образуется водянистый ободок. Увядание растений в условиях закрытого грунта начинается с увядания листьев, на которых образуются хлоротические пятна до 10 мм в диам. бурого или красно-бурового цвета. Заболевание быстро распространяется на всю теплицу. В полевых условиях бактерии поражают дыни и арбузы.
Распространение: Египет, СССР (Украинская ССР).
Erwinia uvaе (Kruse 1896) Magrou 1937
Cин.: Bacterium uvaе (Kruse 1896) Chester 1897.
Возбудитель заболеваний цветочных растений и винограда.
Описан очень слабо. Палочки размером 0,25 — 3,0 × 4,0 мкм. Подвижны, вызывают желтый рост на картофеле. Разжижают желатин.
Распространение: Италия.
Признаки идентичны роду Erwinia. Из рода Erwinia в Pectobacterium выделены те виды, которые образуют пектолитические ферменты, т. е. бактерии, вызывающие мягкие гнили. В настоящее время классификация бактерий на основе их фитопатогенности не подтверждается молекулярно-генетическими исследованиями. Несмотря на то, что некоторые исследователи поддержали выделение пектобактерий в отдельный род, официального статуса оно не получило.

**Bacterium nodoantrum** Skripal 1968
Возбудитель туберкулеза яблони.
Прямые короткие неподвижные палочки размером 0,4 — 0,5 × 0,5 — 0,8 мкм, соединены попарно, группами, короткими цепочками, отдельные клетки встречаются редко, имеют капсулу, грамотрицательны.
На агаре образуют округлые с ровным краем, слабо выпуклые, молочно-белые с перламутровым блеском, непрозрачные, слизистые, гомогенные по структуре колонии (1—4 мм в диам.). Растут медленно. Требуют добавления в среду дрожжевого автолизата. В МПБ образуют легкую равномерную муть, нежную ломкую пленку, затем пленка опускается на дно пробирки. Не разжижают желатин, не восстанавливают нитраты, молоко остается без изменения. Слабо образуют индол. Не образуют лецитиназу. Ферментируют (с образованием кислоты и газа) глюкозу, арабинозу, рамнозу, ксилоzu, фруктозу, трегалозу, целлобиозу, галактозу, маннит и сорбит; без образования газа — салицин, мальтозу и глицерин; не используют лактозу, раффинозу, дульцит, инозит, молочную, винную и мальтозу, кислоту. Серологически однородны.
На ветках яблони всех порядков и штамбе образуются узлы и наросты (рис. 2.36). Наиболее часто поражаются ветки молодеже 10-летнего возраста. На листьях, плодах и корнях поражений не наблюдалось. Образующиеся наросты в 3—5 раз превышают диаметр несущей ветки. Периодерма коры нароста на ранней стадии заболевания гладкая, позже она становится волнистой. С возрастом в местах поражения растрескиваются верхние слои коры, а паренхима, разрастаясь, превращает нарост из гладкого в шероховатый. Большая часть наростов имеет кратерообразное углубление, через которое весной или во влажную погоду выделяются капельки жидкости с бактериями. Выделения имеют коричневый цвет и специфический запах.
Из года в год инфекция сохраняется в наростах, внутри которых вследствие манерации клеток образуются полости — каверны. Со временем наросты отмирают; одновременно отмирает и часть ветки, расположенная выше нароста.

Рис. 2.36. Естественное поражение ветки яблони Bacterium nodoantrum

Род Pectobacterium Waldee 1945
При искусственном заражении возбудителем наросты образовались на яблоне сортов Щетинское Красное и Антоновка.
Распространение: западные области УССР.

СЕКЦИЯ 9
Риккетцииеподобные бактерии (РПБ)
Таксономическое положение РПБ не установлено. Под этим названием объединена группа бактерий, поражающая ксилему растений; поэтому их называют также «ограниченные ксилемой бактерии» или «примитивные бактерии». Однако некоторые из РПБ способны поражать и флюэму растений.
Название РПБ подчеркивает их сходство с риккетсиями. Клетки РПБ имеют формы от палочковидных до овальных, размеры 0,2 — 0,45 X 0,8 — 4 мкм, клеточная стенка аналогична по составу таковой у грамотрицательных бактерий. Для выделения РПБ используют специальные агаризованные среды, на которых они растут очень медленно; колонии достигают размеров 0,2—0,9 мм.
Основным отличием от других бактериальных заболеваний является то, что РПБ являются внутриклеточными паразитами: в клетках растений их накапливается до нескольких десятков. В природе РПБ сохраняются в пораженных растениях и насекомых, которые являются их основными переносчиками.
Некоторые РПБ могут поражать растения разных систематических групп: виноград (желтуха, болезнь Пирса), персик (болезнь Фони), цитрусовые, сливу, миндаль, ряд лесных древесных пород, пшеницу, морковь, картофель, сахарную свеклу, бобовые. Симптомы поражения различны: желтуха, некроз, деформация листьев, недоразвитость, карликовость, увядание, ведьмины листья. [76]

СЕКЦИЯ 13
Клетки палочковидные. Образуют эндоспоры, подвижны при помощи перитрихально или латерально расположенных жгутиков или неподвижны. В большинстве случаев грамположительны. Факультативные аэrobe или анаэробы.
Секция 13 состоит из 6 родов, два из которых имеют фитопатогенные виды [107]: Bacillus и Clostridium.
Род Bacillus Cohn 1872
Палочки прямые 0,3 — 2,2 X 1,2 — 7,0 мкм, в большинстве грамположительные, подвижные, жгутики чаще расположены латерально, образуют по 1 термоустойчивой споре, хемоорганотрофы, метаболизм окислительный, или окислительный и ферментативный. Большинство видов образуют каталазу; строгие аэробы или факультативные анаэробы. [9, 35, 20, 58, 89, 107]
В природе распространены повсеместно. Экологическими нишами являются почва, ил, озерная, речная и морская вода; часто ассоциируют с макроорганизмами.
Типовой вид: Bacillus subtilis (Ehrenberg) Cohn 1872.
Фитопатогенные свойства описаны у 4 видов: В. macerans, В. subtilis, В. polymyxa, В. populi [106]. Другие виды бацилл, описанные как патогены для растений, не вошли в определитель из-за очень скудных сведений о них. Свойства некоторых фитопатогенных видов рода Bacillus представлены в табл. 2.1.
<table>
<thead>
<tr>
<th>Признак</th>
<th>B. macerans</th>
<th>B. subtilis</th>
<th>B. polymyxa</th>
<th>B. populi</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Клетка</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>размер</td>
<td>0,5 — 0,7 х 2 — 5</td>
<td>0,7 — 0,8 х 2 — 3</td>
<td>0,6 — 0,8 х 2 — 5</td>
<td>0,6 — 1,1 х 1,4 — 2,3</td>
</tr>
<tr>
<td>подвижность</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>окраска по Граму</td>
<td>±</td>
<td>+</td>
<td>±</td>
<td>+</td>
</tr>
<tr>
<td><strong>Спора</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>эллипсоидальная форма</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>расположение</td>
<td>ст</td>
<td>ц</td>
<td>ст, т</td>
<td>ц</td>
</tr>
<tr>
<td>раздувают</td>
<td>+</td>
<td>—</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>клетку</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>околоспоровые тельца</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td><strong>Температура роста</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>максимальная</td>
<td>10 — 50</td>
<td>45 — 55</td>
<td>35 — 45</td>
<td></td>
</tr>
<tr>
<td>минимальная</td>
<td>5 — 20</td>
<td>5</td>
<td>5 — 10</td>
<td></td>
</tr>
<tr>
<td><strong>Рост на:</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>МПБ + 5 %</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>+</td>
</tr>
<tr>
<td>NaCl</td>
<td>+</td>
<td>±</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>0,001 % лизоциме</td>
<td>—</td>
<td>±</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>в анаэробных условиях</td>
<td>+</td>
<td>+</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td><strong>Реакция Фогес — Просскауэпа</strong></td>
<td>—</td>
<td>+</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td><strong>Каталазная активность</strong></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td><strong>Разложение</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>казеина</td>
<td>—</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>крахмала</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>желатина</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td><strong>Использование</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>маннита, глюкозы, арабинозы</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>ксилозы</td>
<td>—</td>
<td>+</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>цитрата, тирозина</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Таблица 2.6. Свойства бактерий рода Bacillus
Продолжение табл. 2.6

<table>
<thead>
<tr>
<th>Признак</th>
<th>B macerans</th>
<th>B subtilis</th>
<th>B polymyxa</th>
<th>B. populi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Восстановление нитратов</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>—</td>
</tr>
<tr>
<td>Образование индола</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Образование кристаллов</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Декстрин</td>
<td>±</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>Дегидроокись ацетона</td>
<td></td>
<td></td>
<td>±</td>
<td></td>
</tr>
</tbody>
</table>

Примечание: Рост в анаэробных условиях возможен на специальных средах; «±» — у большинства штаммов реакция положительная; «+» — реакция положительная; «−» — реакция отрицательная; расположение спор: ц — центральное, т — терминальное, ст — субтерминальное.

**Bacillus cereali um** Gentner 1920
Син.: Pseudomonas cerealia (Gentaer 1920) Stapp 1928, Bacterium cerealinum (Gentner 1920) Elliott 1930.
Возбудитель заболевания ячменя.
Палочки 0,6 — 0,8 × 1,5 — 3,0 мкм, подвижны (2—3 полярных жгутика), спороносные, аэробы. Колонии на МПА белые, круглые, гладкие с ровным краем. Бактерии образуют красный пигмент, не разжижают желатин, разлагают крахмал. Оптимальная температура роста 20—30 °C.
Распространение: Западная Европа, СССР.

**Bacillus macerans** Schardinger 1905
Возбудитель заболевания льна.
Основные свойства приведены в табл. 2.6.
Палочки, грамвариабельны в любом возрасте. Споры аналогичны Bacillus polymyxa.
На питательном агаре колонии тонкые, от округлых до раскидистых. На глюкозном агаре более выпуклые, не микоидные. На средах с сахарами образуют этанол, ацетон, муравьиную и уксусную кислоты, CO₂ и H₂. Не образуют ацетон из глюкозы, разлагают пектин и полисахариды растений (рис. 2.37); не образуют или очень слабо образуют целлюлозу. На минеральной среде с сахаром и солями аммония требуют для роста биотин и тиамин. Большинство штаммов фиксируют молекулярный азот.
Поражается кончик корня и точка роста стебля. На кончике корня появляются светло-желтые (до коричневых) пятна, на подсемядольном колене — штриховатые поражения, а на семядолях — язвочки с бурой или кирпично-красной каймой.
Возбудитель бактериоза льна является условным паразитом, широко распространенным в почве. Вредоносность заболевания определяется условиями, в которых происходит рост и развитие растения. В случае нормального развития он не вызывает его заболевания и может даже повышать урожай льна. Если растение льна ослаблено, бактерия переходит к паразитическому образу жизни. Факторами, способствующими переходу B. macerans к паразитированию, являются влажность почвы, температура воздуха, аэрация и обработка почвы, влияние удобрений особенно борных.

Вредоносность незначительная. Отмирание точки роста стебля чаще всего проявляется в фазе всходов и фазе бутонизации льна. При этом рост всходов и растений замедляется или совсем прекращается, верхушка желтеет, засыхает. Корневая система приобретает уродливые формы. Во время бутонизации верхушка скручивается, стебель желтеет и засыхает. Заболевание в виде поражений точки роста очень вредоносно.

Распространение: бактериоз описан в СССР

**Bacillus polymyxa**

Син.: Clostridium polymyxa


Возбудитель гнили картофеля Bacillus macerans

Основные свойства представлены в табл. 2.6.

Колонии на питательном агаре тонкие, часто амебовидные. На глюкозном агаре обычно приподнятые, мукоидные, с гладкой поверхностью. Обычно вязкие на многих питательных средах. На глюкозе образуют 2,3-бутандиол, этанол, CO₂ и H₂. Используют многие карбогидраты и другие вещества, разлагают пектин и другие полисахариды, но очень слабо, почти не действуют на клетчатку. Образуют леван, многие штаммы в анаэробных условиях фиксируют азот. На минеральной среде с сахарами растут в присутствии биотина. Селективной средой является сахар + аммонийные соли и биотин, который может быть заменен дрожжевым экстрактом, pH 6—7.

**Bacillus populi** Brizi 1907

Возбудитель туберкулезного заболевания тополя.

Палочки 0,6 — 1,1 × 1,4 — 2,3 мкм, спороносные, с перитрихимальным расположением жгутиков, грамположительны. Споры расположены в центральной части клетки.

На МПА колонии плоские, вокруг беспорядочно морщинистого центра расположена радиально морщинистая зона, которая оканчивается валиком и плоским лопастным волнистым, четко очерченным краем, грушевидные, блестящие, непросвечивающиеся, маслянистой консистенции. На КА колонии больших размеров, диам. 8 мм (рис. 2.38). На МПБ рост виден на 2-е сут. в виде слабого помутнения, в старых культурах — хлопьевидный осадок, тонкая рыхлая пленка, оседающая на дно. Не используют источники углерода на минеральной
Рис. 2.38. Колония Bacillus populi на КА (пятысухочная)

Рис. 2.39. Туберкулез ветки тополя (естественное проявление)
Рис. 2.40. Туберкулез ветки тополя (искусственное заражение)

среде, не изменяют лакмусовую сыворотку, не восстанавливают нитраты, образуют аспарагиназу, липазу, желатиназу, оксидазу, внеклеточную РНК-азу, протопектиназу. Серологически однородны.

Поражает ветви, ствол и листья. На ветвях (чаще в возрасте до 7 лет) появляются вдугия, которые преобразуются в язвы (рис. 2.39) и разрастания различных размеров, иногда превышающие в 2—3 раза диам. несущей ветви. Форма нароста округлая, овальная, узло-
Поверхность сначала гладкая, затем шероховата. Расположены они в разных частях ветви, но чаще на местах отмерших боковых побегов почек, листовых рубцов. Внутренние кольца древесины окрашены в красно-бурый цвет различных оттенков. Внутри наростов образуются полости, заполненные рыхлой сухой массой разрушенной древесины. При искусственном заражении вызывают поражения на листьях разных видов тополей, ивы, сирени, дуба красного. Опухоли развиваются только на тополе волосистоплодном. Болезнь не приводит к усыханию деревьев.

Распространение: Италия, Франция, Чехословакия, СССР (Украинская ССР)

**Bacillus subtilis** (Erenberg) Cohn 1872


**Vibrio subtilis** Erenberg 1835

Возбудитель гнили плодов и корнеплодов.

Свойства представлены в табл. 2.6.

Спорообразующие палочки 0,7 — 0,8 X 2 — 3 мкм, одиночные редко в виде цепочек, подвижны (перитрихи), грамположительны. Споры эллипсоидальные, расположены в центральной части, при образовании клетку не разделяют.

Аэробы, но на некоторых средах могут очень слабо расти в микроаэробных условиях. Разлагают крахмал и пектиновые вещества, чем обусловлена способность вызывать на растениях гниль. Образуют катализ, ферменты, гидролизующие казеин. Растут в присутствии 7 %-ного NaCl, вариабельно в среде с 0,001 % лизоцима. Превращают нитраты в нитриты, медленно разжигают желатин, образуют леван из сахарозы и раффиозы; пигменты типа меланинов и пульхерина (коричневые, красные, оранжевые, черные) в зависимости от компонентов среды. Образуют кислоту из арабинозы, ксилозы, маннита и щелочь на среде с цитратами. Не используют тирозин.

Оптимальная температура роста 25—30 °С, максимальная 45—55, минимальная 5 °С. Оптимум pH 5,5—8,5

*V. subtilis* широко распространен в природе как сапрофит: на растениях, растительных остатках, почве, иле.

Возбуждает заболевания типа гнилей картофеля и моркови при хранении, зеленых коробочек хлопчатника, побурения листьев и плодов абрикосов, яблони, кабачков. Описано заболевание початков кукурузы. На верхушке зерновок образуются небольшие бледно-серые вдавленные пятна. Со временем пятна становятся морщинистыми, буровато-желтыми, окаймленными узкой темно-серой каймой. Поражаются чаще верхушечные зерновки.

При высокой влажности и температуре может поражать всходы хлопчатника, сахарной свеклы. Поражение ее сосудов происходит очень медленно, начинается с хвостовой части. При среже сосуды имеют вид темных точек, расположенных кольцами. По внешним признакам заболевание определить нельзя. Активный возбудитель гнили корней свеклы при хранении. Бактерии поражают также цветки тыквы, началье только пестичные, затем завязь. Столбики цветков искривляются, теряют тургор, завязи становятся полуоплощеными, загнивающими. Поражается паренхимная ткань, но не сосуды. Бактерии поражают также картофель при хранении. Заболевание наиболее вредоносно для семенной кукурузы.
Распространение: бактериоз кукурузы выявлен на Украине, распространен повсеместно.
Меры борьбы: помимо общих мер необходимо бороться с переносчиком возбудителя — хлебным клопиком.

Род Clostridium Prazmowski 1880
Типовой вид: Clostridium butyricum Prazmowski 1880.
Палочки, подвижны, в молодом возрасте грамположительны, хемоорганотропы. Имеются сахаролитические и протеолитические виды, некоторые используют сахара и белки. Отдельные виды фиксируют азот, не восстанавливают сульфатов. Большинство штаммов строгие анаэробы, некоторые растут в присутствии воздуха. Обитают в почве, морской и пресной водах, в желудочно-кишечном тракте людей и животных.

Ключ для определения видов:
I. Споры в клетках расположены субтерминально
A. Желатин не разжижает 1 группа
B. Желатин разжижает II группа
II. Споры расположены терминально
A. Желатин не гидролизуют III группа
B. Желатин гидролизуют IV группа
III. Споры образуются в специальных условиях роста V группа

Фитопатогенными свойствами обладают некоторые представители I и II групп. [106]

Clostridium butyricum Prazmowski 1880

Рис. 2.41. Деление спороносных грамположительных клеток с образованием поперечной септы
Рис. 2.42. Колония Clostridium butyricum var. phytopathogenicum на KA (семисуточная)

Син.: Amylobacter navicula Reinke and Berthold Wehmer 1898, Bacillus amylobacter van Tieghem 1877, B. butyricus (Prazmowski 1880) Flugge 1886, B. navicula (Reinke and Berthold) Chester 1898, Bacterium navicula Reinke and Berthold 1879, Metallacter amylobacter (van Tieghem 1877) Trevisan 1879.
**Clostridium butyricum var. phytopathogenicum**

Возбудитель опухолево-туберкулезного заболевания граба и других лесных пород при искусственном заражении.

Палочки, окружены капсулой, спороносные, размером 0,8 — 0,9 × 3 — 5 мкм, приобретающие клостридиальную форму при спороношении, грамположительны. Подвижны при помощи перитрихально расположенных жгутиков. Размножение клеток проходит путем бинарного деления с образованием поперечной перегородки (рис. 2.41). Образование спор происходит субтерминально. В местах спороношения отмечена высокая активность эстераз. Строгие анаэрообы. Хорошо растут в жидких средах, содержащих углеводы. МПБ, добавленный в среду, тормозит рост бактерий. Колонии на КА неправильной формы с волнистым краем, центр обособлен; блестящие, неправильной формы, серо-желтого цвета, маслянистой консистенции (рис. 2.42).

Бактерии используют большинство углеводов и спиртов, некоторые органические кислоты, не растут на белковых средах, не усваивают аминокислот. На картофельном заторе растут хорошо, но не образуют ацетона, бутанола, этанола, муравьиной, пропионовой, валериановой, капроновой, малиновой и янтарной кислот; образуют масляную, яблочную, щавелевую, винную и лимонную кислоты.

Газообразными продуктами брожения являются H₂ (58—68 %), CO₂ (29—38 %) и N₂ (2—3 %). Растут в интервале температура 15—50 °C. Серологически неоднородны.

Поражается ствол и листья. Ствол и основания скелетных веток покрыты большими, иногда слившимися бугристыми наростами (рис. 2.43). Внутри наростов обнаружены каверны разной величины и формы, которые заполнены отмершей тканью темно-коричневого цвета. Ствол поражается реже, чаще болеют листья. На них в мае сначала появляются большие расплывчатые слабомаслянистые пятна. Пораженная ткань некротизируется, приобретает светло-серый оттенок. Иногда пораженная часть листа засыхает зеленой. Листья скручиваются и опадают, ветки усыхают. Усыхание отдельных веток может проходить и при общем хорошем состоянии всего дерева. Листья более восприимчивы в июне — июле, чем в конце вегетации. Бактерии не являются узкоспециализированными и могут вызывать заболевание при искусственном заражении ряда лесных пород и сельскохозяйственных растений.

Распространение: бактериоз выявлен на территории Украинской ССР.
**Clostridium puniceum** Lund, Brocklehursl and Wyatt 1981
Возбудитель заболевания корнеплодов моркови и клубней картофеля.
Прямые или слегка искривленные палочки размером 0,6 × 1,8 — 4,2, подвижны (перетрих), содержат гранулезу, обычно грамотрицательны но встречаются и грамположительные. Споры расположены в клетке субтерминально, не раздувая ее, овальные с обширным спорангием.

Колонии на кровяном агаре точечные до 2 мм в диам., круглые, выпуклые, белые, гладкие. На КА колонии розовые, с волнистым краем. Негемолитические, хорошо растут на пептоноглюкозном дрожжевом бульоне, подкисляя его до рН 5,2—5,5. Температурные границы роста 7—39 °С, оптимум температуры 23—33 °С. Разлагают ломтики картофеля, моркови, редиски, турнепса. Образуют протопектиназу, пектиназу, уксусную, масляную и фумаровую кислоты, бутанол и обильно Н₂. Усваивают глюкоzu, фруктоzu, сахарозу, амиgdalin, лактозу, мелобиозу, трегалозу. Не усваивают нитраты, нитриты, сорбит, мелозитозу рамнозу.

Вызывают гниль корнеплодов моркови и клубней картофеля во время вегетации и при хранении. Первоначально на поверхности образуется небольшая впадина. Распространение инфекции происходит в глубь корнеплода.

Распространение: Англия.

**СЕКЦИЯ 15**
**Род Artrobacter**

*Artrobacter ilicis*
Возбудитель увядания и опадания листьев и веток падуба.
Клетки от кокковидных до палочковидных. Палочки, подвижны, неспороносные, некислотоустойчивы. В пептидогликане клеточных стенок содержится лизин вместо глицина. Колонии на МПА желтые, не прозрачные, гладкие, пигмент не диффундирует в агар. Аэробы, оптимум температуры роста 25—30 °С, оптимум рН 7,0. Не образуют кислоту из сахаров в среде с пептоном, целлюлазу; образуют каталазу. Хорошо растут на минеральных средах, содержащих аммонийные соли и источник углерода.

Распространение: США.

**Род Clavibacter Davis, Gillaspie, Vidaver, Harris 1984**
Типовой вид: *Clavibacter michiganense*.
Булавовидные, плеоморфные палочки, часто Y-образные; явный цикл палочки — кокк не наблюдается; неподвижные, грамположительные, неспороносные, кислотоустойчивые. Строгие аэробы. Оптимальная температура 20—29 °С, максимальная 35 °С. Требуют факторов роста, медленно усваивают некоторые углеводы (с образованием кислоты) и органические кислоты, маннит. Не утилизируют рамнозу, рибозу, мелезитозу, сорбит, нитриты; нитраты не восстанавливают, каталазо- и оксидазо-положительны; не образуют оксидазу, тирозиназу, уреазу и липазу.


316
Clavibacter xyli subsp. cynodontis Davis, Gillaspie, Vidaver, Harris, 1984

Возбудитель задержки роста свинороя.
Плеоморфные палочки размером 0,2—5,0 мкм, грамположительны, не образуют эндоспор, некислотоустойчивы.
Колонии на агаре сложного состава, округлые, 0,4—1,0 мкм, с ровными краями, выпуклые, блестящие, маслянистые. Желтая окраска усиливается с возрастом. Строгие аэробы. Оптимальная температура роста 26—30 °C, не растут при 36 °C. Образуют кислоту на средах с декстрином, глюкозой, глицерином, маннитом, маннозой, мальтозой, крахмалом, трегалозой; кислота не образуется из адонита, арабинозы, арбутина, целлобиозы, дульцида, эссулина, этанола, мальтозы, лактозы, фруктозы, галактоэоз, L-инозита, инулин, мелезитоза, L-метил-D-глюкозида, β-метил-D-глюкозида, пропанола, пропилентрилглицероля, раффиноэоз, рибозы, рамнозы, салицила, сорбита, сахарозы, сицилозы. Не расщепляют казеин, кукурузное масло, эсулин, желатин, твин 20 и 80, тирозин, мочевину; растут в присутствии 0,0075 %, KСN нитраты не восстанавливают; образуют каталазу, но не оксидазу, H2S, икдол, NH3 из пептона. Усвояют цитраты, малаты; не усваивают ацетамид, антрабиоза, бензой, цитроаконат, β-гидроксибензоат, галаукронат, глюконат, гликолят, лактат, левулозит, мальтоза suger, оксасал, пропионат, фукцинат.
Распространение: Тайвань.

Clavibacter xyli subsp. xyli Davis, Gillaspie, Vidaver, Harris 1984

Возбудитель задержки роста корневых отводков сахарного тростника.
Плеоморфные палочки, неподвижные размером 0,2—5,0 мкм, не образуют эндоспор, грамположительны, некислотоустойчивы.
Колонии на агаре мелкие, округлые (диам. 0,1—0,3 мм), край ровный; выпуклые, блестящие и маслянистые, с возрастом окрашиваются в белый цвет. Строгие аэробы. Оптимальная температура роста 26—30 °C, не растут при 32 °C. Усвояют с образованием кислоты глюкозу, мальтозу, декстрин; не усваивают адонит, арабинозу, арбутин, целлобиозу, дульцида, эсулин, этанол, фруктозу, галаукройоз, инозит, инулин, лактозу, мелидиозу, мелиезитозу. β-метил-D-глюкозил, пропанол, пропилентрилглицероль, раффиноэоз, рамнозу, салицила, сорбит, сахарозу и сицилозу; не расщепляют казеин, кукурузное масло, эсулин, желатин, крахмал, твин 20 и 80, мочевину. Растут в присутствии 0,0075 %, КСН нитраты не восстанавливают; образуют каталазу и ацетонит, не образуют H2S, индол, NH3, оксидазу; не используют ацетаты, ацетамиды, бензоаты, цитраты, форматы, фумараты, галаукроназы, глюконаты, лактаты, мальтозу, кукурузную кислоту, мальтозу, тартраты.
Бактерия распространена в ксилемных сосудах сахарного тростника; не вызывает заболевания свинороя пальчатого и ряда злаковых, хотя в их ксилеме может размножаться при искусственном введении. Является причиной значительных потерь урожая.
Распространение: заболевание впервые выявлено в США. Распространено в Бразилии, Японии. Южной Африке.

Род Corynebacterium Lehman and Neumann 1896

Типовой вид: Corynebacterium diphtheriae.
В род Corynebacterium включены виды, патогенные для человека и животных; патогенные для растений; сапрофиты.
Большинство из видов фитопатогенных коринебактерий предполагается перенести в роды Artrobacter, Curtobacter, Clavibacter, Rhodococcus [7, 30, 47, 72, 95, 101, 106, 116, 138, 162, 213, 218].

Corynebacterium agropyri (O’Cara 1916) Burkholder 1948


Возбудитель заболевания злаковых.

Неподвижные палочки 0,4 — 0,6 × 0,6 — 1,1 мкм. На агаре растут медленно в виде желтых колоний, поверхность слабо шероховата с концентрическими кольцами, непрозрачная, тягучая. На МПБ слабое помутнение, желтый осадок, на поверхности нет пленки и кольца.

Желатин не разжижают, молоко не свертывают, нитраты восстанавливают; используют глюкозу, лактозу, сахарозу, глицерин с образованием кислоты без газа, крахмал гидролизуют медленно. Оптимальная температура роста 25—28 °С.

Между влагалищами листа у основания чешуек образуется лимонно-желтая слизь, которая затвердевает в виде янтарных капель. Растения сильно отстают в росте. В местах поражения стебли и колосья искривляются.

Распространение: США.

Corynebacterium insidiosum (Mc-Culloch) Jensen 1934


Возбудитель увядания люцерны.

Клетки размером 0,4 — 0,5 × 0,7 — 1,0 мкм, преимущественно клиноподобные, встречаются кокковидные, прямые палочки; расположение одиночное, V- или Y-образное, неподвижные, неспороносные, грамположительные. Растут очень медленно. На МПА + глюкоза видимые невооруженным глазом колонии появляются только на пять суток. Колонии круглые, слегка приподнятые, гладкие с блестящей поверхностью, слабо слизистые, сначала белые, потом желтые; на МПБ — муть. На картофеле и средах с сахарозой желтый цвет изменяется на синий (до фиолетового). Изменение цвета связано с образованием в культуре кристаллов индигоидина, который образуется при температуре 15—20 °С. Интенсивность роста зависит от содержания в среде биотина, никотиновой кислоты, гистидина, пуриновых и пиримидиновых оснований. Медленно разжигают желатин, молоко свертывают, при этом изменяют окраску с белой на желтую, затем голубовато-зеленую до серовато-голубой. Используют глюкозу, сахарозу, лактозу, галактозу, глицерин, крахмал; не образуют индол, H2S, NH3. Нитраты не восстанавливают.

Температура роста: оптимальная 21—24 °С, минимальная около 1, максимальная 28—31 °С.

Возбудитель заболевания люцерны, донника, клевера.

Бактерии поражают сосудистую систему; больные растения отстают в росте, становятся карликовыми с большим количеством стеблей. Листья постепенно теряют зеленую окраску, коричневеют. Пораженные сосуды под самой корой желтеют, темнеют, что хорошо заметно на срезе. Ранее заболевание считали следствием мороза. Однако при
поражении морозом темнеет внешняя часть коры, а не периферическая
часть древесины. Corynebacterium insidiosum — раневой возбудитель,
и низкая температура способствует заражению. Пораженные растения
морозочувствительны.
Распространение: впервые заболевание выявлено в США. Описано
в Северной Америке, СССР.
Corynebacterium iranicum Scharif 1961
Возбудитель заболевания пшеницы.
По свойствам не имеет существенных отличий от Corynebacterium
rathayi
Распространение: выявлен в Иране и вызывает заболевание зла-
kовых, аналогичное C. tritic.
Corynebacterium michiganense (Smith) Jensen 1934
Син.: Bacterium michiganense Smith 1910, Pseudomonas michi-
ganensis (Smith 1910) Stevens 1913, Aplanobacter michiganense (Smith
1910) Smith 1914, Phytomonas michiganense (Smith 1910) Bergey, Har-
rison, Breed, Hammer and Hunton 1923, Mycobacterium flavum subsp.
michiganense (Smith 1910) Krasilnikov 1941, Corynebacterium michi-
ganense (Smith 1910) subsp. michiganense Carlson, Vidaver 1982.
Возбудитель заболевания бактериального рака томатов.
Клетки неспороносные, неподвижные, преимущественно клино-
образные, встречаются коккоподобные; искривленные и прямые палоч-
ки (0,6 — 0,7 X 0,7 — 1,0 мкм), грамположительные, преимуществен-
но одиночные или соединенные попарно V- или U-образно. Аэробы.
Рост на всех средах очень медленный. На МПА глюкоза колонии
появляются на пяты сутки и только на седьмые-восьмые сутки дости-
гают 2—3 мм в диам. Колонии круглые, ровные, приподнятые, вязкие,
вначале бесцветные, полупрозрачные, но быстро приобретают кремово-
желтый цвет, редко розово-оранжевые или бесцветные. Желатин раз-
живаются, хромат разлагаются не все штаммы. Не образуют индол
и H2S, нитраты не восстанавливают. Усвоение углеводов зависит от
штамма. Образуют кислоту без газа из глюкозы, сахарозы, галактозы,
левулозы, мальтозы, слабо — из лактозы, глицерина и маннита. Моло-
ко свертывают Требуют факторов роста (тиамин, биотин, никотиновую
кислоту, а некоторые штаммы — и триптофан, тиорн и пиримидин).
Вызывают поражение листьев, стебля, плодоножек и плодов. Мо-
lодые растения не поражаются. Заболевание проявляется во время цве-
tения растений в виде увядания и некрозов на стебле, листьях и пло-
дах. Увядание обычно начинается на нижних листьях. На плодах по-
являются белые пятна, которые при созревании плода желтеют и в
центре растрескиваются. Трещины более темные и напоминают глаз,
отсюда и название «птичий глаз» Увядание и поражение плода не
всегда связано между собой. Они могут проявляться самостоятельно.
Поражает преимущественно томаты, реже другие виды рода Lyco-
persicum.
В отдельные годы очень вредоносен в открытом грунте.
Распространение: повсеместно.
Corynebacterium rathayi (Smith 1913) Dowson 1942
Син.: Aplanobacter rathayi Smith 1913, Bacterium rathayi (Smith
1913) Aujeszky 1914, Phytomonas rathayi (Smith 1913) Bergey, Har-
rison, Breed, Hammer and Hunton 1923, Erwinia rathayi (Smith 1913)
Gram, Jorgenseu and Rostrup 1929, Agrobacterium rathayi (Smith 1913)
Savulescu 1947, Pseudobacterium rathayi (Smith 1913) Krasilnikov 1949.
Возбудитель камедеистечения ежи сборной.
Палочки 0,5 — 0,75 X 0,95 — 1,3 мкм, с закругленными кон-
cами, одиночные или соединенные концами попарно, неподвижные,
неспороносные, с капсулами, кислотоустойчивы, грамположительны
319
Растут очень медленно на МПА, лучше на МПА + глюкоза. При высе-ве пораженных растений трудно получить отдельные колонии, так как для выделения возбудителя необходимо делать густой посев. Хорошо растут на картофельных ломтиках. Колонии отличаются размером, светло-желтые, однородные, выпуклые. На МПБ образуют желтую пленку и осадок. Не образуют розовый пигмент, уреазу, желатиназу, индол; нитраты не восстанавливают. На среде с глюкозой, сахарозой, лактозой образуют кислоту. Оптимальная температура роста 25 °C, максимальная 30—37 °C.

В пораженных тканях стеблей, влагалища, листьев, соцветий образуют клейкий экссудат лимонного цвета. В этих местах наблюдаются изгибы. Растения отстают в росте из-за укорочения верхних междоузлий. Корни не поражаются. Не вызывает израстания, увядания и некрозов.

Распространение: Европа, США. В СССР встречается редко.

Corynebacterium sepedonicum (Spieckermann and Kottnoff 1914) Skaptason and Burkhodder 1942


Возбудитель кольцевой гнили картофеля.

Неспороносные, клиновидные, кокковидные, искривленные и прямые палочки, овочные или V- и Y-образные, неподвижные. Аэробы. Растут очень медленно. На оптимальной среде МПА + глюкоза колонии появляются спустя 5 сут. Колонии круглые, гладкие, слабоприподнятые, свежевыделенные, слабослизистые, со временем маслообразной консистенции. Цвет колоний белый, кремовый до желтого, непрозрачных, блестящих. Факторы роста — биотин, никотиновая кислота, гистидин, пурин, пиримидин, метионин, аспарагин и др. Цистеин и другие аминокислоты могут ингибировать рост бактерий. Темпера-тура роста: оптимальная 20—23 °C, минимальная 3—4, максимальная 30—31 °C.

Кольцевая гниль картофеля характеризуется прежде всего поражением сосудов. При разрезе больного клубня поражение видно в виде кольца. Часто пораженные клубни и стебли растрескиваются. На по-раженных растениях листья желтеют, покрываются пятнами, скручиваются и засыхают.

Вредоносность возбудителя в отдельные годы достигает 40 %. Поражает виды семейства пасленовых, главным образом, картофель.

Распространение: повсеместно.

Corynebacterium tritici (Hutchinson 1917) Burkholder 1948


Возбудитель слизистого желтого бактериоза пшеницы.

Палочки 0,8×2,4 — 3,2 мкм, неспороносные, подвижны при по-мощи 1 полярного жгутика, грамположительны.

Желатин, крахмал не гидролизуют. Используют глюкозу, лакто-зу, скипидозу, фруктозу, глицерин. Не усваивают сорбозу, салицин, манният. Не образуют H₂S, выделяют NH₃. Рост бактерий стимулируют ряд аминокислот. Колонии на МПА округлые, выпуклые, непрозрачно-
ные, блестящие с ровным краем, желтые. На картофеле биомасса слабо­желтая.

Поражает стебли, листья и колосья пшеницы. На листьях и стеб­лях появляются белые или желтые полосы, листья скручиваются, ослизняются, стебли и колосья перегибаются, утолщаются. Колосья вместе с оберточным листом уплотняются, сливаются, образуя бесфор­менную массу, покрытую желтой слизью, которая на воздухе подсы­хает, становится ярко­желтой, ломкой. Пораженные растения отстают в росте, часто не дают семян.

Заболевание передается нематодами Anguina tritici.

Распространение: желтый бактериоз впервые обнаружен в Индии. Распространен в Австралии, Китае, Египте, на Кипре.

Бактерия является карантинным объектом для СССР.

Род Curtobacterium Yamada and Komagata 1972

Curtobacterium flaccumfaciens pv. betae

Возбудитель сосудистого заболевания столовой свеклы. Преимущественно искривленные или прямые палочки размером 0,3 — 0,5 × 0,8 — 1,6 мкм, отдельные клетки клино­ или коккообраз­ные, встречаются одиночные Y и V­образные формы, подвижны посред­ством трех жгутиков, расположенных полярно.

Растут бактерии несколько быстрее других видов, и на среде МПА с глюкозой на третий сутки образуют округлые колонии (диам. 2—3 мм), непрозрачные, гладкие, не слизистые, однородные, приподня­ты, полупрозрачные, кремовые до желтых. Температура роста: опти­мальная 25 °С, минимальная 4, максимальная 37—39 °С. [162]

Curtobacterium flaccumfaciens pv. flaccumfaciens


Возбудитель увядания и ржаво­буровой пятнистости фасоли. Неспороносные палочки 0,3 — 0,5 × 0,6 — 3,0 мкм, преимуще­ственно с округленными концами, реже клиновидные, расположены поодиночно, иногда V- или Y-образные, подвижны при помощи 1—3 жгутиков, расположенных терминально или субтерминально, грамот­рицательные. Аэrobы.

На МПА с глюкозой, на третий сутки образуют колонии диам. до 4 мм. Колонии округлые с ровным краем, блестящие, гладкие, полупро­зрачные, с возрастом непрозрачные, светло­желтые, масляноподобной консистенции. Образование пигмента зависит от температуры. Неко­торые штаммы могут образовывать голубой или пурпурный водорос­творимый пигмент; по этому признаку выделены разновидности C. f. var. aurantiacum и C. f. var. violaceum. Усваивают с образованием кислоты глюкозу, сахарозу, лактозу, мальтозу, галактозу, глицерин, вариабельно крахмал; H2S и индол не образуют. Молоко свертывает и пептонизируют, желатин разжигают, нитраты не восстанавливают.

Температура роста: оптимальная 31 °С, максимальная 36, минималь­ная 2 °С.

Вызывают заболевание сосудистой системы растений фасоли на всех этапах роста и развития. Пораженные растения увядают, отстают в росте, сбрасывают листья; отмирают отдельные побеги или все расте­ние (рис. 2.44). Пораженные участки ткани коричневеют, краснеют, вокруг них может образовываться желтая кайма. На листьях появля­
ются крупные ржаво-бурые с красноватым оттенком пятна (рис. 2.45). Заболевание передается семенами, растительными остатками.
Поражает фасоль, вигну.
Распространение: повсеместно.

![Иллюстрация 2.44. Увядание куста фасоли, вызванное Curtobacterium flaccumfaciens pv. flaccumfaciens](image)

**Curtobacterium flaccumfaciens pv. oortii**
Син.: Corynebacterium flaccumfaciens subsp. oortii Carlson, Vidaver 1982.
Возбудитель заболевания листьев и луковиц тюльпанов.
Клетки размером 0,5 — 1,1 × 1,3 — 2,6 мкм, большинство — искривленные палочки с закругленными концами, иногда клинообразные, подвижны при помощи 1—2 полярных или субполярных жгутиков.
На МПА + глюкоза образуют колонии 2—3 мм в диам., круглые, гладкие, приподнятые, однородные, не вязкие, слабопрозрачные до непрозрачных. Нитраты не восстанавливают.
Curtobacterium flaccumfaciens pv. poinsetiae


Возбудитель разрастания стебля и пятнистости молочая.
Неспороносные, преимущественно палочковидные клетки 0,2—0,8 × 0,5 — 8,5 мкм, ровные или немного искривленные, очень редко клино- или кокковидные, одиночные, реже V- или Y-образные, подвижны при помощи 1—3 полярных или латеральных жгутиков, грамположительные или грамвариабельные. Аэрообы.
На МПА + глюкоза колонии на третьи-четвертые сутки круглые (3—4 мм), гладкие, приподнятые, однородные, не вязкие, полупрозрачные, опалесцирующие, оранжево-розовые. Интенсивность цвета меняется в зависимости от насыщенности среды.
Факторами роста являются тиамин, биотин, пантотеновая кислота, гистидин, пурины, многие аминокислоты. Желатин разжигают, молоко свертывают и пептонизируют, нитраты не восстанавливают, крахмал гидролизуют. Не образуют индол, H₂S и NH₃. Растут на средах с арабинозой, ксилоэозой, лактозой, трегалозой, глюкозой, адонитом, глицерином и других с образованием кислоты. Не используют рамозу, фукозу, инулин, маннит, дульцит, сорбит, инозит.
На растениях образуются сначала водянистые штрихи, обычно расположенные с одной стороны. У поврежденных растений сосуды темнеют, листья покрываются некротическими пятнами, опадают. Распространение: США.

СЕКЦИЯ 17
Род Rhodococcus
Rhodococcus fascians

Син.: Phytomonas fascians Tilford 1936, Bacterium fascians (Tilford 1936) Lacey 1939, Pseudobacterium fascians (Tilford 1936) Krasilnikov 1949, Corynebacterium fascians (Tilford) Dowson 1948

Возбудитель израстания многих растений.
Неподвижные палочки 0,5 — 0,9 × 1,5 — 4,0 мкм, грамположительны, обычно с гранулами, слегка изогнутые в виде цепочек. На маннитном агаре образуют вытянутые формы, кислотоустойчивы. Колонии на МПА округлые, выпуклые, влажные, непрозрачные, кремовые до желтых, растут медленно, появляются на третьи сутки. На агаре с глюкозой и КА колонии желтые до оранжевого, гладкие и шероховатые (рис. 2.46). Образуют каротиноидные пигменты, β-индолилуксусную кислоту. В качестве факторов роста необходимы тиамин, биотин, аргинин, гистидин, пурины и пиримидины. Оптимальная температура роста 24—27 °C, максимальная 37 °C.

Меры борьбы против бактериальных болезней растений. Карантинные объекты

Меры борьбы против бактериальных болезней растений можно разделить на две группы. В первую группу входят мероприятия, направленные на повышение устойчивости растений путем соблюдения всех агroteхнических правил и использования устойчивых к бактериозам сортов. Среди мероприятий этой группы особое внимание следует уделить созданию оптимальных условий выращивания растений, т. е. соблюдать все приемы высокой агroteхники, так как здоровые и крепкие...
Рис. 2.46. Колонии Rhodococcus fascians:
— гладкая форма, 6 и в — измененные формы

растения меньше поражаются болезнями. Обязательно следует уничтожать послеуборочные остатки, тщательно просушивать семена и хранить их при влажности 14—15,5 % в сухих, продезинфицированных хранилищах с хорошей вентиляцией; своевременно проводить глубокую зяблевую пахоту, правильно размещать культуры в севообороте. Посев следует производить здоровыми семенами, так как семена являются источником заражения бактериозом большинства сельскохозяйственных растений. Необходимо принять во внимание, что почва, культурные и дикие растения, насекомые могут быть переносчиками возбудителей заболеваний. Например, на Дальнем Востоке следует уничтожать дикую сою, производящую вблизи культурной.

Большое внимание селекционеры должны уделять выведению устойчивых сортов, как наиболее радикальной мере борьбы. При этом следует учесть, что сорт, устойчивый к бактериозу в одной климатической зоне, может быть восприимчивым в другой зоне.
Во вторую группу входят мероприятия, направленные на уничтожение инфекционного материала. Ввиду того, что основным источником инфекции в природе являются семена, особое внимание уделяется предпосевному противовлажению семенного материала.

Протравливание семян производят заблаговременно или непосредственно перед посевом. Сроки связаны с состоянием семян и применяемыми протравителями. Перед обработкой протравителями семена должны быть доведены до посевных кондиций по всем показателям. Семенной материал можно обработать после сбора. Например, картофель — негашенной известью.

Важное значение имеет применение веществ, повышающих устойчивость растений к возбудителям заболеваний. К ним относится, в первую очередь, использование микроэлементов. Так, для борьбы с гнилями используют кальцинирование клубней негашеной известью 5 кг/т, обработку перед высадкой солями цинка, меди, бора.

Наряду с применением современных химических средств борьбы с болезнями растений использование для этой цели антибиотических веществ представляет большой интерес и является перспективным.

Меры борьбы эффективны только в том случае, если они основаны на результатах тщательного изучения биологии возбудителей болезней. Следствием того, что еще не все бактерии-возбудители хорошо изучены, для борьбы с ними рекомендуется применять комплексы методов: агротехнический, химический и биологический (последний используют еще мало, но является перспективным и, кроме того, дает возможность заменить вредные ртутноорганические препараты).

Протравители семян сельскохозяйственных растений, их краткая характеристика, нормы расхода препаратов, способы и сроки противовлаживания представлены в справочнике [90] и в рекомендациях по борьбе с болезнями отдельных культур, которые периодически издаются Агропромиздатом, Главным управлением защиты растений.

В связи с освоением эффективных методов обнаружения скрытых форм опасных болезней растений, зараженности грузов вредителями, в нашей стране введен новый перечень карантинных объектов, который повышает уровень карантинной защиты территории СССР.

В перечень вошли следующие бактериальные болезни растений и их возбудители, имеющие карантинное значение для СССР:

1. Бактериальное увядание (вилт) кукурузы (возбудитель Erwinia stewartii).
2. Вилт гвоздики (возбудитель Pseudomonas caryophylli).
3. Желтая болезнь гиацинтов (возбудитель Xanthomonas campes-tris pv. hyacinthi).
4. Ожог плодовых деревьев (возбудитель Erwinia amylovora).
5. Рак цитрусовых (возбудитель Xanthomonas campestris pv. citri).

В перечень вошли также потенциально опасные для СССР (на них распространяются ограничения при завозе) бактериальные болезни растений (и их возбудители):

1. Бактериальная полосатость риса (возбудитель Xanthomonas campestris pv. oryzicola).
2. Бактериальное увядание винограда (возбудитель Xanthomonas ampelina).
3. Бактериальный ожог риса (возбудитель Xanthomonas campes-tris pv. oryzae).
4. Желтый слизистый бактериоз пшеницы (возбудитель Corynebac-terium tritici).
Глава З
МИКОПЛАЗМЫ

ОБЩАЯ ХАРАКТЕРИСТИКА МИКОПЛАЗМОЗОВ

Признаки поражения

После открытия Д. В. Ивановским в 1892 г. фильтрующихся вирусов возбудителей микоплазмозов — желтух, столбувов, «ведьмины метлы» и израстаний растений — из-за их сходства с настоящими вирусами стали причислять к вирусам, так как они также фильтровались через бактериальные фильтры и не обнаруживались при наблюдении в световой микроскоп [103, 154]. С самого начала исследователи, изучавшие желтухи, израстания, «ведьмины метлы» и т. п., отмечали, что у этих заболеваний наряду со сходством с другими вирусными заболеваниями имеются и отличия, среди которых наиболее характерны следующие:

1. Возбудители переносятся только насекомыми (главным образом, цикадками); период их инкубации в переносчике достаточно продолжителен. Видовое разнообразие поражаемых растений для каждого возбудителя достаточно широко и практически соответствует кругу питанияющих растений данного насекомого-переносчика [102, 103].

2. Возбудители термолябильны как в растении, так и в переносчике [104—106]; повышением температуры можно добиться их аттенуации [9, 105].

3. Инокуляция сока больного растения стерильной особи насекомого-переносчика приводит к заражению последнего; при этом в тканях переносчика появляются частицы, превосходящие по размерам известные вирусы [39—43].

Даже в таком ограниченном регионе, как Литовская ССР, поражение этими возбудителями подвержено более 40 видов растений (табл. 3.1). В настоящее время известно более 200 видов растений из 59 семейств, поражаемых микоплазмозами [44, 72]. Общим для этих заболеваний является их распространение в зонах с умеренным и теплым климатом, благоприятствующим существованию сосущих насекомых — основных переносчиков микоплазм. В большинстве случаев причастность микоплазм к возникновению заболевания растений устанавливают при электронно-микроскопическом изучении УТ срезов больных растений, а также их терапией антибиотиками тетрациклинового ряда [89]. Симптоматика почти всех заболеваний растений, которые в настоящее время считаются микоплазмозами, в мельчайших деталях давно описана фитовирусологами [5, 6, 9, 82]. Мы остановимся на наиболее важных признаках этих болезней.

При заселении микоплазмами проводящей системы растений и выделении ими продуктов жизнедеятельности обычно происходит усиленное образование дегенеративных клеток флоэмы, в результате чего больные растения становятся карликовыми, желтушными и увядают. Известны случаи противоположного влияния микоплазм на растения. Так, астры и табак, зараженные желтухой астры, обычно живут намного дольше здоровых растений, так как у них задерживается начало репродукции — конечной фазы развития растения [121]. Обычно в пораженных микоплазмами растениях нарушаются процессы регуляции
<table>
<thead>
<tr>
<th>Вид растения</th>
<th>Симптом</th>
</tr>
</thead>
<tbody>
<tr>
<td>Чеснок (Allium narcissifolium)</td>
<td>Филлодия</td>
</tr>
<tr>
<td>Маргаритка многолетняя (Bellis perennis)</td>
<td>«Ведьмины метлы», хлороз</td>
</tr>
<tr>
<td>Капуста (Brassica japonica)</td>
<td>Хлороз, задержка роста</td>
</tr>
<tr>
<td>Астра садовая (Callistephus chinensis)</td>
<td>Позеленение цветков, хлороз</td>
</tr>
<tr>
<td>Василек (Centauria sp.)</td>
<td>Хлороз, столовый</td>
</tr>
<tr>
<td>Цинерария (Cineraria hybrida)</td>
<td>Хлороз, кустистость</td>
</tr>
<tr>
<td>Бодяк полевой (Circium arvense)</td>
<td>«Ведьмины метлы»</td>
</tr>
<tr>
<td>Бодяк огородный (Circium oleraceum)</td>
<td>Хлороз, кустистость</td>
</tr>
<tr>
<td>Скерда двулетняя (Crepis biennis)</td>
<td>Кустистость, карликовость</td>
</tr>
<tr>
<td>Повилика (Cuscuta campestris)</td>
<td>Хлороз, кустистость</td>
</tr>
<tr>
<td>Морковь посевная (Daucus sativus)</td>
<td>Карликовость, кустистость</td>
</tr>
<tr>
<td>Синяк обыкновенный (Echium vulgare)</td>
<td>Хлороз</td>
</tr>
<tr>
<td>Гортензия (Hydrangea sp.)</td>
<td>Филлодия, хлороз</td>
</tr>
<tr>
<td>Салат посевной (Lactuca sativa)</td>
<td>Хлороз</td>
</tr>
<tr>
<td>Чина лесная (Lathyrus sylvestris)</td>
<td>Кустистость, карликовость</td>
</tr>
<tr>
<td>Люпин многолетний (Lupinus polyphyllus)</td>
<td>Хлороз</td>
</tr>
<tr>
<td>Ромашка аптечная (Matricaria chamomilla)</td>
<td>Карликовость, кустистость</td>
</tr>
<tr>
<td>Ромашка непахучая (Matricaria inodora)</td>
<td>Хлороз</td>
</tr>
<tr>
<td>Люцерна хмелевидная (Medicago lupulina)</td>
<td>Филлодия, хлороз</td>
</tr>
<tr>
<td>Люцерна посевная (Medicago sativa)</td>
<td>Хлороз</td>
</tr>
<tr>
<td>Остролодочник волосистый (Oxytropis pilosa)</td>
<td>Хлороз, карликовость</td>
</tr>
<tr>
<td>Петрушка кудрявая (Petroselinum sativum)</td>
<td>Хлороз</td>
</tr>
<tr>
<td>Флокс однолетний (Phlox drummondii)</td>
<td>Хлороз</td>
</tr>
<tr>
<td>Флокс многолетний (Phlox paniculata)</td>
<td>Кустистость, карликовость</td>
</tr>
<tr>
<td>Подорожник средний (Plantago media)</td>
<td>Хлороз</td>
</tr>
<tr>
<td>Первоцвет (Primula sp.)</td>
<td>Карликовость, кустистость</td>
</tr>
<tr>
<td>Шавель обыкновенный (Rumex acetosa)</td>
<td>Хлороз</td>
</tr>
<tr>
<td>Шавель воробьиный (Rumex acutosella)</td>
<td>Кустистость, карликовость</td>
</tr>
<tr>
<td>Мыльянка лекарственная (Saponaria officinalis)</td>
<td>Хлороз, чрезмерная кустистость</td>
</tr>
<tr>
<td>Крестовник обыкновенный (Senecio vulgaris)</td>
<td>Карликовость, хлороз</td>
</tr>
<tr>
<td>Осот полевой (Sonchus arvensis)</td>
<td>Хлороз</td>
</tr>
<tr>
<td>Одуванчик лекарственный (Taraxacum officinale)</td>
<td>Хлороз, задержка роста</td>
</tr>
<tr>
<td>Козлобородник (Tragopogon sp.)</td>
<td>Филлодия, кустистость</td>
</tr>
<tr>
<td>Клевер альпийский (Trifolium alpestre)</td>
<td>Хлороз, покраснение листьев</td>
</tr>
<tr>
<td>Клевер розовый (Trifolium hybridum)</td>
<td>Филлодия, хлороз</td>
</tr>
</tbody>
</table>

327
Продолжение табл. 3.1

<table>
<thead>
<tr>
<th>Вид растения</th>
<th>Симптом</th>
</tr>
</thead>
<tbody>
<tr>
<td>Клевер средний (Trifolium medium)</td>
<td>Хлороз, кустистость</td>
</tr>
<tr>
<td>Клевер горный (Trifolium montanum)</td>
<td>Хлороз, филлодия</td>
</tr>
<tr>
<td>Клевер красный (Trifolium pratense)</td>
<td>Хлороз, кустистость</td>
</tr>
<tr>
<td>Клевер белый (Trifolium repens)</td>
<td>Филлодия, карликовость</td>
</tr>
<tr>
<td>Клевер шуршащий (Trifolium strepens)</td>
<td>Хлороз, чрезмерная кустистость</td>
</tr>
</tbody>
</table>

Примечание: Диагноз установлен на основании обнаружения микоплазмоподобных организмов при исследовании УТ срезов.

и изменяется габитус — образуются в избытке придаточные почки и побеги, нарушается доминирование верхушки. Растение приобретает вид «ведьминой метлы» из-за образования множества боковых побегов, становится карликовым в результате укорочения междоузлий; у него уменьшается размер листьев, замедляется рост, образуются филлодии и происходят морфологические изменения генеративных органов, приводящие к бесплодию (см. рис. 3.1). При этом лепестки цветков приобретают форму листьев, полностью прекращается цветение, на женских и мужских цветках возникают вегетативные побеги [121]. Плодоношение растения после поражения его микоплазмозом прекращается, так как генеративные органы превращаются в вегетативные. У томатов при поражении столубром наблюдается прорастание семян внутри плода [121].

Первыми признаками заболевания растений желтухами являются просветления сосудов инфицированного листа, который постепенно утрачивает зеленую окраску. По мере распространения инфекции обесцвечиваются сосуды на других листьях. Они желтеют и становятся хлоротичными. Такая картина заболевания обусловлена тем, что желтухи — системные заболевания. Микоплазмы, локализующиеся в основном во флоэме, нарушают нормальную транслокацию в пораженных растениях и, таким образом, отрицательно воздействуют не только на пораженную систему сосудов, но и на ткани, непосредственно связанные с этой системой. Поэтому при некоторых микоплазмозах наблюдается некроз тканей, в большинстве случаев вызванный гипертрофией и гиперплазией тканей флоэмы, проявляющихся в образовании большого количества новых ситовидных элементов [121]. В листьях пораженных микоплазмозами растений часто накапливается избыточное количество крахмала (рис. 3. 2, в, г), что совместно с симптомами уменьшения роста указывает на нарушение проводящей функции флоэмы [121].

Желтухи, вызываемые микоплазмами, условно разделяют на четыре типа: 1) собственно желтухи — удлинение междоузлий и пожелтение листьев; 2) столбуры — недоразвитость верхушки, карликовость, скручивание листьев, искривление вегетативных органов в нижней их части в процессе роста (эпинаста), позеленение цветков и увядание; 3) "ведьменины метлы" — чрезмерное развитие пазушных и дополнительных побегов, недоразвитость верхушки; 4) вырождения.

В природных условиях у больных растений наблюдается смесь признаков перечисленных типов поражения. На проявление тех или
Рис. 3.1. Изменение морфологии генеративных \((a, b, d, e)\) и вегетативных \((e, g)\) органов растений, пораженных микоплазмозами:
\(a\) — желтуха астры (слева цветок здорового растения); \(b\) — виресценция цветков левкоя (слева цветок здорового растения); \(e\), \(g\), — «ведьмин метелек» картофеля \((e — увеличенный фрагмент рисунка \(e\)); \(d\) — бледно-зеленая карликовость пшеницы (израстание цветков); \(e\) — виресценция и пролиферация цветков маргаритки (снизу цветок здорового растения)

иных признаков поражения значительное влияние оказывают вид и сорт растения, стадия его развития во время поражения, экологические условия, время поражения, вид переносчика и многие другие как природные, так и антропогенные факторы.

Так как основными заболеваниями, наносящими значительный экономический ущерб, являются микоплазмозы пшеницы, пасленовых, винограда и некоторых древесных культур (яблони, шелковицы и др.), останавливаем более детально на описании некоторых из этих заболеваний.
Рис. 3.2. Локализация, способы репродукции и воздействие микоплазм на клетки растения:

а — поперечный ультратонкий срез клеток флоэмы (рамкой обведена группа клеток микоплазм, взаимодействующих друг с другом и, возможно, обменивающихся генетической информацией); б — продольный срез ситовидного сосуда (видны микоплазмы, проходящие через поры П ситовидного сосуда из клетки в клетку); в, г — разрушение хлоропластов вследствие накопления в них крахмала К (цитологический признак микоплазмозов и одна из причин хлоротичности растений); д — ж — репродукция микоплазм путем почкования (д), септирования нитчатых форм (е) и деления на две равноценные клетки (ж).

К наиболее распространенным микоплазмозам злаковых и пасленовых относятся бледно-зеленая карликовость пшеницы, «ведьмины метлы» картофеля, столбиру и парастолбиру томатов.

Бледно-зеленая карликовость пшеницы обнаружена на Украине в 1965 г. [1, 2]. Первоначально это заболевание рассматривалось как одна из форм проявления вироза — мозаики озимой пшеницы, отли-
чающейся от классической мозаики резкой бледно-зеленой окраской листьев (без мозаики). Кроме того, больные растения характеризуются карликовым ростом и израстанием цветков. Игольчатых кристаллов, специфических для мозаики озимой пшеницы и обнаруживаемых при подкислении сока раствором HCl (0,1 моль/л), не образуется. У больных растений развиваются колосья со стерильными цветками и израстающими цветочными пленками. Кроме того, может наблюдаться мозаичность листьев и пустоколосость при израстании цветочных пленок на колосьях придаточных стеблей.

Бледно-зеленая карликовость является одним из основных микоплазмозов зерновых в нашей стране. Признаки этого заболевания особенно хорошо заметы у растений в фазе выхода в трубку. Болезнь очень вредоносна: урожай зерна у пораженных растений снижается на 80—90 %. Большинство больных растений к концу фазы молочной спелости погибает. Больные растения, как правило, не выколачиваются, а если зерна и образуются, то щуплые, колосья невыполненные.

Степень пораженности посевов пшеницы зависит от способа посева, устойчивости сорта, распространения и численности цикадок-переносчиков, их естественной инфекционности. Заболевание передается только цикадкой Psammolettix striatus L.

Из 40 известных микоплазмозов пасленовых наиболее вредоносными являются «ведьминь метлы» картофеля, паразстолбур и столбур томатов.

«Ведьмьметлы» картофеля — заболевание, распространенное в Европе, Азии и Северной Америке. Болезнь поражает кроме картофеля томаты, баклажаны, черный паслен, дурман, белену, физалис, барвинок, горошек, табак и другие виды. В природных условиях возбудитель переносится повилкой и цикадками: Ophiola flavopista (Япония), Peragilla sinnata (Евразия).

У пораженных растений картофеля развиваются многочисленные ослабленные побеги, на которых видны мелкие бледные листья. Стебли становятся тонкими, цилиндрическими (см. рис. 3.1, г, е). Клубней образуется очень много, но они мелкие и прорастают ветвящимися побегами. На стеблях больных растений образуются также пазушные клубни. Микоплазмы обнаруживаются во флоэме и ситовидных трубках листьев и стеблей больных растений. Препараты тетрациклина подавляют размножение и развитие микоплазмоподобных тел в клетках растения-хозяйна. Возбудитель выделен в культуру [24].

Столбур томатов — наиболее вредоносное из всех перечисленных заболеваний. Распространено в юге Европы. Болезнь поражает томаты, картофель, баклажаны, вьюнок, цикорий и другие растения. При поражении картофеля листья через 20—30 сут после инфицирования становятся хлоротичными (хлоротичность начинается по краю листа и постепенно охватывает всю пластинку). Доли, края долей листьев ложкообразно поднимаются. Вершины долей становятся фиолетовыми. Листья приподнимаются, и растения приобретают «голический» габитус.

При столбуре томата, табака, баклажана, вьюнка, цикория наблюдается позеленение лепестков, редукция венчика, разрастание чашелистиков.

С помощью индикаторных растений выделены две формы столбура: 1) вызывающая полосчатость и крапчатость на плодах; 2) вызывающая антоциановую окраску листьев.

При поражении столбуром вьюнка его лепестки и тычинки превращаются в листья, у цикория цветки пролиферируют, становятся стерильными, у флокса наблюдается многоступенчатая пролиферация; ось цветка пролиферирует в новый цветоносный побег, ось которого,
в свою очередь, пролиферирует и т. д., что приводит к образованию 5—6 ярусов цветков [32—36].

По вредоносности микоплазмозы, за небольшим исключением, относятся к катастрофическим заболеваниям [100], часто принимающим характер эпифитотии. Урожай пшеницы, как уже упоминалось, может снижаться на 80—90 %. Большой вред наносят микоплазмозы овощеводству, вызывая потери 25—38 % урожая плодов томатов и других пасленовых, недобру 18—20 % урожая картофеля.

Микоплазмы широко распространены в основных районах хлебопашества и овощеводства.

Локализация в растениях

Фитопатогенные микоплазмы обычно обнаруживаются в ситовидных элементах пораженных растений. Иногда их также выявляют в клетках паренхимы, клетках тканей, соседствующих с флоэмой, и сердцевинных паренхиматозных тканях. Их редко наблюдают в клетках ксилемы и мезофилла или в области корней. Как правило, микоплазмы заселяют цитоплазму зрелых клеток, но есть сведения об их обнаружении в растительных клетках, находящихся на ранней стадии развития [130], в каллусе [166] и в клетках меристемы [54]. Количество клеток микоплазм в растительной клетке в одной плоскости ее УТ среза может достигать 100. В таких случаях клетка практически полностью забита микоплазмами (см. рис. 3.2, а). Ситовидные поры и плазмодесмы являются путями перехода микоплазм из клетки в клетку (см. рис. 3.2, б).

Естественно, что такое сильное заселение клеток различных тканей растения микоплазмами вызывает значительное нарушение нормальных процессов не только в клетках, но и в системах тканей. Клетки, не заселенные микоплазмами, но находящиеся по соседству с пораженными клетками или в системной связи с ними, утрачивают нормальную структуру и функции под влиянием факторов патогенности микоплазм (см. рис. 3.2, в, г) — различными их метаболитами, а также в результате конкуренции микоплазм с клетками-хозяевами за различные субстраты [21].

ОСОБЕННОСТИ МОРФОЛОГИИ, СТРУКТУРЫ И РЕПРОДУКЦИИ МИКОПЛАЗМ — ВОЗБУДИТЕЛЕЙ ЖЕЛТУХ РАСТЕНИЙ

Методами электронной микроскопии и ауторадиографии показано интенсивное размножение микоплазм в клетках пораженных ими растений [69]. Причем микоплазмы, вызывающие различные микоплазмозы у разных видов растений, а также у человека и животных, оказались морфологически идентичными как по ультраструктуре, так и по форме и размерам. Следовательно, их можно идентифицировать лишь биохимически, серологически и биологически (по симптомам на индикаторных растениях) [3, 44].

Микоплазмы, находящиеся в клетках растения-хозяина, представляют собой округлые или сферические клетки, 300—1000 нм в диам. Они лишены клеточной оболочки и окружены трехслойной мембраной (рис. 3.3, а), состоящей из двух электронно-плотных и одного электронно-прозрачного слоя. Обычно толщ. мембраны составляет 7—12 нм, а у возбудителя позеленения цитрусовых — около 20 нм [109]. Клет-
Рис. 3.3. Возрастные изменения структуры микоплазм и их взаимодействие с клеткой хозяина:

а — е — клетки микоплазм из бульонных культур разного возраста; д — выход нуклеопротеина из клеток микоплазм вследствие осмотического шока; е — взаимодействие клеток микоплазм с мембранными элементами растительной клетки; ж — взаимодействие бактерии Agrobacterium tumefaciens с растительной клеткой (на всех рисунках указан масштаб, соответствующий 0,1 мкм)
ки размером 600—800 нм составляют основную массу микоплазм в клетках растения-хозяина, независимо от вида растения и заболевания. По-видимому, клетки такого размера находятся в фазе размножения, которое осуществляется путем деления. Между такими клетками наблюдаются взаимодействия, подобные половому процессу у бактерий—клетки образуют выросты навстречу друг другу (см. рис. 3.2, а). Нитчатые клетки микоплазм обнаруживаются как в цитоплазме клеток растений, так и в области ситовидных пор между ними [176]. Микоплазмы, имеющие пластичную мембрану, меняют овоидную форму клетки на нитчатую и, благодаря такой трансформации, легко проникают из клетки в клетку через ситовидные поры и плазмодесмы, а также через фильтры с порами 220—450 нм.

Ядерный материал фитопатогенных микоплазм представлен сетью из нитей ДНК, расположенных в цитоплазме [21, 124]. В цитоплазме и по периферии клеток у всех фитопатогенных микоплазм имеются рибосомы, расположенные единично или в виде полисом. Рибосомы микоплазм отличаются от рибосом растительных клеток более мелкими размерами— 12—16 нм в диам. (рис. 3.3, а, рис. 3.4, а, б) [62, 87, 114].

В процессе внутриклеточного развития клетки микоплазм претерпевают бинарное деление (см. рис. 3.2, д, ж, рис. 3.4, а, б). Деление нитевидных клеток приводит к образованию клеток кокковидной или овоидной формы, образующих цепочку (см. рис. 3.2, e) [81, 132, 176]. В цикле развития микоплазм некоторые исследователи наблюдали образование «внутренних тел» [82, 86, 152, 176]. Вопрос об их происхождении до сих пор остается дискуссионным. По мнению одних исследователей,— это впячивания мембраны микоплазм, образующиеся при подготовке образца к микроскопированию [48, 92], по мнению других, «внутренние тела» представляют собой дегенеративные изменения клеток микоплазм, возникающие при ухудшении условий их питания в клетке растения-хозяина. Поражение растений желтухами вызывает у них значительную дезорганизацию физиологических процессов, что отрицательно сказывается на условиях питания и развития паразитирующих в них микоплазм [91, 92]. Существует точка зрения, что «внутренние тела» — один из этапов в цикле развития микоплазм [82, 152].

В клетках тканей растений шелковицы, пораженных курчавой мелколистостью, обнаружили овальные и сферические электронно-прозрачные тела, 45—90 нм в диам. [7]. Изредка среди них встречались и электронно-плотные, локализованные в параксиальных элементах флоэмы, заключенные как бы в мешочек и изолированные от остального содержимого клеток. В отдельных случаях наблюдали разрыв этих мешочек и выброс их содержимого в ситовидные элементы. Эти тела окруженные трехслойной мембраной, один слой которой электронно-прозрачный, два — электронно-плотные. Такие же образования обнаруживали в тканях астр, пораженных желтухой и выращенных в условиях пониженного освещения [48]. Предполагают, что эти образования являются конечным продуктом дегенерации клеток микоплазм [48] или же результатом недостаточного питания и неблагоприятных условий существования микоплазм, возникающих вследствие резких физиологических изменений в организме растения, вызванных инфекцией [53]. Данных, позволяющих объяснить появление, функции и природу этих образований, пока нет. Несомненно лишь то, что при неблагоприятных для жизнедеятельности микоплазм условиях происходят дегенеративные изменения в их клетках и их деление на нежизнеспособные мини-клетки. Подобный процесс наблюдали при длительном культивировании (без пересева) на искусственной питательной среде спироплазмы — возбудителя стубборна цитрусовых [74]. Вероятно, он закономерен для всех микоплазм.
Рис. 3.4. Клетки микоплазм:
а, б — размножение путем деления; в — 6-суточная популяция в растительной клетке (стрелками отмечены структуры, подобные «минимальным репродуктивным телам»); г — 6-суточная бульонная культура: д — 4-суточная бульонная культура (негативный контраст); е — фрагмент цитоплазмы клетки флюмы томата, инфицированной микоплазмой (внден избыток рибосом) (на каждом рисунке указан масштаб, соответствующий 1 мкм)
Сравнительное изучение in vitro развития микоплазм, выделенных из разных видов растений, пораженных заболеваниями типа желтух, не показало существенных отличий в морфологии и структуре клеток возбудителей разных микоплазмозов. Ниже описаны клетки микоплазм, выращенные на культуральной среде.

Клетки микоплазм условно можно разделить на три типа: клетки молодых культур, или молодые; клетки зрелых культур, или зрелые; клетки стареющих культур, или старые.

Клетки молодых культур (4—6 сут) всех возбудителей желтух имеют четко очерченную трехслойную мембрану толщиной 12—14 нм. Их цитоплазма наполнена рибосомами около 17 нм в диам. (см. рис. 3.3, а). Генетический материал в таких клетках не просматривается. При выращивании микоплазм на жидкой питательной среде CM ИМВ-72 [28] в культурах возрастом 4—6 сут почти все клетки имеют такую форму и структуру (см. рис. 3.3, б). Основная масса клеток имеет 600—800 нм в диам. В популяции встречаются электронно-прозрачные клетки 150—200 нм в диам. (см. рис. 3.4, а). Они, вероятно, являются результатом поперечных срезов через перетяжки, соединяющие клетки, или через нитевидные тяжи, отходящие от клеток микоплазм. Характерно, что у клеток молодых культур микоплазм не более 800 нм в диам. мембрана четко оформлена, а ее слои имеют наибольшую толщину. С увеличением размера клеток (до 1200 нм) или возрасте культуры толщ. слоев и всей мембраны в целом уменьшается. Поскольку клетки до 800 нм в диам. составляют основную массу клеток культуры возрастом 4—6 сут, есть основания полагать, что такие клетки наиболее физиологически активны. С возрастом или при истощении питательных веществ в среде (а возможно и по другим причинам) происходит нарушение ряда функций клеток микоплазм. Это проявляется в неравномерном их делении при репродукции, увеличении размеров (до 1200 нм и больше), уменьшении толщ. мембраны (каждый из слоев ее становится тоньше, а толщ. всех трех слоев не превышает 7—9 нм). В резком уменьшении количества рибосом в клетках. Последний признак — наиболее вероятное свидетельство того, что клетки (или популяции) находятся на стадии старения и омертвления. У культур возрастом 5—10 сут из-за уменьшения количества рибосом цитоплазма становится более прозрачной, и в ней просматриваются нитевидные тяжи ДНК (см. рис. 3.3, б).

У клеток зрелых культур (10—15 сут) усиливается плеоморфизм, появляются ответвления разной длины и формы. Они становятся более электронно-прозрачными по периферии и менее плотными в центральной зоне, в которой вследствие конденсации генетического материала образуются аморфные тяжи (см. рис. 3.3, в). Поскольку у клеток микоплазм из растительных тканей почти не встречаются аморфные тяжи, можно предположить, что их появление при культивировании является результатом дегенеративных процессов, вызываемых неблагоприятными условиями обитания.

Какой бы богатой не была питательная среда по составу, все же она не идентична содержимому клеток растения-хозяина, а значит, и не может полностью удовлетворять потребности в питании выращиваемых на ней микоплазм.

В клетках стареющих культур (более 15 сут) описанные выше аномалии еще более выражены. Генетический материал в них почти полностью собирается в центре клетки (см. рис. 3.3, г). Мембрана клеток полностью дегенерирует и разрывается, а содержимое клеток выливается в окружающую среду и постепенно разрушается.

Следует отметить, что если при выращивании in vitro развитие почти всех клеток микоплазм в популяции происходит более-менее синхронно, то при развитии в клетках хозяина такое явление наблю-
даеться лишь в молодых паренхимных клетках флоэмы. Обычно в ситовидных элементах флоэмы одновременно наблюдаются клетки, находящиеся на разных стадиях физиологического развития — молодые, зрелые и старые (см. рис. 3.4, а). Однако молодые клетки составляют не значительную часть популяции (практически единичные), что является косвенным доказательством того, что даже пластические вещества, которые передвигаются по ситовидным элементам растения, не могут в полной мере обеспечить жизненные потребности микоплазм.

Учитывая разнообразие размеров и форм клеток, наблюдаемых у микоплазм, некоторые исследователи выдвинули предположение, что эти формы являются отдельными стадиями в процессе их репликации [114, 152].

Цикл развития микоплазм в растительной клетке может включать следующие стадии развития, рассматриваемые как способы репродукции: бинарное деление; почкование; разделение нитчатых форм на дочерних клеток округлой или овальной формы; отмирание и разрушение материнской клетки и освобождение «внутреннего тела», способного дать начало новой генерации микоплазм; репродукция посредством образования «элементарных тел» [44, 86, 152, 163]. Наиболее вероятными способами репродукции фитопатогенных микоплазм являются бинарное деление, почкование и его разновидность — разделение клеток нитчатой формы на более мелкие, кокковидные и овощидные клетки (см. рис. 3.2, д — ж) [138]. Последовательное образование разнообразных форм клеток фитопатогенных микоплазм, положенное в основу схемы их цикла развития, в целом аналогично таковой для микоплазм, выделенных из человека и животных.

Схема предполагаемого цикла развития микоплазм представлена на рис. 3.5. Однако ни одна из известных схем не отражает морфологи—

Рис. 3.5. Схема репродукции микоплазм (спиралевидная форма клетки характерна, но не обязательна, лишь для спироплазм; знаком вопроса отмечены предполагаемые, но не подтвержденные экспериментально этапы репродукции)
ческого разнообразия клеток, возникающих на разных этапах развития микоплазм, находящихся одновременно в популяции (колонии) данного штамма.

**СИСТЕМАТИКА МИКОПЛАЗМ**

Микоплазмы по устройству клетки являются типичными представителями царства Procaryotae Murray, 1968. Они, как и другие члены этого царства, имеют следующие общие свойства: являются одноклеточными организмами, у которых отдельные клетки могут иметь округлую, овальную, нитевидную или спиралевидную форму; диаметр клеток колеблется от 0,3 до 0,8 мкм, длиннее достигает 10 мкм; клетки образуют цепочки, розетки и другие многоклеточные образования; нуклеоплазма (генофор) от цитоплазмы не отделена мембраной; деление клеток не сопровождается какими-либо изменениями способности как нуклеоплазмы, так и цитоплазмы к окрашиванию (или неокрашиванию) теми или иными красителями; рибосомы 70S-типа диспергированы по всей цитоплазме; питательные вещества потребляются в молекулярной форме. Микоплазмы, как и другие прокариоты, могут заселять лишь те экологические ниши, в которых соблюдаются условия повышенной влажности.


Представители I, II и IV отделов — одноклеточные микроорганизмы с ригидной клеточной стенкой — различаются такими свойствами: представители I отдела по Граму не окрашиваются, эндоспоры не образуют, по характеру питания могут быть фототрофами, литотрофами и гетеротрофами; представители II отдела окрашиваются по Граму, образуют или не образуют споры, как покоящуюся форму; IV отдел объединяет бактерии с недоразвитой клеточной стенкой, характерной для других бактерий (в ней отсутствует мураминовая кислота), а их рибосомы на 10—12 % тяжелее, чем у других прокариот. В III отдел (к которому относятся микоплазмы) входят прокариоты, не имеющие ригидной клеточной стенки и не способные к синтезу пептидогликанов и их предшественников. От внешней среды цитоплазма этих микробов отделена лишь единичной мембраной, состоящей из трех слоев. Из-за отсутствия ригидной клеточной стенки клетки этих микроорганизмов очень плесоморфны, размер их варьирует в значительных пределах (0,2—1,0 мкм и более в диам.), по Граму не окрашиваются, споры не образуют, способны проходить через мембранные фильтры с диам. пор 220—450 нм. Этими свойствами они очень похожи на Л-формы бактерий, образующиеся под влиянием каких-либо неблагоприятных факторов (пенициллина, лизоцима, антител и др.), когда бактерии теряют способность к образованию ригидной клеточной стенки. Однако Л-формы бактерий имеют характерные отличия от микоплазм: выраженную гетерогенность размеров клеток, в популяциях которых наблюдаются так называемые большие тела; на внешней стороне мембраны имеются остатки полимеров клеточной стенки, а в самой мембране специфические пенициллинсвязывающие белки, отличающиеся от микоплазменных; при исключении неблагоприятных факторов Л-формы ревертируют в бактериальную клетку с ригидной клеточной стенкой.

Представители III отдела — молликуты, как называются все микоплазмы, — отличаются от других прокариот тем, что являются исключительно устойчивыми к действию пенициллина и его аналогов, их клетки лизируются при осмотическом шоке, под действием детергентов, спиртов, специфических антител с комплементом. Они могут образовывать ветвистые и нитчатые формы. Репликация генома предшествует делению клетки, но не всегда с ним синхронизирована. Поэтому в отдельных клетках может быть несколько копий геномной ДНК. Деление клеток проходит по классическому (бинарному) типу (на две равноценные клетки), почкованием (как у дрожжей — дочерня клетка значительно меньше по размеру материнской), а также делением перетяжками нитчатых форм (по типу сегментирования мицелля грибов) с образованием цепочек клеток из одной длинной клетки.

Клетки молликут обычно неподвижны, но некоторые из них способны к скользящему движению по влажным поверхностям (подобно миксобактериям) или же к ротационному движению, что характерно для клеток со спиральной формой. Спиралевидные клетки обладают также флексирующей и трансляционной подвижностью, при которой волна движения передается по клетке, как волна сжатия по пружине.

При выращивании на твердых (агаризованных) питательных средах молликуты образуют колонии, диаметр которых редко превышает 1 мм. Колонии имеют вид яичницы-глазуньи, и их центр, как правило, вростает в толщу слоя среды (рис. 3.6). Молекулярная масса геномной ДНК молликут составляет 23—41 %. В рибосомальных РНК молликут молярная доля Г + Ц в ДНК оценивается в 43—48 %. На основании олигонуклеотидного анализа этих РНК установлено, что молликуты в филогенетическом отношении ближе всего к грамположительным бактериям, в особенности — к клостридиям. Молликуты могут быть паразитами, комменсалами или сапрофитами. Многие из них являются возбудителями заболеваний человека, животных, растений и насекомых.


Членами I порядка являются молликуты с мол. массой генома 5 · 10^8 — 1 · 10^9, проявляющие облигатные требования к наличию

* Далее слово «дальтон» опускается.
стеринов в питательных средах, на которых их выращивают; во II порядок входят молликуты с мол. массой геномной ДНК около 1 \cdot 10^8, не проявляющие питательной потребности в стеринах; III порядок объединяет молликут с мол. массой генома около 1 \cdot 10^9, которые проявляют или не проявляют потребности в стеринах и характеризуются строгим анаэробизмом. В этот порядок входит одно семейство анаэробных молликут — Anaeroplasmataceae Robinson and Freundt, 1987, с двумя родами: Anaeroplasma Robinson et al., 1975, представители которого (4 вида) проявляют стеринзависимость, и Asteroplasma Robinson and Freundt, 1987, в составе которого описан лишь 1 стеринне- зависимый вид. Так как среди анаэробных молликут нет видов, которые были бы причастны к заболеваниям растений, то детальное описание их свойств здесь не приведено.

Из растений исследователи выделили представителей I и II порядка молликут.

Порядок Mycoplasmataceae состоит из двух семейств: Mycoplasmataceae Freund, 1955, у представителей которого мол. масса геномной ДНК равна 5 \cdot 10^8 и Spiroplasmataceae Skripal, 1974, члены которого могут иметь спиральные клетки, мол. масса ДНК — около 1 \cdot 10^8.

Представители обоих семейств были выделены из растений. Семейство Mycoplasmataceae состоит из двух родов: Mycoplasma* Nowak, 1929 (77 видов), выделенных из животных, человека, растений и Ureaplasma Shepard et al., 1974 (2 вида). Уреаплазмы отличаются от микоплазм лишь ярко выраженной способностью гидролизовать мочевину. Они обнаружены лишь у человека и животных, а микоплазмы выделены еще из насекомых.

Принадлежность нововыделенных в природных условиях молликут к роду Mycoplasma устанавливают на основании выявления у них признаков этому роду свойств: чрезвычайно резко выраженного плеоморфизма — от овоидных, сферических или грушевидных форм до ветвящихся нитчатых клеток и их цепочек до 150 мкм; укороченного флавин-терминированного транспорта электронов при полном отсутствии хинонов и цитохромов, а также каталазной и лактатдегидрогеназной активности, облигатной потребности в стеринах и отсутствие способности усваивать ацетат, синтезировать каротиноиды и гидролизовать мочевину; локализации НАДН-оксидазы в цитоплазме клеток, а не в их мембране (мол. масса ДНК не превышает 0,5 \cdot 10^8, а молярная доля Г + Ц в ней в зависимости от вида колеблется от 23 до 41 %). Очень малая масса генома указывает на то, что микоплазмы являются паразитами, так как в таком геноме не может быть закодирована информация для синтеза всех жизненно необходимых продуктов. Поэтому питательные среды для выращивания микоплазм должны состоять из многих сложных компонентов, которые в сумме могут обеспечить их рост. В состав этих сред входят, как правило, триптические перевары мышц говяжьих сердец, дрожжевые экстракты, пептоны, сыроворотка крови животных, обеспечивающие питательность микоплазм в жирных кислотах, холестерине и других веществах для синтеза мембран; набор аминокислот, предшественников синтеза нуклеиновых кислот, витамины, коферменты и глюкоза как источник энергии. Глюкоза и другие карбоиды, которые служат для микоплазм источниками энергии, усваиваются ими посредством гликолового пути Эмбdenа — Мейер-
гофа. Главным продуктом этого процесса у микоплазм является молочная кислота.

Видовая принадлежность всех выделенных из растений представителей рода Mycoplasma не установлена, и эти изолятов обозначают как Mycoplasma sp.

В состав семейства Spiroplasmataceae входит лишь один род Spiroplasma Saglio et al., 1973, включающий 7 видов. Им присущи все свойства, описанные для класса и порядка. К специфическим свойствам спироплазм следует отнести спиралевидную извитость (как у спирохет) клеток и характерную для этой формы вращательную, флексирующую и трансляционную подвижность. Глюкозу спироплазмы усваивают посредством фосфоэнолпируват-фосфотрансферазной системы ферментов. НАДН-оксидаза у них локализована только в цитоплазме. Мол. massa генома — около 1 • 10⁹, а молярная доля в нём Г + Ц колеблется в зависимости от вида микоплазм от 25 до 31 %. Из-за активной подвижности клеток колонии спироплазм на твердых питательных средах диффузны, имеют меньше сходства с колониями типа яичница-глазунья, очертания краев и центра колонии более размыты. Спироплазмы не разжижают коагулированную лошадиную сыворотку, не гидролизуют мочевину, аргинин и эскулин, являются фосфатазо-положительными.

Спироплазмы были первыми молликутами, патогенность которых для растений была доказана. Их выделили из клещей и других насекомых. Экспериментально доказано, что спироплазмы могут быть возбудителями заболеваний крыс, мышей, хомяков и кролей. Биохимическая характеристика спироплазм, наиболее часто выделяемых из растений, представлена в табл. 3.4.

Порядок Acholeplasmatales состоит из одного семейства Acholeplasmataceae Edward and Freundt, 1970, включающего только один род Acholeplasma Edward and Freundt, 1970, с 10 видами. Эти виды, как и род, семейство, порядок, имеют характерные, определяющие их свойства: отсутствие потребности в стеринах; способность к синтезу каротиноидов, а также жирных кислот из ацетата; локализация НАДН-оксидазной активности в клеточной мембране, а не в цитоплазме, как у микоплазм, спироплазм и уреаплазм. В отличие от этих молликут, ахолеплазмы имеют лактатдегидрогеназу, специфически активируемую фруктозо-1,6-дифосфатом. По морфологическим, цитологическим, физическим свойствам, а также по способу репродукции ахолеплазмы сходны с представителями рода Mycoplasma. Однако в отличие от них транспорт и ферментация сахаров у ахолеплазм осуществляется не через фосфоэнолпируват-фосфотрансферазную систему, а посредством активного промежуточного транспорта. Ахолеплазмы имеют слабую фосфатазную систему, или она полностью отсутствует; они не гидролизуют ни мочевину, ни аргинин. В отличие от молликут, уходящих в порядок Mycoplasmatales, колонии ахолеплазм на твердых питательных средах не адсорбируют эритроцитов, что косвенно указывает на то, что по отношению к теплокровным животным их можно считать патогенными лишь условно. Ахолеплазмы выделены из растений, больных желтухами, а также из насекомых — переносчиков этих болезней. Большинство микоплазм, выделяемых из растений, относятся к ахолеплазам. Мол. massa генома ахолеплазм составляет 1 • 10⁹. В зависимости от вида ахолеплазм, молярная доля Г + Ц в ДНК колеблется от 26 до 36 %. По многим другим свойствам и питательным потребностям ахолеплазмы схожи с микоплазмами. Биохимическая характеристика ахолеплазм приведена в табл. 3.4.

Изучение нововыделенных штаммов (изолятов) молликут и определение их систематического положения предполагает установление
наличия или отсутствия у них характерных свойств, начиная с выяснения принадлежности к царству прокариот до окончательной идентификации видовой принадлежности. Без этого невозможна разработка эффективных и целенаправленных мер профилактики и борьбы с болезнями растений.

Ниже приведен список всех выделенных из растений видов микоплазм:

<table>
<thead>
<tr>
<th>Семейство</th>
<th>Вид</th>
<th>Семейство</th>
<th>Вид</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acholeplasmataceae</td>
<td>Acholeplasma laidlawii</td>
<td>Spiroplasmataceae</td>
<td>Spiroplasma apis</td>
</tr>
<tr>
<td>A. laidlawii var. granulum</td>
<td>A. laidlawii var. solanacearum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. axanthum</td>
<td>A. oculi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. equifetale</td>
<td>A. hippocion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acholeplasma sp.</td>
<td>Mycoplasmataceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mycoplasma sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**ДИАГНОСТИКА МИКОПЛАЗМОЗОВ И ИДЕНТИФИКАЦИЯ ИХ ВОЗБУДИТЕЛЕЙ**

Заболевания растений, вызываемые микоплазмами, имеют свои аналоги среди вирусных (табл. 3.2) и риккетсиозных (табл. 3.3) заболеваний растений, поэтому только на основании внешних признаков поражения часто нельзя определить, является ли данное заболевание микоплазмозом или вирусом. Наиболее простой способ диагностики микоплазмозов — обработка больных растений антибиотиками тетрациклинного ряда. Если в результате действия антибиотиков растения выздоравливают, можно заключить, что причиной болезни были микоплазмы. Однако этот способ диагностики не эффективен для растений, находящихся в последних фазах вегетации. В таких случаях применяют электронную микроскопию УТ срезов тканей больного растения [3]. Этот метод является одним из основных в диагностике фитомикоплазмозов [70, 83, 135].

В целях диагностики можно также пользоваться световым микроскопом. В таком случае образцы тканей растений предварительно окрашивают различными способами, в частности толуидином голубым, пиронином-метилен зеленым, реагирующим с ДНК, или по Фольгену. При этом клетки и сосуды, содержащие микоплазмы, окрашиваются намного интенсивнее, чем здоровые. Отобранные с помощью световой микроскопии образцы тканей растений можно использовать для дальнейших исследований методами электронной микроскопии [3, 54, 96].

Не менее эффективна диагностика микоплазмозов растений методами ультрафиолетовой микроскопии срезов тканей, окрашенных различными флюорохромами, например, анилиновым голубым, антраниновым голубым, азур I [22, 80], а также красителями, связывающимися с отдельными структурами микоплазм — 4,6-диамино-2-фенилиндолов, производными бензимидола, специфически связывающимися с ДНК [47, 70, 145, 147, 149].

Естественно, самым важным моментом в идентификации микоплазм, выделенных из растений, является доказательство их фитопато-

---

генности. Однако постулаты Коха не всегда выполняются, так как мно-
гих возбудителей микоплазмозов не удается изолировать в чистую
культуру. Выделенные же изолят микоплазм при введении в расте-
ние также не всегда воспроизводят заболевание. Объясняется это мно-
гими причинами: хрупкостью клетки микоплазм или исключительной
формой паразитизма, вследствие чего микоплазмы не выделяются на
искусственные питательные среды; несовершенством состава питатель-
ных сред; потерей микоплазмами эпизомных факторов, определяющих
их патогенность; недостаточной патогенностью микоплазмы для данно-
го макроорганизма и т. п.
Поэтому в тех случаях, когда микоплазмы по каким-либо причинам
не удается выделить в культуру, или заболевание не индуцируется пря-
мым введением в растения чистой культуры микоплазм, исследовате-
ли прибегают к такому альтернативному, хотя и недостаточ но «чис-
тому» способу доказательства триады Коха, как заражение соком боль-
ных растений стерильных особей насекомых-переносчиков с последу-
ющим их кормлением на здоровых растениях [78, 160].
Так как один и тот же возбудитель или его штаммы могут вызы-
вать желтухи различного типа и, наоборот, одинаковый тип заболеван-
ия может быть обусловлен действием различных микоплазм, то
идентифицировать возбудителя по симптомам на растении-хозяине не
представляется возможным. Эту задачу решают с помощью растений-
индикаторов.
Микоплазмы, являясь основными возбудителями таких заболева-
ний, как столбух томатов, филлодия клевера, хлороз кабачков, при
переносе на гомологичное растение сохраняют свою индивидуальность
и в проявлении признаков заболевания, что используется исследова-
телями для диагностической идентификации возбудителей. Так, при пере-
несении возбудителей вышеуказанных заболеваний на барвинок*
у него возникают аналогичные симптомы, правила, с некоторыми специ-
фическими отличиями. При переносе филлодии у барвинка зеленеют
цветки, при переносе столбура — увядают и скручиваются цветки без
изменения цвета, а при переносе хлороза — развиваются длинные тон-
кие и беловатые побеги, а цветки зеленеют [44].
Лучшими индикаторами для дифференциальной диагностики каж-
дой из форм столбура являются томаты (сорт Волжградский 5/95),
табак (сорт Сансу), махорка (сорт Хмелевка) и петуния. На томате
первая форма столбура вызывает усиленное ветвление, курчавость
листьев, разрастание чашелистиков, позеленение лепестков, проли-
фериацию пестика в вегетативный побег; вторая форма — вызывает за-
держку роста, утолщение и редукцию листовой пластинки, хлороз
и антоциановую ее окраску, незначительное изменение и редукцию
цветка, преждевременную гибель растения. На табаке первая форма
столбура вызывает задержку роста, хрупкость листьев и их скручивание
по центральной жилке, некроз черешков листа, преждевременную ги-
бель растения; вторая форма вызывает лишь редукцию и филло-
дию цветка. На петунине первая форма столбура вызывает измельче-

* Барвинок — наиболее универсальное растение-индикатор микоплазмов. В при-
родных условиях он тоже сильно поражается этими болезнями, а в Сирии обнару-
жена микоплазма (Spiroplasma phoeniceum), специализированная к поражению
барвинка.
<table>
<thead>
<tr>
<th>Болезнь</th>
<th>Признаки заболевания</th>
<th>Фаза проявления болезни</th>
<th>Круг растений-хозяев</th>
<th>Специфический переносчик</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>листвьев</td>
<td>стеблей</td>
<td>колосьев</td>
<td>всего растения</td>
</tr>
<tr>
<td>Бледно-зеленая карликовость пшеницы</td>
<td>Бледно-зеленая окраска</td>
<td>Усиленное кущение с образованием розеток</td>
<td>Израстание цветочных пленок, стерильность колосьев</td>
<td>Угнетение роста, карликовость</td>
</tr>
<tr>
<td>Полосатая мозаика пшеницы</td>
<td>Изменение окраски молодых листьев (пожелтение, штриховатость или полосатость в виде светло-зеленых полос вдоль жилок листа). При сильном поражении клещами листья скручиваются, образуя петли</td>
<td>Продуктивные стебли не развиваются</td>
<td>Колосья содержат шуплы зерна</td>
<td>Растения сильно отстают в росте</td>
</tr>
<tr>
<td>Мозанка озимой пшеницы</td>
<td>Мозаичная расцветка листьев в виде светло-зеленных полос, пунктир, идущих вдоль жилок. К концу вегетации мозанка листве переходит в хлороз.</td>
<td>Усиленное кущение</td>
<td>Стерильность колосьев, израстание цветочных плечок</td>
<td>Карликовость</td>
</tr>
<tr>
<td>Карликовость пшеницы</td>
<td>Хлоротические пятна, пожелтение</td>
<td>То же</td>
<td>Измельчение деформированных, полностью стерильных или имеющих по несколько шупальных зерен колосьев</td>
<td>То же</td>
</tr>
<tr>
<td>Вирус желтой карликовости ячменя</td>
<td>Пожелтение или покраснение верхушек листьев, уменьшение площади листа</td>
<td>Укорочение колосоношки, утолщение и позеленение стебля</td>
<td>Пожелтение колосковых чешуй, остьи и колосоношки. Снижение массы зерновок, иногда стерильность</td>
<td>Карликовость, травостоя не выровнен по высоте и имеет более светлую, желтизнюю, окраску</td>
</tr>
</tbody>
</table>
Продолжение табл. 3.2

<table>
<thead>
<tr>
<th>Болезнь</th>
<th>Признаки заболевания</th>
<th>Фаза проявления болезни</th>
<th>Круг растений-хозяев</th>
<th>Специфический переносчик</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вирус желтой мозаики ячменя (ВЖМЯ)</td>
<td>Листья: Бледно-зеленые полосы, пожелтение листьев, увядание (начинается с верха)</td>
<td>Снижение массы и количества зерен в колосе</td>
<td>Уменьшение количества побегов, низкорослость растений</td>
<td>Весеннее отрастание у озимого ячменя, фаза кущения у ярового</td>
</tr>
</tbody>
</table>

Таблица 3.3. Диагностика заболеваний растений, вызываемых молликутами и риккетсиеподобными организмами

<table>
<thead>
<tr>
<th>Диагностические признаки</th>
<th>Молликуты</th>
<th>Риккетсиеподобные организмы, обитающие в</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ахолеплазмы, микоплазмы</td>
<td>Спироплазмы</td>
<td>физыме</td>
</tr>
<tr>
<td>Симптомы болезни</td>
<td>Хлороз листьев, мелкокалистность, продиафриация, филлодия, карликовость</td>
<td>Хлороз листьев, мелкокалистность, карликовость</td>
</tr>
<tr>
<td>Антибактериальная терапия тетракцинами</td>
<td>Эффективна</td>
<td>Эффективна</td>
</tr>
<tr>
<td>Пенициллином</td>
<td>Незаэффективна</td>
<td>Незаэффективна</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Нагревание</td>
<td>Эффективно</td>
<td>Данных нет</td>
</tr>
<tr>
<td>Охлаждение</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Насекомые-переносчики</td>
<td>Цикады, цикадки, псилиди, церкопиды (?)</td>
<td>Цикадки</td>
</tr>
<tr>
<td>Циркулятивность (способность к проживанию и размножению в растении и насекомом-переносчике)</td>
<td>Есть</td>
<td>Есть</td>
</tr>
<tr>
<td>Клеточная стенка</td>
<td>Нет</td>
<td>Нет</td>
</tr>
<tr>
<td>«R»-слой</td>
<td>Из-за отсутствия клеточной стенки тест не применим</td>
<td></td>
</tr>
</tbody>
</table>

ние листьев и их хлоротичную окраску (остальные признаки как у ма­хорки); вторая форма приводит к усиленному ветвлению, хлорозу и измельчению листьев, задержке роста, укорочению междоузлий и отсутствию цветения.

В фитомикоплазмологии так же, как и в микоплазмологии вообще, большое значение в идентификации отдельных микоплазм приобрели серологические тесты. Серологические свойства фитомикоплазм изучают с помощью реакций, ставших уже классическими в микоплазмологии: ингибиции роста, кольцепрепицпительной, иммунофлюоресценции [73, 163], а также иммуноферментным анализом — более чувствительным методом [63]. Для идентификации спироплазм, кроме классических методов, применяют серологическую реакцию, основанную на деформации спиральных клеток спироплазм и превращении их в клетки округлой или овоидной формы [118, 173]. Микоплазматологи возлагают также большие надежды на применение моноклональных антител для диагностики микоплазмозов растений и идентификации вызывающих их микоплазм. Однако и этот метод не безупречен. Известны примеры одинаковой реакции неспецифических моноклональных антител с микоплазмами.

Следует отметить, что ни один из перечисленных методов в отдельности не может дать исчерпывающей информации о границах специфичности того или иного вида микоплазм или группы видов в изолите. Так, три вида спироплазм (возбудители стубборна цитрусовых, карликовости кукурузы и «майского» заболевания пчел) очень близки в серологическом отношении, а гомология их ДНК превышает 50%.

Для идентификации микоплазм широко применяют методы молекулярной биологии. Наиболее полную информацию при этом получают при изучении состава белков с помощью электрофореза в полиакриламидном геле с додецилсульфатом натрия, определении размера генома, состава его нуклеотидов и результатов гибридизации ДНК из различных изолятов и штаммов [72]. С помощью электрофореза в полиакриламидном геле очень хорошо обнаруживаются штаммовые различия в составе белков [38, 136, 151, 152], а также решаются вопросы таксономии и идентификации спироплазм [56, 59]. Так, изолят S. citri из различных источников очень похожи по составу белков [72], но значительно отличаются от других спироплазм [59], а также от ахолеплазм [43, 57—59].

Исследования, направленные на изучение ферментативной активности, пищевых потребностей и способности образовывать те или иные вещества, играют одну из основных ролей в определении видовой принаследности свежевыделенных изолятов возбудителей микоплазмозов растений. Так, для микоплазм уникальным свойством является потребность в стеринах, для ахолеплазм — способность синтезировать каротиноиды, а для уреаплазм — гидролизовать мочевину. Большинство ферментативных молликут не способно гидролизовать аргинин, в то время как у неферментативных наблюдается обратное явление (табл. 3.4). Микоплазмы, в отличие от ахолеплазм, не способны вызывать гидролиз эскулина или арбутина, что обусловлено отсутствием у них β-D-глюкозидазы, осуществляющей этот процесс.

При дифференциации ахолеплазм и микоплазм важными являются также такие признаки, как каталазизм глюкозы, галактозы, ксилозы (ахолеплазмы имеют хотя бы один из этих признаков), аргинин; фосфатазная активность, феномен «пленка — пятно», разжижение сыворотки (микоплазмы, как минимум, имеют одно из этих свойств). Важно, таким образом, с целью идентификации и определения систематического положения микоплазм изучить у возбудителей микоплазмозов расте-
### Таблица 3.4. Биохимические характеристики микоплазм, наиболее часто выделяемых из растений и насекомых

<table>
<thead>
<tr>
<th>Свойство</th>
<th>Род Acholeplasma</th>
<th>Род Spiroplasma</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. laidlawii</td>
<td>A. axanthum</td>
</tr>
<tr>
<td>Кислотообразование на средах с целлобиозой</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>декстрином</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>декстрином</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>фруктозой</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>галактозой</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>глюкозой</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>гликозогеном</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>глицерином</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>лактозой</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>мальтозой</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>маннозой</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>салицином</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>сорбитом</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>крахмалом</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>сахарозой</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>ксилозой</td>
<td>-</td>
</tr>
<tr>
<td>Гидролиз</td>
<td>эскулина</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>арбутина</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>аргинина</td>
<td>+</td>
</tr>
<tr>
<td>Редукция тетразоля</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Феномен «пленка — пятно»</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Фосфатазная активность</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

П р и м е ч а н и е: «+» — все штаммы положительные; «±» — имеются штаммовые различия; «—» — все указывает на незначимость. Отсутствие знаков «+» и «—» признака.

Ниий все свойства, характерные для членов класса Mollicutes, на уровне порядка, семейства, рода.

### ОПРЕДЕЛЕНИЕ ПАТОГЕННЫХ СВОЙСТВ МИКОПЛАЗМ, ВЫДЕЛЕННЫХ ИЗ РАСТЕНИЙ

Ранее при доказательстве инфекционной природы микоплазмозов как промежуточное звено использовали стерильных особей соответствующих цикадок-переносчиков, которых кормили сначала на больном растении, а затем на здоровом, или прививали части больных растений...
Рис. 3.7. Установление патогенных свойств (доказательство триады Коха) микоплазм, выделенных из растений:

а — субэпидермальное заражение растений суспензией клеток микоплазм методом Клемента [96];

б — воспроизведение заболевания с помощью искусственно зараженной цикадки переносчика;

в — станок для инъектирования цикадок культурой микоплазм;

г — заражение цикадок микоплазмой.
на здоровое растение. Никакими другими способами — механическими, через почву и растительные остатки, семенами, а также с помощью цикадок, не специализированных к передаче той или иной желтухи, — заболевания, вызываемые микоплазмами, передавать с больных растений на здоровые не удавалось.

Работа с микоплазмами, выделенными в чистую культуру из разных растений, пораженных желтухами, требовала нового подхода для доказательства причастности микоплазм к этим заболеваниям. Для достижения этой цели использовали два пути: 1) инокуляцию чистыми культурами микоплазм насекомых-переносчиков с последующим их кормлением на соответствующих здоровых растениях; 2) прямую инокуляцию чистыми культурами здоровых растений того же вида, что и растения, из которых были выделены микоплазмы.

Проверку патогенных свойств штаммов микоплазм, изолированных из растений, проводят на здоровых растениях-хозяевах и на растениях-индикаторах. Все растения выращивают в теплице или в вегетационном домике. Цикадок для инъекций воспитывают на здоровых растениях под изоляторами в теплице, вегетационном домике или в фитotronе. При этом поддерживают оптимальные температуру (28—30 °C), влажность воздуха (80—90 %), освещенность (6000—7000 лк), продолжительность светового дня (16 ч). Для инъекций берут взрослых особей или нимф пятой генерации II, III и других поколений цикадок. Растения, на которых воспитывают цикадок, находятся под постоян-
ным наблюдением до полного их вызревания с целью исключения случаев естественного заражения.

Для установления патогенных свойств у микоплазм, выделенных из растений, используют стерильных цикадок, выращенных при вышеуказанных условиях на стерильных (свободных от возбудителей болезней желтух) растениях. Опытных цикадок инокулируют тем или иным штаммом микоплазмы и затем кормят на здоровом растении, наблюдая за появлением признаков заболевания (рис. 3.7, в). Параллельно заражают здоровые растения микоплазмами путем субэпидермальной инъекции методом Клемента [97]. Этот метод, щадящий микроорганизмы, обеспечивает полную защиту клеток микоплазм от действия неблагоприятных факторов после введения штаммов в ткани растений. При этом зона инфицирования тканей растения не ограничивается зоной проникновения иголки (в этой зоне клетки растения чрезвычайно сильно повреждаются и быстро гибнут), а охватывает значительную часть близлежащих тканей. Сущность микроорганизма проникает под давлением в эти ткани через разные микроповреждения и естественные отверстия в стенках клеток (например, плазмодесмы) без грубого повреждения последних. В результате микоплазмы могут развиваться в клетках растений так же, как и при введении цикадками, и вызывать соответствующие признаки заболевания.

Инъекции цикадкам делают на специальном станке (рис. 3.7, в, в) тонким стеклянным капилляром (внешний диам. около 0,05 мм), изготовленным из пастеровской пипетки, или медицинским шприцем с тонкой иглой (0,4 × 14—15 мкм). Инокулят вводят в центральные жилки или под эпидермис листа (рис. 3.7, в) [97].

Культуры микоплазм, которые вводят цикадкам, выращивают на жидкой среде СМ ИМВ-72 [28] на протяжении 3—5 сут. После этого их центрифугируют при 15 тыс. об/мин. Полученный осадок ресуспендируют в фосфатном буфере или в растворе NaCl (0,4 моль/л) и снова центрифугируют при 15 тыс. об/мин. Инокулят промывают буфером трижды. Окончательно осадок ресуспендируют в буфере или растворе NaCl (0,4 моль/л) и доводят его концентрацию до заданного уровня, сравнивая со стандартами мутности. Для искусственного заражения используют инокулят, содержащий 1 млрд клеток в 1 мл. Параллельно, для исключения отрицательных результатов заражения, возможных из-за разрушения клеток микоплазм вследствие центрифугирования и отмыток, растение заражают шестисуточной культурой микоплазм в жидкой среде СМ ИМВ-72. Контрольным растениям и цикадкам вводят фосфатный буфер, раствор NaCl (0,4 моль/л) или стерильную среду СМ ИМВ-72.

Известно, что патогенные свойства микоплазм, выделенных из растений, находятся в прямой зависимости от их чувствительности к α-амантину, поэтому для определения их патогенных свойств используют непрямой метод. Для этого на газон роста микоплазм накладывают бумажные диски, смоченные α-амантином, и определяют размер зоны ингибирования роста микоплазм.

Существует несколько способов горизонтальной передачи микоплазмозов растений с использованием чистых культур микоплазм: 1) предварительное заражение микоплазмами стерильных особей насекомых-переносчиков с последующим их кормлением на соответствующих видах здоровых растений; 2) прямое заражение растений микоплазмами методом Клемента; 3) способ прививок (без выделения возбудителя в культуру). Последний способ эффективен в 100 % случаев заражения.
РАЗВИТИЕ ИНФЕКЦИОННОГО ПРОЦЕССА

Интересно сравнить поведение микоплазм в клетках специфического растения-хозяина (т. е. поражаемого данной микоплазмой в естественных условиях) и неспецифического хозяина (растения, которое в природе не болеет данным микоплазмозом). Были поставлены соответствующие эксперименты. Для возбудителя бледно-зеленной карликовости пшеницы — микоплазмы Acholeplasma laidlawii var. granulum — специфическим хозяином служила пшеница, а неспецифическим — томаты и табак; для возбудителя столбura томатов — A. laidlawii var. solanaceae — специфическим хозяином были растения томатов и табака, а неспецифическим — растения кукурузы. Микоплазмы в растения вводили искусственно, способом, основанным на методе инокуляции растений по Клементу [12, 97].

Было установлено, что размножение и рост микоплазм происходит как в клетках специфических растений-хозяев, так и неспецифических. При этом микоплазмы могут обитать в клетках разных тканей — паренхимы, флоэмы и полностью сформированных ситовидных элементов.

При искусственном заражении микоплазмой растения такого же вида, из которого микоплазмы были выделены, структура клеток флоэмы зараженного растения значительно изменялась по сравнению с клетками здорового растения. Такие изменения выявлены у всех видов испытанных растений; они являются типичными для изученных заболеваний.

Микоплазмы обнаруживаются, главным образом, в ситовидных элементах флоэмы больных растений. Количество клеток микоплазм в клетках флоэмы колеблется весьма значительно — от нескольких клеток до полного заполнения ими-растительной клетки. В клетках растения-хозяина микоплазмы располагаются в основном вдоль цитоплазматических мембран, преимущественно около плазмалеммы или других мембран, проявляя к ним своеобразные таксисы. Особенно хорошо это видно в клетках флоэмы, содержащих незначительное количество клеток микоплазм (см. рис. 3.2, а). Вероятно, степень проявления такого признака болезни, как хлоротичность листьев, и определяется количеством клеток микоплазм в клетках растения-хозяина. Если клеток микоплазм в ситовидных элементах немного, то пластические вещества передвигаются более-менее нормально и хлоротичность выражена слабо. В случае обильного заполнения клеток растения клетками патогена происходит закупорка сосудов, в результате чего хлоротичность выражается сильнее. На специфических растениях-хозяевах взаимодействие микоплазмы с клеткой хозяина проходит в три этапа. На первом этапе при проникновении микоплазм в молодые паренхиматозные клетки флоэмы они взаимодействуют с мембранными элементами клеток. При этом реакция клетки растения-хозяина проявляется в образовании выростов мембраны, направленных в сторону клеток микоплазм (см. рис. 3.3, е). Мембранные элементы растения-хозяина разбухают. Такие изменения особенно заметны на плазмалемме. Одновременно отдельные клетки микоплазм вытягиваются в сторону мембраны клеток растительной клетки. В результате мембраны клеток микоплазм сливываются в одно целое с мембранными элементами растительной клетки. Такая же реакция свойственна некоторым микоплазмам, выделенным из теплокровных животных [42]; ее используют как этиологический принцип классификации микоплазм [8, 30].

Второй этап развития инфекции характеризуется нарушением нормального метаболизма растительных клеток. На 3—4-е сут цитоплазма инфицированных молодых паренхиматозных клеток флоэмы темнеет от насыщения рибосомами и полисомами. Один из признаков
проникновения микоплазмы в эти клетки — прикрепление рибосом слошным слоем к плазмалемме или другим мембранным элементам (см. рис. 3.3, γ). Количество рибосом в пораженных клетках значительно возрастает по сравнению с соседними непораженными клетками, что, вероятно, свидетельствует об интенсификации белкового синтеза в растительных клетках, их усиленном метаболизме.

На третьем этапе паренхиматозные клетки разрушаются — постепенно исчезают их мембранные элементы, митохондрии, хлоропласты. Причем хлоропласты разрушающихся клеток содержат значительно больше зерен хлорамина (см. рис. 3.2, α, δ), чем хлоропласты здоровых клеток. Подобный факт отмечен при исследовании срезов тканей астры, пораженной желтухой [48] и шелковицы, пораженной курчавой мелькколистностью [7]. Считается, что увеличение количества зерен крахмала в хлоропластах, приводящее к их разрушению, является следствием глубоких нарушений метаболизма растения [33, 139]. Разрушение хлоропластов приводит к пожелтению и хлоротичности листьев.

В клетках неспецифических растений-хозяев подобные явления не наблюдаются. Микоплазмы живут в этих клетках, размножаются и размножаются, однако не проявляют тропизма к мембранным элементам растительной клетки. В метаболизме клеток неспецифического растения также не обнаружено таких кардинальных изменений, как увеличение количества рибосом и «обрастания» ими мембран клетки.

Таким образом, взаимодействие микоплазм с растительной клеткой в определенной степени подобно взаимодействию Agrobacterium tumefaciens — возбудителя бактериального (коронарного) рака растений — с растительной клеткой (см. рис. 3.3, ж), а также отдельных ДНК-геномных вирусов (SV-40, Herpes simplex, аденовирусов 2-го и 12-го типов) с клетками животных. Как известно, способность этих организмов вызывать заболевания, подобные эпилептическим, и их патогенность связана с наличием аномалий в собственной РНК-полимеразе, как это отмечено для A. tumefaciens [101], или с использованием РНК-полимеразы II клетки хозяина в первичном, или модифицированном виде [168]. Чувствительность возбудителей желтухи к α-аманитину показывает, что у микоплазм такой механизм патологического процесса возможен [22].

Как уже упоминалось выше, характер взаимодействия микоплазм с мембранами клеток специфических растений-хозяев очень сходен с таковым микоплазм, патогенных или потенциально патогенных для человека и животных. Взаимодействие клеток микоплазм и клеток животных, проявляющееся в адсорбции клеток культур тканей животных на колониях микоплазм, используется как один из методов оценки их потенциальной патогенности. В основе этой адсорбции лежит сродство рецепторного аппарата микоплазмы и клеток — так называемая вирулентность [30]. Степень вирулентности, определяемая индексом адсорбции (отношением количества колоний, на которых адсорбируются клетки, к общему количеству колоний), называется цитотропностью. Цитотропность микоплазм рассматривается как критерий оценки потенциальной вирулентности данного вида микоплазм.

Адсорбировавшиеся на мембранах клеток-хозяев микоплазмы получают возможность извлекать из них необходимые питательные вещества (жирные кислоты, холестерин), а также непосредственно влиять на генетический аппарат клетки-хозяина.

Для микоплазм животных установлено, что они взаимодействуют не со случайными местами на мембранах клеток-хозяина, а со специфическими — так называемыми рецепторными местами на мембранах микоплазм, в свою очередь, должны быть специфические места при-
крепления, проявляющие сродство к рецепторным местам клеток-хозяев. Химическая природа рецепторов мембран клеток некоторых эукариотов известна. В частности, M. pneumoniae, M. gallisepticum и M. synoviae взаимодействуют с теми местами мембран клеток-хозяев, в которых накапливаются сиаловые кислоты [67, 75, 77, 112, 134]. Вероятно, имеются и другие основы такого взаимодействия — различные клетки различных хозяев могут отличаться рецепторной специфичностью к тем или иным микоплазмам.

Механизм адсорбции патогенных микоплазм на мембранах клеток-хозяев имеет не только химическую природу, а является более сложным явлением. Об этом косвенно свидетельствует тот факт, что с мембранами клеток эукариотов взаимодействуют только метаболически активные (живые) клетки микоплазм, а не убитые клетки или их изолированные мембраны, содержащие те же специфические места прикрепления, что и живые клетки. Только жизнедеятельные клетки микоплазм взаимодействуют с мембранами клеток хозяина, и только они способны вызывать заболевание [90, 134].

При изучении взаимодействия микоплазм с эритроцитами крови in vitro удалось доказать, что после прикрепления клеток микоплазм к мембране эритроцитов следующим этапом взаимодействия является слияние их мембран. Хотя in vivo такого процесса не удавалось наблюдать никому, эти опыты легли в основу гипотез о том, что в случае наличия у микоплазм патогенных свойств и высокой степени авидности к клеткам хозяина (т. е. высокой специализации) у них после процесса прикрепления, как правило, происходит слияние мембран с мембранами клетки хозяина. На примере растительных микоплазм удалось подтвердить эту гипотезу.

На общности растительных и животных микоплазм основано понятие «типичного микоплазмоза». При типичных микоплазмозах, наблюдаемых лишь при поражении высших организмов высокоспециализированными микоплазмами, в клетках хозяина происходят глубокие изменения, вызываемые процессами, имеющими место, вероятно, на уровне генетических аппаратов хозяина и паразита. Эти изменения являются результатом экспрессии генетических аппаратов. Они приводят к заболеваниям, которые можно охарактеризовать как злокачественные. Такие заболевания все чаще фиксируются у человека [8, 30, 136—138], животных [30, 155] и растений [5, 6, 9, 20, 24, 32, 34—36, 44, 64, 74, 80—87, 170—173]. В большинстве случаев эти заболевания протекают тяжело; они трудноизлечимы и вредоносны. Путь к предотвращению таких заболеваний и их успешному лечению лежит в поиске общих молекулярно-биологических основ патогенности, обнаружении групповых характеристик возбудителей. В результате такого подхода может сложиться так, что разработанный на модели фитомикоплазмоза способ борьбы окажется пригодным для лечения заболеваний такой же этиологии человека или животных.

**ФАКТОРЫ ПАТОГЕННОСТИ**

Считается, что основные факторы патогенности у большинства микоплазм такие же, как у бактерий, за исключением лишь тех, которые определяются клеточной стенкой бактерий. Факторы патогенности микоплазм определяются их физиологией и могут оказывать прямое и косвенное действие на хозяина. К ним можно отнести токсины, пере- кись водорода, амиак, ферменты (нуклеазу, протеазу, уреазу и др.). О большинстве факторов патогенности фитопатогенных микоплазм судят предположительно. Лишь для спироплазм установлено, что они могут продуцировать фитотоксины [158]. В частности, Spiroplasma citri
образует по крайней мере два токсина, которые вызывают увядание растений и задерживают прорастание семян [57]. Одним из факторов патогенности микоплазм принято считать их конкуренцию с клеткой-хозяином за отдельные субстраты энергетического и белкового обмена (сахара, аминокислоты и т. д.). Так, для большинства аргининусваивающих микоплазм в качестве основного фактора патогенности указывается их способность усваивать аргинин. Однако понимание факторов патогенности микоплазм лишь как химических субстанций, так или иначе влияющих на клетку хозяина, представляется слишком поверхностным, не учитывающим основные биологические свойства микоплазм.

Подобный эукариотическому характер основных молекулярных процессов жизнедеятельности фитопатогенных микоплазм (репликация, транскрипция, транслация), вероятно, ведет также к тому, что в клетке микоплазм синтезируются продукты, не отличающиеся от продуктов, вырабатываемых клеткой-хозяином. Это делает клетку паразита в иммунологическом отношении слабо отличимой от клетки хозяина, обусловливает авидность паразита и растительной клетки, приводит к тому, что иммунные реакции при микоплазменных инфекциях слабо выражены и многие инфекции протекают латентно, а также обеспечивает глубокое взаимодействие хозяина и паразита на клеточном уровне [8, 30].

СПОСОБЫ РАСПРОСТРАНЕНИЯ МИКОПЛАЗМОЗОВ РАСТЕНИЙ

Если микоплазмы, поражающие человека и животных, распространяются от особи к особи посредством прямых контактов, а у птиц, кроме того, и через яйца, то фитопатогенные микоплазмы являются типичными трансмиссивными патогенами. Для их распространения необходим переносчик.

Фитопатогенные микоплазмы редко являются специализированными возбудителями. Круг растений, поражаемых той или иной микоплазмой, определяется видовым составом растений, на которых питается данный переносчик. Район распространения заболевания, как правило, ограничивается ареалом расселения переносчика. Если же данное заболевание передается несколькими переносчиками, то район его распространения составляет сумму ареалов каждого переносчика.

Основную роль в распространении микоплазмозов растений играют насекомые, главным образом цикадки (рис. 3.8). Насчитывается свыше 60 видов цикадок — переносчиков микоплазмозов растений [82]. Кроме того, микоплазмы могут передаваться механически — при использовании больного прививочного материала и путем прививок паразитическими растениями рода повилика [107], которые играют роль своеобразного плазматического моста между отдельными растениями. Таким образом расширяется круг растений, поражаемых данным заболеванием. Растениями рода повилика можно передать заболевание тем растениям, которые не заражаются в помощь прививок (например, перенести желтуху астры на барвинок, томаты и морковь).

Механический способ передачи микоплазмозов малоэффективен из-за чрезвычайной чувствительности микоплазменной клетки к изменению условий проживания и, вероятно, в природе практически не играет никакой роли. В экспериментах была показана возможность заражения таким способом здоровых растений [117].

Вертикальный тип распространения микоплазмозов растений от родителей к потомству) не доказан и дискутируется. Показано, что
семена, которые появляются на больных растениях, не содержат возбудителей заболевания. Полагают, что образование жизнеспособных семян на инфицированных растениях объясняется тем, что они развивались либо перед поражением растения микоплазмозом, либо на тех его частях, которые еще не были поражены заболеванием. У некоторых многолетних растений, главным образом древесных, микоплазмы могут сохраняться зимой в корневой системе. Это показано на приме-

Рис. 3.8. Переносчики микоплазмозов зерновых и других культур:  

в — шеститочечная (Macrosteles laevis Rib.) и б — полосатая (Psammotettix striatus L.) цикадки; в — схема цикадки, пытающейся на растении: 1 — пищевой насос; 2 — слюнная железа; 3 — слюнной насос; 4 — фильтрующая камера; 5 — средний кишечник; 6 — мальпигиевые трубы; 7 — задний кишечник; 8 — схема стилета (8 — пищевой канал; 9 — мандибулы; 10 — максиллы; 11 — слюнной канал); 12 — флоэма рах увядания груши [148], карликовости шелковицы [82], флоэмного некроза вяза [45], X-заболевания персика [142].

Инкубационный период для различных микоплазм в их переносчиках варьирует от 2 нед до 1,5 мес в зависимости от вида переносчика и климатических условий во время его заражения. В переносчиках микоплазмы усиленно размножаются [111]. Они обнаружены почти во всех органах насекомых, в том числе и в яйцах [114, 152].

В одних случаях наблюдается вредное [93, 170], а в других — полезное влияние микоплазм растений на их переносчиков [12, 113]. Благоприятное влияние возбудителей заболевания на переносчиков (удлинение сроков их жизни) названо «эффектом процветания» [113,
Показано последовательное рассеяние и увеличение численности возбудителя желтухи в алиментарном канале, гемолимфе, слюнных железах и яичниках переносчика [151]. Слюнные железы цикадок — парный орган, каждая доля которого состоит из двух отделов: главного и добавочного; расположен за мозгом (рис. 3.8, в) по обе стороны пищевода. Экскреторные протоки от каждой пары слюнных желез соединяются в один общий проток, проходящий в хоботок. Слюнные железы вырабатывают секрет, который при питании цикадок вводится в клетки растения-хозяина. В состав секрета входят растворимые белки, полисахариды, гликопротеиды и другие вещества [17]. Таким образом, секрет слюнных желез цикадок является по составу очень богатой питательной средой, вполне пригодной для жизнедеятельности микоплазм. Последние используют, вероятно, данный секрет как среду обитания не только в слюнных железах насекомого, но и в цитоплазме растительной клетки в течение некоторого времени после внедрения для адаптации к новым условиям существования.

Вирофорная цикадка при питании на здоровом растении (рис. 3.8, в) тонким стилетом вводит микоплазму вместе со слюной внутрь живых клеток растения-хозяина, которые долгое время после этого сохраняют жизнедеятельность и тем самым создают условия для сохранения возбудителя, его размножения и распространения по системе клеток. Кроме того, цикадки, которые питаются пластическими веществами клеток флоэмы, вводят микоплазмы именно в те клетки, которые богаты этими веществами и к которым возбудитель специализирован (см. рис. 3.9). Вряд ли при каком-либо другом способе заражения растений можно ожидать более «деликатного» обращения с инфицируемой клеткой и более точного введения инокулята. В зависимости от специализации цикадок в отношении питающих растений возбуди-

Рис. 3.9. Схема заселения клеток, тканей и органов растений микоплазмами в системе насекомое-переносчик — растение
тели микоплазмоза передаются большему или меньшему количеству видов растений. Так, цикадка Circulifer tenellus — переносчик стоб- бурна цитрусовых, вызываемого микоплазмой Spiroplasma citri, — может питаться на более широком круге растений, чем переносчики карликовости кукурузы (Dalbulius climateae, D. maidis). В Калифорнии микоплазму S. citri способны переносить три цикадки: Neoacliturus (ex Circulifer) tenellus, Scaphytorius nitridus и S. acutus. Поэтому S. citri обнаружена в тканях более чем 45 видов растений, в то время как возбудитель карликовости кукурузы S. kupkellii лишь в тканях кукурузы и теозинта. Широкий круг питающих растений у насекомых-переносчиков является причиной того, что у отдельных растений микоплазмы представляют собой суперинфекцию, вызываемую несколькими видами микоплазм. Так, в местах распространения стоббурса цитрусовых S. citri обнаружен в тканях ряда растений вместе с клетками других видов микоплазм. Признаки заболевания у этих растений были типичными для филлодий и стоббурса. Это значит, что при суперинфекциях доминируют возбудители одного из микоплазмозов [44].

Чем больше переносчиков у данного возбудителя микоплазмоза растений и чем менее эти переносчики специализированы в отношении круга питающих растений, тем больше открывается возможностей для выживания и распространения возбудителя в природе. Классическим примером может быть S. citri, которая, как упоминалось выше, имеет несколько цикадок-переносчиков, мало специализированных в отношении питающих растений. Это и обусловливает практически эпифитотическое поражение цитрусовых в отдельных странах. Так, в США, Алжире, Иране, Израиле, Турции, на Корсике, во Франции, Марокко, Сирии, Иране и других странах, где распространен стоббурн цитрусовых, зараженность деревьев достигает 100 % [44]. В Средиземноморье основным фактором распространения этого заболевания, кроме насекомых-переносчиков, является также использование почек больных растений в качестве прививочного материала [44]. На полях Украины, Молдавии и РСФСР широкое распространение имеют четыре вида цикадок: зеленая — Empoosca virilis Fall, желтая — E. flaviscens F., полосатая — Psammotettix Deltocoephalus striatus L. и шеститочечная — Macrosteles laevis Rib.

Первые два вида зимуют в стадии имаго в растительной подстилке около полей, где выращивались злаковые. Весной взрослые цикадки переходят на поля озимых, а позже и на другие культуры: подсолнечник, свеклу, кормовые травы и др. Развитие цикадок происходит на многих растениях. За вегетационный период они дают два поколения [15]. Распространение бледно-зеленой карликовости зерновых специфично связано с цикадками Psammotettix (Deltocoephalus striatus L. и Macrosteles laevis Rib.) (рис. 3.10). Инкубационный период возбудителя в цикадке — 10—12 сут. Заражение насекомых происходит на всех стадиях их развития (нимфы всех возрастов и имаго) [13]. С возрастом восприимчивость цикадок к возбудителю снижается (с 48,1 % для нимфы I возраста до 29,3 % для имаго). В естественных условиях максимальная инфекционность цикадок составляет 6 %. а обычно колеблется в пределах 1—2 % [17].

Полосатая и шеститочечная цикадки зимуют в стадии яйца в тка- нях пшеницы и диких злаковых. Последние переносит микоплазменные и вирусные заболевания не только злаковых, но и свеклы. Увеличение популяции цикадок, как правило, предсказывает вспышку того или иного заболевания. Замечено, что интенсивность проявления микоплазмозов из года в год колеблется и зависит от условий перезимовки переносчиков. Стало аксиомой, что если климатиче-
ские (например, суровые малоснежные зимы) или какие-либо другие факторы не способствуют развитию, размножению и миграции насекомых — переносчиков микоплазмозов, то вредоносность этих заболеваний снижается до минимальной.

Основными резерваторами микоплазменных и вирусных заболеваний растений являются многолетние сорняки, а также падалица зерновых, на которых питаются насекомые-переносчики в течение всего периода вегетации. Например, столбовор носит очаговый характер. Возбудитель из года в год сохраняется в природных очагах на многих сор-

Рис. 3.10. Схема циркуляции микоплазмы — возбудителя бледно-зеленой карликовости зерновых в природных условиях

няхах, из которых особо важное значение имеют выюнок полевой, цикорий обыкновенный, гебелия лисохвостая, кресс крупка и молочай [5, 35]. В умеренных широтах переносчиком заболевания является цикадка Hyalesthes obsoletus S., распространенная почти во всех районах возделывания томатов, в южных районах — также цикадка H. mlokosewicti [5]. Известны и другие переносчики из семейства цикадок.

Так, в частности курчавую мелколистность шелковицы переносят цикадки Hishimonus sellatus Uhler и H. sellatiformis Schihora. Другие микоплазмозы растений также связаны с более или менее специфическими переносчиками среди цикадок.
ПРОФИЛАКТИКА И ЗАЩИТА
СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР ОТ МИКОПЛАЗМОЗОВ
И МИКОПЛАЗМОЗОПОДОБНЫХ ЗАБОЛЕВАНИЙ

В условиях возделывания сельскохозяйственных культур по интенсивным технологиям при разработке комплекса мер по защите зерновых и крупняных культур от заболеваний типа израстаний (как микоплазменных, так и вирусных) нужно предусмотреть и меры защиты их от грибных, бактериальных заболеваний, а также от насекомых-вредителей. Ведь в природе микоплазменные, грибные, вирусные или бактериальные заболевания наблюдаются не в чистом виде, а в комплексе, в котором какое-либо заболевание преобладает. При этом поражение растения одним заболеванием ослабляет его организм и создает предпосылки к его поражению другими видами возбудителей. Любо из микоплазменных или вирусных заболеваний снижает общую устойчивость растений и приводит к поражению их даже факультативными патогенами, которые вызывают болезни корней, листьев и стеблей. К сожалению, в существующих рекомендациях по защите сельскохозяйственных культур от вредителей и заболеваний практически не рассматриваются такие болезни, как микоплазмы и вирусы. Нет целенаправленных рекомендаций в существующих руководствах и пособиях по борьбе с такими вредителями сельскохозяйственных культур, как цикадки, которые являются наиболее эффективными переносчиками микоплазменных и вирусных болезней этих культур.

Меры защиты растений от микоплазмозов и других инфекционных заболеваний растений на современном этапе должны быть направлены в первую очередь на правильное проведение комплекса агротехнических мероприятий, активную борьбу с цикадками — переносчиками микоплазм, непосредственное воздействие на возбудителей микоплазмозов, на селекцию устойчивых сортов.

Ущерб, причиняемый вредными организмами (в том числе цикадками и болезнями, ими переносимыми), во многом зависит от культуры земледелия. Агротехнические приемы, включающие правильное размещение культур в севообороте, рациональные системы обработки почвы и внесения удобрений, соблюдение сроков и густоты посевов, надлежащий уход за ними в течение вегетации, оптимальные сроки и качество уборки урожая в значительной степени уменьшают ущерб от вредителей болезней и сорняков, ограничивают необходимость применения химических средств [31].

АГРОТЕХНИЧЕСКИЕ МЕРОПРИЯТИЯ

И болезням и вредителям наиболее стойко противостоят здоровые растения. Поэтому интенсивная технология возделывания зерновых и крупняных культур должна начинаться с качественного семенного материала. Для получения равномерных всходов необходимо высевать выравненные семена, имеющие максимальную массу 1000 зерен. Существует прямая зависимость между массой посеянных зерен и полученным урожаем. Рекомендуется применять зерна, соответствующие показателям первого класса посевных кондиций. При этом нужно учитывать, что параметры, полученные в лабораторных условиях, снижаются в поле: всхожесть — до 2,3 %, энергия прорастания — до 9 % [31].

Установлено, что степень поражения озимых колосковых культур микоплазменными и вирусными заболеваниями варьирует по годам
и зависит от сроков и способов сева, возделываемого сорта, предше­ственника, метеорологических условий. При поражении этими болез­нями продуктивность растений снижается за счет ухудшения показа­телей всех элементов структуры урожая по сравнению со здоровыми растениями: масса пораженного зерна с одного растения составляет 36,7 %; масса 1000 зерен — 46,9 %; количество зерен в 1000 г — 48,5 %; выс. растений — 46,1 %; количество колосков в колосе — 38,0 %.

Существенной разницей между всхожестью здоровых и зараженных зерен нет, но энергия прорастания последних значительно снижается. Следовательно, уменьшается возможность получения дружных всходов нормальной густоты. В существующих ГОСТах по сортовым и посев­ным показателям семян озимой пшеницы, озимого и ярового ячменя указано, что посевной материал должен содержать 99 % семян основ­ной культуры, не более 10 штук семян других растений (в том числе и сорняков) на 1 кг; влажность посевного материала не должна превы­шать 14 %, а всхожесть должна быть не менее 95 %. Согласно ГОСТ 2037—82 семенным материалом первого класса считается зерно, кото­рое не прошло через решето с отверстиями 1,7 × 2,0 мм. Однако этот показатель, как показывает практика, не соответствует требованиям интенсивных технологий возделывания зерновых. Кроме того, при соб­людении этого ГОСТа в посевной материал попадает много семян, содержащих инфекцию или ослабленных. Такие семена дают всходы, но при этом служат источником заражения здоровых растений. От таких семян можно освободиться с помощью сита с диам. отверстий 2,6—2,8 мм. Полученные при этом семена дают более дружные всходы, растения лучше перезимовывают и переносят весенние засухи, лучше развиваются и дают более высокий урожай. Одним из надежных спо­собов получения здорового посевного материала является очистка и калибрование семян перед посевом озимой пшеницы, озимого и яро­вого ячменя (табл. 3.5).

Таблица 3.5. Параметры посевного материала озимой пшеницы и ярового ячменя

<table>
<thead>
<tr>
<th></th>
<th>Озимая пшеница</th>
<th></th>
<th>Озимый и яровой ячмень</th>
</tr>
</thead>
<tbody>
<tr>
<td>Диам. сходных решет, мм</td>
<td>Масса 1000 зерен, г</td>
<td>Диам. сходных решет, мм</td>
<td>Масса 1000 зерен, г</td>
</tr>
<tr>
<td>2,6—2,8</td>
<td>50—52</td>
<td>2,6</td>
<td>48—50</td>
</tr>
</tbody>
</table>

Интенсивность роста растений во многом зависит от количества зародышевых корешков, образующихся на первом этапе органогене­за [31]:

<table>
<thead>
<tr>
<th>Масса одного зерна, мг</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Среднее количество заро-</td>
<td>2,3</td>
<td>2,4</td>
<td>2,6</td>
<td>3</td>
<td>3,2</td>
<td>3,6</td>
<td>3,8</td>
<td>4</td>
<td>4,2</td>
</tr>
<tr>
<td>дышевых корешков</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Высевание здорового семенного материала позволяет оздоров­ливать зерновые культуры и тем самым более полно использовать по­тенциальные продуктивные возможности современных сортов в усло­виях применения интенсивных технологий их возделывания.
Система агротехнических мероприятий по защите злаковых культур от микоплазменных, вирусных и других болезней должна отвечать также следующим требованиям:

1. Сев озимых колосовых культур нужно проводить в строго оптимальный для данного района срок. Определяя календарные сроки сева, следует учитывать, что растения до перезимовки должны вегетировать 55—60 сут и давать 3—4 развитых побега. Ни в коем случае нельзя допускать преждевременных посевов, за исключением провоциационных, которые после того как на них сконцентрировались цикады, запахивают. Ранние посевы озимых колосовых культур способствуют максимальному поражению всеми болезнями: микоплазмами, вириозами, корневыми гнилями, бактериозами, а также другими грибными болезнями (бурая ржавчина, мучнистая роса, твердая головня, гельминтоспориоз). При поздних сроках посевов растения меньше повреждаются вышеперечисленными болезнями, но не успевают к за­морозкам достаточно раскуститься, плохо перезимовывают, а весной у них задерживается развитие побегов в вегетационный период созревания, что в конечном итоге приводит к потере урожая.

Лучшие сроки сева озимой пшеницы и ржи приходятся на вторую половину оптимальных сроков, рекомендованных в зоне.

Другие элементы агротехники озимых колосовых (размещение в севообороте, способ сева, глубина вспашки, уход за посевами) должны быть выдержаны в соответствии с интенсивными технологиями их возделывания [31].

2. Яровые колосовые культуры во избежание поражения микоплазмами и вириозами необходимо высевать в возможно более ранние сроки. При этом следует помнить, что ранние посевы ярового ячменя сильнее поражаются твердой головней и гельминтоспориозом. Поздний сев овса приводит к более сильному поражению его гельминтоспориозом, бактериозом и другими болезнями. Поэтому посевы яровых культур необходимо проводить посевным материалом, обязательно проправленным фунгицидами и инсектицидами.

3. Необходимо проводить борьбу с падалицей озимых и яровых колосовых культур, со злаковыми сорняками как на полях, идущих под посев озимых, так и на обочинах дорог, полей, мест, где складывают солому, и в лесополосах. (Они, как правило, до 40 % поражены вирусными и микоплазменными болезнями и являются хорошими их резерваторами). Для этого вслед за уборкой колосовых проводят уничтожение стерни. Зяблевую вспашку следует проводить своевременно, и поле постоянно очищать от сорняков. При этом уничтожаются очаги инфекции, кормовые растения для насекомых и гибнут значительная часть переносчиков.

Сорняки являются особым источником распространения болезней культурных растений, очагами размножения вредных насекомых, которые затем переходят на культурные растения. Ведущая роль в борьбе с сорняками принадлежит агротехническим мероприятиям, предусматривающим правильное размещение сельскохозяйственных культур в севообороте, применение дифференцированных (с учетом местных условий) способов обработки почвы, сроков и способов сева.

При размещении культур в полях севооборотов необходимо учитывать не только биологические особенности культурных растений, но и состояние засоренности и видовой состав сорняков. Так, при за­соренности поздними яровыми сорняками наиболее целесообразно на этом поле размещать ранние яровые культуры — ячмень, овес, горох. При большом количестве ранних яровых сорняков рекомендуют выращивать озимые и поздние яровые культуры.
При засорении пыреем ползучим поле лучше всего засевать озимыми и яровыми колосковыми культурами. Способ сева — узкорядный с увеличенной нормой высева. Озимая пшеница после черного пара отличается хорошей кустистостью и плотным, сомкнутым травостоем, что препятствует появлению ранних и поздних однолетников и приводит к значительному угнетению многолетних видов.

Необрабатываемые земли в хозяйствах — рассадники сорных растений, болезней и вредителей сельскохозяйственных культур. Для уничтожения сорняков на необрабатываемых землях необходимо систематически применять комплекс агротехнических и химических приемов. На обочинах дорог сорняки можно уничтожать периодическим лущением, вспашкой, выпалыванием или опрыскиванием общеистребительными гербицидами (реглон) до цветения и плодоношения, либо сжиганием.

Для подавления сорных растений на обочинах дорог, на постоянных оросителях и дамбах, а также в балках целесообразно высевать смесь бобовых и многолетних трав. Обращающийся при этом травостоя через 1—2 года препятствует развитию сорняков, что при систематической вспашке дает дополнительный урожай.

Информацию о способах борьбы с сорняками и средствах, применяемых при этом, можно почерпнуть из книги В. С. Подопригоры [16].

4. При летних и раннеосенних посевах бобово-злаковых смесей в качестве злакового компонента необходимо высевать озимую рожь как относительно устойчивую к микоплазменным и вирусным болезням.

5. Не допускать пересевов зерновых колосковых, погибших от вирусных заболеваний злаковых культур.

Интенсивность поражения зерновых микоплазмозами значительно снижается, если предшественниками были не зерновые культуры, поэтому севооборот рассматривается как один из важнейших методов борьбы с микоплазмозами. При размещении злаковых культур необходимо соблюдать пространственную изоляцию (не менее 500 м). Особенно это важно при посеве яровых и их размещении по отношению к озимым культурам, где наблюдается микоплазмоз, а также посевов многолетних злаковых трав, пожнивных и подкосных посевов, кукурузы. Яровые колосковые культуры, как уже было сказано выше, следует засевать по возможности в более ранние сроки.

**Борьба с насекомыми-переносчиками**

Цикадовые потребляют столько же зеленой пищи, сколько и позвоночные, живущие на той же площади [15]. Они наносят вред растениям не только в период питания, но и размножения, повреждая большое количество растений. Широкая полиаграфия многих видов цикадовых в рамках жизненных циклов со сменой сред и мест обитания делает этих насекомых весьма пластичными, благодаря чему в течение длительного времени сохраняется постоянная численность популяций. Кроме того, цикадовые как по численности, так и по общей массе значительно превосходят близкие в систематическом отношении группы насекомых (псилид, кокцид, белокрылок и, возможно, тлей). Этим и объясняется их высокая вредоносность. Цикады являются существенным элементом энтомофауны травостоя культурных растений, составляя более 20 % общей массы насекомых.

Заселение цикадами питающих растений, даже без учета заражения ими этих растений вирозами и микоплазмозами, приводит к нарушению метаболических процессов и основных жизненных функций. Подрезание яйцекладом тканей растений нарушает ассимиляционную спо-
собность листьев, поступление воды и минеральных солей из корневой системы к листьям, что приводит к полному или частичному отмиранию растения. Места повреждений растений цикадками создают своеобразные «ворота», через которые в ткани проникают патогенные грибы и бактерии [15]. Если зима была благоприятной для перезимовки цикадок-переносчиков, то в вегетацию, как правило, следует ожидать вспышки микоплазмозов.

Численность популяции цикадовых можно определять методом лова на электросвет, что дает возможность заранее предсказывать вспышку определенных микоплазмозов и вирусов в предстоящий вегетационный период. Особенно полезным для количественного определения популяции цикадок и составления прогноза их вредоносности является применение источников ультрафиолетового излучения (маломощного излучателя ЭУВ-15) для привлечения и отлова насекомых.

Цикадки, переносящие микоплазменные и вирусные заболевания, в большинстве своем являются сумеречными насекомыми и легко отлавливаются прибором с этим излучателем. Прибор состоит из двух металлических воронок (конусов), между которыми укреплен источник света ЭУВ-15. К горловине нижней воронки прикрепляют банку с бензином. Наткнувшись на ловушку, насекомые падают в воронку и попадают в сосуд, где их фиксируют бензином. Прибор устанавливают вертикально на высоте 0,5—1,0 м над уровнем почвы и включают с 21 до 5 ч утра. Приборы с ультрафиолетовыми излучателями можно применять не только для составления прогнозов, но и как биофизический метод борьбы с переносчиками.

В июне — августе цикадки составляют 70—80 % общего числа сумеречных насекомых. Преобладает же среди них шеститочечная цикадка — наиболее опасный переносчик микоплазменных и вирусных болезней растений. В этот период и целесообразно применять биофизический метод для снижения популяции переносчика на наиболее ценных участках посевов зерновых, крупяных и других культур. Так как цикадки (например, шеститочечная) дают два поколения за сезон, то такой отлов даст возможность значительно снизить численность второй генерации, а следовательно, и зараженность яйцекладками посевов озимых. Если зимовка переносчика прошла благоприятно, то служба сигнализации должна своевременно уведомлять хозяйства о необходимости немедленной обработки мест зимовки химическими препаратами системного действия (см. ниже). Как и в случае агротехнических мероприятий, обработке должны быть подвергнуты пораженные посевы озимых, сорняков, падалицы, которые не были уничтожены осенью. В этом и заключается суть профилактических мер борьбы с микоплазмозами.

Профилактические меры борьбы с микоплазмозами должны быть направлены в первую очередь на уничтожение или сокращение численности насекомых-переносчиков. Численность популяции насекомых-переносчиков можно ограничить с помощью агротехнических мероприятий, уничтожая сорняки, на которых питаются насекомые в межвегетационный период зерновых культур, применяя соответствующие инсектициды. К наиболее эффективным инсектицидам относятся органофосфорные соединения и оксимекарбонаты, которые действуют как на насекомых-переносчиков (цикадки), так и на микоплазмы.

Борьба с цикадками и другими сосущими насекомыми-переносчиками микоплазменных и вирусных болезней должна вестись в соответствии с технологическими приемами химической защиты посевов по этапам органогенеза [31] с использованием препаратов, перечисленных в «Списке химических и биологических средств борьбы с вредителями..."
болезней растений и сорняков и регуляторов роста растений, разре­ 
шенных для применения в сельском хозяйстве на 1982—1985 гг.» 
и приложениях к нему*.

Из наиболее доступных препаратов, рекомендованных против со­ 
sущих насекомых-вредителей (цикадки, тля, клоп-черепашка), а 
также злаковых мух, целесообразно применять 40 %-ный по действую­ 
щуему веществу фосфамид — БИ-58 (0,8 кг/га), 40 %-ный по дей­ 
ствующему веществу метафос (0,4—0,6 кг/га) и 30 %-ный по действу­ 
ющему веществу карбофос (0,8—1,2 кг/га) на первом — втором эта­ 
пах органогенеза (выход — полное кущение). Эти этапы особенно важ­ 
ны, так как в это время на посевы озимых колосковых возвращаются 
с луговых и залежных участков половоzerosые особи шеститочечной 
цикадки (Macrosteles laevis Rib.), чтобы отложить яйца в молодые 
всходы, где они и зимуют Весной при массовом появлении цикадок 
на озимой пшенице и до их окрыления (третий — четвертый этапы 
органогенеза — конец кущения, выход растений в трубку) целесооб­ 
разно провести обработку теми же препаратами, можно также использу­ 
вать 80 %-ный хлорофос (0,8—1,2 кг/га). Обработку желательно 
поворить на девятом — десятом этапах органогенеза (конец цветения — 
начало формирования зерна) с использованием тех же препаратов 
и в том же количестве.

Последующую обработку проводят в случае необходимости в мес­ 
тах скопления цикадок (менежники, обочины дорог, лесополосы и др.) 
до появления всходов озимой пшеницы, чтобы не допустить перехода 
цикадок на молодые всходы.

Агротехнические мероприятия в комплексе с химическими явля­ 
ются в настоящее время наилбее эффективным средством защиты зер­ 
новых от поражения их микоплазмами. Если строго придерживаться 
требований к возделыванию той или иной культуры, можно значитель­ 
но снизить поражение ее микоплазмами и свести к минимуму потери 
от этих и других заболеваний.

Химические мероприятия

Химическая обработка посевного материала начинается за 2—3 нед. 
до посева с протравливания семян [18, 19]. Протравливание семян зер­ 
новых колосковых должно быть комплексным и обеспечивать устойчи­ 
вость растений против всех неблагоприятных факторов (болезней, на­ 
sекомых и др.). Поэтому для протравливания используют смеси таких 
препаратов (расход указан на 1 т семян), как фосфамид (БИ-58) — 
2,5 кг, фундазол — 2,5 — 3 кг, вивакс —2,5—3 кг или байтан — 2 кг, 
которые защищают семена и растения от всех видов болезней и вредите­ 
лей. В эту смесь добавляют также 0,4 кг марганцевокислого калия, 
0,25 кг молибденовокислого аммония или 0,25 кг хлористого кобальта 
в качестве микроэлементов и химических иммунизаторов. Нормы рас­ 
хода воды — 15—25 л/т. Для повышения качества протравливания и 
улучшения санитарно-гигиенических условий работающих при про­ 
ведении протравливания необходимо использовать пленкообразующие 
вещества — сульфитно-спиртовую барду, поливиниловый спирт — 
0,5—1 кг/т, поливиниллацетат — 2 кг/т, карбоксиметил-целлюлозу — 
0,2 кг/т и др.

В последние годы испытана эффективность токсикации всходов 
пшеницы против личинок хлебной жужелицы. В опытах при одновре­
менном внесении с семенами 40 % фосфамида на гранулах суперфосфата обеспечивалось сильное подавление размножения злаковых тлей, цикадок и других вредителей. Прибавка зерна пшеницы достигала 3—5 ц/га. В связи с тем, что фосфамик избирательно действует на вредных насекомых и вписывается в индустриальную технологию возделывания зерновых, ее перспективность в защите пшеницы от вредителей и болезней несомненна [10]. Поэтому фосфамид (БИ-58) можно исключить из смеси препаратов, используемых при протравливании, и вносить его на гранулах суперфосфата.

Из химических препаратов, селективно воздействующих на фитопатогенные микоплазмы, лучше всего себя зарекомендовали некоторые антибиотики. Такие антибиотики должны отвечать двум требованиям: 1) подавлять рост микоплазм, 2) быть флоэмно-подвижными и способными к накоплению в ситовидных элементах флоэмы. Последнее условие особенно важно, так как установлено, что не все антибиотики, активные против микоплазм in vitro, сохраняют эту активность в растении. Флоэмная ткань растений оказывает селективное действие на различные вещества: одни она накапливает и концентрирует, другие или не попадают во флоэму, или быстро проходят через нее, третьи инактивируются веществами флоэмы. Так, тилозин — исключительно активный препарат для подавления микоплазм в организме насекомых-переносчиков — оказался не эффективным для снижения поражения растений микоплазмами или их оздоровления [61]. Опрыскиванием растений антибиотиками тетрациклинового ряда удается лечить микоплазмозы многих растений. У выздоравливающих растений желтые листья становятся зеленными, появляются нормальные побеги и цветы, количество микоплазм в клетках растений снижается [62], однако растения никогда полностью от них не освобождаются вследствие такой обработки. После прекращения обработки и снижения концентрации антибиотика в растении оно снова заболевает микоплазмозом. Поэтому антибиотики следует применять там, где это экономически выгодно, и в первую очередь — при защите древесных пород. В частности, применение тетрациклинов оказалось выгодным для защиты от увядания насаждений груши в Калифорнии [127], кокосовых пальм в США от поражения их летальной желтухой [119, 121]. Особенно эффективным оказалось опрыскивание растений растворами тетрациклинов в смеси с CaCl₂ и MnCl₂. Эти добавки способствуют проникновению тетрациклинов через листья в ткани растения и распространению их там [159]. Антибиотики можно вводить в растения, погруженная их корневую систему в растворы антибиотиков, и через ствол — посредством инъекции. Последний способ позволяет создавать высокую концентрацию антибиотика во всех частях и органах растения; его применяют лишь для сохранения ценных экземпляров растений, или коллекционных сортов [167].

В борьбе с микоплазмозами целесообразно применять антибиотики, которые, как и тетрациклины, селективно действуют на синтез белков и рибосомы прокариот: хлорамфеникол, линкомицин, эритромицин и макролиды [46]. Такие аминоглюкозиды, как стрептомицин, тоже взаимодействуют с рибосомами прокариот, изменяя их функцию.

Все антибиотики, активные против фитопатогенных микоплазм, уже применяются в медицине и ветеринарии, так как механизм действия этих препаратов на микоплазмы, независимо от среды их обитания, одинаков. Это автоматически исключает их использование в растениеводстве. Антибиотики вряд ли будут использовать в промышленных масштабах для борьбы с фитомикоплазмами. Практически работа с тетрациклинами и другими антибиотиками для фитопатолога имеет лишь теоретическое значение.
Более перспективными для борьбы с микоплазмозами растений являются дешевые препараты — парааминобензойная кислота и ее производные, сульфаниламидные препараты, предшественники синтеза фолиевой кислоты, конкурентно подавляющие в организме синтез фолиевой кислоты. Таких препаратов насчитывается свыше 10 000.

Некоторые производные парааминобензойной кислоты эффективны для лечения нескольких микоплазмозов растений [98, 99, 157]. Причем эти препараты не оказывают никакого действия на чистую культуру микоплазм и эффективны лишь in vivo [124]. Такое опосредованное действие препаратов было названо «иммунизацией». Механизм этого процесса не ясен, однако тот факт, что под влиянием аналогов парааминобензойной кислоты подавляется микоплазменная инфекция растений и они выздоравливают, свидетельствует о перспективности их применения в растениеводстве, а само явление элиминации микоплазм из клеток растения укажет на активацию защитных механизмов в клетке и заслуживает пристального внимания специалистов в области иммунитета растений.

Обнаружено несколько новых препаратов, которые, возможно, являются более эффективными, чем тетрациклины. Среди таких препаратов заслуживает внимания кинетин, с помощью которого удалось излечить растения томатов, пораженные столбцом [131].

Селекция устойчивых сортов
Агротехнические и химические приемы, направленные против переносчиков микоплазмозов и других заболеваний, ограничивают их вредоносность, однако не решают проблемы полностью. Ее предстоит решить селекционерам.

Считается, что невозможно практически вести целенаправленную селекцию растений, устойчивых к тому или иному микоплазмозу. Если на каком-то виде (сорте) растения питаются цикадка — переносчик определенного микоплазмоза, то микоплазмы — возбудители этого заболевания, получают возможность беспрепятственно проникать в ткани и клетки растения и размножаться там. Вести же селекцию на растениях, устойчивых против насекомых — переносчиков микоплазмозов очень сложно, хотя и возможно. Единственный анатомический признак, по которому можно повышать устойчивость растений к микоплазмозам — размер пор в ситовидных элементах флоэмы. В ситовидных сосудах большинства растений размер пор колеблется от 1 до 14 мкм и в среднем равняется 2 мкм. Через поры такого размера свободно проходят самые большие клетки микоплазм. Однако если учитывать отложение каллозы и накопление P-белка в ситовидных сосудах, то реальный размер пор в функционирующим растении окажется меньше, наблюдаемого в электронный микроскоп. Поэтому выведение сортов растений с размерами пор ситовидных сосудов 250—500 нм практически обеспечит получение растений, устойчивых к поражению микоплазмами (клетки микоплазм, попавшие в флоэму с такими ситовидными порами, будут локализованы в месте инфекции и не смогут распространиться системно).

Хотя работа по выведению устойчивых к микоплазмозам и вирузам сортов растений в настоящее время не ведется, но перспективы ее очевидны. В нашей стране получены гибриды и сорта пшеницы и ячменя, относительно устойчивые к хлебному пилильщику, пьявице, гессенской муке и другим вредным насекомым. Сложнее обстоит дело с получением гибридов и сортов с признаками устойчивости к сосущим
вредителям — цикадкам, тлям, вредной черепашке, хлебному клопику и пшеничному трипсу [37].

Узким местом для любого микоплазмоза является преодоление возбудителем покровных тканей растения. Попав в середину ткани, особенно в сосудистые пучки, микоплазма способна вызвать заболевания, интенсивность которого зависит от степени ее авидности к мембранным элементам растительной клетки. Следовательно, одной из мер защиты растений от поражения микоплазмами должно быть предотвращение попадания микоплазм в ткани растений, т. е. выведение сортов, на которых цикадкам, а возможно, и другим видам сосущих насекомых, было бы трудно даже невозможно питаться в силу каких-либо морфологических или анатомических особенностей. В природе растений с такими особенностями пока наблюдать не удалось, однако разработана теоретическая модель сорта пшеницы, устойчивого к насекомым с колюще-сосущим ротовым аппаратом. Согласно этой модели, устойчивые растения должны иметь: опущенный колос (с основанием без опущения); широкие, закрывающие всю зерновку и твердые (содержание клетчатки более 56 %) колосковые чешуи, плотно прилегающие к зерновке и образующиеся в верхней части колоса; влагалище, плотно прилегающее к стеблю и с трудом отделяющееся от него (зазор в среднем на один лист равен 0,11—0,13 мм). С помощью этой модели селекционеры могут вести поиск растений — доноров устойчивости, обладающих

Таблица 3.6. Устойчивость различных сортов пшеницы и тритикале к поражению бледно-зеленой карликовостью

<table>
<thead>
<tr>
<th>Сорт</th>
<th>Средний балл поражения</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Пшеница</td>
<td></td>
</tr>
<tr>
<td>Мироновская 808</td>
<td></td>
</tr>
<tr>
<td>Белоцерковская 41</td>
<td></td>
</tr>
<tr>
<td>Волна</td>
<td></td>
</tr>
<tr>
<td>Днепровская</td>
<td></td>
</tr>
<tr>
<td>Крупноколосая</td>
<td></td>
</tr>
<tr>
<td>Загадка 44</td>
<td></td>
</tr>
<tr>
<td>Калининская 11</td>
<td></td>
</tr>
<tr>
<td>Альбидум</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Т р и т и к а л е</td>
<td></td>
</tr>
<tr>
<td>Безостая 1 × Саратовская)  ×</td>
<td>+</td>
</tr>
<tr>
<td>Х АД</td>
<td></td>
</tr>
<tr>
<td>(Мироновская 808 × Читин-</td>
<td>+</td>
</tr>
<tr>
<td>ская) × АД</td>
<td></td>
</tr>
<tr>
<td>(Белоцерковская 198 × Харь-</td>
<td>+</td>
</tr>
<tr>
<td>ковская 55) × АД</td>
<td></td>
</tr>
<tr>
<td>(Безостая 1 × Харьковская</td>
<td>+</td>
</tr>
<tr>
<td>55) × АД</td>
<td></td>
</tr>
</tbody>
</table>

Примечание: «+» — наличие поражения, «—» — отсутствие поражения, АД — амфидиплоид.
перечисленными признаками, или осуществлять направленный мутагенез и отбор [37].

Таким образом, очень перспективным направлением в борьбе с микоплазмозом является поиск доноров и создание сортов, устойчивых к микоплазмозам, вирозам и к их переносчикам. Известно, что бледно-зеленая карликовость чаще всего поражает пшеницу, реже — овес и ячмень, еще реже — рожь и совсем редко — просо. Вероятно, у ржи имеются гены устойчивости к возбудителю бледно-зеленой карликовости пшеницы и она может быть донором этих генов в процессе селекции устойчивых растений. Подтверждением этого может служить пример селекции тритикале — гибрида пшеницы и ржи (табл. 3.6), которая отличается повышенной устойчивостью к поражению бледно-зеленой карликовостью по сравнению с исходными сортами пшеницы. Различий в пораженности микоплазмозами тритикале различных уровней плоидности не наблюдается, а выраженность признаков заболевания значительно ниже, чем у растений пшеницы. Следовательно, выведение сортов, устойчивых к микоплазмозам, является перспективным и, вероятно, наиболее эффективным путем защиты растений от этих заболеваний. Что касается зерновых, то наиболее ценными, с точки зрения устойчивости к микоплазмозам, являются трехвидовые тритикале.

Физические меры воздействия на возбудителей микоплазмозов

Термообработка нагреванием. Элиминация возбудителей заболеваний типа желтух из насекомых-переносчиков и растений при их прогревании теплым воздухом и паром оказалось удобным способом лечения микоплазмозов [9, 177] (табл. 3.7). Так, саженцы персика, пораженные желтухой, после прогревания при температуре 45 °C в течение 15 мин становятся практически здоровыми, а насекомое-переносчик желтухи астр утрачивает способность передавать инфекцию после питания на больном растении в течение 12 сут при температуре 32 °C [104]. При этой же температуре микоплазменные инфекции.

<table>
<thead>
<tr>
<th>Болезнь</th>
<th>Больное растение</th>
<th>Режим обработки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Желтуха астр</td>
<td>Барвинок (Catharanthus roseus)</td>
<td>45 °C 2,5 ч Вода</td>
</tr>
<tr>
<td>То же</td>
<td>Гибриды гладиолуса</td>
<td>42 °C 2 нед. »</td>
</tr>
<tr>
<td>То же</td>
<td>42 °C 2 нед. »</td>
<td></td>
</tr>
<tr>
<td>Карликовость клевера</td>
<td>Барвинок (Catharanthus roseus)</td>
<td>50 °C 1 ч Вода</td>
</tr>
<tr>
<td>Филлодия клевера</td>
<td>Барвинок (Catharanthus roseus)</td>
<td>40 °C 10 сут Воздух</td>
</tr>
<tr>
<td>Земляника</td>
<td>Барвинок (Catharanthus roseus)</td>
<td>41 °C 14 сут »</td>
</tr>
<tr>
<td></td>
<td>Барвинок (Catharanthus roseus)</td>
<td>40 °C 10 сут »</td>
</tr>
</tbody>
</table>
Продолжение табл. 3.7

<table>
<thead>
<tr>
<th>Болезнь</th>
<th>Больное растение</th>
<th>Режим обработки</th>
</tr>
</thead>
<tbody>
<tr>
<td>Желтуха барвина</td>
<td>Барвинок (Catharanthus roseus)</td>
<td>40 10 сут Воздух</td>
</tr>
<tr>
<td>Золотистое пожелтеление винограда</td>
<td>Виноград (Vitis vinifera)</td>
<td>30 3 сут Вода</td>
</tr>
<tr>
<td>«Ведьминь метлы» люцерны</td>
<td>Барвинок (Catharanthus roseus)</td>
<td>40 7 сут Воздух</td>
</tr>
<tr>
<td>Карликовость шелковицы</td>
<td>Шелковица (Morus sp.)</td>
<td>55 40 мин Вода</td>
</tr>
<tr>
<td>«Ведьминь метлы» опунции</td>
<td>Опунция (Opuntia tona)</td>
<td>45 5 ч Вода</td>
</tr>
<tr>
<td>Парастибубур</td>
<td>Барвинок (Catharanthus roseus)</td>
<td>40 10 сут Воздух</td>
</tr>
<tr>
<td>Дубоплодность апельсина</td>
<td>Апельсин (Citrus sinensis)</td>
<td>51 1,5 ч Вода</td>
</tr>
<tr>
<td>Махровость апельсина</td>
<td>То же</td>
<td>40 28 сут Воздух</td>
</tr>
<tr>
<td>Розеточная болезнь персика</td>
<td>Персик (Prunus persica)</td>
<td>50 10 мин Вода</td>
</tr>
<tr>
<td>Желтуха персика</td>
<td>То же</td>
<td>50 10 мин Вода</td>
</tr>
<tr>
<td>Хлоротическое скручивание листьев персика</td>
<td>То же</td>
<td>50 10 мин Вода</td>
</tr>
<tr>
<td>Х-болезнь персика</td>
<td>То же</td>
<td>50 6 мин Воздух</td>
</tr>
<tr>
<td>Побеление листьев сахарного тростника</td>
<td>Сахарный тростник (Saccharum officinarum)</td>
<td>54 50 мин Вода</td>
</tr>
<tr>
<td>«Ведьминь метлы» картофеля</td>
<td>То же</td>
<td>54 8 ч Воздух</td>
</tr>
<tr>
<td>Столбуб</td>
<td>Картофель (Solanum tuberosum)</td>
<td>36 6 сут Воздух</td>
</tr>
<tr>
<td>Израстанние (карликовость) малины</td>
<td>Барвинок (Catharanthus roseus)</td>
<td>42 13 сут Воздух</td>
</tr>
<tr>
<td>Карликовость черники</td>
<td>Черника (Vaccinium sp.)</td>
<td>52 2 ч Воздух</td>
</tr>
</tbody>
</table>

мы в растениях аттенуируются, и хотя растения полностью не выздоравливают, признаки заболевания проявляются умеренней [105]. Таким образом, термообработка растений, и особенно посадочного материала, при температуре 40—45 °C, которую большинство растений может выдержать, обеспечивает практически полное освобождение их от микоплазм. Этот феномен учитывает физиологические свойства микоплазм, которые, как известно, гибнут при температуре около 50 °C [155].
Эффект воздействия повышенных температур на микоплазмы был изучен Зелцер с соавторами [177] методом электронной микроскопии на примере возбудителя филлодии подслонуха во время его развития в растениях барвинка [177]. Изменения в структуре микоплазм появились уже через сутки после прогревания растения при 40 °С. На 3-й сут клетки микоплазм, локализованные внутриклеточно в тканях барвинка, имели четко выраженные периферийные электронно-плотные зоны, а на 7-е сут от этих клеток оставалась лишь оболочка. Пустые клетки микоплазм в клетках растений обнаруживались до 50-х сут после начала процесса термотерапии.

Термообработка охлаждением. Отрицательно на жизнеспособность микоплазм в растениях влияют и пониженные температуры в период перезимовки [169]. Есть, однако, данные о сохранении всех свойств микоплазм в растениях на протяжении 2 лет при —64 °С [49]. Отмирание микоплазм в растениях в период перезимовки можно объяснить, если обратиться к анатомии многолетних растений и функции отдельных их систем. Известно, что ситовидные элементы в стволах большинства древесных растений отмирают и становятся функционально недееспособными в течение периода покоя и перезимовки. Каждую весну у этих растений образуется новая флюэма. Так как микоплазмы в растении локализуются, главным образом, в ситовидных сосудах, то естественно, при их отмирании гибнут и микоплазмы. Таким образом, растение освобождается от инфекции, если микоплазмы не перезимовывают в корневой части.

Другие методы борьбы

Культивирование клеток меристемы. Положительные результаты по освобождению от микоплазм посадочного материала получены при культивировании клеток меристемы табака, содержащих микоплазмы, на среде для культуры тканей, в состав которой входит 2,4-дихлорфенилуксусная кислота. В итоге были получены растения, освобожденные от инфекции [166].

Иммунизация. В будущем для защиты растений от заболеваний типа желтухи определенное значение приобретет, вероятно, их иммунизация различными штаммами возбудителя, биологическая активность которых in vivo взаимно подавляется. Явление взаимного подавления двух или более штаммов одного и того же возбудителя было описано для двух штаммов желтухи асгр, каждый из которых в отдельности вызывает серьезное поражение растений, а при одновременном введении в растение они не вызывают заболевания, или болезнь протекает в легкой форме. Растение внешне остается здоровым, хотя в его клетках обнаруживаются клетки возбудителя [71, 108].

Практические приемы защиты растений иммунизацией конкурирующими штаммами до сих пор не разработаны, хотя их польза очевидна.
Глава 4
ВИРУСЫ И ВИРОИДЫ

ОБЩАЯ ХАРАКТЕРИСТИКА ФИТОПАТОГЕННЫХ ВИРУСОВ

Вирусы растений или фитопатогенные вирусы представляют собой обширную группу субмикроскопических инфекционных агентов, характерными свойствами которых являются малые размеры, не позволяющие наблюдать их в световом микроскопе, полная зависимость от клетки растения-хозяйна (облигатный паразитизм), простое строение вирусных частиц, которые содержат только один тип нуклеиновой кислоты (РНК или ДНК) сравнительно небольшой мол. массы (в среднем около 2,5 \( \times \) 10^6), покрытой одним или несколькими слоями белковых молекул.

Зависимость вирусов от клетки растения-хозяйна обусловлена тем, что в составе вирусной частицы или вириона отсутствуют большинство ферментов, необходимых для их размножения (репликации), и собственные рибосомы. Поэтому размножение вирусов возможно только в живой клетке с использованием ее ферментов и рибосом.

Генетическая информация вируса содержится в одной или нескольких молекулах либо Рибонуклеиновой кислоты (РНК), либо Дезоксирибонуклеиновой кислоты (ДНК), и соответственно рибосомы. Поэтому размножение вирусов возможно только в живой клетке с использованием ее ферментов и рибосом.

Вирусы растений различаются по морфологии (размеру и форме) частиц. Они могут быть изометрическими (т. е. близкими к сферическим) или анизометрическими (т. е. иметь спиральный тип симметрии — палочковидные, нитевидные вирионы).

Некоторые вирусы имеют частицы с комбинированным типом симметрии. В таких случаях форму вирионов определяют как бацилловидную (удлиненные частицы закруглены на обоих концах) или пулевидную (частицы закруглены только на одном конце).

Белковая оболочка вирусной частицы или вириона без нуклеиновой кислоты обозначается термином капсид. Она состоит из структурных единиц — субъединиц, которые у вирусов с изометрической формой могут специфически группироваться, образуя капсомеры, различимые на поверхности вириона в электронном микроскопе. Нуклеиновая кислота вместе с белками, находящимися в непосредственном контакте с ней (у некоторых сложных вирусов растений) образует нуклеокапсид.

Размеры частиц разных вирусов растений колеблются в значительных пределах, однако каждый вирус имеет частицы определенного размера одного или нескольких видов. Частицы изометрических вирусов имеют диам. 17—75 нм, частицы палочковидных, нитевидных и бацилловидных вирусов имеют дл. от нескольких десятков нм до 2000 нм.
и диам. 3—10 нм у нитевидных вирусов и 18—75 нм у бацилловидных вирусов.

В связи с наличием у вирусов растений белковой оболочки, в которую заключена нуклеиновая кислота, вирусы обладают антителенов активностью, или иммуногенностью, т. е. способностью вызывать образование антител в организме иммунизируемых животных.

Для получения антисывороток чаще всего используют кроликов, которым вводят антител (вирус, вирусный белок) различной степени чистоты и в количествах, определяемых целями получения антисыворотки. Для получения антисывороток с высокой степенью специфичности в качестве антител используют препараты очищенных концентрированных вирусных частиц.

Антисыворотки к вирусам растений используются для обнаружения вирусов, определения серологических взаимоотношений между разными вирусами или вирусными штаммами, количественного определения (титрования) вируса или вирусного белка в различных препаратах, изучения структуры вирусных частиц. Они применяются также в гистологических и цитологических исследованиях вирусных болезней растений.

Фитопатогенные вирусы поражают широкий круг растений из многих семейств. При этом один и тот же вид растения может быть хозяином многих вирусов. Каждый вирус имеет определенный круг растений-хозяев, т. е. растений, восприимчивых к данному вирусу, в клетки которых он способен проникать и размножаться, давая новые поколения вирусных частиц. Вирусные инфекции растений существенно отличаются от вирусных инфекций животных и микроорганизмов. Во-первых, фитопатогенные вирусы проникают в клетки растений через повреждения в клеточной оболочке при ее механическом травмировании, либо в результате прокалывания ротовыми органами членистоногих переносчиков. Во-вторых, растение, инфицированное вирусом, как правило, становится его постоянным носителем. При этом вирус проникает практически во все органы и ткани инфицированного растения (кроме вирусов, имеющих тканевую специфичность). Клетки растений, инфицированных вирусом при системном заражении, могут накапливать вирус в значительных количествах, оставаясь жизнеспособными. Отмирание инфицированных клеток имеет место у растений, реагирующих на вирусное заражение местной (локальной) некротизацией ткани, в результате чего происходит локализация вирусной инфекции в месте проникновения вируса в ткани растения. Однако растения часто реагируют на вирусную инфекцию обонячическими симптомами, и локальная некротизация тканей в местах проникновения вируса сочетается с развитием системной инфекции растения, которая также может приводить к местной или системной некротизации тканей разных органов. Вирусы могут вызывать у растений разнообразные патологические изменения в виде нарушения окраски (пожелтения, хлорозы, мозаичность), отмирания тканей (некротизация), деформаций (различного рода выросты, опухоли, кустистость побегов, изменение формы листьев и плодов и т. п.). Симптомы на восприимчивых растениях являются характерными для каждого вируса, т. е. могут служить одним из диагностических признаков при идентификации вирусов.

Растения, на которых легко выявляются симптомы, характерные для заражения данным вирусом, называются индикаторными растениями, или растениями-индикаторами. В тех случаях, когда на инокулированных листьях индикаторного растения в ответ на заражение вирусом образуются местные первичные поражения, оно может использоваться и для количественной оценки инфекционности вируса в конкретном инокулюме путем прямого подсчета этих поражений.
Кроме внешних симптомов вирусная инфекция вызывает различного рода гистологические и цитологические изменения в больном растении. Они проявляются в аномалиях сосудистой системы и различного рода изменениях структуры инфицированных клеток — от изменений в структуре отдельных клеточных органелл (хлоропластов, митохондрий, ядер и др.) до образования в клетке специфических вирусных включений. Включения могут быть образованы: 1) вирусными частицами, локализующимися в клетке характерным для данного вируса способом в цитоплазме, ядрах, хлоропластах; 2) вирусными частицами в сочетании со специфическими структурами, образовавшимися в клетке в результате проникновения вируса; 3) этими же структурами, но без связи их с вирусными частицами.

Тип внутриклеточного включения и особенности его строения и локализации в клетке являются характерными для данного вируса и используются для идентификации вирусов растений и даже разных штаммов одного вируса.

Распространение вирусов в природе в связи с их облигатным паразитизмом предполагает их передачу от инфицированного (больного) растения к здоровому и внедрение в живые клетки растения. Передача вирусов растений может проходить механическим способом, при вегетативном размножении инфицированных растений, а также посредством повилики, пыльцы и семян, насекомых и клещей, нематод и фитопатогенных грибов. Большинство способов передачи связано с повреждением оболочек клеток восприимчивого растения.

Механический способ передачи осуществляется при контакте системно инфицированных больных и здоровых растений под действием таких естественных факторов, как ветер, переплетение растений при полегании, воздействие животных, а также антропогенных (при обработке растений различными способами). При этом происходит повреждение клеток поверхностных тканей больных растений и передача свободно проникающего вируса в поврежденные клетки здоровых растений. Механический способ передачи широко используется в экспериментальной работе с вирусами растений. При этом сок больного растения (с каким-либо абразивным материалом) втирают в листья здоровых растений с целью повреждения поверхностных клеток. Этот метод называют механической инокуляцией сока.

Вегетативный способ передачи также имеет значение для вирусов, поражающих растения системно. Это происходит при размножении растений клубнями, черенками, корневищами, луковицами, клубнелуковицами, а также при различного рода прививках. Растение-паразит повилика также способно переносить ряд системно инфицирующих вирусов с больных растений на здоровые. Передача инфекции семенами имеет место в тех случаях, когда вирус проникает в ткани семян, и сеянцы, выросшие из этих семян, становятся инфицированными. Инфицирование семян может произойти как при проникновении вируса из вегетативных органов в генеративные, так и при внесении его с пыльцой больных растений.

Среди членистоногих животных важную роль в естественном распространении вирусов играют сосущие насекомые (тли, цикадки), белокрылки, мучнистые червецы, трипсы, жуки. Кроме того, переносчики вирусов являются клещи, нематоды и другие беспозвоночные животные. В зависимости от времени, в течение которого вирус сохраняется в переносчике, и некоторых других особенностей его взаимоотношения с переносчиком различают неперсистентные, полуперсистентные и персистентные вирусы и соответствующие им способы передачи.

Неперсистентные вирусы (как правило, они легко передаются механически) передаются переносчиками непосредственно после непро-
должительного (несколько сек) питания на больном или на здоровом растении. Переносчики быстро (в течение нескольких мин) теряют способность к инфицированию, если они перестают питаться на больном растении.

Персистентные вирусы, в отличие от неперсистентных, передаются переносчиком не сразу после приобретения их на больном растении, но только после латентного периода определенной продолжительности (от нескольких часов до нескольких суток), причем переносчик сохраняет способность передавать вирус в течение длительного времени (иногда в течение всей жизни), не теряя ее после линьки.

Полуперсистентные вирусы представляют собой промежуточную группу. Они способны передаваться переносчиком сразу после его питания на больном растении. После прекращения питания способность к инфицированию сохраняется в течение 3—4 сут. Латентный период отсутствует.

Способ передачи вирусов служит одной из характеристик, которая учитывается при идентификации вирусов и их классификации.

Меры борьбы с вирусами растений. Вирусные болезни вызывают существенные потери урожая и снижение качества продукции. Иногда вирусные эпифитотии приводят к полной потере урожая и гибели больных растений. Количественные показатели вреда, причиняемого вирусами, зависят от многих факторов, включая вирулентность патогенного агента, условия вегетации восприимчивых растений, степень распространения переносчиков и т. д.

До настоящего времени нет пригодных для массового применения на плантациях методов химического лечения вирусных болезней либо других эффективных методов удаления вируса из организма растений. Поэтому практически все противовирусные мероприятия направлены на предотвращение проникновения вирусов в растение и предупреждение их массового размножения на посевах культурных растений. Наиболее широко практикуются следующие меры:

Получение посадочного и посевного материала, свободного от вирусов. Такой материал получают от здоровых растений в тех случаях, когда вирусы передаются семенами или культура размножается вегетативным способом. Опобранное здоровье растения используют для получения семенного материала. С этой же целью применяют термическую обработку черенков, клубней некоторых растений (термотерапия) при температурах порядка 35—55 °С в течение времени, подбиаемого эмпирически в каждом конкретном случае.

Для получения здорового посадочного материала из больных, системно зараженных растений, широкое распространение получил метод культуры верхушечных меристем. Эта ткань растений содержит минимальное количество вируса, либо свобода от него. Выращивая в стерильных условиях на питательных средах в агаре отделенные от растения верхушечные меристемы, получают здоровые растения-регенеранты, размножая которые в стерильных условиях получают здоровый посадочный материал. Этот метод используют главным образом для получения безвирусных линий вегетативно размножаемых растений — картофеля, хризантем, гвоздик. При выращивании хризантем для удаления вируса из тканей используют приемы химотерапии, применяя для этих целей аналоги оснований нуклеиновых кислот — 2-тиоурацил, 8-азагуанин или другие вещества.

Уничтожение источников вирусов и переносчиков. Эти меры включают широкий диапазон таких агротехнических мероприятий, как уничтожение сорняков, в особенности многолетних, являющихся резерваторами многих вирусов, поражающих культурные растения; пространственная и сезонная изоляция от посевов других культур, способных
поражаться вирусами, опасными для данной культуры. Сюда относят и удаление остатков растений с полей после сбора урожая, меры предосторожности при работе с растениями (особенно в теплицах), исключающие перезаражение растений при механическом контакте с зараженным инструментом и одеждой.

Борьба с переносчиками должна проводиться как непосредственно на плантациях, так и вне их прямыми и косвенными методами, т. е. с применением инсектицидов, приемов пространственной изоляции, защитных полос из других видов растений, цветовых ловушек, загущенных посевов, оптимальных сроков посевов и вегетации, снижающих заселенность посевов переносчиками и т. п.

Выведение устойчивых и толерантных сортов растений. Наряду с традиционными методами селекции устойчивых против вирусов сортов в настоящее время предпринимаются обнадеживающие попытки получения таких форм растений на основе методов генной инженерии.

Перекрестная защита (иммунизация). Это понятие подразумевает защиту растений от вирулентных штаммов вирусов путем предварительного заражения их авирулентным (слабым) штаммом вируса. Этот метод целесообразно применять в контролируемых условиях защищенного грунта, поскольку в полевых условиях могут произойти непредвиденные случайные усиления вирулентности слабого штамма вируса, инфицирование этим штаммом других видов или сортов культурных растений, более восприимчивых к нему, либо заражение «иммунизированных» растений другим неродственным вирусом, комбинация с которым может вызвать усиление инфекции. [1, 10, 19, 41, 44, 86, 142, 151]

**КЛАССИФИКАЦИЯ И НОМЕНКЛАТУРА ВИРУСОВ РАСТЕНИЙ**

Классификация вирусов растений основывается на изучении свойств конкретных вирусных изолятов и их сравнении со свойствами других изолятов.

Под изолятом вируса понимают индивидуальную однородную популяцию вируса, выделенную из какого-либо источника и получаемую в результате клонирования путем серии последовательных пассажей через подходящее индикаторное растение. Вирусные изоляты, не отличающиеся по свойствам, относят к одному штамму вируса; изоляты, отличающиеся незначительно по некоторым свойствам, считаются штаммами одного и того же «вида» вируса.

Вирусы растений, которые имеют много подобных свойств, составляют «группу» вирусов.

Для классификации вирусов наиболее важными являются такие генетически стабильные признаки, как тип нуклеиновой кислоты, количество ее нитей и фрагментов, характер распределения фрагментов генома в вирусонах, особенности концевой структуры молекул нуклеиновой кислоты, количество и мол. масса полипептидов вирусона, морфология вирусных частиц — размер, форма, тип симметрии; гибридологические тесты вирусных частиц; антигенность и особенности серологических тестов; способ передачи и отношение к переносчикам; круг растений-хозяев и характер симптомов на них, в том числе гистологические и цитологические изменения в растении.

На основании сравнительного анализа свойств вирусов растений они объединены в 26 групп согласно классификации вирусов, принятой Международным комитетом по таксономии вирусов Международного
Союза микробиологических обществ (МКТБ МСМО). Некоторые вирусы растений отнесены к семейству Rhabdoviridae (2 подгруппы) и семейству Reoviridae (выделены в виде родов Phytoreovirus и Fijivirus) на основании их сходства с вирусами человека и животных, формирующих в основном состав этих семейств.

Группы вирусов растений неоднородны по составу, и некоторые из них представлены только одним членом.

Таксономия вирусов растений в ее современном состоянии не является естественной.

Номенклатура. Названия вирусов растений, несмотря на многочисленные, но не получившие поддержки попытки придать им международный латинизированный вид, до настоящего времени остаются тривиальными, т. е. образованными при первоначальном выделении и описании вируса главным образом в соответствии с внешними симптомами заболевания: «вирус табачной мозаики», «вирус мозаики люцерны», «вирус желтой карликовости ячменя», «вирус кольцевой пятнистости табака» и т. п. В силу исторических причин и преобладания англоязычной вирусологической литературы, в международной практике наряду с национальными вариантами названий вирусов растений в качестве международных названий используются английские названия вирусов (tobacco mosaic virus, alfalfa mosaic virus, barley yellow dwarf virus, tobacco ringspot virus). Эта практика фактически одобрена МКТБ МСМО, поэтому в настоящем издании русские названия (которые в ряде случаев являются дословными переводами с английского) лишь дополняют англоязычные названия вирусов растений.

В справочнике дана характеристика типичных представителей каждой группы (рода) и вирусов, имеющих значение для СССР. В текстовой части указано только количество возможных представителей каждой группы. Полностью они приведены в указателях русских и международных названий вирусов.

ДНК-содержащие вирусы

Разделы, описывающие ДНК-содержащие вирусы, включены в раздел "Вирусы, содержащие двухнитевую ДНК".

Группа вируса мозаики цветной капусты

Международное название: Каулимовирусы (Caulimovirus). Название группы происходит от начальных слогов английского названия типичного представителя группы — cauliflower mosaic virus — вирус.

Изометрические частицы диам. 50 нм.

Геном представлен одной молекулой кольцевой днДНК.

Единственный покровный полипептид с мол. массой 42.10^3.

Липиды в составе виронов не обнаружены. Физико-химические свойства: мол. масса 22,8.10^6; S_{20,W}=208; плавучая плотность в CsCl 1,37 г/см³; частицы очень стабильны.

Сильные иммуногены. Виральные частицы накапливаются в виде крупных электронно-плотных включений в цитоплазме. Круг растений-хозяев узок и ограничен в основном представителями семейства крестоцветных.

Вирусы передаются посредством тлей неперсистентным и полуперсистентным путями и механической инокуляцией сока экспериментально.

Представители группы: Cauliflower mosaic virus — вирус мозаики цветной капусты (типичный член); Carnation etched ring virus — вирус гравированных колец гвоздики; Dahlia mosaic virus — вирус...
мозаики георгина; Figwort mosaic virus — вирус мозаики норичника; Horseradish latent virus — латентный вирус хрена; Mirabilis mosaic virus — вирус мозаики мирабилиса; Strawberry vein banding virus — вирус окаймления жилок земляники. Группа включает 5 возможных членов. [103, 118, 142]

Cauliflower mosaic virus — Вирус мозаики цветной капусты
Изометрические частицы диам. 50 нм (рис. 4.1).
В естественных условиях заражает многие виды крестоцветных. В эксперименте некоторые штаммы вируса заражают также растения из семейства пасленовых.

Рис. 4.1. Частицы вируса мозаики цветной капусты

Симптомы проявляются сначала в виде хлоротического пожелтения жилок на молодых листьях, которое затем сопровождается хлоротической пятнистостью при развитии листьев (рис. 4.2). Иногда вирус вызывает скручивание листьев краями вниз, их искривление, пузырчатость, задержку роста и гибель растения. Штамм, инфекционный для дурмана, вызывает на его листьях системную желтую крапчатость.
Большинство штаммов образуют в клетках эпидермиса листьев тела включения, которые при окраске флоксином видны в световом микроскопе в виде компактных сферических или эллипсоидальных масс размером в несколько мкм.
Переносится тлями Myzus persicae, Brevicoryne brassicae неперсистентным способом. Передача семенами не выявлена; легко передается механически.
ТТИ составляет 80 °С, ПРС — 10⁻³, ПСИ — 6—8 сут.
Распространение: во всех районах мира с умеренным климатом, в том числе в СССР.
Методы диагностики: 1. Заражение растений-хозяев вируса (род Brassica). 2. Световая и электронная микроскопия препаратов инфицированных растений.
цированных растений. 3. Передача вируса тлями неперсистентным спо­собом. 4. Серологический.

Меры борьбы: 1. Выбраковка больной рассады и растений. 2. При­менение афицидов. 3. Использование устойчивых сортов. [10, 87, 151]

Carnation etched ring virus — Вирус кольцевой гравировки гвоздики Изометрические частицы диам. 47—50 нм.

В естественных условиях вирус обнаружен только на гвоздике (Dianthus caryophyllus). Вызывает появление некротических крапинок, колец и штрихов на листьях, однако часто (при температуре выращи­вания растений выше 20—22 °C), симптомы не проявляются, либо имеют вид слабой гравировки.

В эксперименте может пере­носиться механической инокуля­цией сока на смолевку (Silene armeria, мыльнянку (Saponaria vaccaria) и гвоздику (D. barbatus). На листьях смолевки через 2—3 нед. после инокуляции появляются слабые некротические штрихи и кольца, на мыльнянке — концент­рические красные кольца, некро­тические пятна, желтые пятна, линии и кольца (на листьях) и укорачивание междоузлий. Симп­томы здесь зависят от освещения и температуры. В эпидермисе листьев мыльнянки (S. vaccaria) содержится много клеток с ха­рактерными для вируса телами включений в отличие от D. ca­ryophyllus.

В природе распространяются посредством тлей, в частности Myzus persicae. Легко передаются механически.

Распространение: широкое, в том числе в СССР.

Методы диагностики: 1. Био­тестирование. 2. Серологические тесты. 3. Способы передачи тлями. 4. Электронная микроскопия.

Меры борьбы: 1. Получение безвирусных клонов гвоздики и ис­пользование оздоровленного материала. 2. Борьба с тлями — пере­носчиками вирусов. [10, 21, 135, 153]

Dahlia mosaic virus — Вирус мозаики георгины Изометрические частицы диам. 48—50 нм.

Вирус обнаружен только на георгинах, хотя в эксперименте мо­жет быть перенесен на ряд видов семейств сложноцветных и пасле­новых, маревых и щирицевых механической инокуляцией сока ге­оргин.

Симптомы на разных сортах георгин проявляются по-разному: чаще всего в виде пожелтения участков листа вдоль жилок, иногда асимметрии роста половинок листа и пузырчатости листьев. На не ко­торых сортах происходит укорачивание междоузлий. Отдельные сорта являются бессимптомными носителями вируса.

Диагностическим видом является вербена. Характерный симптом— сворачивание листьев краями вниз через 10 сут после инокуляции;
позже появляется посветление жилок, а спустя 1 мес. — желтые участки вдоль жилок.

Цинния изящная реагирует на вирус карликовостью с заметным закручиванием листьев вниз; агератум — хлоротическими некрозами и системным хлорозом жилок и листьев; щирица хвостатая — хлоротическими некрозами и системной пятнистостью листьев. В эпидермисе листьев георгина вирус образует внутриклеточные включения.

В природе распространяется неперсистентным способом тлями Myzus persicae, Aphis fabae, Macrosiphum euphorbiae. Передается механически.

Распространение: повсеместно, в том числе в СССР.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия виронов и включений. 3. Световая микроскопия включений.

Меры борьбы: 1. Выбраковка больных растений. 2. Применение афицидов против переносчика вируса. 3. Использование устойчивых сортов. [19, 70, 153]

ВИРУСЫ, СОДЕРЖАЩИЕ ОДНОНИТЕЛЬНУЮ ДНК

Группа вируса полосатости кукурузы

Международное название Геминивирусы (Geminivirus).

Название группы происходит от латинского слова gemini (близнецы), указывающего на характерный вид сдвоенных частиц.

Сдвоенные частицы, 18 × 20 нм, содержащие 2 неполных икосаэдра с 22 общими капсомерами (рис. 4.3). Геном представлен одной или двумя молекулами кольцевой однонитевой ДНК мол. массой (7—8) · 10⁵. Единственный полипептид оболочки мол. массой (28—34) · 10³. Липиды и углеводы не обнаружены. Физико-химические свойства: S₂₀,₇₀.

Сильные иммуногены.

Вирусные частицы аккумулируются в ядре, образуя крупные агрегаты.

Поражают растения из разных семей, но каждый вирус имеет узкий круг растений-хозяев.

Вирусы переносятся цикадками Cicadulina mobila, Cerculifer tenellus, или белокрылками Bemissia tabaci, Orosius argentatus персистентным путем. Геминивирусы, передающиеся белокрылками, инфицируют только двудольные растения и содержат в составе вирона две молекулы ДНК, обозначаемые ДНК-1 и ДНК-2, тогда как геминивирусы, передающиеся цикадками, инфицируют либо однодольные, либо двудольные растения и имеют геном, представленный одной молекулой ДНК. Некоторые вирусы передаются механической инокуляцией сока.
Представители группы: Maize streak virus — вирус полосатости кукурузы (типичный член); Bean golden mosaic virus — вирус золотистой мозаики фасоли; Beet curly top virus — вирус курчавости верхушки свеклы; Cassava latent virus — African cassava mosaic virus — латентный вирус маниоки; Chloris striate mosaic virus — вирус штриховатой мозаики хлорис; Euphorbia mosaic virus — вирус мозаики молочая; Mungbean yellow mosaic virus — вирус желтой мозаики маша; Tobacco leafcurl virus — вирус курчавости листьев табака; Tomato yellow dwarf virus — вирус желтой карликовости томатов; Tobacco yellow dwarf virus (bean summer death virus) — вирус желтой карликовости табака (вирус летнего отмирания фасоли); Tomato yellow leaf curl virus — вирус желтой курчавости листьев томатов; Tomato golden mosaic virus — вирус золотистой мозаики томата (син. Tomato yellow mosaic virus); Wheat dwarf virus — вирус карликовости пшеницы. Группа включает 8 возможных членов.

Maize streak virus — Вирус полосатости кукурузы
На кукурузе вирус вызывает хлоротическую испещренность или полосатость листьев (рис. 4.4). Накапливается в ядрах растений. Некоторые изоляты можно перенести на сахарный тростник и просо.
Переносится цикадкой Cicadula mbila, но не передается со-ком.
Распространение: повсеместно на посевах кукурузы в Африке и Азии (Индия).
Меры борьбы: 1. Использование инсектицидов против переносчика вируса, уничтожение резерваторов переносчика, применение сроков и схем посева, снижающих его распространение. 2. Посев устойчивыми сортами. 3. Карантинные мероприятия. [87]

РНК-содержащие вирусы
ВИРУСЫ, СОДЕРЖАЩИЕ ДВУХНИТЕВУЮ РНК
Семейство Reoviridae — Реовирусы
Род Phytoreovirus — Фитореовирусы
Частицы икосаэдрической, заметно угловатой формы. Вирус раковых опухолей клевера имеет наружный аморфный слой, состоящий из двух полипептидов, наружный слой из отчетливых капсомеров и глад-
кую сердцевину около 58 нм в диам., образованную тремя полипептидами (с мол. массой (58, 118 и 160) \cdot 10^3).

Вирусные частицы содержат 12 фрагментов днРНК с мол. массой (0,3—3,0) \cdot 10^6, с общей мол. массой 16 \cdot 10^6, 22 % массы вируса. Молярная доля Г + Ц 38—44 %.

Семь полипептидов с мол. массой (35—160) \cdot 10^3 (78 % массы вируса)

Физико-химические свойства: мол. масса 65 \cdot 10^6, S_{20,v}^w 510

Реплицируются в цитоплазматической вироплазме. Переносятся цикадками Agallia, Agalliopsis, Nephotelix персистентным способом. Цикадки сохраняют способность передавать вирус в течение всей жизни. Вирусы передаются потомству цикадок трансовариально (через яйцеклетки).

Представители рода: Wound tumor virus — вирус раневых опухолей клевера (типичный член); Rice dwarf virus — вирус карликовости риса. [86, 87, 103, 121, 142]

Род Fijivirus — Фидживирусы

Вирусные частицы икосаэдрические. Имеют 12 наружных выступов диам. 11 нм и дл. 8—16 нм. Вирусные частицы содержат 10 фрагментов днРНК с мол. массой (1,0 — 2,9) \cdot 10^6 и общей мол. массой (18—20) \cdot 10^6.

Белковый компонент для вируса болезни Фиджи неизвестен. Для вируса шероховатой карликовости кукурузы представлен 7 полипептидами с мол. массой (64—139) \cdot 10^3.

Физико-химические свойства: не установлены.

Реплицируются в цитоплазматических вироплазмах. Круг растений-хозяев включает цветковые растения, принадлежащие к семейству злаковых. Насекомыми-хозяевами являются цикадки семейства Delphacidae. В природе переносятся только цикадками этого семейства (Laodelphax, Javesella, Delphacodes, Sogatella, Perkinsiella, Unkanodes) персистентным способом.

Период приобретения вируса — 4 ч; латентный период около двух недель. Способность передавать вирус насекомыми растениям сохраняется всю жизнь.

Представители рода: Fiji disease virus — вирус болезни Фиджи (типичный член).

Группа I (серологически родственны)
Cereal tillering disease virus — вирус болезни кущения злаков;
Maize rough dwarf virus — вирус шероховатой карликовости кукурузы;
Pangola stunt virus — вирус карликовости панголы; Rice black streaked dwarf virus — вирус черно-полосатой карликовости риса.

Группа II
Fiji disease virus — вирус болезни Фиджи.
Группа III (серологически родственны)
Arrhenatherum blue dwarf virus — вирус голубой карликовости вапенатерума;
Lolium enation virus — вирус энаций райграсса; Oat sterile dwarf virus — вирус стерильной карликовости овса. [86, 103, 121, 142]

Clover wound tumor virus — Вирус раневых опухолей клевера
Икосаэдрические частицы диам. 70 нм.

Экспериментально инфицирует смолку широколистую, пиретрум, донник белый, клевер пурпурный, лобелию садовую и др.

На клевере наблюдается разрастание жилок до листоподобных выростов. Развитие деревянных опухолей наблюдается на корнях, иногда и на стеблях больных растений.

383
Передается цикадками Agallia constricta, A. quadripunctata, A. novella персистентным способом. Инкубационный период в насекомых 12—14 сут при 25—30 °C и 30 сут при 16—20 °C.

Распространение: ограниченно. На посевах клевера встречается чрезвычайно редко.

Меры борьбы: не разработаны. [10, 48, 61, 151]

Fiji disease virus — Вирус болезни Фиджи
Полиэдрические частицы диам. 70 нм.
Поражает сахарный тростник. Монофаг. Одним из основных симптомов болезни является развитие на нижней поверхности листа удлиненных опухолей или галлов. В результате ненормального развития тканей галлы располагаются вдоль крупных жилок или сосудистых пучков. Сходным образом галлы возникают и в сосудистых пучках стебля, где их можно обнаружить, расщепляя пораженный побег. Наиболее ярко выраженным симптомом болезни Фиджи, хорошо заметным в полевых условиях, является укорочение или скручивание последних развивающихся листьев.
Передается цикадками Perkinsiella saccharicida и P. vastatrix.
Взрослые особи P. saccharicida не могут приобрести вирус, а инфицируются через нимфы при питании на больных растениях сахарного тростника.
Распространена: впервые заболевание зарегистрировано на острове Фиджи. Встречается в Новом Южном Уэльсе, на Яве, на Филиппинских островах и Новой Гвинее.
Методы диагностики: 1. Электронная микроскопия. 2. Серологический.
Меры борьбы: 1. Борьба с переносчиками. 2. Выведение устойчивых сортов. [119]

ВИРУСЫ, СОДЕРЖАЩИЕ ОДНОНИТЕВУЮ РНК
Семейство Rhabdoviridae* — Рабдовирусы
Название семейства происходит от греческого слова «rhabdos», означающего «палочка».
Бацилловидные или пулевидные частицы дл. 130—430 нм и шир. 40—95 нм (рис. 4.5).
Геном представлен одной молекулой неинфекционной оРНК с мол. массой 4 · 10^6, 1—2 % массы вируса.
В вирионе содержится несколько белков; из них 4—5 основных, обозначаемых L, G, N, NS и M.
В составе вируса выявлены липиды и углеводы, содержание которых зависит от типа клетки хозяина.
В зависимости от места сборки в клетке и состава белков различают две подгруппы рабдовирусов растений — А и В. Вирусы подгруппы А созревают и накапливаются в цитоплазме, их внешняя оболочка образуется из мембраны эндоплазматического ретикулума; в оболочке со-

* В семейство Rhabdoviridae входят также роды Vesiculovirus (вирусы группы везикулярного стоматита) и Lyssavirus (вирусы группы бешенства), объединяющие вирусы, инфекционные для животных и человека.
держат белок $M$ (мол. масса $(145-170) \cdot 10^3$). По этим свойствам подобны вирусам рода Vesiculovirus.

Вирусы подгруппы В почваются на внутренней мембране ядерной оболочки и накапливаются в перинуклеарном пространстве; в оболочке имеют белки $M1$ (мол. масса $(27-44) \cdot 10^3$) и $M2$ (мол. масса $(21-39) \cdot 10^3$); по этим свойствам подобны вирусам рода Lissavirus. Вирусы обеих групп имеют белки $G$ (мол. масса $(71-93) \cdot 10^3$) и $N$ (мол. масса $(55-60) \cdot 10^3$). Третья группа представлена вирусами с частицами без внешней оболочки (35 нм шир. и 100—120 нм дл.). Они обычно связаны с ядром клеток и напоминают нуклеокапсиды рабдовирусов. Их считают возможными членами группы. Некоторые рабдовирусы

Рис. 4.5. Поперечный (1) и продольный (2) срез виронов рабдовирусов растений

растений передаются соком, все легко инактивируются при комнатной температуре.

Обычно имеют узкий круг растений-хозяев. Размножаются в тлях и цикадках-переносчиках.

Представители семейства:

Подгруппа A. Lettuce necrotic yellow virus — вирус некротической желтухи латука; (типичный член) Broccoli necrotic yellows virus — вирус некротической желтухи брокколи; Wheat striate mosaic virus — вирус полосатой мозаики пшеницы.

Подгруппа B. Potato yellow dwarf virus — вирус желтой карликовости картофеля (типичный член); Eggplant mottled dwarf virus — вирус крапчатой карликовости баклажана; Sonchus yellow net virus — вирус желтой сетчатости осота; Sowthistle yellow vein virus — вирус желтой жилок осота. Возможные члены (перечислены в соответствии с типом переносчика):

13 8-352
Переносимые тлями: Carrot latent virus — латентный вирус моркови; Lucerne enation virus — вирус энаций люцерны; Parsley latent virus — латентный вирус петрушки; Raspberry vein chlorosis virus — вирус хлороза жилок малины; Strawberry crinkle virus — вирус морщинистости земляники.

Переносимые цикадками: Barley yellow striate mosaic virus (cereal striate virus) — вирус желтой полосатой мозаики ячменя (полосатость злаков); Cereal chlorotic mottle virus — вирус хлоротической крапчатости злаков; Digitaria striate virus — вирус полосатости дигитарии; Finger millet mosaic virus—вирус мозаики элевзины; Maize mosaic virus—вирус мозаики кукурузы; Northern cereal mosaic virus — вирус северной мозаики злаков; Oat striate virus — вирус полосатости овса; Rice tratsitory yellowing virus — вирус временного пожелтения риса; Russian winter wheat mosaic virus — вирус русской мозаики озимой пшеницы; Sorgasm stunt mosaic virus — вирус карликовой мозаики сорго; Wheat chlorotic streak virus — вирус хлоротической штриховатости пшеницы.

Переносимые кружевным клопом: Beet leaf curl virus — вирус курчавости листьев свеклы.

Переносимые клещом: Coffee ringspot virus — вирус кольцевой пятнистости кофейного дерева.

Переносчик неизвестен: Chrysanthemum frutescens virus — вирус хризантемы; Cow parsnip mosaic Virus — вирус мозаики борщевика; Cynara virus — вирус цинары; Endive virus — вирус эндивия; Gomphrena virus — вирус гомфрены; Melilotus latent virus — латентный вирус донника; Pelargonium vein clearing virus — вирус посветления жилок пеларгонии; Pisum virus — вирус гороха; Raphanus virus — вирус редьки.

Кроме перечисленных вирусов к группе рабдовирусов растений на основании сходства морфологии вирусных частиц, обнаруженных в растениях, в качестве возможных членов отнесено около 40 вирусов, поражающих растения из различных семейств. [25, 85, 87, 142]

Potato yellow dwarf virus — Вирус желтой карликовости картофеля

Бацилловидные частицы размером 380 × 75 нм. Накапливаются в перинуклеарном пространстве и в цитоплазме клеток инфицированных растений.

На картофеле вызывает хлороз листьев, ямчатый некроз стеблей и задержку роста. Клубни завязываются в незначительном количестве, часто некротизируются внутри. Клубни, собранные с больных растений, плохо прорастают, побеги отмирают до цветения; если же цветы образуются, то они некротизируются не раскрываясь. Симптомы проявляются более резко при повышенных температурах, при пониженных они маскируются.

При инокуляции сока заражает ряд растений из семейства сложноцветных: ромашку собачью, китайскую садовую астру, хризантему, цикорий дикий, рудебекию шершавую, козлобородник луговой; из семейства крестоцветных: горчицу черную, пастушью сумку и ряд растений семейств бобовых, пасленовых и др.

Индикаторными растениями для вируса являются махорка, реагирующая на заражение хлоротическими местными поражениями, пятнистостью и хлорозом листьев, и табак клейкий, на листьях которого развиваются просветление жилок и мозаика.

Переносится персистентным способом цикадками Aceratagallia sanguinolenta, A. lyrata, A. obscura, A. curvata, Agallia constricta, A. quadripunctata, Agallipsis novella. Наибольшее значение имеет A. sanguinolenta, которая развивается в основном на красном клевере. Вирус в красном клевере сохраняется в латентном состоянии, и, таким
образом, это растение является резерватором и для вируса, и для пере­носчика. Инкубационный период в организме A. sanguinolenta — 6—
10 сут. Вирус размножается в организме цикадки, выявляется в гемо­лимфе и внутренних органах и может передаваться потомству трансо­вариально. Передается прививкой и механически, соком.
ТТИ в соке махорки составляет 50 °С, ПРС — 10^{-3}—10^{-5}.
Распространение: Северная Америка, где вызывает эпифитотии
на посадках картофеля и значительные потери урожая. В последние
dесятилетия болезнь, вызываемая этим вирусом в полевых условиях,
не наблюдалась. Карантинный вирус для СССР

Рис. 4.6. Частицы вируса курчавой карликовости картофеля в клетке
листа картофеля, УТ-срез (фото Козара Ф. Е.)

Методы диагностики: 1. Биотестирование. 2. Серологический.
3. Электронная микроскопия.
Меры борьбы: 1. Карантинные мероприятия. 2. Комплекс мер по
уничтожению переносчиков вируса, выбраковка больных растений.

Вирус курчавой карликовости картофеля*
Бацилловидные частицы размерами 240—280 X 75 ± 5 нм (рис.
4.6). Выделенные из клетки, имеют пуловидную форму и средние раз­
меры 140 X 85 нм (рис. 4.7).
Обнаружен на посадках картофеля сортов Приекульский ранний,
Гатчинский, Детскоеольский, Черниговчанка, Новинка, Бородянский
в УССР и БССР. Симптомы поражения проявляются особенно четко на
вторично инфицированных растениях картофеля в жаркую погоду в ви­
de сильной курчавости верхушечных листьев, их измельченности и

* Английское название вируса не приводится, поскольку вирус описан только
в СССР и не представлен в Международный комитет по таксономии вирусов.
скручивания в различных направлениях, розеточности верхушек побегов, отставания роста растений. Урожай клубней незначителен. Клубни плохо прорастают при посадке в связи с развивающимся некрозом глазков и отмиранием почек.

Рис. 4.7. Частицы вируса курчавой крапчатости картофеля в очищенном препарате (фото Козара Ф. Е.)

Вирус выявлен также на естественно зараженных растениях осота. Переносчик вируса неизвестен. Вирус передается на картофель прививкой, уколом, однако с трудом передается механической инокуляцией сока. На инокулированных листьях махорки (Nicotiana rustica) вирус вызывает образование желтых локальных поражений (рис. 4.8) через 2—3 нед., а на вновь отрастающих листьях— резкое системное посветление жилок.

ТТИ составляет 56 °С, ПРС — 10⁻² и ПСИ — менее 6 ч. При 4 °C в листьях сохраняет инфекционность в течение 7 сут, а в очищенных препаратах — до 4 сут.

Распространение: выявлен и описан только на Украине и в Беларуси.

Методы диагностики: 1. Биотестирование. 2. Серологический. 3. Электронная микроскопия.

Меры борьбы: не разработаны. [18, 22]
Raspberry vein chlorosis virus — Вирус хлороза жилок малины

Бацилловидные частицы размерами 430 × 65 нм.

Формируются и накапливаются в цитоплазме.

Заражает растения из семейства розоцветных — малину, землянику. На листьях малины сорта Норфолк Джиант вызывает рассеянную желтую пятнистость на участках листьев около вторичных жилок и по периферии листьев (рис. 4.9). На многих сортах симптомы незаметны.

Переносится тлями Aphis idaei, передается прививками.

Распространение: во всех районах культивирования малины. Благодаря широкому обмену материалом для вегетативного размножения выявлен в Европе, Северной Америке, Новой Зеландии.

Меры диагностики: 1. Биотестирование на индикаторном сорте малины Норфолк Джиант.
2. Электронная микроскопия.

Меры борьбы: выбраковка больных растений и борьба с тлей.

Группа вируса пятнистого увядания томатов (Tomato spotted wilt virus group)

Сферические частицы диам. 82 нм с суперкапсидом, электронно-плотной наружной оболочкой и двойным слоем липидов. Нуклеиновая кислота представлена положительно-геномной онРНК. Вероятно, четыре различных молекулы с мол. массой (2,6, 1,9, 1,7 и 1,3) × 10⁸.

Четыре основных полипептида с мол. массой (27,52, 58 и 78) × 10³ и три миорных белка. Один из них (мол. массой 2 × 10³) локализован в суперкапсиде. Липиды находятся в оболочке (суперкапсиде), составляющей около 20 % массы вирусной частицы. 1 миорный белок и все 4 основных структурных белка гликозилированы.

Физико-химические свойства: S20,w 560, плотность в сахарозе 1,21 г/см³. Вирус очень быстро инактивируется в неочищенном соке.

Слабые иммуногены. В цитоплазме зараженных клеток наблюдаются зернистые включения. Характерен очень широкий круг растений-хозяев. Передается тлиами перистентным способом; приобретается только личинками. Легко передается экспериментально инокуляцией сока.

Представители (монотипная группа): Tomato spotted wilt virus — вирус пятнистого увядания томатов. [147]

Tomato spotted wilt virus — Вирус пятнистого увядания томатов

Крупный сферический вирус. Вироны бывают разного размера (50—80—120 нм), имеют двойную мембрану. В онтогенезе образуются сложные, комплексные вирионы, в состав которых входят 2—4 простых вириона диам. 27 нм (рис. 4.10).

Специализация вируса выражена слабо. Он поражает широкий круг однодольных и двудольных растений. К 1968 г. было известно
Рис. 4.10. Частицы вируса пятнистого увядания томатов, УТ-срез (фото Колесник Л. В.)

Рис. 4.11. Симптомы вируса пятнистого увядания томатов на табаке (фото Коваленко А. Г.)

390
157 двудольных и 6 однодольных поражаемых видов из 29 и 5 семейств соответственно. Из пасленовых культур поражает табак (рис. 4.11), картофель и овощные пасленовые (томаты, перец, баклажаны), из бобовых культур — люпин, горох, фасоль, коровий горох. В Индии вызывает потери арахиса. К вирусу чувствительны виды из семейства сложноцветных: георгина, хризантема, гербера, цинния, календула, салат-латук, многочисленные сорные растения. 

Типичными симптомами являются разноцветные (определенный цвет характерен для соответствующих растений) кольца, бронзовый «загар», некротические пятна, а также системная некротизация растений. 

У георгины наблюдаются симптомы двух типов: хорошо заметная мозаичная крапчатость, или концентрические кольца и волнистые линии на листьях (рис. 4.12). Георгина является одним из основных хозяев вируса, с его клубнями вирус заносится в новые районы. 

Один из вредоноснейших вирусов. В теплицах может полностью уничтожить урожай томатов, на табаке заболевание нередко принимает характер эпифитотий.

Передается несколькими видами трипсов (Thysanoptera) — Thrips tabaci, Frankliniella schultzei, F. occidentalis, F. fusae. Инкубационный период продолжается 5—9 сут. Первично инфицируются только личинки. Взрослые особи не способны заражать здоровые растения. Передавать вирус могут личинки и имаго, которые развиваются из инфицированных личинок. Трипсы могут быть резерваторами зимой. Растениями-резерваторами являются гуляник и георгина. 

ТТИ составляет 42—48 °С. ПРС — 10^{-5}, ПСИ — 5 — 6 ч при к.т. 

Распространение: во многих странах. В СССР зарегистрирован на юге, в частности в Грузии. В СССР получил название вирус бронзового увядания томатов.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия. 3. Метод внутриклеточных включений.

Меры борьбы: 1. Пространственная изоляция посадок томатов от посадок георгин — резерваторов вируса, а также от посадок лука, являющихся местом резервата табачного трипса. 2. Преимущественное выращивание ранних сортов томатов в хозяйствах с широким распространением заболевания. 3. Борьба с сорняками — резерваторами инфекции и очагами обитания табачного трипса. 4. Выведение устойчивых сортов томатов. [59]
Семейство Togaviridae — Тогавирусы

Название происходит от латинского тога, обозначающего покров, плащ, мантию, что подчеркивает наличие у вирусных частиц оболочки (тогавирусы).

Семейство тогавирусов подразделяется на 4 рода, представители которых поражают животных и человека. Характеристика одного из них, представленного пестивирусами (от латинского pestis, т. е. чума) приведена здесь в связи с тем, что в него входит вирус со сходными свойствами (вирус крапчатости моркови), изолированный из высших растений.

Сферические частицы диам. 40—70 нм с оболочкой, прилегающей к сферическому нуклеокапсиду диам. 25—35 нм.

Нуклеиновая кислота представлена одной молекулой положительно геномной онРНК с мол. массой 4·10^8, составляющей 5—8 % массы частицы. Белок представлен тремя-четырьмя полипептидами, один или несколько из них гликозированы.

В липопротеиновой оболочке обнаружены вирусспецифические гликопептиды.

Физико-химические свойства: S_{20,W} 150—300. Плавучая плотность в CsCl 1,25 г/см^3; в сахарозе 1,13—1,34 г/см^3.

В членистоногих не размножаются. Представители группы: Bovine diarrhea virus — вирус бычьей диареи (типичный член). Возможный представитель: Carrot mottle virus — вирус крапчатости моркови. [117]

Carrot mottle virus — Вирус крапчатости моркови
Сферические частицы диам. 50 нм.
Кроме моркови поражает сельдерей и кориандр. Для моркови заболевание протекает бессимптомно. При совместном поражении с вирусом краснолистности моркови вызывает пеструю карликовость. У кориандра вызывает желтую системную хлоротическую крапчатость или пожелтение с некротическими пятнами и умеренную карликовость. TTІ составляет 70 °С, ПРС — 10^{-3}, ПСІ — 9—21 ч.
Передается персистентно тлей Cavariella aegopodii Scop., в которой сохраняется и после линьки. Передается механической инокуляцией сока. Круг экспериментальных растений-хозяев включает маревые и пасленовые.

Распространение: Австралия.
Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия.
Меры борьбы: 1. Уничтожение тлей на посевах. 2. Изоляция от посевов других культур семейства зонтичных. [149, 150]

ВИРУСЫ С НЕПРЕРЫВНЫМ ГЕНОМОМ
Группа вируса хлоротической карликовости кукурузы (Maize chlorotic dwarf virus group)
Изометрические частицы диам. 30 нм (рис. 4.13); мол. масса 8,8·10^6; S_{20,W} 183; плавучая плотность в CsCl 1,51 г/см^3. Нуклеиновая кислота представлена одной молекулой (+) онРНК с мол. массой 3,2·10^6. Липиды и углеводы не обнаружены.
Сильные иммуногены. Круг растений-хозяев узок и ограничен видами семейства злаковых. Передача только цикадками полуперистентным способом.
Представители группы: Maize chlorotic dwarf virus — вирус хлоротической карликовости кукурузы (типичный член). [87]

392
Маиз хлоротический карликовый — Вирус хлоротической карликовости кукурузы

Вирус вызывает болезнь остановки роста на кукурузе. Кроме карликовости типичным симптомом вируса на кукурузе является мелкая хлоротичная полосчатость вдоль самых мелких жилок листьев ("хлоротичная полосчатость третичных жилок"). Этот симптом имеет диагностическое значение.

Образует плотные гранулярные включения с изометрическими вирусными частицами и полосчатые пластинчатые включения во флюэме.

Переносится цикадкой Graminella nigrifrons полуперсистентным способом. Другие естественные переносчики вируса неизвестны, хотя в экспериментах он передается цикадками Deltacephalus sonorus и Exitian eexitiosa. Не передается механической инокуляцией сока.

Рис. 4.13. Частицы вируса хлоротической карликовости кукурузы

К вирусу восприимчивы сорго, просо, африканское просо, пшеница, щетинник и еще ряд видов из семейства злаковых. Манис многолетний и 4 вида рода Tripsacum устойчивы к вирусу.

Распространение: США.

Меры борьбы: 1. Борьба с переносчиками путем уничтожения его резервуаров, применением инсектицидов (карбофур). 2. Использование устойчивых гибридов и сортов. 3. Ранние посевы, снижающие потери. [102, 142, 151]

Группа вируса желтой мозаики турнепса

Международное название: Тимовирусы (Tymovirus). Название группы образовано начальными буквами названия типичного представителя группы — turnip yellow mosaic virus.
Частицы икосаэдрической структуры диам. 29 нм (рис 4.14) стабилизированы белок-белок взаимодействиями между 180 субъединицами, которые образуют 12 пентамеров и 20 гексамеров. Геном представлен одной молекулой линейной оРНК мол. массой $2 \cdot 10^6$, которая составляет 35 % массы. В компонента вируса. Белок представлен одним полипептидом оболочки мол. массой $20 \cdot 10^6$. Липиды и углеводы не обнаружены.

Поголопия вируса содержит два главных класса стабильных частиц (B и T) с мол. массой 5,6 и 3,6 $10^8$, плавучей плотностью в CsCl 1,42 и 1,39 г/см³, 115 и 54 соответственно. Только частицы B-компоненты, содержащие геномную РНК, являются инфекционными. Вирус стабилен при нейтральном pH.

Тимовирусы вызывают на пеериферии хлоропластов мелкие колбовидные везикулы (образованные двойной мембраной), которые содержат мембранный вирусный полимеразу. Большинство членов группы вызывают слипание хлоропластов в инфицированных клетках. Круг растений-хозяев, по-видимому, ограничен двудольными растениями. Большинство вирусов группы имеют узкий круг растений-хозяев. Передаются механически и посредством жуков.

Представители группы: Turnip yellow mosaic virus — вирус желтой мозаики турнепса (типичный член); Andean potato latent virus —
латентный вирус андийского картофеля; Belladonna mottle virus — вирус крапчатости белладонны; Cacao yellow mosaic virus — вирус желтой мозаики какао; Clitoria yellow vein virus — вирус желтых жилок клитории; Desmodium yellow mottle virus — вирус желтой крапчатости десмодиума; Dulcamara mottle virus — вирус крапчатости паслена горького; Eggplant mosaic virus — вирус мозаики баклажана; Erysimum latent virus — латентный вирус желтушника; Kennedya yellow mosaic virus — вирус желтой мозаики кеннедии; Okra mosaic virus — вирус мозаики бамии; Ononis yellow mosaic virus — вирус желтой мозаики стальника; Peanut yellow mottle virus — вирус желтой крапчатости арахиса; Physalis mosaic virus — вирус мозаики физалиса; Plantago mottle virus — вирус крапчатости подорожника; Scrophularia mottle virus — вирус крапчатости норичника; Wild cucumber mosaic virus — вирус мозаики дикого огурца. Группа включает 1 возможный член. [87, 103, 132, 142]

Turnip yellow mosaic virus — Вирус желтой мозаики турнепса

Поражает растения семейств резедовых и крестоцветных.

На растениях китайской капусты вызывает симптомы яркой желтой системной мозаики (рис. 4.15). В клетках пораженных растений вызывает образование характерных периферических везикул на внешней мембране хлоропластов (рис. 4.16), а также их вакуолизацию, слипание, фрагментацию стромы, дезинтеграцию и разбухание митохондрий. Включения в виде трубочек, образованные белковыми субъединицами вируса.

В растениях вирус накапливается в высокой концентрации (50—500 мг/л сока растения).
Передается при механическом контакте растений и жуками Phyllotreta и Psilliodes sp. Легко передается механической инокуляцией сока.

ТТИ составляет 70—75 °С, ПРС — 10^{-5} — 10^{-6}, ПСИ — несколько недель при к. т.

Сильный иммуноген.

Распространение: в странах с умеренным климатом.

Методы диагностики: 1. Биотестирование (Brassica chinensis).
2. Серологический. 3. Электронная микроскопия.
Меры борьбы: 1. Выбраковка больных растений и отбор здоровых семян. 2. Борьба с переносчиками вируса. [141, 151]

**Andean potato latent virus** — Латентный вирус андийского картофеля

Частицы диам. 30 нм. В препаратах вируса встречаются «пустые» белковые капсиды, которые аккумулируются в ядрах инфицированных клеток, как и у других тимовирусов.

Возбуждает в эксперименте системную инфекцию на мариристой, дурмане, отдельных видах табака (Nicotiana clevelandii, N. glutinosa), петунии и латентную местную инфекцию на огурцах, гомфрене и табаке. Не поражает китайскую капусту, фасоль, горох и тыкву, восприимчивые к другим членам группы. По этим свойствам очень сходен с вирусом мозаики баклажана. Дифференциация вирусов может быть достигнута лишь в тестах иммуноферментного анализа, при которых проявляется специфичность антисывороток. Вирус серологически родственен также другим тимовирусам, которые заражают пасленовые растения.

Некоторые изоляты вируса вызывают разрушение (фрагментацию) митохондрий. Кроме образования периферических везикул на двойной внешней мембране хлоропластов, характерных для членов этой группы, отдельные изоляты вируса вызывают появление везикул и вдавливание мембран хлоропластов внутрь стромы. Некоторые штаммы вируса размножаются и вызывают симптомы на растениях при температуре ниже 20 °С.

Из естественных переносчиков вируса известен жук Epitrix sp. Легко передается механической инокуляцией сока.

Распространение: в зоне юго-американских Анд на растениях семейств пасленовых и маревых. Карантинный вирус для СССР.

Методы диагностики: 1. Серологический. 2. Электронная микроскопия. 3. Использование растений-хозяев, переносчика.
Меры борьбы: не разработаны. [131]

**Группа вируса желтой карликовости ячменя**

Международное название: Лютеовирусы (Luteovirus). Название группы происходит от латинского слова luteus — желтый, что связано с симптомами пожелтения, характерными для заболеваний, вызываемых вирусами этой группы.

Изометрические частицы диам. 25—30 нм.

Геном представлен одной молекулой онРНК с мол. массой 2,0 · 10^8. Имеется один полипептид оболочки с мол. массой 24· 10^8. Липиды и углеводы не обнаружены.

Физико-химические свойства: $S_{20,W}$ 115—127. Вирусы группы обычно устойчивы к хлороформу.

Сильные иммуногены. Большинство членов группы серологически родственны.

Лютеовирусы реплицируются во флюэме ткани пораженных растений. Детали ультраструктурных изменений клетки существенно от-
личаются друг от друга при инфицировании разными вирусами группы. Круг растений-хозяев разных членов группы существенно отличается — одни инфицируют широкий круг однодольных растений, другие — двудольных, а третьи приурочены к более мелким группам растений.

Представляется тяжелым персистентным способом; но вирус, по-видимому, не реплицируется в переносчике. Не передаются механической инокуляцией сока.

Представители группы: Barley yellow dwarf virus — вирус желтой карликовости ячменя (типичный член); Beet mild yellow virus — вирус слабого пожелтения свеклы; Beet western yellow virus — вирус западной желтухи свеклы; Carrot red virus — вирус краснолистности моркови; Indonesian soybean dwarf virus — вирус индонезийской карликовости сои; Legume yellows virus — вирус желтухи бобовых; Malva yellows virus — вирус желтухи просвирника; Pea leaf roll-Bean leaf roll virus — вирус скручивания листьев гороха (фасоли); Potato leaf roll virus — вирус скручивания листьев картофеля; Solanum yellows virus — вирус желтухи паслена; Soybean dwarf virus — вирус карликовости сои; Subterranean clover red leaf virus — вирус краснолистности подземного клевера; Tobacco necrotic dwarf virus — вирус некротической карликовости табака; Turnip yellows virus — вирус желтухи турнепса. Группа включает 19 возможных членов. [87, 103, 142]

**Barley yellow dwarf virus — Вирус желтой карликовости ячменя**

Вирус выделяется с трудом при очистке; частицы изометрические диам. 22—24 нм (рис. 4.17).

Имеет широкий круг растений-хозяев семейства злаковых (около 100 видов) во всех районах мира. Причиняет снижение урожая ячменя, овса, пшеницы, риса, кукурузы и ржи. Растения из других семейств, по-видимому, невосприимчивы к вирусу.

Все изоляты вызывают задержку роста растений-хозяев. Часто имеет место редукция кущения либо, наоборот, его усиление (в зависимости от изолята вируса). Симптомы болезни на листьях обычно появляются через 14 сут после инфицирования на верхушках листьев и затем прогрессируют вниз по пластинке листа. До появления неправильных пятен и полос листья (ячмень, овес) часто становятся ярко-желтыми или светло-желтыми, иногда появляется ярко-красная пигментация (рис. 4.18). На листьях пшеницы наблюдаются различные оттенки желтой, красной или пурпурной окраски. Кроме того, вирус может вызывать повышенную жесткость листьев, гибель цветков (овес, ячмень, пшеница) и в результате — потерю урожая.

Переносится тлями Rhopalosiphum padi (изолят РА), R. maidis (изолят РМ), Macrosiphum avenae (изолят МА), Schizaphis graminis (изолят SGV) и др. Изоляты вируса специфичны по отношению к переносчику. ТТИ составляет 65—70 °С, выдерживает замораживание и оттаивание в соке, устойчив к органическим растворителям (бутанол, хлороформ).
Сильный иммуноген.
Распространение: широкое.
Методы диагностики: 1. Передача тлями на растения семейства злаковых. 2. Серологический. Электронная микроскопия.
Меры борьбы: уничтожение переносчиков и резерваторов вируса. [10, 34, 43, 151, 157]

**Beet mild yellowing virus — Вирус слабого пожелтения свеклы**
Икосаэдрические частицы диам. 28 нм (рис. 4.19).
На листьях свеклы вызывает появление слабо-желтой окраски, верхушки листьев становятся оранжево-желтыми, листовая пластинка становится хрупкой. Пораженные растения более подвержены инфицированию патогенными грибами типа Alternaria. В естественных условиях выделяется из свеклы, пастушьей сумки, подорожника, крестовника, шпината, звездчатки, вероники. Инфекционен для ряда растений из различных семейств, главным образом маревых и сложноцветных. Не зараз...
Вирус переносится тлями Myzus persicae, Rhopalosiphoninus tulipae и Aulacorthum circumflexum переносным способом. Не передается механической инокуляцией сока.

Распространен: на посевах сахарной свеклы в Европе, в том числе в СССР.

Методы диагностики: 1. Биотестирование. 2. Серологический.
3. Электронная микроскопия.

Меры борьбы: 1. Борьба с тлями — переносчиками и резерваторами вируса. 2. Использование устойчивых сортов. [81, 82, 151]

**Potato leaf roll virus — Вирус скручивания листьев картофеля**
Частицы диам. 25 нм, $S_{20,w}$ 127, РНК составляет 28 % массы вириона.

Вирус заражает многие виды из семейства пасленовых, некоторые из них используются в качестве индикаторных — дурман, физалисы (Physalis floridiana, P. augulata).

На картофеле вызывает пожелтение и скручивание верхушечных листьев, которые затем часто краснеют по краям и становятся железистыми. Растения отстают в росте, на листьях и стеблях иногда развиваются некрозы, начинающиеся с нижних ярусов.

Передается тлями Myzus persicae, M. pelargonii, M. circumflexus, M. ornatus.

Распространение: во всех районах возделывания картофеля, в том числе в СССР.

Методы диагностики: 1. Биотестирование. 2. Серологический.
3. Электронная микроскопия.

Меры борьбы: 1. Выбраковка больных растений. 2. Посадка безвирусных клубней. 3. Борьба с переносчиками и их резерваторами.
4. Применение устойчивых сортов. [10, 35, 40, 48, 106, 151]

**Группа вируса кустистой карликовости томатов**
Международное название: Томбусвирусы (Tombusvirus). Название группы происходит от начальных букв английского названия типичного представителя группы Tomato bushy stunt virus.

Частицы вируса изометрические с округлыми контурами диам. 30 нм. 180 белковых субъединиц упакованы в икосаэдрическую пространственную решетку. Геном представлен одной молекулой линейной нуклеиновой кислоты, которая составляет 17 % массы вирусной частицы. Вирионы содержат один главный полипептид оболочки с мол. массой 41.0. Липиды и углеводы не обнаружены.

Физико-химические свойства: мол. масса 8.9, $S_{20,w}$ 140, плотность в CsCl 1,35 г/ см³.

Сильные иммуногены. Все вирусы этой группы на ранних стадиях инфекции вызывают образование в клетках пораженных растений цитоплазматических мембранных включений (мультивезикулярные тела). Вирусные частицы локализуются как в цитоплазме, так и в ядрах и часто в связи с ядрышком. Иногда образуют кристаллоидные структуры. Цитоплазматические скопления вирионов часто образуют выпиивания (выросты) в полость вакуоли.

Вирусы поражают многие покрытосеменные растения. Легко передаются механической инокуляцией сока и, возможно, проникают в растение из почвы.

Представители группы: Tomato bushy stunt virus — вирус кустистой карликовости томатов (типичный член); Artichoke mottled crinkle virus — вирус крапчатой морщинистости артишока; Carnation italien ringspot virus — вирус итальянской кольцевой пятнистости гвоздики; Cymbidium ringsport virus — вирус кольцевой пятнистости цимбидиумов.
умы; Eggplant mottled crinkle virus — вирус морщинистой крапчатости баклажана; Pelargonium leaf curl virus — вирус курчавости листьев пеларгонии; Petunia asteroid mosaic virus — вирус звездчатой мозаики петунии. Группа включает 2 возможных члена. [87, 103, 142]

**Tomato buschy stunt virus** — Вирус кустистой карликовости томатов
Встретается на различных растениях в виде разных более или менее специализированных штаммов. Типичный штамм распространен на томатах. Выделены также черешневый штамм, поражающий черешню, сливу, виноград, а также яблочный, перцовый, шпинатный, тюльпановый штаммы, инфицирующие соответствующие растения. Штаммы различаются по способам распространения. Томатный штамм передается через почву, яблоневый — через семена и размножаемый материал. Способы распространения других штаммов не выяснены. На томатах типовой штамм вируса вызывает задержку роста и кустистость, сопровождаемые деформацией молодых листьев, потежением и пурпурной окраской нижних листьев. На плодах появляются хлоротическая пятнистость, кольца и линии, снижающие товарный вид томатов. Экспериментально вирус легко передается механически. На инокулированных листьях гомфры вирус вызывает образование флюоресцирующих местных пяты, выделяемых в УФ-свете, которые появляются через 30 ч после инокуляции. Еще через 10—15 ч местные поражения можно увидеть невооруженным глазом, а на пятые-шестые сутки они достигают максимального размера и иногда приобретают красный ободок.
Местными некрозами на инокуляцию вируса реагирует дурман (рис. 4.20)

**Группа вируса южной мозаики фасоли**
Международное название: Sobemovirus (Sobemovirus). Название группы происходит от начальных букв английского названия типичного вируса southern bean mosaic virus.
Частицы диам. 30 нм, содержащие 180 субъединиц в виде икосаэдрической структуры, которая стабилизируется дивалентными ка-
тионами. Геном представлен одной молекулой онРНК мол. массой 1,4 \cdot 10^6; низкомолекулярный белок, необходимый для проявления инфекционности РНК, связан с 5'-концом; 3'-конец не содержит поли (А) или тРНК-подобной структуры. Один полиептид оболочки мол. массой 30 \cdot 10^3. Липиды и углеводы не обнаружены.

Физико-химические свойства: мол. масса 6,6 \cdot 10^6, плавучая плотность в CsCl 1,36 г/см³.

Сильные иммуногены. Вирионы локализуются в ядре и в цитоплазме, где они иногда формируют кристаллические образования.

Для вирусов группы характерен относительно узкий круг растений-хозяев. Для нескольких растений-хозяев отмечена семенная передача. Передаются посредством жуков и механической инокуляцией сока.

Представители группы: Southern bean mosaic virus — вирус южной мозаики фасоли (типичный член); Turnip rosette virus — вирус розеточности турнепса; Blueberry shoestring virus — вирус шнуровидности черники; Cockfoot mottle virus — вирус крапчатости ежи сборной; Rice yellow mottle virus — вирус желтой крапчатости риса; Sowbane mosaic virus — вирус мозаики хеноподиевых. [142]

**Southern bean mosaic virus** — Вирус южной мозаики фасоли

Вирусные частицы содержат 20 % РНК с мол. массой 1,4 \cdot 10^6 и 80 % белка. Весьма стабильные in vitro, что обусловлено присутствием дивалентных катионов в составе вируса.

Имеет ограниченный круг растений-хозяев в пределах семейства бобовых. Различают два штамма вируса — БЮМФ-В (фасольевый) и БЮМФ-Ср (из вигны), отличающиеся по некоторым свойствам.

Мексиканский изолят вируса может инфицировать фасоль, вигну, бобы и душистый горошек. Все изоляты инфицируют также сою. Симптомы на системно реагирующих растениях проявляются в виде пятнистости и мозаики листьев.

В клетках вигн через 7—14 сут после заражения БЮМФ-Ср образует в цитоплазме, ядре и вакуоли кристалловидные включения, состоящие из плотно упакованных вирусона. Через 20 сут, однако, эти кристаллы исчезают, но клеточные органеллы имеют признаки аномалии. Хлоропласты содержат укрупненные осмиефильные глобулы, а в митохондриях происходит набухание крист.

Вирус ЗС в клетках вигн не образует кристаллических упаковок и выявляется в цитоплазме и ядрах клеток в виде рассеянных частиц.

Вирус чрезвычайно инфекционен и может передаваться механически при контакте больных и здоровых растений и семенами. Переносчиками вируса являются жуки Ceratoma trifurcate и Epilachna varivestis, причем вирус накапливается в организме переносчика и сохраняется в нем в течение нескольких сут.

ТТИ в соке составляет 90—95 °С, ПРС — 10^{-5} и 10^{-6}, ПСИ — 20—165 сут.

Распространение: широкое во многих странах мира, включая СССР. Методы диагностики: 1. Биотестирование при помощи индикаторных сортов фасоли, определение способов передачи. 2. Сериалогический. 3. Электронная микроскопия.

Меры борьбы: 1. Использование устойчивых сортов. 2. Контроль зараженности семян. 3. Борьба с переносчиками вируса. [151, 164]

**Sowbane mosaic virus** — Вирус мозаики маревых

Изометрические частицы диам. около 30 нм. Поражают различные виды рода Chenopodium и других представителей семейства маревых (свеклу, шпинат), а также виноград. У большинства системно-инфицируемых растений вирус вызывает пятнистость или мозаичность листьев.

401
Передается механически, семенами больных растений (около 20 %), различными видами насекомых (Lyriomyza langei, Circulifer tenellus, Halticus citri), по-видимому, неперсистентным способом.

Виноградный изолят передается экспериментально на широкий круг растений из семейств ширициевых, тыквенных, бобовых и пасленовых.

ТТИ составляет 84—86 °С, ПРС — 10⁻⁸, ПСИ — 30—60 сут.

Сильный иммуноген.

Распространение: широкое. Обнаружен в СССР.

Методы диагностики: 1. Серологический. 2. Электронная микроскопия. 3. Определение свойств в соке, способов передачи и круга растений-хозяев.

Меры борьбы: борьба с переносчиками. [9, 39, 124]

**Группа вируса некроза табака**

Международное название: Некровирусы (Necrovirus).

Название группы происходит от английского слова necrosis и подчеркивает основной симптом заболевания.

Рис. 4.21. Частицы вируса некроза табака на поверхности зооспоры гриба Olpidium brassicae

Полиэдрические частицы диам. 28 нм. Геном представлен одной молекулой линейной онРНК с мол. массой (1,3—1,6) • 10⁸. 5'-конец имеет последовательность ффАфГфУф... Белковый компонент вириона представлен единственным полипептидом с мол. массой 22,6 • 10³. 180 белковых субъединиц вириона собраны в T-3 икосаэдрическую решетку. Липиды и углеводы не обнаружены.

Физико-химические свойства: мол. масса 7,6 • 10⁸, $S_{20,W}$ 118; плавучая плотность в CsCl 1,40 г/см³. Умеренные иммуногены, образуют линию преципитации в реакции диффузии в геле. В цитоплазме пора-
Щепных клеток часто обнаруживаются кристаллоподобные агрегаты вирусных частиц.

Вирусы поражают широкий круг растений-хозяев среди покрытосеменных. Передается естественным путем хитридийным грибом рода Olpidium и экспериментально — механической инокуляцией сока.

Представители группы: Tobacco necrosis virus — вирус некроза табака (типичный член). Группа включает 1 возможный член. [87, 103, 142]

**Tobacco necrosis virus** — Вирус некроза табака

Своеобразные свойства вирус (ВНТ) проявляет во взаимоотношениях с вирусом сателлитом (ВС) и с грибом Olpidium brassicae, являющимся переносчиком этих вирусов. Препараты ВНТ содержат частицы 28 и 17 нм в диам. Последние представляют собой вирионы (ВС), которые в отсутствие ВНТ не инфекционны и могут реплицироваться только в присутствии вируса-помощника (ВНТ).

ВНТ и его сателлит переносятся зооспорами Olpidium brassicae. Эффективность передачи вирусов зависит от способности виронов прикрепляться к поверхности внешней мембраны зооспор (рис. 4.21).

На листьях растений, механически инокулированных вирусом некроза табака (вигна, фасоль), образуются местные некрозы, цвет которых варьирует в зависимости от изолята вируса от белого (вигна) до красновато-коричневого (вигна, фасоль). Присутствие ВС в испытуемых препаратах ВНТ приводит к уменьшению размеров некрозов на инокулированных листьях этих растений. Характерна также некротизация ткани корней.

Вирус накапливается в растениях в умеренной концентрации, будучи устойчив к физическим и химическим воздействиям. ТТИ составляет 85—95 °С, ПРС — 10⁻⁸.

Методы диагностики: 1. Биотестирование. 2. Серологический. 3. Электронная микроскопия.

Меры борьбы: 1. Уничтожение переносчика вируса (O. brassicae) в условиях закрытого грунта. 2. Использование устойчивых сортов. [20, 32, 43, 126, 151]

**Группа вируса тонкой штриховатости кукурузы**

(Maize rayado fino virus group)

Нуклеиновая кислота представлена онРНК с мол. массой 2 · 10⁶. Содержание РНК в вирусной частице 33—36 %. Вирус содержит 2 компонента: пустые оболочки и полные вирусные частицы ($S_{20,\text{w}}$ 54 и 120 соответственно). Плавучая плотность в CsCl соответственно 1,28 и 1,46 г/см³.

Представители группы: Maize rayado fino virus — вирус тонкой штриховатости кукурузы (типичный член); Oat blue dwarf virus — вирус голубой карликовости овса; Bermuda grass etches line virus — вирус гравированных линий свинороя. [96, 101, 136]

Maize rayado fino virus — Вирус тонкой штриховатости кукурузы

Изометрические частицы диам. 31,5 нм.

Круг растений-хозяев ограничен. Среди злаковых поражает только виды кукурузы Zea mays и Z. mexicana. Вызывает мелкую хлоротическую точечную крапчатость молодых листьев, которая переходит в штриховатость.

Переносятся цикадками Dalbulus maidis перистентным способом. ТТИ в соке составляет 90—100 °С, ПРС — $10^{-4} - 10^{-5}$, ПСИ — 72—96 ч.
Сильный иммуноген.
Распространение: США, тропики Латинской Америки (Венесуэла, Коста-Рика, Колумбия).
Методы диагностики: 1. Электронная микроскопия. 2. Серологический.
Меры борьбы: не разработаны [96, 101, 136]

Группа вируса желтухи свеклы

Международное название: Клостеровирусы (Closterovirus). Название группы происходит от греческого слова closter — веретено или нить.
Геном представлен одной молекулой линейной онРНК с мол. массой (2,2—4,7) \cdot 10^6, составляющей около 5 % массы вирусной частицы.
Один полипептид оболочки, мол. массой (23 — 27) \cdot 10^3. Липиды и углеводы не обнаружены.
Физико-химические свойства: $S_{20,w}$ 96—130, плавучая плотность в CsCl 1,30—1,34 г/см³.

Рис. 4.22. Частицы вируса желтухи свеклы (фото Колесник Л. В.)

Очень гибкие палочки дл. 600—2000 нм и 12 нм в диам., со спиральной симметрией и шагом спирами 3,4—3,7 нм. Умеренный иммуноген. Частицы агрегируют в виде поперечно-связанных масс в клетках флоэмы.
Круг растений-хозяев умеренно широкий. С трудом передаются экспериментально механической инокуляцией сока. Некоторые вирусы передаются тлями полуперсистентным способом.
Представители группы: Beet yellows virus — вирус желтухи сахарной свеклы (типичный член); Beet yellow stunt virus — вирус желтой карликовости свеклы; Burdock yellow virus — вирус желтухи лопуха; Carnation necrotick fleck virus — вирус некротической пятнистости гвоздики; Carrot yellow leaf virus — вирус желтухи листьев
моро́ки; Citrus tristeza virus — вирус трисета цитрусовых; Clover yel­lows virus — вирус желтухи клевера; Festuca necrosis virus — вирус некроза овсянницы; Grapevine stem-pitting associated virus — вирус бороздчатости древесины винограда; Lilac chlorotic leafsport virus — вирус хлоротической пятнистости листьев сирени; Wheat yellow leaf virus — вирус желтухи листьев пшеницы. Группа включает 4 возмож­ных члена. [54, 87, 142]

Sugar beet yellows virus — Вирус желтухи свеклы

Размер частиц вируса 1250 × 12 нм (рис. 4.22). $S_{20,w}$ 110—130, плавучая плотность в CsCl 1,34 г/см³. Поражает в основном растения из семейства маревых, однако к нему восприимчивы также более 100 видов растений из 15 семейств. Поражает столовые сорта свеклы, шпинат и мангольд. Имеет эконо­мическое значение.

Первичные симптомы на листьях свеклы проявляются в по­светлении и последующем пожел­тении и некротизации жилок мо­лодых листьев. Более старые листья желтеют, утолщаются, ста­новятся хрупкими и покрываются многочисленными мелкими крас­ными и коричневыми некротичес­кими крапинками, придающими листьям характерную бронзовую окраску (рис. 4.23). Более слабые штаммы вируса вызывают посвет­ление жилок молодых листьев и общее пожелтение растений.

В клетках флоэмы свеклы ви­рус вызывает образование вклю­чений в виде четко очерченных овальных или веретеновидных тел, либо агрегатов фиброзного мате­риала. Электронная микроскопия показывает, что фиброзный мате­риал представляет собой неупо­рядоченное скопление вирусных частиц (рис. 4.24), тогда как плот­ные включения состоят из упорядоченно упакованных вирионов.

Вирус эффективно переносится многими видами тлей, особенно Aphis fabae и Myzus persicae (полуперсистентным способом). С трудом передается механической инокуляцией сока.


Распространение: во всех районах возделывания сахарной свеклы.

Методы диагностики: 1. Биотестирование. 2. Серологический. 3. Электронная микроскопия.

Меры борьбы: система мер, имеющих целью предупреждение рас­пространения вирофорных тлей на посевах свеклы, она включает прост­ранственную изоляцию полей от семенников свеклы, соблюдение опти­мальных сроков и густоты посевов, уничтожение сорняков — резерв­аторов вируса, и тли с помощью химических средств. [10, 151, 158]

Apple stem grooving virus — Вирус бороздчатости древесины яблони

Размер частиц вируса 1250×12 нм, $S_{20,w}$ 110—130, плавучая плот­
ность в CsCl 1,34 г/см³, в Cs₃O₄ — 1,27 г/см³. Мол. масса белка оболочки (22,5 — 23,5) • 10³, РНК с мол. массой (4,0—4,7) • 10⁹ составляет 5 % массы вируса.

В качестве индикаторных растений используют яблоню сорта Вирджиния Крэб клон USDA, на котором на первом году проявляются желтые пятна на листьях индикаторного привоя. На следующий год после инокуляции почкой образуется удлиненная борозда на древесине, видимая после удаления коры, а также плоские или вдавленные участки на стволе индикаторного привоя, бугорчатость, покоричневение и хрупкость на месте соединения привоя с подвоем (рис. 4.25).

Рис. 4.24. Скопления вирусных частиц в клетке листа сахарной свеклы (фото Колесник Л. В.)

На травянистых индикаторных растениях развиваются такие симптомы: марь рисовая — через 5—8 сут гравированные локальные некрозы 0,5—2 мм в диам. на инокулированных листьях, затем системная хлоротическая пятнистость и кольца, деформация верхушек побегов, задержка роста и эпинастии. Табак клейкий — системная желтая мозаика и полосчатость молодых листьев, иногда некрозы. Фасоль — пурпуно-коричневые пятна или кольца 0,5—3 мм в диам. или хлоротичные пятна. Многие сорта реагируют системным некрозом жилок.

ТТИ составляет 60—63 °С, ПРС — 10⁻⁴, ПСИ — 48 ч.

Распространение: широкое.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия. 3. Серологический.

Меры борьбы: оздоровление размножаемого материала методами термотерапии. [9, 138, 152]

Citrus tristeza virus — Вирус тристецы цитрусовых

Вирусные частицы представляют собой весьма гибкие и длинные нити дл. 2000 нм и 10—12 нм в диам.
Поражает растения из семейства Rutaceae, включая все виды рода Citrus и некоторые виды из близких родов Aeglopsis, Afraegle и Pamburus.

Особенно распространен на сладком апельсине или других сортах, привитых на кислом апельсине, а также на грейпфрутах и лайме.

На многих сортах симптомы малозаметны, но на ряде из них вирус вызывает посветление жилок, крапчатость листьев, их скручивание краями вверх, задержку роста, отмирание верхушек побегов и ямчатость древесины под корой. Для диагностики вируса используют разные линии лайма (Западно-индийский, Мексиканский, Египетский, Кенийский). Сеянцы этих линий являются наилучшими индикаторами на вирус. Через 1—4 мес. после прививки или инокуляции тлей вирус вызывает посветление жилок, желтую пятнистость на листьях и ямчатость стеблей. Молодые листья мельчают, приобретая вид "лодочки". Привоя сладкого апельсина на кислый апельсин внезапно увядают, отмирают; образуется характерное разрастание на месте соединения в виде ячеистых сот.

В клетках инфицированных растений (флоэмной паренхиме) вирус образует аморфные включения, состоящие, главным образом, из мембранных везикул, в которых видна сеть фибрилл. Везикулы часто образуют группы, окруженные общей мембраной. Вирусные частицы в клетках могут быть плотно упакованными так, что на поперечных срезах агрегаты частиц образуют гексагональные структуры.

Переносится некоторыми видами тлей — Toxoptera citricidus, T. aurantii, Aphis gossypii, A. spiraecola. Передается посадочным материалом и прививками. Семенами не передается.

Сильный иммуноген.

Болезнь причиняет экономический ущерб.

Распространение: широкое в районах возделывания цитрусовых культур. Карантинный вирус для СССР.

Методы диагностики: 1. Серологический. 2. Биотестирование.

Меры борьбы: 1. Карантинные мероприятия. 2. Использование здорового посадочного и прививочного материала. 3. Борьба с переносчиками вируса. [154]

Apple chlorotic leafspot virus — Вирус хлоротической пятнистости листьев яблони

Вирусные частицы размерами 720 — 740 X 12 нм, S20,W 96. Белок оболочки имеет мол. массу 23,5 • 103, РНК с мол. массой (2,2—2,4) • 109 составляет 5 % массы вируса.

Симптомы хлоротической пятнистости, давшие название этому вирусу, и асимметричное искривление пластинки развиваются на листьях клона декоративной яблони R12740-7A. Вирус поражает также
культурные сорта груши, айвы, персика, сливы, абрикоса и дикорастущие виды родов Pyrus, Prunus и Malus, вызывая на них различные симптомы мозаики, некроза, пятнистости листьев и растрескивания коры.

Кроме растений из семейства розоцветных, вирус экспериментально передается на некоторые травянистые растения из других семейств. В связи с этим вирус связывают с такими экономически важными болезнями плодовых деревьев, как растрескивание коры и псевдооспа сливы, кольцевая мозаика груши, некроз плодов черешни, розеточность, псевдооспа и несоответствие привой/подвой абрикоса, зеленая кольцевая пятнистость персика, кольцевая пятнистая мозаика айвы. Возможно, что эти болезни вызываются комплексной инфекцией этого вируса с другими вирусами.

На растениях, используемых в качестве индикаторных, вирус вызывает соответствующие симптомы: яблоня R12740-7A — хлоротические пятна, обычно располагающиеся асимметрично на молодых листьях, неравномерное искривление пластинки листа, задержка роста побегов. Фасоль (сорта Пинто, Баунтифул, Кингхорн) — образование пурпурно-коричневых некротических пятен или колец 1—3 мм в диам. без системной инфекции.

Переносчики вируса неизвестны. Вирус распространяется интенсивно по всему миру при обмене клонами и прививочным материалом. Экспериментально передается соком и прививками; передача семенами не установлена. Как правило, вирус находится в растениях промышленных сортов яблони в латентном состоянии и (хотя не вызывает видимых симптомов) приносит существенный ущерб урожаю.

ТТИ составляет 52—60 °С, ПРС — 10^{-4}, ПСИ — 4 сут.

Умеренный иммуноген.

Распространение: во всех районах мира, где выращиваются яблони и другие плодовые породы.

Методы диагностики: 1. Гистологические тесты на растениях-индикаторах. 2. Серологический. 3. Электронная микроскопия.

Меры борьбы: 1. Отбор и использование здорового посадочного материала, подвоев и привоев. 2. Термотерапия зараженного посадочного материала (термообработка при 37—38 °С в течение 3—8 нед) [9, 137, 152]

**Potato virus T** — T-вирус картофеля

- Размер вирионов — 640 - 12 нм, $S_{20,w}$ 97,5—100. Мол. масса белка 27·10^{3}, мол. масса РНК 2·10^{6}.

- Вирус выделен из Перуанских исходных рас картофеля. На обследованных в естественных условиях растениях он выявляется в 14 % случаев. Поражает в основном растения из семейства пасленовых. Вредоносен также для 9 клубненосных видов рода Solanum.

- Переносчики неизвестны; по-видимому, передается семенами. На индикаторных растениях вирус вызывает такие симптомы: табак Дебни — появление системной мозаики и некротических пятен через 10—12 сут после инокуляции, но иногда симптомы не развиваются.

- Фасоль сорта Пинто — образование некротической кольцевой пятнистости на инокулированных листьях.

- Дурман — образование системной мозаики через 8—10 сут после заражения.

- ТТИ составляет 55—60 °С, ПВС — 10^{-4} — 10^{-5}, ПСИ — 2—4 сут.

- Распространение: узкое. Его вредоносность для культуры картофеля не выяснена.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия. 3. Серологические тесты.

Меры борьбы: не разработаны. [34, 87, 142]
Группа латентного вируса гвоздики

Международное название: Карлавирусы (Carlavirus). Название происходит от начальных букв английского названия типового представителя группы — carnation latent virus.

Гибкие нитевидные палочки 600—700 нм дл. и 13 нм в диам. со спиральной симметрией и шагом спирали 3,4 нм.

Нуклеиновая кислота представлена одной молекулой линейной окРНК мол. массой 2,7·10⁴, составляющей около 6 % массы вируса. Один полипептид оболочки мол. массой 32·10³. Липиды и углеводы не обнаружены.

Физико-химические свойства: S₂₀ᵩ,ₘ 160. Плавучая плотность в CsCl 1,3 г/см³. У некоторых членов группы обнаружены агрегаты частиц в виде паракристаллических образований (иногда в виде лент) и включения, содержащие массы эндоцитоплазматического ретикулума, перемещающиеся с рибосомами и неагрегированными вирусными частицами в цитоплазме.

Представители группы: Carnation latent virus — латентный вирус гвоздики (типичный член); Cactus virus 2 — вирус кактуса 2; Chrysanthemum virus B — вирус в хризантемы; Cowpea mild mottle virus — вирус слабой крапчатости коровьего гороха; Elderberry carla virus — карлавирус бузины; Helinium virus S — вирус гелениума; Hop latent virus — латентный вирус хмеля; Hop mosaic virus — вирус мозаики хмеля; Lilac mottle virus — вирус крапчатости сирени; Lily symptomless virus — бессимптомный вирус лилии; Lonicera latent virus — латентный вирус жимолости; Mulberry latent virus — латентный вирус шелковицы; Musk, melon vein necrosis virus — вирус некроза жилок сетчатой дыни; Narcissus latent virus — латентный вирус нарцисса; Nerine latent virus — латентный вирус нерины; Passiflora latent virus — латентный вирус пассифлоры; Pea streak virus — вирус штриховатости гороха; Pepino latent virus — латентный вирус пепино; Poplar mosaic virus — вирус мозаики тополя; Potato virus M — M вирус картофеля; Potato virus S — S вирус картофеля; Red clover vein mosaic virus — вирус прижилковой мозаики красного клевера. Группа включает 14 возможных членов. [34, 87, 142]

Рис. 4.26. Частицы латентного вируса гвоздики

Carnation latent virus — Латентный вирус гвоздики

Вирусные частицы имеют нормальную дли. 652 нм (рис. 4.26), S₂₀ᵩ,ₘ 163. Вирусный белок оболочки имеет мол. массу (32 — 34)·10³. Поражает виды гвоздик Dianthus cariophyllus, D. barbatus, свеклу, табак клейкий. На листьях марипамарантовидной и рисовой образуются локальные желтоватые пятна.

Передается тлями Myzus persicae неперсистентным способом. Легко переносится механически.

Сильный иммуноген.
ТТИ составляет 60—65 °С, ПРС — 10⁻³ и выше. ПСИ — 2—3 сут при к. т.
Распространение: во всех странах Европы, в том числе в СССР.

Методы диагностики: 1. Биотестирование. 2. Серологический. 3. Электронная микроскопия.
Меры борьбы: борьба с переносчиками вируса. [21, 175]

*Poplar mosaic virus* — Вирус мозаики тополя
Частицы дл. 760—685 нм (рис. 4.27), $S_{20,w} = 165$. Мол. масса белка оболочки 36 700, геномной РНК — 2,3 • 10⁶.

Единственным естественным хозяином вируса является тополь. Экспериментальный круг восприимчивых растений довольно широк.
На тополе вирус вызывает мозаику, пятнистость и кольцевые пятна на листьях (рис. 4.28), особенно весной, однако эти симптомы могут ослабляться и исчезнуть летом. Заболевание может причинять существенный ущерб насаждениям.

Естественные переносчики неизвестны. Экспериментально пере-дается механической инокуляцией соки и прививками. Для накопления вируса в качестве индикатора используют вид табака *Nicotiana megalosiphon*, на листьях которого при инокуляции появляются местные поражения, а затем пятнистость.

ТТИ составляет 70—75 °С, ПРС — 10⁻⁴, ПСИ — 2—3 сут.

Рис. 4.27. Частицы вируса мозаики тополя

Рис. 4.28. Симптомы вируса мозаики тополя
Вирус не проявляет серологического сродства с другими карлавирусами, кроме латентного вируса жимолости (Lonicera latent virus).
Методы диагностики: 1. Биотестирование. 2. Серологический. 3. Электронная микроскопия.
Меры борьбы: не разработаны. [18, 60, 153]

Red clover vein mosaic virus— Вирус прижилковой мозаики красного клевера
Частицы дл. 654 нм. Белок оболочки вириона имеет мол. массу 33,500, РНК — 2,59 · 10^6.
Поражает многие растения семейства бобовых. Вызывает жилковый хлороз на клевере. На горохе вызывает хлороз и задержку роста верхушек, крапчатый некроз плодов, а при раннем заражении — карликовость, увядание и гибель растений. Часто поражает растения бобовых культур совместно с другим карлавирусом — вирусом стрика гороха (pea streak virus), причиняя значительный экономический ущерб.
Вирус заражает кроме многих бобовых растений некоторые виды пасленовых, маревых и других семейств. В качестве индикаторных растений используют марь амарантовидную и марь квиноа, которые на некоторые штаммы вируса реагируют местными хлоротичными пятнами на инокулированных листьях. У гомфрены через 6—8 сут после инокуляции появляются на листьях красноватые некротические крапинки.
Вирус передается тлями Acrinthosiphon pismum, Cavariella aegopodium, Myzus persicae, Theroaaphis maculata, T. ononidis и др. Передается механической инокуляцией сока.
ТТИ в соке составляет 56—75 °C, ПРС — 10^{-3} — 10^{-5}, ПСИ — 2—5 сут.
Распространение: Европа и Северная Америка.
Методы диагностики: 1. Биотестирование. 2. Серологический. 3. Электронная микроскопия.

Potato virus M — М-вирус картофеля
Частицы дл. 651 нм. Мол. масса РНК 2,3·10^{6}.
Симптомы вирусной инфекции на картофеле варьируют в зависимости от сорта, штамма вируса и внешних условий. Они могут проявляться в виде хлоротичной пятнистости листьев, междужилковой мозаики, деформации и морщинистости листьев, задержки роста отдельных побегов и всего растения. На некоторых сортах инфекция имеет латентный характер. Круг растений-хозяев в основном ограничен немногими видами семейства пасленовых.
Экспериментально вирус можно перенести механической инокуляцией сока на некоторые растения. Дурман (Datura metel) — через 7—14 сут после инокуляции реагирует местными некротизирующими хлоротичными пятнами. Позднее пятнистость листьев становится системной, листья деформируются. Табак Дебни — образование коричневых кольцевых местных некрозов, гомфрена — местные некротизирующиеся желтые пятна с красновато-фиолетовыми краями.
Вирус передается тлями Myzus persicae и механически соком.
ТТИ в соке составляет 65—75 °C, ПРС — 10^{-3}, ПСИ — 2—4 сут при к. т.
Распространение: европейские страны (включая СССР), Северная Америка.
Умеренный иммуноген.
Методы диагностики: 1. Биотестирование. 2. Серологический. 3. Электронная микроскопия.
Меры борьбы: 1. Борьба с переносчиками (тлями). 2. Посадка устойчивых сортов. [10, 34, 35, 48, 151, 176]

\textit{Potato virus S} — S-вирус картофеля

Частицы дл. 657 нм.

По кругу растений-хозяев подобен \textit{M-вирусу картофеля}. Инфицирует в основном растения из семейства пасленовых и некоторые виды семейств маревых и бобовых.

На картофеле симптомы слабо выражены, и часто вирус находится в латентном состоянии. На некоторых сортах вирус вызывает бронзовость листьев либо их слабую пятнистость и морщинистость (сорта Мажестик, Идеал, Остботе, Фортуна) (рис. 4.29). На инокулированных

![Рис. 4.29. Симптомы S-вируса картофеля на картофеле (справа контроль)](image1)

![Рис. 4.30. Симптомы S-вируса картофеля на табаке](image2)

... листьях мари белой образуются желтоватые мелкие местные поражения. На инокулированных листьях паслена (\textit{Solanum rostratum}) через 20 сут образуются неправильные темные некротические пятна, которые системно распространяются по растению. В отличие от \textit{M-вируса картофеля}, на табаке (\textit{Nicotiana debneyi}) вызывает системное посветление жилок, общий хлороз листьев и межжилковую некротизацию (рис. 4.30).

Вирус передается механически и распространяется с посадочным материалом.

ТТИ в соке составляет 55—60 °С, ПРС — 10$^{-8}$, ПСИ — свыше 2—3 сут.

Сильный иммуноген.

Распространение: во всех зонах возделывания картофеля, в том числе в СССР.

Методы диагностики: 1. Биотестирование. 2. Серологический. 3. Электронная микроскопия.

Меры борьбы: не разработаны. [10, 34, 35, 48, 151, 177]
Группа Y-вируса картофеля

Международное название: Потивирусы (Potyvirus). Название группы происходит от начальных букв английского названия типового представителя группы — Potato Y-virus.

Гибкие нити 650—900 нм дл. и 11 нм шир. со спиральной симметрией и шагом спирали 3,4 нм. Одна молекула линейной оРНК, мол. массой (3,0 — 3,5) 10^{9}, составляющей 5 % массы частицы. Молекулы РНК некоторых вирусов имеют поли (А) последовательность на 3' конце. Один полиептид оболочки, мол. массой (32 — 36) 10^{9}. Липиды и углеводы не обнаружены.

Физико-химические свойства: S_{20,w} 150—160; плавучая плотность CsCl 1,31 г/см³.

Умеренные иммуногены; между членами группы установлено серологическое сродство. Характерные цилиндрические или конические включения, имеющие вид спиц колеса «pinwheel» в поперечных срезах, индуцированные в цитоплазме; белок включений (мол. массой 70 . 10^{3}) серологически не родственный с вирусным белком оболочки, но кодируется вирусным геномом.

Круг растений-хозяев узкий для индивидуальных членов. Передаются экспериментально механической инокуляцией соком, а также тлями неперсистентным способом.

Представители группы: Potato virus Y — Y-вирус картофеля (типичный член); Amaranthus leaf mottle virus — вирус крапчатости листвьев ширицы; Bean common mosaic virus — вирус обыкновенной мозаики фасоли; Bean yellow mosaic virus (pea mosaic) — вирус желтой мозаики фасоли; Bearded iris mosaic virus — вирус мозаики бородатого ириса; Beet mosaic virus — вирус мозаики свеклы; Bidens mottle virus — вирус мозаики корового гороха; Blackeye cowpea mosaic virus — вирус мозаики корового гороха; Carnation vein mottle virus — вирус мозаики жилок гвоздики; Carrot thin leaf virus — вирус тонколистности моркови; Celery mosaic virus — вирус мозаики сельдерея; Clover yellow vein virus (pea necrosis virus) — вирус желтухи жилок клевера; Cocksfoot streak virus — вирус штриховатости ежи сборной; Colombian datura virus — вирус колумбийского дурмана; Commelina mosaic virus — вирус мозаики коммелины; Cowpea aphidborne mosaic (Azuki bean mosaic) virus — вирус мозаики корового гороха, передающийся тлями; Dasheen mosaic virus — вирус мозаики маниока; Datura鞋子 virus — вирус шнурковости дурмана; Guinea grass mosaic virus — вирус мозаики крупного проса; Henbane mosaic virus — вирус мозаики белены; Hippeastrum mosaic virus — вирус мозаики гиппеаструма; Iris mild mosaic virus — вирус слабой мозаики ириса; Iris severe mosaic virus — вирус резкой мозаики ириса; Leek yellow stripe virus — вирус желтой полосатости порея; Lettuce mosaic virus — вирус мозаики латук; Narcissus degeneration virus — вирус дегенерации нарцисса; Nothoscordum mosaic aic virus — вирус мозаики нотоскорцума; Onion yellow dwarf virus — вирус желтой карликовости лука; Papaya ringspot virus — вирус колышевой пятнистости дынного дерева; Parsnip mosaic virus — вирус мозаики пастернака; Passionfruit woodiness virus — вирус дереваестности пассифлоры; Pea seed-borne mosaic virus — вирус мозаики гороха, передаваемый семенами; Peanut mottle virus — вирус мозаики картофеля; Pepper mottle mosaic virus — вирус мозаики перца; Pepper severe mosaic virus — вирус резкой мозаики перца; Pepper veinal mottle virus — вирус жилковой мозаики перца; Plum pox virus — вирус шарки сливы; Pokeweed mosaic virus — вирус мозаики лаконоса; Potato virus A — A вирус картофеля; Soybean mosaic virus — вирус
мозаики сои; Sugarcane mosaic (maize dwarf mosaic) viruses — вирусы мозаики сахарного тростника, (вирус карликовой мозаики кукурузы); Tamarillo mosaic virus — вирус мозаики тамарильо; Tobacco etch virus — вирус гравировки табака; Tulip breaking virus — вирус пестролепестности тюльпана; Turnip mosaic virus — вирус мозаики турнепса; Watermelon mosaic virus 1 — вирус мозаики арбуза 1; Watermelon mosaic virus 2 — вирус мозаики арбуза 2; Wisteria vein mosaic virus — вирус мозаики жилок вистерии. Группа включает 66 возможных членов.

Potato virus Y — Y-вирус картофеля

Частицы дл. 750 нм, S2 (1,326 г/см3), плавучая плотность в CsCl 1,326 г/см3. РНК вируса с мол. массой (3,1—3,2) 10⁸ составляет 6 % массы вируса.

Круг растений-хозяев очень широк. Кроме десятков видов из семейства пасленовых он заражает многих представителей других семейств двудомных растений.

Первичным признаком поражения восприимчивых сортов картофеля является интенсивный полосчатый коричнево-черный некроз листьев вдоль жилок (рис. 4.31), постепенно распространяющийся на черешки листьев и стебли. Листья увядают, отмирают, но не опадают (рис. 4.32). При вторичном заражении, через клубни, некротизация листьев менее выражена, но листья становятся крапчатыми и скрученными, растения сильно отстают в росте, становятся розеточными из-за укорочения междоузлий.

В клетках инфицированных растений вирус вызывает образование характерных для потивирусов цитоплазматических «цилиндрических включений», которые на поперечных УТ-срезах имеют вид мелких колесиков со спицами, а на продольных — пучков электроноплотных тяжей (рис. 4.33).

Вирус переносится неперсистентным способом многими видами тлей, в том числе Myzus persicae, M. ornatus, Aphis rhamni, A. fabae, Macrosiphum euphorbiae и др. Передача вируса тлями происходит при участии специфического белка-помощника, образующегося в инфицированных клетках при заражении вирусов. Белок-помощник (мол. масса (100 — 200) 10³) кодируется (по крайней мере частично) вирусным геномом и обеспечивает прикрепление вирионов к ротовым органам тли.

ТТИ в соке составляет 50—70 °С, ПРС — 10⁻³ — 10⁻⁴, ПСИ — 48—72 ч.

Распространение: во всех районах возделывания картофеля. В зависимости от штамма вируса, сорта картофеля и погодных условий потери урожая могут колебаться от незначительных до весьма серьезных.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия. 3. Серологический.

Меры борьбы: 1. Выбраковка больных растений, борьба с тлями — переносчиками вируса. 2. Применение устойчивых сортов картофеля. 

{10, 34, 35, 48, 76, 156}
Рис. 4.32. Увядание листьев картофеля, пораженного Y-вирусом картофеля (фото Жеребчук Л. К.)

Рис. 4.33. Цилиндрические включения Y-вируса картофеля, индуцируемые вирусом в клетках пораженных растений: розетки (а), лентовидные включения (б) (фото Кушниренко О. А.)
Onion yellow dwarf virus — Вирус желтой карликовости лука

Частицы дл. 770 нм.

Круг растений-хозяев ограничен несколькими видами однодольных растений (роды Allium, Muscari, Narcissus).

На растениях лука репчатого, выросших из пораженных вирусом луковиц, развивается желтая полосчатость листьев, приводящая затем к полному их пожелтению, скручиванию, уплощению и пониканию. Цветоносы также желтеют, скручиваются и придают растениям карликовый вид. Цветочные головки и семена мельче, чем у здоровых растений.

В клетках инфицированных растений выявляются X-тела, в которых при электронной микроскопии УТ срезов наблюдаются структуры, характерные для цилиндрических включений. Вирус вызывает сходную картину заболевания на нарциссе (Narcissus jonquilla), который может использоваться для индикации вируса.

Переносится многими видами тлей, питающимися на луке и других родственных видах растений. Передача семенами лука не установлена. Передается механической инокуляцией сока.

TTC составляет 58—60 °C, ПРС — 10^-4, ПСИ — 54—72 ч.

Сильный иммуноген.

Распространение: во всех районах возделывания лука, в том числе в СССР.

Методы диагностики: 1. Биотестирование на луке и Narcissus jonquilla. 2. Электронная микроскопия. 3. Серологический.

Меры борьбы: 1. Отбор маточных луковиц от здоровых растений. 2. Удаление больных растений лука-самосева. 3. Выведение устойчивых сортов. [10, 152]

Bean yellow mosaic virus — Вирус желтой мозаики фасоли

Частицы дл. до 750 нм, плавучая плотность в CsCl 1,318—1,325 г/см³. Структурный белок вируса имеет мол. массу (33—35) 10³.

Вирус-полифаг. Имеет весьма широкий круг растений-хозяев, причем разные штаммы могут существенно отличаться по кругу хозяев. Кроме бобовых поражает растения из других семейств как двудольных, так и однодольных растений.

На фасоли симптомы имеют вид типичной мозаики из темно-зеленых пятен на хлоротичном фоне. Скривание молодых листьев часто сопровождается характерным опусканием листа к черешку.

Контрастная мозаика четко различима на листьях до конца вегетации. Растения отстают в росте, кустятся в связи с укорочением междоузлий, плодоношение снижается. Симптомы на листьях других растений (горох, бобы, донник, гладиолус), как правило, также имеют характер четкой мозаики из темно-зеленых пятен на хлоротичном фоне. В клетках пораженных растений вирус индуцирует образование внутриклеточных включений типа X-тел.

Переносится неперсистентным способом многими видами тлей. В незначительном количестве случаев (3—6 %) передается семенами люпина и других растений. Сравнительно легко передается механически и соком.

TTI в соке составляет 56—64 °C, ПРС — выше 10^-3, ПСИ — 24—32 ч.

Умеренный иммуноген. Растение-индикатор — марь рисовая.

Методы диагностики: 1. Биотестирование. 2. Серологический.

3. Электронная микроскопия.

Меры борьбы: 1. Использование устойчивых сортов. 2. Мероприятия, ограничивающие заселение посевов тлями, пространственная изоляция от посевов многолетних бобовых. 3. Выбраковка больных растений (если поражение не носит массового характера). [10, 34, 36, 50, 156]
Carnation vein mottle virus — Вирус крапчатости жилок гвоздики
Частицы дл. 790 нм. $S_{20,w}$ 144.
Обнаружен на гвоздике садовой и турецкой. Первыми симптомами поражения этих видов являются посветление жилок молодых листьев, после чего появляются хлоротические пятна, четко различимые в летнее время. Зимой, а также по мере старения растений, симптомы маскируются. Цветы пестролепестные с пятилистными чашелистиками.
Поражает растения из разных семейств, в том числе отдельные виды родов Amaranthus, Atriplex, Beta, Gomphrena, Nicotiana, Plantago, Silene, Spinacea, Tetragonia.
На листьях мари амарантовидной через 6—12 сут после инокуляции образуются хлоротические некротизирующиеся местные поражения с красноватым центром. Для мари рисовой характерны хлоротические местные пятна, а затем системная желтая пятнистость листьев. В клетках инфицированных листьев выявляются включения типа цилиндрических, характерные для потивирусов.
Переносятся тлями Myzus persicae неперсистентным способом и со- ком больных растений.
ТТИ составляет 60—65 °С, ПРС — $10^{-3}$—$10^{-5}$, ПСИ — 10—12 сут при к. т.
Сильный иммуноген.
Распространение: Европа.
Меры борьбы: 1. Оздоровление методом термотерапии при 38 °С. 2. Культивирование верхушечных меристем. 3. Борьба с тлями — переносчиками вируса. [115]

Watermelon mosaic virus 1 — Вирус мозаики арбуза 1
Частицы дл. 750 нм.
Вызывает мозаичные болезни арбуза, дыни, тыквы, огурцов, а также ряда культурных и дикорастущих растений из других семейств. На листьях арбуза симптомы вируса проявляются в виде слабого хлороза, мозаики из зеленых полос вдоль жилок, пузыревидных зеленых пятен, чередующихся с хлоротическими междужилковыми участками. Растения отстают в росте, хуже завязывают плоды. На плодах арбуза и дыни вирус вызывает пятнистость, они могут изменять форму и уменьшаться в размерах. В цитоплазме клеток инфицированных растений выявляются X-тела (аморфные включения), в ядрах — кристаллические включения. В составе X-тел электронномикроскопически выявляются цилиндрические включения.
Вирус переносится неперсистентным способом разными видами тлей, питающихся на растениях-хозяевах, в том числе Acrithosyphon pisum, Aphis craccivora, A. fabae, A. nasturcii, Aulacorthum circumflexus и др. Передачи семенами, по-видимому, не происходит, за исключением эхиноцистиса в 2 % случаев.
ТТИ в соке составляет 58—62 °С, ПРС — $10^3$ — 3 · $10^{-4}$, ПСИ — 20 сут.
Сильный иммуноген.
Распространение: во всех районах выращивания бахчевых, тыквенных культур.
Методы диагностики: 1. Биотестирование. 2. Серологический. 3. Электронная микроскопия.
Меры борьбы: 1. Мероприятия, ограничивающие заселение посевов тлями. 2. Использование устойчивых сортов. [34, 103, 157, 172]

Hippeastrum mosaic virus — Вирус мозаики гиппеаструма
Частицы дл. 750 нм (550—600 нм), $S_{20,w}$ 155.
Выявлен на гиппеаструме и некоторых других растениях. На гиппеаструме вызывает мозаичную пятнистость листьев. Цветоносы при-
обретают хлоротичную окраску. На цветках симптомы, как правило, не различимы, но иногда на них появляются темные пятна. В клетках эпидермиса образуются цитоплазматические Х-тела.

Переносится, по-видимому, тлями Aphis frangulae gossypii и Myzus persicae неперсистентным способом. Передача семенами не установлена. Легко передается механической инокуляцией соком.

Растения-индикаторы: марь рисовая, реагирующая хлоротичными или некротическими локальными поражениями; гомфрена — концентрическими некрозами через 7—10 сут после инокуляции. ТТИ в соке составляет 55—70 °С, ПРС — 10^-2—10^-3, ПСИ — 1—4 сут.

Сильный иммуноген.

Распространение: Европа. Выявлен в СССР.

Методы диагностики: Биотестирование. 2. Серологический. 3. Электронная микроскопия.

Меры борьбы: 1. Выбраковка больных растений. 2. Санитарные мероприятия при работе в теплицах. [19, 71, 153]

**Wild potato mosaic virus** — Вирус мозаики дикого картофеля

Частицы дл. 735 нм.

Выделен из дикого картофеля Solanum chancayense Ochoa в районах пустынного побережья Перу. На этом растении вызывает сильную мозаичность и деформацию молодых листьев. Поражает также 19 видов из 5 родов семейства пасленовых. Все испытанные сорта культурного картофеля не восприимчивы к вирусу, так же как и культивируемые в высокогорных районах Перу виды Solanum curtilobum и S. ste- notomum.

Легко переносится тлей Myzus persicae неперсистентным способом.

Индикаторными растениями на вирус являются виды табака Nicotiana rustica (на инокулированных листьях которого развиваются отчетливые местные хлоротические пятна, позже окаймляющиеся коричневыми некротическими кольцами), N. bigelovii (системная мозаика) и N. clevelandii (посветление жилок, мозаика и скручивание листьев).


Сильный иммуноген.

Распространение: Перу. Карантинный вирус для СССР.

Методы диагностики: 1. Биотестирование. 2. Серологический. 3. Электронная микроскопия.

Меры борьбы: 1. Карантинные мероприятия. 2. Меры ограничения распространения тлей-переносчиков. [123]

**Beet mosaic virus** — Вирус мозаики свеклы

Частицы дл. 733 нм (рис. 4.34).

Инфекционен для растений из разных семейств. Кроме свеклы среди культурных растений естественными хозяевами вируса являются шпинат, донник желтый, горох, бобы. Инфекция вызывает ощутимую потерю урожая корнеплодов свеклы. На листьях свеклы вирус вызывает желтую пятнистость, морщинистость и ячейчатость. Края листьев часто скручиваются внутрь. Растения отстают в росте, становятся карликовыми. В клетках больных растений выявляются цилиндрические включения и кристаллоидные включения в ядре (рис. 4.35).

Вирус переносится неперсистентным способом многими видами тлей. Передача семенами не обнаружена. Экспериментально передается соком.

Индикаторное растение — щирица хвостатая реагирует немногочисленными локальными пятнами на инокулированных листьях.


Слабый иммуноген.
Рис. 4.34. Частицы вируса мозаики свеклы (фото Колесник Л. В.)

Рис. 4.35. Частицы (a) и внутриклеточные цилиндрические включения (b) в клетке свеклы вируса мозаики свеклы, УТ-срез (фото Колесник Л. В.)
Распространение: повсеместно, в том числе в СССР.
Методы диагностики: 1. Биотестирование. 2. Серологический. 3. Электронная микроскопия.
Меры борьбы: 1. Защита посевов свеклы от заселения тлями. 2. Применение устойчивых сортов. [10, 151]

Soybean mosaic virus — Вирус мозаики сои
Круг растений-хозяев ограничен, и вирус постоянно обнаруживается, главным образом, на сое, однако он экспериментально перенесен на ряд бобовых растений (роды Phaseolus, Lupinus, Dolichos и др.). В некоторых из них вирус может находиться в латентном состоянии.

На сое вирус вызывает посветление жилок листьев, вслед за которым на вновь отрастающих листьях развиваются симптомы морщинистости и мозаичности (из темно-зеленых вздутых участков между крупными жилками). Участки листа между вздутиями и по краям приобретают желтоватую окраску, края листьев часто заворачиваются вниз (рис. 4.36). Растения отстают в росте, хуже плодоносят. Симптомы, однако, могут варьировать в зависимости от сорта сои. Пораженные семена больных растений теряют характерную для данного сорта окраску (обесцвечиваются).

Индикаторным растением на вирус является соя, а также мари белая и рисовая, на инокулированных листьях которых вирус вызывает образование местных некрозов (некоторые штаммы могут не вызывать такой реакции).

В цитоплазме клеток восприимчивых растений вирус вызывает образование X-тел, в которых при электронной микроскопии ультратонких срезов выявляются типичные цилиндрические включения.
Вирус переносится неперсистентным способом разными видами тлей, питающихся на сое. Важное место в распространении вируса занимает семенная инфекция, поражающая разные сорта сои до 68 % растений.

ТТИ составляет 55—62 °С, ПРС 10^3—10^5, ПСИ — 3—4 сут.

Сильный иммуноген.

Распространение: во всех районах возделывания сои, в том числе в СССР.

Методы диагностики: 1. Биотестирование. 2. Серологический.
3. Световая и электронная микроскопия включений и вирионов.

Меры борьбы: 1. Пространственная изоляция посевов сои от многолетних бобовых трав, уничтожение тлей, агротехнические приемы (ранние сроки сева, загущенные посевы раннеспелых сортов). 2. Посев семенами, собранными со здоровых растений. 3. Выведение устойчивых сортов. [10, 34, 36, 48, 65, 151]

**Turnip mosaic virus — Вирус мозаики турнепса**

Частицы дл. 750 нм. Плавучая плотность в CsCl 1,335 г/см³. РНК составляет 5 % массы вируса, ее мол. масса 3,5 • 10^6.

Вирус-полифаг, повсеместно распространен на дикорастущих растениях из различных семейств. Из культурных растений чаще поражает капусту различных селекционных форм, турнепс, хрен, горчицу и др. На капусте кочанной вирус вызывает болезнь, которая называется черной кольцевой пятнистостью. Симптомы проявляются в виде мелких черных некротических колец или пятен, обильно покрывающих лист между жилками. Кольцевая пятнистость приобретает системный характер. Она видна на наружных листьях, а в кочанах при хранении вирус вызывает внутренний некроз.

На турнепсе первым симптомом заражения вирусом является появление желтого заплесневения молодых листьев. Листья скручиваются и уменьшаются в размерах, растение отстает в росте. Позднее на листьях развивается мозаичная расцветка и курчавость. В цитоплазме клеток образуются Х-тела со структурами, характерными для цилиндрических включений потивирусов.

В качестве индикаторных растений могут использоваться марь амарантовидная (хлоротичные местные пятна), табак (коричневые некрозы через 7—10 сут), гомфрена — (темно-зеленые округлые местные поражения, позже краснеющие). Вирус переносится неперсистентным путем многочисленными видами тлей. Довольно легко передается механически соком; не передается через семена.

ТТИ в соке составляет 56—60 °С, ПРС — 10^-3 — 10^-4, ПСИ — 2—4 сут.

Умеренный иммуноген.

Распространение: повсеместно на культурных посевах крестоцветных культур.

Методы диагностики: 1. Биотестирование. 2. Серологический. 3. Электронная микроскопия.

Меры борьбы: 1. Защита посевов от тли. 2. Выведение и использование устойчивых сортов. [151]

**Bean common mosaic virus — Вирус обыкновенной мозаики фасоли**

Частицы дл. 750 нм. Мол. масса белка оболочки (33—35) 10^3.

Поражает в основном растения семейства бобовых (роды Phaseolus, Pisum, Trifolium, Vicia, Vigna и др.). Симптомы на фасоли варьируют в зависимости от штамма вируса, сорта растения и времени заражения. Чаще они имеют вид темно-зеленой мозаичной пятнистости вдоль крупных жилок на общем хлоротичном фоне листа. В центре листовой пластинки темно-зеленые уча-
стки обычно пузыревидно вздуваются и лист становится морщинистым, от края скручиваясь вниз. Часто молодые верхушечные листья скручиваются трубкой или деформируются асимметрично. Такие симптомы обычно наблюдаются на растениях, инфицированных через семена. Растения заметно отстают в росте, хуже цветут и плодоносят. На первично зараженных растениях фасоли вирус вызывает скручивание верхушечных листьев краями вниз, хлоротичность и слабую мозаику (рис. 4.37). При повышенных температурах летом симптомы часто маскируются.

Индикаторным растением для вируса служит фасоль американского сорта Топ Кроп, на инокулированных примордиальных листьях которой появляются местные некрозы. Аналогичным образом на вирус реагируют сорта фасоли Пинто, Грейт Нозерн, Ред Мексикен.

Вирус переносится неперсистентным способом многими видами тлей, питающихся на восприимчивых к нему растениях. В отличие от вируса желтой мозаики фасоли, передается семенами и пыльцой больших растений в значительных количествах. Передача семенами фасоли, например, может достигать 50 %; обнаружено также, что он передается семенами вигны (Vigna sesquipedalis) на 37 %. Передается механической инокуляцией сока.

Умеренный иммуноген.
Распространение: повсеместно, в том числе в СССР.
Методы диагностики: 1. Биотестирование. 2. Серологический.
3. Электронная микроскопия.
Меры борьбы: 1. Использование устойчивых сортов. 2. Посев семенами, отобранными со здоровых растений. 3. Борьба с тлями. [10, 34, 36, 48, 66, 151]

Tulip breaking virus — Вирус пестролепестности тюльпанаЧастицы дл. 750 нм.
Вирус вызывает пестролистность тюльпана и болезни некоторых сортов лилии. Круг хозяев ограничен в основном растениями из семейства лилейных (роды Tulipa, Lilium, Allium и некоторыми другими).

На садовых сортах тюльпана наиболее ярко симптомы вируса проявляются на цветках. Они приобретают тонкий перистый рисунок по краям лепестков и полосатость по центральной части лепестков (рис. 4.38). На некоторых сортах тюльпанов кроме пестролистности появляется крапчатость или полосатость листьев, наблюдается отставание в росте, в сроках цветения. В клетках эпидермиса вирус вызывает образование X-тел в цитоплазме.

В качестве индикаторного растения используют вид лилии Lilium formosanum, которая реагирует на заражение пестролистностью или штриховатостью листьев через 2 нед. после инокуляции.

Вирус переносится неперсистентным способом несколькими видами тлей — Aphis fabae, Aulacorthum circinellus, A. solani, Dysaphis tulipae, Macrosiphum euphorbiae, Myzus persicae.

ТТИ в соке составляет 65—70 ºC, ПРС — 10—8, ПСН — 4—6 сут.

Сильный иммуноген.

Распространение: во всех странах выращивания тюльпанов.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия. 3. Сериалогический.

Меры борьбы: санитарные мероприятия. [19, 21, 173]

Plum pox virus — Вирус шарки (оспы) сливы

Частицы дл. 76 нм.

Вирус-полифаг. Кроме сливы поражает абрикос, персик, миндаль, алычу и некоторые другие виды рода Prunus, а также ряд травянистых растений из различных семейств.

На листьях сливы образуются ярко-желтые узоры из пятен и полос различной формы. На плодах появляются постепенно некротизирующиеся темно-зеленые пятна, и они преждевременно опадают.

В качестве индикаторных растений можно использовать марь пахучую (на инокулированных листьях которой образуются мелкие темные или охристые поражения) и другие растения. В клетках инфицированных растений выявляются X-тела в цитоплазме и паракристаллические включения в ядрах.

Вирус переносится в естественных условиях тлями Aphis craccivora, A. spiraecola, Brachycaudas helichrysi, B. caudus Myzus persicae, M. varians, Phorodon humuli и, возможно, другими видами неперсистентным способом. Семенами не передается. Инфекция культурных
косточковых распространяется при прививках. Передается механической инокуляцией сока.

ТТИ составляет 51—54 °С, ПРС — 10⁻⁴, ПСИ — 1—2 сут.

Распространение: повсеместно.

Методы диагностики: 1. Биотестирование. 2. Серологический.

3. Электронная микроскопия.

Меры борьбы: борьба с тлями — переносчиками вируса. [9, 128, 152]

Potato virus A — A-вирус картофеля

Вирус-полифаг. Способен заражать свыше 50 видов семейства пасленовых.

На картофеле симптомы сильно отличаются в зависимости от штамма и сорта растения. На многих сортах инфекция не вызывает видимых симптомов. Некоторые сорта реагируют на À-вирус некрозом верхушки, который затем распространяется вниз по растению и может вызвать его гибель (сорта Эпикур, Кинг Эдвард, Сако и др.). Клубни таких растений часто некротизируются. Снижают урожай клубней (потери до 40 %), а при совместном заражении с Х-вирусом и другими вирусами ущерб достигает 60—80 %.

Индикаторными растениями являются: паслен Solanum demissum (на листьях образуются синевато-черные локальные небольшие пятна округлой формы); томаты (появление на листьях темных местных некрозов, которые затем становятся системными).

Вирус переносится тлями Myzus persicae и M. circumflexus. Механической инокуляцией сока передается с трудом.

Умеренный иммуноген.

ТТИ составляет 44—52 °С, ПРС — 5—10 г, ПСИ — 12—24 ч.

Умеренный иммуноген.

Распространение: во всех районах возделывания картофеля.

Меры борьбы: борьба с тлями — переносчиками вируса. [34, 35, 48, 55, 151]

Группа Х-вируса картофеля

Международное название: Потексвирусы (Potexvirus)

Название группы происходит от начальных букв английского названия типового представителя группы — potato X-virus.

Нитевидные частицы дл. 470—580 нм и диам. 13 нм со спиральной симметрией и шагом спирали 3,4 нм. Нуклеиновая кислота представлена одной молекулой линейной орНК с мол. массой 2,1 • 10⁶, содержащей 5 % массы частицы. Один полипептид оболочки мол. массой (18—23) • 10³. Липиды и углеводы не обнаружены.

Физико-химические свойства: мол. масса 35 • 10⁶; S₂₀, w 115—130; плавучая плотность в CsCl 1,31 г/см³; частицы стабильны.

Волокнистые цитоплазматические включения, состоящие из вирусных частиц, часто в виде полос; некоторые строенияя ядерные включения различного строения.

Круг растений-хозяев узкий для отдельных вирусов. Легко передается механически при контакте между растениями. Переносчики неизвестны.

Представители группы: Potato virus X — X-вирус картофеля (типичный член); Cactus virus X — X-вирус кактуса; Cassava common mosaic virus — вирус обыкновенной мозаики маниока; Clover yellow mosaic virus — вирус желтой мозаики клевера; Commelina virus X — X-вирус коммелины; Cymbidium mosaic virus — вирус мозаики цимбидиума; Foxtail mosaic virus — вирус мозаики лисохвоста; Hydrangea ringspot virus — вирус кольцевой пятнистости гортензии; Lily virus-
Рис. 4.39. Частицы Х-вируса картофеля

Рис. 4.40. Симптомы Х-вируса картофеля на листе картофеля

Х — Х-вирус лилии; Narcissus mosaic virus — вирус мозаики нарцисса; Nerine virus X — Х-вирус нерни; Papaya mosaic virus — вирус мозаики дынного дерева; Pepino mosaic virus — вирус мозаики дынной груши; Plantago severe mottle virus — вирус резкой крапчатости подорожника; Plantago virus X — Х-вирус подорожника; Viola mottle virus — вирус крапчатости фиалки; White clover mosaic virus — вирус мозаики белого клевера. Группа включает 18 возможных членов. [2, 32, 33, 87, 103, 142]

Potato virus X — Х-вирус картофеля

Гибкие палочки дл. 517 нм и шир. 17 нм (рис. 4.39).

На картофеле в зависимости от штамма, сорта и условий выращивания вызывает симптомы некроза верхушки, крапчатой мозаики
Рис. 4.41. Изогнутые (А) и спирально закрученные (Б) мембранные включения X-вируса картофеля в клетке дурмана:
а — скопление вирусных частиц; б — мембранные структуры с рибосомальными частицами
(рис. 4.40) либо не вызывает внешних симптомов, хотя накапливается в значительном количестве. В клетках инфицированного растения приводит к образованию внутриклеточных включений, наиболее характерными из которых являются мембраны включения своеобразной морфологии (рис. 4.41). Кроме картофеля заражает по крайней мере 240 видов растений из 16 семейств, главным образом пасленовые.

Переносчики неизвестны. Легко передается при механическом контакте растений и обработке посевов, инокуляцией сока. Распространяется посадочным материалом.

Растения-индикаторы: гомфрея и марь амурохвостая реагируют на вирус местными некрозами на инокулированных листьях.

ТТИ составляет 68—76 °C; ПРС — 10^{-5}—10^{-6}, ПСИ — 1 мес.—1 год.

Сильный иммуноген.

Распространение: во всех районах возделывания картофеля. Причиняет существенный ущерб урожаю.

Методы диагностики: 1. Серологический. 2. Биотестирование. 3. Электронная микроскопия.

Меры борьбы: не разработаны.

[10, 32, 33, 34, 35, 48, 56, 151]

Potato aucuba mosaic virus — Вирус аукуба-мозаики картофеля
Вироны дл. 580 нм и шир. 11 нм.

Рис. 4.42. Симптомы вируса аукуба-мозаики картофеля на листьях картофеля

Рис. 4.43. Симптомы вируса аукуба-мозаики картофеля на листьях перца (а) и дурмана индийского (б)

Штаммовый состав разнообразен. В зависимости от штамма, сорта картофеля и внешних условий вызывает разные симптомы на растениях — некроз верхушек, желтую пятнистость и мозаику листьев
(рис. 4.42), некротизацию клубней. Круг растений-хозяев в основном ограничен видами из семейства пасленовых, однако к вирусу восприимчивы и отдельные виды из семейств ширицевых, бобовых, маревых и некоторых других.

Индикаторные растения: дурман Datura metel (рис. 4.43) — симптомы в виде серых концентрических некрозов на инокулированных листьях; паслен Solanum demissum — кольцевые темно-коричневые некрозы.

Передается механической инокуляцией сока, прививкой. Переносчиками вируса в природе являются тля Myzus persicae, Aphis nasturcii, Aulacorthum circumplexus, A. solani, передающие вирус неперсистентным способом.

ТТИ в соке составляет 65—70 °C, ПРС = 10^{-5}—10^{-6}, ПСИ = 1—3 мес.

Распространение: повсеместно. Снижает урожай картофеля приблизительно на 10%.

Методы диагностики: 1. Биотестирование. 2. Серологический. 3. Электронная микроскопия.

Рис. 4.44. Симптомы вируса кольцевой пятнистости гортензии на листьях гортензии (фото Зирки Т. И.)

Рис. 4.45. Симптомы вируса кольцевой пятнистости гортензии на листьях гортензии (фото Зирки Т. И.)
Меры борьбы: борьба с тлями — переносчиками вируса. [1, 34, 35, 50, 51, 127, 151]

**Hydrangea ringspot virus** — Вирус кольцевой пятнистости гортензии
Частицы нитевидной формы длиной 493х13 нм.
Естественным растением-хозяином является только гортензия крупнолистная. Характерным симптомом является слабая кольцевая пятнистость, иногда приобретающая красноватый оттенок (рис. 4.44) на старых листьях. Круг экспериментальных растений-хозяев относительно узок. Эффективными растениями-индикаторами являются гомфрена и марь амарантовидная (рис. 4.45).
Передается механической инокуляцией сока инструментами. Семенами не передается, переносчики неизвестны. ТТИ составляет 72 °С, ПРС — 10^{-5}, ПСИ — 2 сут.
Распространение: США, Англия, Франция, Италия, ГДР, ФРГ, Швеция, Дания, Бельгия, Новая Зеландия, СССР.
Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия. 3. Серологический.
Меры борьбы: 1. Выбраковка больных растений. 2. Создание здоровых маточных насаждений (термотерапия). 3. Выведение и использование устойчивых сортов. [129, 153]

**Cymbidium mosaic virus** — Вирус мозаики цимбидиума
Нитевидные частицы длиной 452—500 нм, шириной 17—18 нм.
Вирус-полифаг. На цимбидиуме вызывает светло-зеленую мозаичность листьев, часто сопровождающуюся некрозами (рис. 4.46).
Эффективным растением-индикатором с локальной реакцией является дурман обыкновенный (рис. 4.47).
Распространяется посадочным материалом, переносчики неизвестны.
TTI в соке составляет 70—75 °С, ПРС — 10^{-3} — 5 · 10^{-8}, ПСИ — 7 сут при к. т.
Распространение: Австралия, США, Бразилия, Англия, Бельгия, Нидерланды, СССР и другие страны.
Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия. 3. Серологический.
Меры борьбы: 1. Выбраковка больных растений. 2. Микроклональное размножение здоровых протестированных растений. 3. Дезинфекция инструмента при уходе за растениями и срезке цветочной продукции. [19, 84, 153]

**Cactus virus X** — X-вирус кактуса
Частицы размером 520 X 13 нм.

Рис. 4.46. Симптомы вируса мозаики цимбидиума на листе цимбидиума гибридного:
а — мозаичность; б — некротические штрихи (фото Зирки Т. И.)
В связи с особенностями морфологического строения кактусов внешние признаки поражения не всегда дают четкую картину. Чаше всего симптомы проявляются в виде мелкоточечной хлоротической пятнистости по всей поверхности растения и некротизации тканей на отдельных участках (рис. 4.48). В условиях культуры передается от больных опунций на здоровые отростками. В эксперименте передается инокуляцией сока механически.

ТТи составляет 80—82 °C, ПРС — 10^{-5}—10^{-8}.

Распространение: повсеместно на различных видах кактусов. Зарегистрирован в СССР.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия.

Меры борьбы: дезинфекция инструмента. [5, 58]
Группа вируса мозаики табака

Международное название: Тобамовирусы (Tobamovirus).

Название группы происходит от начальных букв английского названия типичного представителя — Tobacco mosaic virus.

Удлиненные жесткие частицы диам. около 18 нм и дл. 300 нм, со спиральной симметрией с шагом спирали 2,3 нм (рис. 4.49). Одна молекула линейной оРНК, мол. массой 2·10^6. Один полипептид оболочки, мол. массой (17—18)·10^3. Липиды и углеводы не обнаружены.

Физико-химические свойства:
мол. масса 40·10^5; S_20,w 194, плотность в CsCl 1,325 г/см, частицы очень стабильны.

Вирус реплицируется в цитоплазме, индуцируя характерные вироплазмы. Вирусные частицы часто формируют крупные кристаллические образования, видимые в световом микроскопе.

Большинство членов группы имеют умеренный круг растений-хозяев. Легко передаются механической инокуляцией сока. Некоторые члены передаются семенами.

Представители группы: Tobacco mosaic virus — вирус табачной мозаики (типичный член); Cucumber green mottle mosaic virus — вирус зеленой крапчатой мозаики огурца; Cucumber virus 4 — вирус огурца 4; Frangipani mosaic virus — вирус мозаики красного жасмина; Odon toglossum ringspot virus — вирус кольцевой пятнистости одонтоглассума; Ribgrass mosaic virus — вирус мозаики подорожника; Sammon's opuntia virus — вирус опунции Сэммонса; Sunhemp mosaic virus — вирус мозаики конопли; Tomato mosaic virus — вирус мозаики томата; U-2 tobacco mosaic virus — вирус мозаики U-2 табака. Группа включает 6 возможных членов. [87, 97, 103, 111, 142, 166]

Tobacco mosaic virus — Вирус табачной мозаики

Выделен из растений многих видов разнообразных семейств в виде многочисленных штаммов, которые могут отличаться от типичного некоторыми свойствами. На табаке обычный штамм вызывает посветление жилок, а затем различную степень нарушений нормального вида листьев — мозаичную пятнистость, деформированность, темно-зеленую пузырчатость и др. Этот штамм имеет чрезвычайно широкий круг растений-хозяев.

Для диагностики обычного штамма ВТМ используют табак (сорт Самсун), табак клейкий, фасоль (сорт Пинто), марь амарантовидную и некоторые другие растения, которые образуют локальные некрозы на инокулированных листьях (рис. 4.50).

Передается чрезвычайно легко механически. Естественные переносчики неизвестны.
В клетках табака и других растений вирус образует характерные аморфные включения (X-тела) и кристаллические образования.

ТТИ сока составляет 93 °C, ПРС — 10^-9, ПСИ — несколько мес. В сигаретном табаке сохраняет инфекционность в течение нескольких лет.

Распространение: повсеместно.

Методы диагностики: 1. Биотестирование. 2. Световая и электронная микроскопия. 3. Серологический.

Меры борьбы: 1. Выведение и использование устойчивых сортов. 2. Санитарные мероприятия. [10, 34, 48, 111, 151, 178]

Cucumber green mottle virus — Вирус зеленой крапчатой мозаики огурца

Частицы дл. 275—300 нм и диам. 17 нм.

Имеет довольно ограниченный круг растений-хозяев, главным образом из семейства тыквенных.

На листьях огурца вирус вызывает сначала потемнение жилок, а затем хлоротичную пятнистость, пузырьковидность между жилками.

Растения отстают в росте, стареют и отмирают раньше здоровых. На плодах четких симптомов, как правило, нет.

При механической инокуляции на листьях мари сизой и степной образуются первичные локальные хлоротичные кольца. Передается при механическом контакте при попадании сока больных растений в здоровые. Естественные переносчики вируса неизвестны.

ТТИ составляет 85 — 90 °С

ПРС — 10^-10, ПСИ — более года.

Распространение: широкое в условиях закрытого грунта, в том числе в СССР.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия.

Меры борьбы: 1. Выбраковка больных растений. 2. Меры предосторожности при обработке растений в теплице. 3. Использование устойчивых сортов. [10, 34, 48, 103, 152]

Beet necrotic yellow vein mosaic virus — Вирус некротического пожелтения жилок свеклы

Частицы дл. около 930 нм, 270 нм и 65—105 нм (рис. 4.51).

Круг растений-хозяев узкий, ограничен в основном видами семейства маревых (15 видов).

На свекле вызывает «ризоманию». Больные растения характеризуются пожелтением листьев, некротическим хлорозом жилок, скручиванием, увяданием и остановкой роста, связанными с повреждением корней.

На листьях свеклы крупносемянной механическая инокуляция сока вызывает образование локальных хлоротичных пятен, которые затем приобретают системный характер. На видах мари амарантовидной и рисовой через 5—7 сут после инокуляции образуются местные хлоротичные, некротизирующиеся пестрые пятна; кольца или
концентрические кольца характерны для листьев шпината новозеландского.

Вирус, по-видимому, передается спорами гриба Polymixa betae, паразитирующего на корнях свеклы. Инфекция в сухой почве сохраняется свыше 4 лет. Легко передается механической инокуляцией сока.

Умеренный иммуноген.

ТТИ составляет 65—70 °С, ПРС — 10^-4 и ПСИ — 6 сут.

Распространение: ряд свеклосеющих районов мира (Франция, Италия, Япония, СССР).

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия. 3. Серологический.

Рис. 4. 51. Частицы вируса некротического пожелтения листьев свеклы (фото Колесник Л. В.)

Меры борьбы: 1. Мероприятия по ограничению распространения в почве гриба — переносчика вируса. 2. Селекция устойчивых сортов. [11, 29, 67, 166]

Potato mop top virus — Вирус щетковидности верхушки картофеля Палочковидные частицы дл. 250 — 300 × 17 нм и 100 — 160 × 17 нм. Инфекционны только частицы большей дл.

Круг растений-хозяев сравнительно узкий. Заражает в основном пасленовые и некоторые маревые растения.

На картофеле при естественном заражении вызывает характерные симптомы сильного укорачивания междоузлий побегов, измельчения листьев и их скручивания, в результате чего верхушка растения становится кустистой. Рост сильно замедляется. На нижних и средних листьях появляются желтая нерегулярная пятнистость, кольца или линии. Иногда хлоротичность листьев переходит в мозаичность на верхних листьях. Клубни инфицированных растений имеют на поверхности некротические пятна или концентрические кольца и дуги, трещины. На
срезе клубней видны темные некротизирующиеся пятна, кольца или дуги. Симптомы могут варьироваться в зависимости от сорта картофеля.

При искусственном заражении мари амарантовидной на седьмые—десятые сутки после механической инокуляции сока образуются мелкие хлоротические местные пятна, которые постепенно приобретают вид кольцевых пятен. На листьях мари рисовой также образуются хлоротические местные пятна.

Вирус передается спорами почвенного гриба Spongospora subterranea. Зараженные клубни являются источником вторичного заражения картофеля. Механической инокуляцией сока передается с трудом. ТТИ составляет 75—80 °C, ПРС — 10^{-3}, ПСИ — 10 нед. при к. т.

Распространение: страны Европы.

Методы диагностики: 1. Биотестирование. 2. Серологический.

3. Электронная микроскопия.

Меры борьбы: 1. Выбраковка больных растений и пораженных клубней. 2. Возделывание устойчивых сортов на зараженных грибом—переносником почвах. [105, 151]

Narcissus mosaic virus — Вирус мозаики нарцисса

Палочковидные частицы дл. 548—568 нм.

Поражает нарцисс восточный. Группу тацентных, поэтических и жонквилий не заражает. У основания листьев нарцисса развивается слабая мозаичность, более заметная во время цветения и после него. На цветках и луковицах симптомы отсутствуют. Экспериментально удалось заразить 28 видов культурных и диких видов из различных семей.

Легко передается инокуляцией сока и переносится от больного растения на здоровые при срезе цветков. Семенами не передается. ТТИ сока составляет 75 °C, ПРС — 10^{-3}, ПСИ — 3 мес при к. т.

Распространение: широкое в США, Японии, Великобритании, Нидерландах, Дании, Болгарии, ГДР, ФРГ, Ирландии, Норвегии, Португалии, Швеции и СССР.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия.

Меры борьбы: 1. Выбраковка больных растений. 2. Дезинфекция инструментов. 3. Оздоровление полностью зараженных сортов методом культуры верхушечных меристем. 4. Тестирование маточных насаждений. [19, 21, 147, 153]

ВИРУСЫ С РАЗДЕЛЕННЫМ ДВУХКОМПОНЕНТНЫМ ГЕНОМОМ

Группа вируса кольцевой пятнистости гвоздики

Международное название: Диантовирусы (Dianthovirus). Название группы происходит от латинского родового названия гвоздики Dianthus.

Частицы полиэдрические диам. 31 — 34 нм. Две молекулы положительно-геномной оНРК с мол. массой 1,5 и 0,5 · 10^{6}. Более крупная РНК содержит цистрон белка оболочки. Два полипептида оболочки с мол. массой 40·10^{3}. Липиды и углеводы не обнаружены.

Физико-химические свойства: мол. масса 7,1 · 10^{5}, плавучая плотность в CsCl — 1,37 г/см³, S_{20, w} 135.

Сильные иммуногены. Вирусные частицы локализованы в цитоплазме; рассеяны или сгруппированы. Представители группы имеют широкий круг растений—хозяев. Легко передаются экспериментально механической инокуляцией сока и естественным путем через почву.

Представители группы: Carnation ringspot virus — вирус кольцевой пятнистости гвоздики (типичный член); Red clover necrotic mosaic
virus — вирус некротической мозаики красного клевера, Sweet clover necrotic mosaic virus — вирус некротической мозаики донника. [142]

Carnation ringspot virus — Вирус кольцевой пятнистости гвоздики Полиэдрические частицы диам. 29 нм.

Вирус-монофаг; поражает только гвоздику ремонтантную `Dian-thus caryophyllus`). Может поражать практически все сорта гвоздики группы Сим, однако ощутимый вред приносит только в запущенных хозяйствах.

На молодых листьях промышленных сортов появляются хлоротические и полунекротические, часто концентрические кольца, круглые серые и желтые пятна, линейный узор или крапчатость, иногда боковые изгибы, искривление и светлодороже-чевые некрозы на концах листьев. Растения плохо растут, листья мелкие, основания старых листьев красноватые; красновато-коричневая окраска появляется иногда и на стеблях. Цветы более мелкие, лепестки искривляются и пестреют. Сильно снижается качество и урожай цветков (на 15—20 %).

Переносится нематодами Longidorus macrosoma и Xiphinema diversicaudatum. Очень легко распространяется от растения к растению при срезе черенков и цветков ножом; при ручной выломке — значительно слабее. Семенами не передается. В экспериментальных условиях передается инокуляцией сока и прививкой.

TTИ составляет — 90 °С; PРС — 2 - 10^-2. PСI — 16 сут.

Распространение: США, Канада, Англия, Нидерланды, Дания, Франция, Италия, Испания, Чехословакия, Польша, Франция, СССР.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия. 3. Серологический.

Меры борьбы: 1. Выбраковка больных растений. 2. Меры предосторожности при уходе за растениями при срезе цветочной продукции. 3. Борьба с нематодами. 4. Создание безвирусных маточников из мери стенных растений. [21, 114, 153]

Группа вируса мозаики коровьего гороха

Международное название: Комовирусы (Comovirus). Название группы происходит от начальных букв английского названия типичного представителя группы Cowpea mosaic virus.

Два вида линейной положительно-геномной онРНК с мол. массой 2,4 • 10^6 (РНК-1) и 1,4 • 10^6 (РНК-2).

Два оболочечных полипептида мол. массой 22 и 42 • 10^3. Более мелкий, а у некоторых представителей группа оба полипептида могут частично деградировать в результате протеолитического расщепления in vivo и in vitro. Липиды не обнаружены. Белки оболочки могут быть гликозилированы.

Физико-химические свойства: частицы обычно очень стабильны и седиментируют как 3 компонента — T, M и В, содержащие соответственно 0, 25 и 37 % по массе РНК с S20,w 58,98 и 118, и мол. массой — (3,8, 5,2 и 6,2) 10^6. Коэффициенты диффузии всех трех компонентов около 1,30 × 10^-2 см^2/с. Плавучие плотности в CsCl 1,29 (T), 1,41 (M) и 1,44—1,46 (B) г/см^3.

Представители группы: Cowpea mosaic virus — вирус мозаики коровьего гороха (типичный член); Andean potato mottle virus — вирус крапчатости андийского картофеля; Bean pod mottle virus — вирус крапчатости бобов фасоли; Bean rugose mosaic virus — вирус морщинстой мозаики фасоли; Broad bean stain virus — вирус окрашивания конских бобов; Cowpea severe mosaic virus — вирус суровой мозаики корового гороха; Glycine mosaic virus — вирус мозаики глицинии; Quail pea mosaic virus — вирус мозаики перепелиного гороха; Ra-
dish mosaic virus — вирус мозаики редиса; Red clover mosaic virus — вирус крапчатости красного клевера; Squash mosaic virus — вирус мозаики кабачка; вирус настоящей мозаики конских бобов. Группа включает 1 возможный член. [25, 69, 87, 103, 142]

Cowpea mosaic virus — Вирус мозаики коровьего гороха

Сферические частицы диам. 30 нм (рис. 4.52).

Вирус-полифаг. На первых листьях инокулированного коровьего гороха проявляется яркая диффузная крапчатость через 3 сут после заражения. На первых тройчатых листьях наблюдается только посветление жилок, на вторых — хлоротическая мозаика; последующие листья деформируются и опадают. Пораженные растения растут медленно, становятся карликовыми, с укороченными междоузлиями. Рис. 4. 52. Частицы вируса мозаики коровьего гороха

В природе распространяется персиковой и другими видами тлей. На 20 % передаются семенами коровьего гороха.

ТТИ составляет 56—64 ºС, ПРС — 10⁻³, ПСИ — 2—3 сут.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия.

Меры борьбы: 1. Отбор здорового семенного материала. 2. Борьба с переносчиками. 3. Выведение устойчивых сортов. [36, 103, 151, 171]

Andean potato mottle virus — Вирус крапчатости андийского картофеля

Изометрические частицы диам. 28 нм.

Растение-хозяин — картофель. При поражении наблюдается крапчатость (от сильной до слабой), деформация листьев, системные хлоротические пятна, карликовость, угнетение роста растений, иногда жесткая морщинистость, мозаика листьев.

Распространяется посадочным материалом, при контакте растений в поле.

Распространение: андийская зона Южной Америки. Карантинный вирус для СССР.
Методы диагностики: 1. Биотестирование. 2. Серологический.
Меры борьбы: 1. Карантинные ограничения. 2. Выбраковка больных растений. 3. Выведение устойчивых сортов. [89]

Red clover mottle virus — Вирус крапчатости красного клевера
Сферические частицы диам. 30 нм (рис. 4.53).
Специализация: красный клевер и горох. На сеяццах красного клевера развивается хлороз жилок через 12—15 сут после инокуляции. Затем следуют общий хлороз, крапчатость, хлоротические кольца и пятна, морщинистость листьев (рис. 4.54, 4.55).

Рис. 4.53. Частицы вируса крапчатости красного клевера

ТТИ составляет 63—75 °C, ПРС — 10^{-3}—10^{-6}, ПСИ — 29 сут при к. т.
Распространение: Северная, Западная и Средняя Европа. В СССР детально изучен на Украине.
Методы диагностики: 1. Биотестирование (растениями-индикаторами являются несколько видов семейства бобовых) (рис. 4.54—4.56) и других семейств. 2. Электронная микроскопия. 3. Серологический.
Меры борьбы: разработаны слабо. [151, 170]

Broad bean true mosaic virus — Вирус настоящей мозаики бобов
Изометрические частицы диам. 25 нм.
Естественными хозяевами являются бобы и горох. На зараженных бобах и горохе резко выражена хлоротичная мозаичность.
В природе распространяется семенами (на 4—26 %) и жуками-длогоносиками (Apion vorax, Sitona lineatus).
ТТИ в соке составляет — 67—75 °C; ПРС — 10^{-4}; ПСИ — 6-7 сут при к. т.
Распространение: спорадическое в Европе и Северо-Западной Африке. В СССР описан в Литовской ССР.
Методы диагностики: 1. Биотестирование. В качестве растений-индикаторов используются некоторые виды семейства бобовых, а так же несколько видов из других семейств. 2. Электронная микроскопия. 3. Серологический.
Меры борьбы: не разработаны. [99, 103, 151]
Radisch mosaic virus — Вирус мозаики редиса
Сферические частицы диам. 39 нм.
Поражает некоторых представителей семейства крестоцветных: редис, турнепс, цветную капусту, лобу или китайскую редьку, горчицу, желтушник. Экспериментальными хозяевами являются большинство видов крестоцветных, а также несколько видов из других семейств. Известен в виде двух штаммов: японо-американского и европейского.
Симптомы варьируются в зависимости от вида растения. У редиса и лобы назначается угнетение роста, мозаичность и слабая деформация листьев, слабый некроз жилок; у редьки — системная крапчатость. Турнепс реагирует на заражение карликовостью, на листьях развиваются хлороз, некротические пятна, линии и кольцевые узоры, некроз черешков и курчавость молодых листьев.

Рис. 4.54. Симптомы вируса крапчатости красного клевера на листе клевера (фото Лапчик Л. Г.)
Рис. 4.55. Симптомы вируса крапчатости красного клевера на горохе
Рис. 4.56. Симптомы вируса крапчатости красного клевера на листе фасоли (фото Лапчик Л. Г.)
В качестве переносчиков известны тля (Lipaphis erysimi) и долгоносик (Epitrix hertipennis).

ГТИ составляет 75—80 °C, ПРС — 10^{-3}—10^{-5}, ПСИ — 16 сут.

Сильный иммуноген.

Распространение: США, Япония, Европа (Югославия, Австрия, Венгрия, Англия, ГДР, Италия, СССР), Индия.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия. 3. Серологический.

Меры борьбы: разработаны слабо. [8, 16, 26, 72, 152]

Группа вируса кольцевой пятнистости табака

Международное название: Неповирусы (Nepovirus). Название группы происходит от начальных букв английских слов «переносимые нематодами» (Nematode transmitted) и «полиэдрический» (Polihedrical), подчеркивающих характерные особенности представителей группы. Все 3 компонента седиментации имеют изометрические частицы (часто с гексагональными очертаниями) диам. 28 нм. М-частицы содержат единовенную молекулу РНК-2, В-частицы — единственную молекулу РНК-1; некоторые представители имеют тип частиц В, с двумя молекулами РНК-2.

Нуклеиновая кислота представлена двумя видами линейной положительно-геномной оРНК с мол. массой 8 \cdot 10^6 (РНК-1) и (1,3—2,4) 10^6 (РНК-2). Две молекулы РНК имеют небольшую гомологию в последовательности оснований. Каждая молекула РНК имеет поли (A) последовательность на 3'-конце и малый полиепитид (мол. масса (3—6) 10^3), ковалентно связанный, по-видимому, с его 5'-концом; фермента тивное расщепление этого полиепитида уменьшает или устраивает инфекционность РНК. Полиепитид оболочки мол. массой (55—60) 10^3. Липиды и углеводы не обнаружены.

Физико-химические свойства: частицы обычно очень стабильны, у большинства представителей седиментируют тремя компонентами — T, М и В, содержащими соответственно 0,27—40 и 42—46 % РНК по массе S_{20, w} между 49—56, 86—128 и 115—134, и мол. массой 3,2—3,4; 4,6—5,8 и (6,0 —6,2) 10^6. Коэффициент диффузии всех типов частиц — около 1,5 \cdot 10^{-7} см^2/с. Плавучие плотности в CsCl 1,28 (T), 1,43 — 1,48 (М) и 1,51 — 1,53 (В) г/см^3.

Сильные иммуногены. Нефракционированная РНК вызывает множественные локальные пятна на опытных растениях, очищенная — единичные.

В цитоплазме присутствуют в виде характерных везикулярных включений, обычно примыкающих к ядру. Представители группы имеют широкий круг растений-хозяев. Для них характерны кольцевые симптомы, но пятнистость и крапчатость встречается чаще. Инфицированные листья, выросшие позже, могут не нести симптомов. Легко передаются экспериментально механической инокуляцией сока. Передача семенами весьма обычная. Большинство представителей передаются почвообитающими нематодами — лонгидоридаи (Longidoridae), но для некоторых штаммов переносчики неизвестны. Нематоды сохраняют способность передавать вирус спустя недели и месяцы, не теряют ее после линьки. В переносчике вирусы не размножаются.

Представители группы: Tobacco ringspot virus — вирус кольцевой пятнистости табака (типичный член); Arabis mosaic virus — вирус мозаики резухи; Arracacha A virus — вирус A arracachii; Artichoke Italian latent virus — итальянский латентный вирус артишока; Artichoke yellow ringspot virus — вирус желтой кольцевой пятнистости артишока; Blueberry leaf mottle virus — вирус крапчатости листьев черники;
Cherry leaf roll virus — вирус скручивания листьев черешни; Chicory yellow mottle virus — вирус желтой крапчатости цикория; Cocoa necrosis virus — вирус некроза кофейного дерева; Crimson clover latent virus — латентный вирус клевера инкарнатного; Grapevine Bulgarien latent virus — болгарский латентный вирус винограда; Grapevine fan-leaf virus — вирус короткоузлия винограда; Grapevine chrome mosaic— вирус хромовой мозаики винограда; Hibiscus latent ringspot virus — вирус латентной кольцевой пятнистости китайской розы; Hibiscus latent virus — латентный вирус китайской розы; Lucerne Australian latent virus — австралийский латентный вирус люцерны; Mulberry ringspot virus — вирус кольцевой пятнистости шелковицы; Myrobalan latent ringspot virus — латентный вирус кольцевой пятнистости мирабели; Peach rosette mosaic virus — вирус розеточной мозаики персика; Potato black ringspot virus — вирус черной кольцевой пятнистости картофеля; Raspberry ringspot virus — вирус кольцевой пятнистости малины; Tomato ring virus — вирус кольцевой пятнистости томатов; Tomato black ring virus — вирус черных колец томатов. [87, 102, 142]

Tobacco ringspot virus — Вирус кольцевой пятнистости табака

Изометрические частицы диам. 29 нм.

Вирус-полифаг. Из возделываемых культур поражает табак, баклажаны, огурцы, арбуз, сою, люпин, коровий горох, фасоль, многие декоративные растения, голубику, плодовые, виноград. Экспериментально заражены 246 видов растений из 54 семейств. Первые симптомы заболевания на табаке проявляются в виде нескольких одинарных некротических колец, которые через несколько сут. становятся белыми или коричневыми. В дальнейшем кольцевая пятнистость приобретает концентрическую форму. Далее развиваются системные симптомы, большие приуроченные к средней и крупным жилкам листа. На листьях, отросших позже, симптомы могут отсутствовать либо наблюдаться только на верхушке листа. Листья растений с замаскированными симптомами несколько утолщены и более кожисты, чем у нормальных растений (рис. 4.57). В природе распространяется нематодой Xiphinema americanum. От остальных неповирусов отличается тем, что может передаваться жуками, клещами, триспами и прямокрылыми (Epithrix hirtipennis, Thrips tabaci, Melanopus differentialis, Tettigiria viridis-sima).

ТТИ в соке составляет 60 °С, ПРС — 10⁻⁴—10⁻⁶, ПСИ — 3 сут при к. т.

Распространение: Северная Америка (районы табаководства США), Западная Европа, возможно Средняя и Южная Европа. В СССР зарегистрирован в Прибалтике.
Методы диагностики: 1. Биотестирование. В качестве растений-индикаторов используют марь амарантовую, огурец, табак турецкий, петунью гибридную, фасоль обыкновенную, коровий горох, дурман обыкновенный. 2. Электронная микроскопия.

Меры борьбы: 1. Получение здорового посадочного материала плодовых и ягодных культур методами меристемы и термотерапии. 2. Использование устойчивых к вирусам сортов. 3. Удаление зараженных деревьев, дезинфекция почвы и содержание посадок под чистым паром в течение 2—3 лет.

Raspberry ringspot virus — Вирус кольцевой пятнистости малины
Сферические частицы диам. 28 нм.
Установлено естественное заражение многих видов более 14 семейств диких и культурных двудольных растений. Вызывает кольцевые пятнистости на малине и землянике, поражает красную смородину, вишню и черешню, виноград, обнаружен на многих других сельскохозяйственных растениях. На черешне вызывает рашпилевидность листьев.
Распространяется вегетативно с посадочным материалом, переносится пыльцой, семенами и нематодами. Шотландский штамм вируса переносится нематодой Longidorus elongatus, английский штамм — L. macrosoma.
ТТИ составляет 65—70 °С, ПРС — 10^-3—10^-4, ПСИ — 2—3 нед. Распространение: Европа, Турция, СССР.
Методы диагностики: 1. Биотестирование. 2. Серологический.
Меры борьбы: 1. Производство свободного от вирусов посадочного материала. 2. Удаление зараженных деревьев, дезинфекция почвы и содержание посадок под чистым паром в течение 2—3 лет.

Tomato ringspot virus — Вирус кольцевой пятнистости томатов
Изометрические частицы диам. 30 нм.
Описан на растениях более 35 семейств. В природе поражает декоративные, древесные и кустарниковые растения. Вызывает мозаичность и кольцевые пятнистости на малине, ежевике, пожелтение жилок на винограде, мозаичное пожелтение почек персика, рашпилевидность листьев черешни. Определенные штаммы вируса — возбудители ямчатого и мозаичного персика и других косточковых. Наносит большой экономический ущерб в США и Канаде, где ареал его распространения тесно связан с наличием переносчика.
Распространяется с посадочным материалом, в природе переносится нематодами Xiphinema americanum и X. rivesi.
ТТИ составляет 58 °С, ПРС — 10^-3, ПСИ — 2 сут. Распространение: США, Канада, Италия, Австралия, Новая Зеландия. В СССР зарегистрирован в Молдавской ССР, на Дальнем Востоке.
Методы диагностики: биотестирование.
Меры борьбы: размножение здорового посадочного материала.

Grapevine fanleaf virus — Вирус короткоузлия винограда
Изометрические частицы диам. около 30 нм.
Симптомы заболевания очень варьируют и зависят от восприимчивости сорта и вирулентности патогена. Как правило, не все симптомы короткоузлия встречаются одновременно на одном и том же пораженном кусте. На листьях при первоначальном заражении появляются светло-зеленые извилистые линии, кольца и пятна. Позже мозаичность исчезает и проявляются системные симптомы в виде асимметрии, редукции листьев, ненормального жилкования, широко открытых череш...
ковых выемок, глубоких (или отсутствующих) боковых вырезок, заостренных и удлиненных зубчиков. На побегах наблюдаются двойные узлы, короткие междоузлия, ненормальная вильчатость, фасциации, зигзагообразный рост. Часто обильное развитие пасынков придает пораженным растениям кустистый вид. Грозди немногочисленные, мелкие, с торошением ягод. У больных растений корни менее развиты, чем у здоровых. Кусты постепенно вырождаются и погибают. К поражаемым растениям относятся все виды Vitis и их гибриды.

Распространяется с посадочным материалом. Естественный переносчик — нематода Xiphinema index. Имеется сообщение о его переносе нематодой X. italica. Передача семенами винограда не установлена, хотя вирус обнаружен в оболочке эндосперма семян. Наносит значительный экономический ущерб виноградарству. Урожайность кустов снижается на 90—95 %, пораженный виноград вырождается. Уменьшается окоренение черенков и приживаемость саженцев. Особенна велика вредоносность короткоузлия в регионах, заселенных популяциями нематоды X. index. Экспериментально вирус может передаваться семенами некоторых травянистых тест-растений.

TTI в соке составляет 60—65 °С, ПРС — 10^{-8}—10^{-4}, ПСИ — 15—30 сут.

Умеренный антиген.

Представлен тремя штаммами: короткоузлия, желтой мозаики и окаймления жилок.

Распространение: подавляющее большинство виноградарских стран мира. В СССР выявлен в Украинской и Молдавской ССР.

Методы диагностики: 1. Серологический. 2. Биотестирование.

Меры борьбы: получение и размножение безвирусного посадочного материала на свободных от нематод — переносчиков вируса почвах.

Arabis mosaic virus — Вирус мозаики резухи

Полиэдрические частицы диам. 30 нм.

Вирус-полифаг. Поражает дикорастущие и культурные виды растений, включая овощные, декоративные, ягодные культуры и виноград. Известны несколько штаммов: типичный, хмелевой, штамм вееролистности винограда.

На резухе шершавой вызывает появление темно-зеленых колец и линейного узора, хорошо заметных на светлом фоне листа, а также слабой крапчатости, на малине — желтую карликовость, на землянике — желтую морщинистость, на форзиции — желтую сетчатость, на черешне — рашпилевидность листьев, на бузине — пожелтение жилок. В качестве растений-индикаторов используют марь амарантовидную, дурман обыкновенный, габак турецкий, марь квиноа, огурец. В питомнике тест на индикаторе Бинг.

TTI в соке составляет 55—61 °С, ПРС — 10^{-5}—10^{-4}, ПСИ — 7—14 сут.

Распространяется вегетативно с посадочным материалом, пыльцой и семенами. В природе переносчиком является нематода Xiphinema diversicaudatum и X. coxi.

Распространение: большинство стран Европы, зарегистрирован в Новой Зеландии. В СССР описан в Молдавии и нечерноземной полосе РСФСР.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия. 3. Серологический.

Меры борьбы: 1. Производство здорового посадочного материала.
2. В очагах поражения — дезинфекция почв и содержание под черным паром в течение 2—3 лет.

442
Cherry leaf roll virus — Вирус скручивания листьев черешни
Изометрические частицы диам. 30 нм.
Вирус-полифаг. Описано естественное и экспериментальное заражение 105 видов растений. Наиболее часто хозяевами вируса являются вишня, черешня, грецкий орех, береза, бузина, бирючина, вяз, ежевика, ревень. У вишни вызывает бледно-зеленую межжилковую мозаичность и быстрое отмирание зараженных деревьев. На молодых деревьях черешни он может несколько лет оставаться латентным, затем развивается быстро прогрессирующая розеточность листьев с задержкой весеннего распуска почек и отмиранием взрослых деревьев в течение 2—3 лет. Наиболее обычный симптом на черешне — образование розеток листьев, узких и жестких, иногда с загнутыми вверх краями. На сорте Бинг заражение сопровождается образованием очень мелких энаций вдоль главной жилки, на черешне Маззард 12/1 появляются некрозы с выделением камеди на побегах.
На орехе поражение вирусом проявляется в виде узкой черной некротической полосы ткани камбиев и флоэмы в зоне соединения подвоя с привоем, что приводит к отмиранию привитых побегов.
ТТІ в соке составляет 52—55 °С, ПРС — 10^{-8}—10^{-4}, ПСИ — 5—10 сут.
Распространение: Европа, Америка, Новая Зеландия. В СССР детально изучен в Молдавии, зарегистрирован в других зонах плюдоводства.
Методы диагностики: 1. Серологический. 2. Биотестирование.
Меры борьбы: 1. Производство здорового посадочного материала. 2. Раскорчевка пораженных деревьев, дезинфекция почвы и содержание под черным паром в течение 2—3 лет. [73, 152]

Potato black ringspot virus — Вирус черной кольцевой пятнистости картофеля
Изометрические частицы диам. 28 нм.
Карантинный объект для СССР. Растение-хозяин — картофель. Системно реагирует некротическими кольцевыми пятнами черного цвета. На свекле развиваются некротические кольца (растение-индикатор). Распространяется клубнями, семенами. Переносчики неизвестны. Передается механической инокуляцией сока.
Распространение: на американском континенте.
Методы диагностики: 1. Серологический. 2. Биотестирование.
Меры борьбы: 1. Карантинные ограничения. 2. Выбраковка больных растений. 3. Выведение устойчивых сортов. [159]

Tomato black ring virus — Вирус черной кольцевой пятнистости томатов
Сферические частицы диам. 30 нм.
Поражает очень широкий круг растений, среди которых преобла-
дают дикорастущие. В эксперименте было заражено 76 видов двудольных растений. На плодовых вызывает задержку роста персика. Больные деревья выделяются слабой облиственностью. Листья мелкие, заостренные, собранные в розетки на концах ветвей. Ветви с симптомами розеточности постепенно отмирают, а розеточность продвигается дальше, охватывая всю крону. Продуктивность деревьев падает, они постепенно гибнут.

Переносится вегетативно с посадочным материалом, пыльцой и семенами, в природе распространяется нематодами Longidorus attenuatus, L. elongatus.

ТТИ в соке составляет 60—65 °С, ПРС — 10⁻³—10⁻⁴, ПСИ — 2—3 нед.

Распространение: ГДР, Англия. В СССР не идентифицирован.

Методы диагностики: 1. Биотестирование. 2. Серодиагностика.

Меры борьбы: 1. Размножение здорового посадочного материала.

2. Удаление из садов больных деревьев, дезинфекция почвы и содержание под черным паром в течение двух лет. [9]

Strawberry latent ringspot virus — Латентный вирус кольцевой пятнистости земляники

Сферические частицы диам. 30 нм.

Вирус-полифаг. В условиях эксперимента поражает 126 видов двудольных растений из 27 семейств. Описан на ягодных культурах (землянике, малине, ежевике, черной и красной смородине), декоративных растениях (розе, нарциссе), плодовых культурах, винограде, овощных культурах (ревене, сельдерее, спарже), древесных (робинии, берёсклете).

В плодовых культурах вирус в большинстве случаев присутствует бессимптомно и оказывает незначительное воздействие на их рост и развитие.

Распространяется вегетативно с посадочным материалом; в природе — нематодами Xiphinema diversicaudatum, X. coxi, семенами. ТТИ в соке составляет 52—58 °С, ПРС — 2 × 10⁻², ПСИ — 50 сут.

Сильный иммуноген.

Распространение: Западная Европа (Венгрия, Болгария), Новая Зеландия, Канада. В СССР практически не изучен.

Методы диагностики: 1. Серологический. 2. Биотестирование.

Меры борьбы: 1. Размножение здорового посадочного материала.

2. Дезинфекция почв в садах, где обнаружены очаги вируса. [48]

Группа вируса деформирующей мозаики гороха (Pea enation mosaic virus group)

Полиэдрические частицы диам. 28 нм.

Представлена двумя молекулами линейной положительно-геномной оиРНКс мол. массой 1,7 и 13 · 10³. Некоторые штаммы содержат также третий РНК-компонент с мол. массой 0,3 · 10⁸. Мол. масса главного полипептида оболочки 22 · 10³, минорного — 28 · 10³. Липиды и углеводы не обнаружены.

Физико-химические свойства: частицы двух типов (В и М) с мол. массой 5,7 · 10⁶ (В) и 4,6 · 10⁶ (М). Плавучая плотность в CsCl 1,42 г/см³ для компонента В; компонент М разрушается. Плотность обоих компонентов в Cs₂SO₄ 1,380 г/см³. S₂₀, w 112 (В) и 99 (М). Частичи легко разрушаются в присутствии нейтральных солей хлоридов.

Слабые иммуногены.

Реплицируются в ядре. В инфицированных клетках развиваются везикулярные цитопатологические структуры, образующиеся из ядерных мембран. Имеют узкий круг растений-хозяев. Передаются тлями
персистентным образом. Легко передаются experimentально механической инокуляцией сока.

Представитель группы: Pea enation mosaic virus — вирус деформирующей мозаики гороха (монотипная группа). [87, 142]

Pea enation mosaic virus — Вирус деформирующей мозаики гороха

Сферические частицы диам. около 30 нм. Характерная особенность вируса — внутриклеточный синтез в ядре.

Круг растений-хозяев узкий, ограничен представителями семейст ва бобовых. Поражает продовольственные (горох, соя), кормовые (бобы, люпин, клевер, люцерна) и другие (душистый горошек, донник) бобовые культуры. Экономический ущерб наносит выращиванию бобов кормовых, гороху посевному. Семена больных бобов мелкие и имеют более интенсивную желтую окраску, чем семена здоровых растений. Симптомы на горохе проявляются в виде четкой крупной зональной мозаики, морщинистости и курчавости листьев и прилистников. С развитием болезни хлоротичные пятна на листьях становятся белыми, почти прозрачными (рис. 4.59). Острая форма заболевания сопровождается резкой деформацией и уродливостью растений.

Рис. 4.59. Симптомы вируса деформирующей мозаики гороха на горохе

Рис. 4.60. Симптомы вируса деформирующей мозаики гороха на горошке душистом

Рис. 4.61. Симптомы вируса деформирующей мозаики гороха на листе мари амарантовидной
Растениями-индикаторами являются горох (деформирующая мозаика) и душистый горошек (четкая мозаика и пестролепестность) (рис. 4.60). Из видов, не принадлежащих к семейству бобовых, эффективными индикаторами являются виды мары (рис. 4.61). Наиболее характерен перенос тлями (Acrystosiphon pisum, Myzodes persicae). Инкубационный период в переносчике — 9—48 ч. Вирус сохраняется в переносчике 29 сут. Семенами не передается. Механической инокуляцией сока без абразивных материалов передается с трудом.

ТТИ в соке составляет 65 °С, ПРС — 10^{-4}, ПСИ — 4 сут при к. т. Распространение: повсеместно в местах выращивания гороха и других растений. В СССР зарегистрирован в Украинской ССР, Литовской ССР, на Дальнем Востоке.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия. 3. Метод внутриклеточных включений.

Меры борьбы: 1. Уничтожение тлей инсектицидами и другими методами. [10, 34, 36, 48, 151, 164]

Группа вируса крапчатости вельветового табака (Velvet tobacco mottle virus group)
Полиэдрические частицы диам. 30 нм. Нуклеиновая кислота представлена линейной оРНК мол. массой 1 : 5 : 10^{6} и кольцевой оРНК мол. массой 1,2 : 10^{6}. Мелкие линейные молекулы с такой же последовательностью оснований, как и кольцевой РНК, также инкапсидированы, основной полипептид мол. массой (30 — 33) : 10^{3}. Липиды и углеводы не обнаружены.

Физико-химические свойства: плавучая плотность в CsCl 1,37 г/см³, S_{20, w} 115.

Очень сильные иммуногены. Отмечено серологическое сродство между отдельными представителями. Частицы локализованы в ядре, цитоплазме и вакуолях. Наблюдаются везикулы различных размеров.

Каждый представитель группы имеет узкий круг растений-хозяев. Передаются жуками кокциллид и слепняков. Легко передаются механической инокуляцией сока.

Представители группы: Velvet tobacco mottle virus — вирус крапчатости вельветового табака (типичный член). Группа включает 3 возможных члена. [142]

Velvet tobacco mottle virus — Вирус крапчатости вельветового табака
Полиэдрические частицы диам. 30 нм. Выделен из растений табака бархатистого (Nicotiana velutina). Вызывает на этом виде желтую мозаику с четкой пузырчатостью.

Переносится личинками и имаго Cyrtopeltis nicotianae (Hemiptera, Miridae) на N. velutina и N. clevelandii. Круг экспериментальных рас- тений-хозяев ограничен. Не заражает в эксперименте представителей семейств пасленовых, бобовых, тыквенных, маревых, крестоцветных, сложноцветных. Не заражает механической инокуляцией сока N. glauca и Phyllanthus lacunarius, произрастающих в ассоциации с N. velutina.

Распространение: юг Австралии. [156]

Группа вируса погремковости табака
Международное название Тобравирусы (Tobravirus). Название группы происходит от английского названия типичного представителя группы Tobacco rattle virus.
Трубчатые частицы со спиральным типом симметрии и шагом спирали 2,5 нм; диам. — 20,5—23,1 нм. РНК-1 и РНК-2 находятся в трубчатых
частицах дл. 180—215 нм (Д) и 46—114 нм. (К). Молекулы положительно-линейной геномной онРНК с мол. массой 2,4 · 10^6 (РНК-1) и (0,6 — 1,4) · 10^6 (РНК-2). 5'-конец РНК-2 имеет последовательность m''ГТ''ГФФ''Г. Аф ... РНК-1 инфекционна; РНК-2 неинфекционна, но содержит цистрон для белка оболочки; обе РНК необходимы для продукции длинной (Д) и короткой (К) частиц.

Полипептид оболочки мол. массой 22 · 10^3. Липиды и углеводы не обнаружены.

Физико-химические свойства: мол. масса (48 — 50) · 10^6 (Д) и (11 — 29) · 10^6 (К) S_{20, w} 296—306 (Д) и 155—245 (К), плотность в CsCl 1,306—1,324 г/см³. Частицы достаточно стабильны.

Среди изолятов наблюдается значительная антигенная гетерогенность. Д-частицы накапливаются на ранней стадии инфекционного цикла, в то время как К-частицы имеют тенденцию накапливаться на поздних стадиях. Круг растений-хозяев широкий, включает 50 семейств однодольных и двудольных растений. Передаются, главным образом, нематодами (Paratrichodorus, Trichodorus spp.), в которых вирус персистирует, но не реплицируется; семенами и контактно, но в некоторых случаях с трудом.

Рис. 4.62. Частицы вируса погремковости табака

Рис. 4.63. Симптомы вируса погремковости табака на картофеле
Представители группы: Tobacco rattle virus — вирус погремковости табака (типичный представитель); Pea early-browning virus — вирус раннего побурения гороха. Группа включает 2 возможных члена. [78, 95, 103, 142, 146]

**Tobacco rattle virus** — Вирус погремковости табака
Палочковидные частицы размерами 190 и 45 — 115 × 25 нм (рис. 4.62).

Рис. 4. 64. Симптомы вируса погремковости табака на гладиолусе

Рис. 4. 65. Симптомы вируса погремковости табака на лепестках (а) и листьях (б) тюльпана сорта Фритьоф Нансен

Вирус-полифаг. Растения-резерваторы: лопушник, клевер белый, желтущник, вьюнок, подорожник. Главную роль в распространении вируса играют пораженные семена. В естественных условиях переносятся 9 видами нематод родов триходорус (Trichodorus sp.).

Среди поражаемых растений экономически важными являются табак, картофель, томаты.

На инокулированных листьях табака развиваются коричневые местные некрозы, затем резкие системные некрозы. На стеблях и жилах листа появляются удлиненные, иногда прерывистые коричневые или аспидно-серые штрихи вдавленной некротической ткани. Жилки отмирают или дегенерируют, рост их приостанавливается, а рост ткани
между жилками продолжается. Листья становятся волнистыми или
сморщенными, с сильно изогнутыми краями.
Симптомы на картофеле варьируют. Часто на листьях развивается
более или менее резкая крапчатость. Возможно появление светло-жел­
тых штриховатых, дугообразных или кольцевых пятен (рис. 4.63).
У некоторых сортов картофеля симптомы, похожие на мозаичность,
cопроявляют некротические пятна на листьях, черешках, стеблях
и клубнях. На гладиолусе вызывает зарубки на листьях (рис. 4.64), на
тюльпане — темную штриховатость лепестков (рис. 4.65).
Механически инокуляция соком осуществляется с трудом.
TTI в соке составляет 53 °C, PRC — 1 : 20 — 1 : 30, PСI — 25—
36 ч при к. т.
Распространение: США, Канада, Европа. В СССР зарегистрирован
в РСФСР, Белорусской, Молдавской, Латвийской ССР.
Методы диагностики: биотестирование. Растением-индикатором
с системной реакцией является табак турецкий.
Меры борьбы: не разработаны. [10, 104, 139, 181]

ВИРУСЫ С РАЗДЕЛЕННЫМ ТРЕХКОМПОНЕНТНЫМ ГЕНОМОМ

Группа вируса мозаики огурца

Международное название Кукумовирусы (Cucumovirus). Название груп­
пы происходит от начальных букв английского названия типичного
представителя группы: Cucumber mosaic virus.
Полиэдрические частицы диам. 29 нм.
Нуклеиновая кислота представлена тремя молекулами линейной
положительно-геномной онРНК мол. массой 1,27 (РНК-1), 1,13 (РНК-2),
0,82 • 10⁸ (РНК-3), РНК (РНК-4) белка оболочки мол. массой 0,35-10⁸
также инкапсирована. Один полиеппид оболочки мол. массой 24 • 10³.
Липиды и углеводы не обнаружены.
Физико-химические свойства: мол. масса 6-10⁶, S₂₀,w 99; плавучая
плотность в CsCl 1,37 г/см³, частицы легко разрушаются в присутствии
нейтральных солей хлоридов и додецилсульфата натрия.
Слабые иммуногены.
Каждая РНК может транслиться in vitro в 4 крупных белка,
мол. масса 105, 120, 34 • 10³ и оболочечный белок соответственно. Вирусные
частицы собираются и рассеянно накапливаются в цитоплаз­
ме; иногда они присутствуют также в ядре и вакуолях, образуя кри­
сталлы. Круг растений-хозяев узкий. Легко передаются эксперимен­
тально механической инокуляцией соком. Отмечена передача семенами
нескольких растений-хозяев. Переносятся также тлями неперсистент­
ным способом.
Представители группы: Cucumber mosaic virus — вирус огуреч­
nой мозаики (типичный представитель); Peanut stunt virus — вирус
карликовости арахиса; Tomato aspermy virus — вирус аспермии тома­
tов. Группа включает 1 возможный член. [25, 87, 142, 165]
Cucumber mosaic virus — Вирус мозаики огурца
Частицы изометрические диам. 30 нм (рис. 4.66).
Вирус-полифаг. Поражает овощные культуры (томаты, перец,
сельдерея, морковь, укроп, петрушку, салат, шпинат, лук, капусту,
картофель), некоторых представителей бобовых (горох, фасоль, люпин,
коровий горох), а также кукурузу, табак, махорку, сахарную свеклу,
плодовые и ягодные культуры, виноград, гранат, цитрусовые, множе­
ство сорных растений.
Наносит ущерб экономически важным тюквенным, овощным и бах­
чевым культурам, табаку, цветочным культурам (гладиолусу, лилии).
Симптомы на огурце весьма разнообразны. На молодых листьях появляются небольшие кольца, затем развивается типичная мозаика. У больных растений укорачиваются междоузлия, рост замедляется. В некоторых случаях вирус вызывает увядание растений. Плоды мозаичные, темно-зеленые, с выпуклыми участками, что создает впечатление бородавчатости.

На посадках, пораженных вирусом, получают не более 25% возможного урожая огурцов. Плоды, как правило, маленькие, уродливы, с симптомами мозаики.

На томатах на десятые сутки после заражения наблюдается удлинение молодых листьев, которые винтообразно скручиваются и загибаются вниз. На старых листьях наблюдается хлороз, особенно вдоль жилок, через 21 сут после инокуляции появляются нитевидные листья.

Рис. 4. 66. Частички вируса мозаики огурца

Для пораженных растений характерно образование множества боковых листиков.

Переносится более 60 видами тлей, наиболее интенсивно Aphis gossipii и Myzus persicae. Семенами тыквенных не передается.

ТТИ в соке составляет 60—73 °С, ПРС — 10^4, ПСИ — 3 сут при к. т.

Распространение: космополит. В СССР описан во всех зонах возделывания тыквенных культур в открытом грунте.

Методы диагностики: 1. Биотестирование (рис. 4.67). 2. Электронная микроскопия. 3. Серологический.

Меры борьбы: 1. Прополка сорняков. 2. Пространственная изоляция тыквенных от посевов люцерны. 3. Использование устойчивых сортов. На Украине относительно устойчивы сорта огурцов: Донской 175, Молдавский 12, Тираспольский ранний 234. [27, 34, 38, 88, 152]

Tomato aspermy virus — Вирус аспермии томатов

Палочковидные частицы размерами 190 и 45 — 115 × 25 нм.

Вирус-полифаг. Круг его растений-хозяев почти так же широк, как и у вируса аспермии томатов. Менее способен инфицировать огурцы и другие представители семейства тыквенных. Экономический ущерб наносит томатам и хризантемам, часто поражает также салат, астру, каллу.

450
На томатах наблюдается замирание точки роста. Последующее развитие пазушных побегов приводит к характерной кустистости растений. Верхушки многих из них абортируются и происходит дальнейшее ветвление. Листья несколько деформированы, с заметной темно-зеленой крапчатостью, в то время как на верхней поверхности черешков листьев у их основания обнаруживаются проилиферации. Если рост растений приостанавливается, эти участки превращаются в активно растущие побеги. Уменьшается количество плодов, ухудшается их качество.

Основными признаками заболевания хризантемы индийской являются деформация цветков с незначительной крапчатостью листьев, а также неравномерная курчавость или волнистость язычковых цветков и уменьшение их количества на 10—15%.

Переносчиками являются различные виды тлей. Механическая инокуляция сока осуществляется с трудом.


Распространение: Англия, США, Австралия, Япония, в СССР обнаружен в республиках Прибалтики, в Украинской ССР, Армянской ССР, на Дальнем Востоке.

Методы диагностики: Биотестирование.

Меры борьбы: 1. Фитопрофилактика посевов. 2. Подавление очагов обитания нематод-переносчиков химическим способом. 3. Уничтожение сорняков, являющихся растениями-хозяевами вирусов и кормовыми растениями переносчиков. 4. Использование предшественников, невосприимчивых к вирусу, например ячменя. [10, 27, 116, 152]

Peanut stunt virus — Вирус карликовости арахиса

Изометрические вирусные частицы около 30 нм.

К вирусу чувствительны 16 видов бобовых. Наибольший экономический ущерб наносят однолетним (арахис, фасоль, соя, коровий горох) и многолетним (белый клевер, люцерна, люпин) бобовым культурам и табаку. Урожай арахиса снижается на 25%, урожай фасоли на 90%.

У арахиса и бобов вызывает карликовость, у фасоли — эпинастию, морщинистость и деформацию листьев, крапчатость и карликовость.

В незначительной степени передается семенами арахиса.

ТТИ в соке составляет 52—60 °C, ПРС — 5 • 10⁻³, ПСИ — 1—2 сут при к.т.

Сильный иммуноген.

Распространение: Франция, Испания, Венгрия, Польша, Судан, Марокко, Северная Америка. В США (Вирджиния и Северная Каролина) принимал характер эпифитотий.

Методы диагностики: 1. Биотестирование. Растениями-индикаторами является арахис (хлороз, карликовость, мозаика), фасоль (локаль-
ные пятна и системная мозаика), коровий горох (системные пятна и мозаика). 2. Серологический.
Меры борьбы: 1. Уничтожение тлей. 2. Пространственная изоляция посевов бобовых и табака. 3. Уничтожение многолетних сорняков.

Группа вируса мозаики костра

Международное название Bромовирусы (Bromovirus). Название группы происходит от начальных букв английского названия типичного представителя группы — Bromо mosaic virus.
Полиэдрические частицы диам. 26 нм. Три молекулы линейной положительно-геномной оРНК с мол. массой 1,1 · 10^6 (РНК-1), 1,0 · 10^6 (РНК-2) и 0,7 · 10^6 (РНК-3) и РНК (РНК-4) белка оболочки мол. массой 0,3 · 10^8 инкапсидированы. Один полипептид оболочки мол. массой 20 · 10^3. Липиды и углеводы не обнаружены.

Физико-химические свойства: мол. масса 4,6 · 10^6, S20, w 85; плавучая плотность в CsCl 1,35 г/см3.
Относительно слабые иммуногены.
Вирус собирается в цитоплазме, где проявляется в виде зернистых включений. Иногда наблюдаются кристаллические массы вирусных частиц. Частицы могут находиться как в цитоплазме, так и в ядрах ранее инфицированных клеток. Круг растений-хозяев узкий. Легко передаются экспериментально, механической инокуляцией сока. Некоторые представители переносятся жуками.
Представители группы: Brome mosaic virus — вирус мозаики костра (типичный представитель). Broad bean mottle virus — вирус крапчатости конских бобов; Cowpea chlorotic mottle virus — вирус хлоротической крапчатости коровьего гороха. Группа включает 1 возможный член.

Brome mosaic virus — Вирус мозаики костра
Округлые изометрические частицы диам. 25 нм.
Поражает 162 вида растений из 7 семейств. Среди злаковых культур выделен из костра безостого, озимой пшеницы, озимого ячменя, кукурузы, сорго, мятлика лугового и других дикорастущих злаков. Часто встречается в смешанной инфекции с вирусом полосатой мозаики пшеницы на пшенице и ячмене и с вирусом полосатой мозаики пшеницы и вирусом карликовой мозаики кукурузы на сорго и кукурузе.
Вирусная инфекция отрицательно влияет на посевные качества семян.
На костре безостом (Bromus inermis) вызывает крапчатость, варьирующуюся от светло-зеленой до резкой желтой мозаики, а также полосатость. Пролиферации почек и розеточности не наблюдается.
Мозаика костра безостого — природно-очаговое заболевание, однако пути распространения в природе точно не установлены. Семенами не передается. Имеются данные о передаче жуками рода Diabrotica и нематодами Longidorus и Xiphinema, однако эти сведения не всегда подтверждаются. Передается механической инокуляцией сока.
ТТИ в соке составляет 78—80 °С, ПРС — 10^-6, ПСИ — 14 мес.
Распространение: США, Канада, ГДР, Югославия, Финляндия, Турция, АРЕ. В СССР зарегистрирован в Воронежской и Саратовской областях, Белорусской ССР, Краснодарском крае, Молдавской ССР, на Дальнем Востоке.
Методы диагностики: 1. Биотестирование. 2. Метод включений. В периферийной части клеток эпидермиса вирус образует неправильной формы прозрачные и просвечивающие включения. 3. Электронная микроскопия.
Меры борьбы: соблюдение пространственной изоляции посевов яровых культур от зараженных посевов многолетних трав злаковых (не менее 500 м). [10, 48, 103, 133, 151]

Группа вируса полосатости табака

Иларвирусы (I larvirus). Название группы происходит от начальных букв английских слов Isometric labile ringspot virus, отражающих характерные особенности этой группы вирусов.

Квазисферические, изометрические и частично бацилловидные частицы диам. 26—35 нм.

Нуклеиновая кислота представлена тремя молекулами линейной положительно-геномной оНРНК, мол. массой $1,1 \cdot 10^6$ (РНК-1), $0,9 \cdot 10^6$ (РНК-2) и $0,7 \cdot 10^6$ (РНК-3) и РНК (РНК-4) беля оболочки мол. массой $0,3 \cdot 10^6$ также инкапсидирована. Один полиепптид оболочки мол. массой $25 \cdot 10^6$. Липиды и углеводы не обнаружены.

Физико-химические свойства: несколько типов частиц с $S_{20,W}$ 80—120, плавучая плотность в CsCl 1,36 г/см$^3$. Частицы легко разрушаются в присутствии нейтральных солей хлоридов и додецилсульфата натрия.

Слабые или умеренные иммуногены. Круг растений-хозяев широкий. Представители группы легко передаются механической инокуляцией сока. Некоторые вирусы передаются семенами или пыльцой цветковых растений.

Представители группы: Tobacco streak virus — вирус полосатости табака (типичный представитель); Apple mosaic virus (Danish plum-line pattern, hop A and rose mosaic virus) — вирус мозаики яблони (вирус датского линейного узора сливы, вирус А хмеля и вирус мозаики розы); Citrus leaf rugose virus — вирус морщинистости листьев цитрусовых; Citrus variegation virus — вирус пестролистности цитрусовых; Elm mottle virus — вирус крапчатости вяза; Lilac ring mottle virus — вирус кольцевой крапчатости сирени; North American plum line pattern virus — вирус северо-американского линейного узора сливы; Prune dwarf virus — вирус карликовости сливы; Prunus necrotic ringspot virus (Cherry rugose mosaic virus-Hop В virus) — вирус некротической кольцевой пятнистости сливы (вирус морщинистой мозаики черешни, вирус В хмеля); Spinach latent virus — латентный вирус шпината; Tulare apple mosaic virus — вирус мозаики яблони Туларе. [87, 93, 142, 165]

Tobacco streak virus — Вирус полосатости табака

Изометрические частицы диам. 28 нм (рис. 4.68).

Вирус-полифаг. Экономический ущерб причиняет томатам, сое, картофелю, малине, ежевике, землянике, декоративным растениям, подсолнечнику.

Первичные симптомы заболевания табака проявляются в виде местных некрозов, окруженных концентрическими водянистыми линиями или кольцами, которые затем коричневеют и некротизируются. Если локальные пятна и кольцевая пятнистость сильно развиты, листья желтеют и отмирают. Симптомы системного поражения имеют вид сетчатого узора, а иногда колец или неполных колец с некротическими пятнами, эти пятна сначала бывают коричневыми, а позже становятся серовато-бурыми; они строго приурочены к жилкам и основаниям молодых листьев (рис. 4.69).

Эффективными растениями-индикаторами являются коровий гонох и гомфрена головчатая. Дифференцирующее растение — Суатторsis tetragonoloba. Приблизительно через 48 ч после заражения на ино-
кулированных листьях развиваются мелкие темные локальные пятна. Они остаются отчетливыми в течение 10 сут и более, не проявляя тенденции к разрастанию или распространению (рис. 4.70).

В природе распространяется нематодами. Доказана передача семенами дурмана обыкновенного и мари квиноа.

ТТИ составляет 53—64 °С, ПРС = 10⁻²·10⁻⁵, ПСИ = 36 ч.

Распространение: США, Канада, Северная и Южная Европа, в СССР не идентифицирована.

Методы диагностики: 1. Биотестирование. 2. Электронная микроскопия.

Меры борьбы: разработаны слабо. [9, 95, 152]

Рис. 4.68. Частицы вируса полосатости табака

**Prune dwarf virus — Вирус карликовости сливы**

Вирусные частицы полиэдрической и бацилловидной формы, диам. 22×23, 19×33 и 19×38 нм.

Идентифицирован на 77 видах древесных и травянистых растений. Экономический ущерб причиняет следующим плодовым породам: черешне, вишне, сливе, абрикосу, персике.

У черешни в первый год после заражения на первых весенних листьях появляются широкие хлоротические колыца или разводы, в центре которых вскоре возникают некрозы с последующей дырчатостью. Иногда некротическая дырчатость практически не отличается от изорванности листьев черешни, характерной для вируса некротической кольцевой пятнистости. В последующие годы на первых весенних листьях ежегодно или изредка появляются одиночные широкие хлоротические колыца с некрозами или без них (рис. 4.71). У большинства сортов повторные симптомы отсутствуют и визуально выявить вирус невозможно.

Симптомы карликовости сливы наиболее характерно проявляются на сорте Венгерка итальянская. У пораженных деревьев этого сорта
Рис. 4.69. Симптомы вируса полосатости табака на табаке

Рис. 4.70. Симптомы вируса полосатости табака на винограде (а) и шампиньоне (б)
листья узкие, жесткие на ощупь, утолщенные и морщинистые. В начале сезона рост подавлен, отчего верхушки приобретают вид розеток. Позже, с наступлением высоких летних температур, рост побегов восстанавливается, хотя листья остаются более мелкими и жесткими (рис. 4.72). У вишни вирус вызывает желтуху, у абрикоса — гоммоз, у персика — зеленую карликовость.

Наиболее характерным симптомом гоммоза абрикоса является образование камеди на стволе и скелетных ветвях. На остальных ветвях наблюдаются некрозы, иногда с образованием камеди. Развивается прогрессирующее отмирание почек и образуются одиночные жировые побеги. Гибель почек наблюдается в течение 4 лет, после чего деревья обычно отмирают.

В садах быстро распространяется насекомыми-опылителями, особенно успешно на вишне, реже на черешне и совсем редко на сливе. Переносчики неизвестны. Переносится пыльцой и семенами.

ТТИ составляет 54 °С, ПСИ — 14—20 сут.

Распространение: во всех регионах выращивания сливы. В СССР изучен в Молдавской и Украинской ССР.

Методы диагностики: биотестирование.

Меры борьбы: 1. Получение исходных безвирусных клонов, размножение их на сеянцах от тестируемых семенных деревьев. 2. Закладка садов с территориальной изоляцией от существующих рядовых насаждений. [9, 91, 152]

Plum line pattern — Вирус ленточного узора сливы

Изометрические частицы диам. 30 нм. Экономический ущерб причиняет сливе, алыче, мирабели, черешне, персiku, абрикосу, миндалю.

Рис. 4. 71. Симптомы вируса карликовости сливы на листьях черешни

Рис. 4. 72. Симптомы вируса карликовости сливы на сливе итальянской (а) и вишне (б)
Обычные симптомы на листьях сливы: линии, полосы, узор в виде дубового листа, окаймление жилок и мелкие кольца; окраска узоров может варьировать от желто-зеленой до кремово-желтой и почти белой. На сеянцах алычи и мирабели (скрытые носители вируса) иногда наблюдаются кольца и яркая окраска по жилкам. Передается при вегетативном размножении. Перенос пыльцой и семенами не описан.

Умеренный иммуноген.
TTI составляет — 55—60 °С.

Распространение: США, Франция, Югославия, Австралия, Новая Зеландия. В СССР описан в Молдавской ССР. Карантинный вирус для СССР.

Рис. 4.73. Частицы вируса мозаики яблони

Методы диагностики: биотестирование.
Меры борьбы: получение исходных безвирусных клонов, размножение их на здоровых подвоях и закладка насаждений здоровым посадочным материалом [9, 94, 152]

**Apple mosaic virus — Вирус мозаики яблони**

Изометрические частицы диам. 25—29 нм (рис. 473).

Описано экспериментальное и естественное заражение 65 видов из 19 семейств, включая яблоню, розу, рябину, косточковые. Груша практически не заражается и пригодна для дифференциальной диагностики вируса мозаики яблони и вируса хлоротической пятнистости листьев яблони.

Наиболее характерный симптом — появление весной на первых листьях ярко-желтых, позднее бледно-желтых и белых полос, округлых или угловатых пятен, колец, сеток и окаймления жилок. Со временем желтые узоры часто становятся некротическими, и сильно пораженные листья преждевременно опадают. На листьях, развившихся летом при высоких среднесуточных температурах, симптомы не проявляются.
Высокая восприимчивость к вирусу отличает сорта Джоннатан, Голден Делишес, Ренет шампанский, Кокс оранж, подвой М-7 и сеянцы яблони. Высокоустойчив сорт Макинтош.

У восприимчивых сортов вирус может вызывать снижение урожая на 30—40 %; приживаемость глазков уменьшается на 20 %.

Распространяется вегетативно и посадочным материалом; семенами не переносится. Переносчики не обнаружены.

ТТИ составляет 49 °C.

Распространение: повсеместно в районах выращивания яблони, в том числе в СССР.

Методы диагностики: 1. Биотестирование. 2. Серологический.

Меры борьбы: размножение здорового материала. [9, 92, 152]
Группа вируса мозаики люцерны  
(Alfalfa mosaic virus group)

Бацилловидные частицы размерами 58 × 18 нм (B), 48 × 18 (М), 36 × 18 (Тв) и одна эллипсоидальная, диам. 28 × 18 нм (Та). Три крупные частицы содержат по единственной молекуле РНК: РНК-1 (B), РНК-2х (М), РНК-3 (Тв); Та содержит 2 молекулы РНК-4.

Нуклеиновая кислота представлена тремя молекулами линейной положительно-геномной онРНК с мол. массой 1,1 · 10⁸ (РНК-1), 0,8 · 10⁸ (РНК-2) и 0,7 · 10⁸ (РНК-3); мРНК (РНК-4) белка оболочки, имеющая мол. массу 0,3 · 10⁸, также инкапсидирована. 5' конец четырех РНК имеет последовательность м7Г6' ффф6' Гф...

Один полипептид оболочки мол. массой 24 · 10³. Липиды и углеводы не обнаружены.

Физико-химические свойства: частицы по крайней мере четырех размеров (В, М, Тв и Та). Мол. масса частиц (7—7,3) · 10⁸. S₂₀ₒ₉₉ (B), 88 (М), (75 (Тв) и 68 (Та); плавучая плотность в CsCl 1,28 г/см³. Частицы разрушаются в присутствии нейтральных солей хлоридов и додецилсульфата натрия.

Слабые иммуногены.

Вирусные частицы накапливаются в цитоплазме, а иногда в вакуолях рассеянно или в виде за- крученных агрегатов. Круг растений-хозяев относительно широкий. Легко передаются экспериментально- но механической инокуляцией соков. Известна семенная инфекция. В природе передается тремя неперсистентным способом.

Представители группы: Alfalfa mosaic virus — вирус мозаики люцерны (монотипная группа) [87, 142, 165]

Alfalfa mosaic virus — Вирус мозаики люцерны

Частицы продолговатые с закругленными краями шир. 18 нм; дл. их варьирует (20—30, 36, 48, 58 нм) (рис. 4.76). В число растений-хозяев входят как культурные, так и сорные растения. Из однолетних культур поражает картофель, томаты, перец, баклажаны, фасоль, сою, горох, люпин.

Симптомы на люцерне — разные типы мозаики (светло-зеленая, желтая, с разной степенью деформации листьев). Растения обычно не- значительно отстают в росте, но встречаются и карликовость. Вредоносность вируса проявляется в заметном снижении урожая зеленой массы и семенной продуктивности.

В природе распространяется тлями неперсистентным образом. Среди резервуаров инфекции отмечены клевер полевой, выюнок полевой, клевер малиновый, разные виды просвирника, донник белый. Возможно передача вируса семенами люпина.

ТТИ составляет около 70 °С, ПРС — 1 : 4000.

Распространение: вирус-космополит. В СССР заболевание зарегистрировано повсеместно, хотя случаи массового распространения сравнительно редки.
Методы диагностики: 1. Биогестирование. 2. Серологический. 3. Электронная микроскопия.
Меры борьбы: 1. Оптимальные сроки использования люцерны. 2. Пространственная изоляция новых посевов люцерны от старых. 3. Внедрение в производство устойчивых сортов. [10, 34, 64, 120, 151]

Группа вируса штриховатой мозаики ячменя

Международное название Гордневирусы (Hordeivirus). Название группы происходит от латинского родового названия ячменя (Hordeum).

Удлиненные жесткие частицы диам. около 20 нм и дл. 100—150 нм со спиральным типом симметрии (шаг спирали 2,5 нм). Две — четыре молекулы линейной, положительно геномной онРНК. Для заражения необходимы 2 или 3 компонента РНК. Мол. масса (1—1,5) $10^6$. Полипептид оболочки мол. массой 21·$10^3$. Липиды и углеводы не обнаружены. Белок гликозилирован.

Физико-химические свойства. Мол. масса одного компонента 26·$10^6$, $S_{20\,w}$ 185. В очищенных препаратах присутствуют дополнительные компоненты с $S_{20\,w}$ 178 и 200.

Сильные иммуногены.

Из зараженных растений может быть выделена репликативная форма РНК, соответствующая всем вирусным РНК. Вирусные частицы накапливаются в основном в цитоплазме. Круг растений-хозяев узкий, главным образом злаковые. Передаются механической инокуляцией соком и семенами.

Представители группы: Barley stripe mosaic virus — вирус штриховатой мозаики ячменя (типичный член); Lychnis ringspot virus — вирус кольцевой пятнистости зорьки; Poa semilatent virus — полулатентный вирус мятлика. [87, 142, 166]

Barley stripe mosaic virus — Вирус штриховатой мозаики ячменя

Палочковидные вирионы вариабельны по дл (110—160 нм).

Круг растений-хозяев узкий, ограничен семейством злаковых (пшеница, овес, ячмень). Экономический ущерб наносит культуре ячменя. Снижение урожая происходит в основном за счет уменьшения числа продуктивных стеблей и числа зерен в колосе.

Переносчики неизвестны. Передается механической инокуляцией соком. В природе распространяется семенами больных растений. Может сохраняться в семенах в течение 5 лет.

Вирус вызывает Y-образные или зигзагообразные темно-коричневые штрихи (некрозы) на листьях преимущенно среднего яруса. На листьях верхнего яруса развиваются симптомы мозаики, обычно не сопровождающиеся некротическими явлениями.

ТТИ составляет 62—68 °С, ПРС — $10^{-3}$, ПСИ — 5—22 сут.

Распространение: повсеместно. В СССР зарегистрирован в Московской области, Прибалтике, Поволжье и других районах.

Сильный иммуноген.

Методы диагностики: биогестирование.
Меры борьбы: 1. Использование здорового семенного материала. 2. Строгое соблюдение карантинных ограничений, распространения семенного материала. 3. Внедрение в производство устойчивых сортов (Тимирязевский, Омский 13.709). [10, 34, 42, 48, 52, 151]
Группа вируса полосатости риса (Rice stripe virus group)

Нуклеиновая кислота представлена оНРК с мол. массой 0,9·10⁸ и 1,0·10⁸ (М-компонент), 1,4·10⁶ (В-компонент) и 1,9·10⁶ (Ва-компонент). Последний компонент, по-видимому, необходим для инфекционности вируса.

Белок представлен единственным полипептидом с мол. массой 32·10³.

Липиды и углеводы не обнаружены. Обладают РНК-зависимой РНК-полимеразной активностью.

Поражают широкий круг растений семейства злаковых.

Передаются цикадками.

Представители группы: Rice stripe virus — вирус полосатости риса, (типичный член), Maize stripe virus — вирус полосчатости кукурузы Rice grassy stunt virus — вирус травянистой карликовости риса; Rice hoja blanca virus — вирус хойя бланка риса; Winter wheat mosaic virus — вирус мозаики озимой пшеницы. [167, 168, 169]

Rice stripe virus — Вирус полосатости риса
Частицы разветвленной нитевидной формы шир. 8 нм.
Круг растений-хозяев широкий среди растений семейства злаковых.

Механической инокуляцией сока не передается. В природе переносится цикадкой Laodelphax striatellus Fallen. Доказана возможность трансовариальной передачи.

Распространение: страны Азии (Япония).

Методы диагностики: электронная микроскопия.
Меры борьбы: не разработаны. [167—169]

ВИРОИДЫ

Вироиды представляют собой ковалентно-замкнутые кольцевые молекулы оНРК с низкой (1,1—1,3)·10⁵ мол. массой, не имеющие белковой оболочки. Это самые мелкие возбудители инфекционных болезней.

Сведения о репликации и патогенезе вироидов весьма ограничены. Предполагается, что репликация зависит от предшествующих ферментов хозяина, а заболевание обусловливается распространением вироида с генной регуляцией.

О происхождении вироидов ничего неизвестно, однако открытие у эукариотических организмов генов расщепления и сращивания РНК позволило высказать точку зрения, согласно которой вироиды образовались в результате кольцевания отрезанных последовательностей РНК (интронов).

Вироиды устойчивы к высокой температуре, УФ- и ионизирующему излучению.

Вироиды известны как возбудители болезней растений, однако вероятна их причастность к некоторым заболеваниям животных и человека.

Первооткрывателем и крупнейшим специалистом по вироидам является Т. О. Динер. [78, 79]

Cucumber pale fruit viroid — Вироид бледности плодов огурца
Листья больных растений мелкие, голубовато-зеленые, морщинистые, с отчетливой пузырчатостью; по мере старения морщинистость исчезает, появляется хлороз. Междоузлия у таких растений короткие, цветки мелкие, грушевидные, бледной окраски.

461
Основной хохзин — огурец. При искусственном заражении 17 видов тыквенных из 29 оказались восприимчивыми.

Передается во время операций по уходу и сбору плодов. В эксперименте передается механической инокуляцией сока, прививкой, по-вилиной. Попытки передать патоген посредством тлей и через почву оказались безуспешными. Имеются косвенные данные о возможности передачи насекомыми.

Распространение: Нидерланды.
Методы диагностики: биотестирование.
Меры борьбы: не разработаны. Известно, что в теплицах заболевание отмечает только на растениях, высаженных весной (с начала апреля до конца мая), но никогда не обнаруживают у огурцов, посаженных в июле или августе.

Попытка передать патоген посредством тлей и через почву оказались безуспешными. Имеются косвенные данные о возможности передачи насекомыми.

Распространение: Нидерланды.
Методы диагностики: биотестирование.
Меры борьбы: не разработаны. Известно, что в теплицах заболевание отмечает только на растениях, высаженных весной (с начала апреля до конца мая), но никогда не обнаруживают у огурцов, посаженных в июле или августе.

[49, 78]

Potato spindle ruber viroid — Вироид веретеновидности клубней картофеля (рис. 4.77)

Больные растения картофеля характеризуются угнетенностью, прямостоячестью и вытянутостью из-за задержки роста боковых побегов, небольшим количеством слабоколенчатых стеблей, более мелкими листьями, отходящими под острым углом. Клубни по окраске светлее здоровых, гладкие, удлиненные (чаще веретеновидной формы), с выдающимися над поверхностью глазками и резкими «бровями». Они образуются позже здоровых и в меньшем количестве.

На томатах вызывает кустистость (многостебельность) верхушек, которая до 1962 года считалась самостоятельным заболеванием. Возбудитель поражает также ряд других родов из подотряда Solanaceae и других семейств. Включает 128 видов, главным об

Рис. 4.77. Вироид веретеновидности клубней картофеля:
а — ДНК фага T7; б — вироид

Круг растений- хозяев вироида разом из семейства пасленовых.

Вироид передается семенами и пыльцой картофеля и томатов. Сохраняется в зрелых семенах и их экстрактах.

ТТИ составляет 70—75 °С.

Распространение: в США и других странах, возделывающих картофель. Зарегистрирован в СССР, где заболевание часто называют «готикой». Снижает урожайность клубней на 20—70 % и ухудшает их качество.

Методы диагностики: биотестирование. В качестве растений-индикаторов чаще всего используются три сорта томатов: Ратгерг, Шийон, Аллерфюкерс-Фрей.

Меры борьбы: 1. Ранние прочистки до смыкания ботвы и соблюдение изоляции (20—30 м) семенных насаждений от рядового картофеля. 2. Двукратный клоновый отбор в сочетании с ранним удалением зараженных растений и ранней уборкой. 3. Отбор здравых клубней путем индексации на Scopolia sinensis в зимний период. 4. Выращивание картофеля на участках с ограниченным применением азот-
Cocosnut yellow mottle decline viroid — Вироид желтоточкового поражения кокосовой пальмы

Основные хозяева — кокосовая пальма и африканская масличная пальма.

Симптомами поражения являются карликовость деревьев, хлороз листвьев, отсутствие цветения.

Переносчики неизвестны.

Распространение: Филиппины, где явился причиной гибели 12 млн. пальм.

Методы диагностики: точечная гибридизация.

Меры борьбы: не разработаны.

Hop stunt viroid — Вироид карликовости хмеля

Вирус-монофаг. Поражает только хмель. Болезнь характеризуется укорочением междоузлий главной и боковых плетей, курчавостью верхних листвьев.

Распространение: Япония. Есть данные о наличии в СССР.

Методы диагностики: 1. Биотестирование. 2. Электрофорез в ПАГ.

Меры борьбы: химическая и тепловая обработка инструмента при работе по уходу за насаждениями.

Chrysanthemum stunt viroid — Вироид карликовости хризантемы

Вироид ухудшает развитие растений, приводит к уменьшению диаметра цветков, снижает высоту стеблей и количество укоренившихся черенков. При поражении уменьшаются размеры растения в целом, его листвьев и цветков, наблюдается выцветшая окраска цветков и тенденция к более раннему зацветанию.

Вироид поражает представителей семейства сложноцветных часто латентно. Передается при прививках, соком больного растения, при уходе за растениями и срезке побегов, семенами (на 11 %). Эффективность механической передачи соком достигает 56 %.

Распространение: США, Канада, большинство стран Европы, Австралия.

Методы диагностики: 1. Биотестирование. 2. Индексация вироида в каллусных культурах хризантемы с помощью тканевой имплантации и механической инокуляции.

Меры борьбы: 1. Проведение двойного отбора из внешне здоровых, мощно развитых растений. 2. Соблюдение мер предосторожности при черенковании (следует обламывать побеги руками, а не срезать ножом).

Avocado sunblotch viroid — Вироид солнечных пятен авокадо

Вызывает солнечные, желтые или красные штрихи на плодах авокадо, делая их нетоварными. Вызывает также желтые, оранжевые или белые штрихи и пятна на стебле, пестролистность и деформацию листвьев.

Передается прививкой только членам семейства лавровых, включая авокадо, коричник.

Сведения о наличии переносчиков отсутствуют, за исключением одного сообщения о возможной передаче с помощью пчел. Передается семенами (80—100 %) в бессимптомно инфицированных деревьях; пораженные сеянцы также бессимптомны.

Распространение: районы выращивания авокадо (Австралия, Израиль, Перу, Южная Африка, США и Венесуэла).

Методы диагностики: 1. Передача прививкой на другие виды семейства лавровых, в частности на сеянцы авокадо сорта Наас. 2. Электрофорез в ПАГ. 3. Гибридизация нуклеиновой кислоты с комплементарной ДНК.
Меры борьбы: не разработаны. [74, 79]

Chrysanthemum chlorotic mottle viroid — Вироид хлоротической крапчатости хризантемы

Больные растения ниже здоровых. Черенки хуже укореняются. Болезнь может принимать форму эпифитотий, влекущих за собой большие экономические потeri. Восприимчивы многие коммерческие сорта хризантемы.

Симптомы болезни зависят от сорта: заметная крапчатость, переходящая затем в общий хлороз; крапчатость и хлороз, исчезающие при дальнейшем росте растений; хлоротическая пятнистость, появление жилок, очень слабый хлороз. Некоторые сорта при заболевании не проявляют внешних симптомов.

Передается прививкой. Переносчики неизвестны.

Распространение: США, Италия, Бельгия, ЮАР.

Методы диагностики: 1. Биотестирование.

Меры борьбы: Из хризантемы (Ch. morifolii) выделен латентный инфекционный агент, предохраняющий растения от заражения. В полной мере защита удается, если провести инокуляцию агента не позже, чем за 8 сут до заражения. [49, 79]

Citrus exocortis viroid — Вироид экзокортиса цитрусовых

Болезнь характеризуется задержкой роста, усиленным ветвлением побегов и отсланиванием («чешуйчатостью») коры, ствола (рис. 4.78). Патогенные штаммы возбудителя в конце инкубационного периода, который может продолжаться несколько лет, вызывают ветвление побегов, хлороз листьев, появление на побегах желтых пятен, растрескивание и некроз коры подвоя. Отсланивание коры — наиболее характерный симптом заболевания. При анатомическом изучении пораженных листьев цитрона (Citrus medica) выявились глубокие изменения в ткани (особенно средней жилки): ненормальное потемнение и грануляция содержимого клеток паренхимы, гипертрофия и гиперплазия, гибель части клеток, растрескивание и шелушение некротической ткани и др. Высокие дозы азота сокращают инкубационный период и усиливают симптомы заболевания.

Передается с посадочным материалом, во время прививок и подрезок ножом, повиликой, механической инокуляцией сока.

Распространение: повсеместно в районах выращивания цитрусовых.

Методы диагностики: не разработаны.

Меры борьбы: не разработаны. [38, 49, 79]

Tomato bunchy top viroid — Вироид кустистости верхушки томата

В естественных условиях болезнь известна только на томатах. Симптомы болезни проявляются внезапно, почти полной остановкой

Рис. 4.78. Симптомы вироида экзокортиса цитрусовых на стволе цитрусового дерева
роста верхних побегов, в результате чего листья оказываются плотно собранными, что придает растениям кустистый вид, характерный для ранней стадии инфекции. На молодых листьях наблюдается прогрессирующее уменьшение размеров и более темное скопление листочков на общей оси сложного листа. Края листочков подворачиваются вниз, кончики их часто искривляются, и поверхность становится морщинистой.

Цветки пораженных растений не обнаруживают никаких ненормальностей, но плоды мелкие, деформированные и не имеют товарной ценности.

Переносчик не установлен. Доказана передача семенами Solanum incarnum, Physalis peruvianum. Легко передается механической инокуляцией сока.

ТТИ составляет выше 70 °С, ПСИ — 12—24 ч при к. т.

Распространение: исключительно в южной Африке, в низменных районах восточной части Трансвааля.

Методы диагностики: биотестирование.

Меры борьбы: 1. Санитарные мероприятия. 2. Уничтожение сорных растений семейства пасленовых. [79, 87]
ПРИЛОЖЕНИЯ

К ГЛАВЕ 2

Приложение 1

СПИСОК КОЛЛЕКЦИЙ БАКТЕРИЙ

ATCC — American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, USA.

BKM — Всесоюзная Коллекция Микроорганизмов. АН СССР Московская обл., Пущино

CBS — Centraalbureau voor Schimmelcultures, Oosterstraat 1, Baarn, The Netherlands.

CCEB — Culture Collection of Entomogenous Bacteria, Flemingovo N 2, Prague 6, CSSR.

CCM — Czechoslovak Collection of Microorganisms, J. E. Purkyne University, Tr. Obr. Miru 10, Brno, CSSR.

CIP — Collection of Institut Pasteur, Rue du Dr. Roux, Paris 15, France.

CNC — Czechoslovak National Collection of Type Cultures, Institute of Epidemiology and Microbiology, Srobarova 48, Prague 10, Czechoslovakia.

DSM — Deutsche Sammlung von Mikroorganismen, Schnitsphanstrasse, Darmstadt, Federal Republic of Germany.

IAM — Institute of Applied Microbiology, University of Tokyo, Bunkyo-ku, Tokyo, Japan.

ICPB — International Collection of Phytopathogenic Bacteria, University of California, Davis, California 95616, USA.

ИНА — Институт Новых антибиотиков. Нагатинская ЗА, Москва.

IMB — Институт микробиологии и вирусологии АН УССР, ул. Заболотного 26, Киев.

ITCC — Indian Type Culture Collection, New Delhi, India.

NCIB — National Collection of Industrial Bacteria, Torry Research Station, Aberdeen AB9 8DG, Scotland, U. K.

NCPPB — National Collection of Plant Pathogenic Bacteria, Plant Pathology Laboratory, Hatching Green, Harpenden, England, UK.

NCTC — National Collection of Type Cultures, Central Public Health Laboratory, Colindale, London NW9 5HT, England, UK.

PDCDC — Plant Diseases Division Culture Collection, New Zealand Department of Scientific and Industrial Research, Auckland, New Zealand.

UQM — Culture Collection, Department of Microbiology, University of Queensland, Herston, Brisbane 4006, Australia.

WINDSOR — Culture Collection University of Windwor, Windsor, Ontario, Canada.
## Приложение 2
### Типовые штаммы фитопатогенных бактерий

**Таблица 1.** Типовые штаммы бактерий родов *Acetobacter*, *Bacillus* и *Clostridium*

<table>
<thead>
<tr>
<th>Вид</th>
<th>Коллекция</th>
<th>JAM</th>
<th>JFO</th>
<th>Молярная доля Г + Ц, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATCC</td>
<td>NC1B</td>
<td>NCTC</td>
<td></td>
</tr>
<tr>
<td>A. liquefaciens</td>
<td>1834 12388</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>6051 3610 3610 — —</td>
<td>41,5—47,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. macerans</td>
<td>8244 9368 6355 — —</td>
<td>49—51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. polymyxa</td>
<td>842 8158 10343 — —</td>
<td>43—46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. butyricum</td>
<td>19398 7423 7423 — —</td>
<td>27—28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Примечание:** «—» данные отсутствуют.

**Таблица 2.** Типовые штаммы бактерий рода *Corynebacterium*

<table>
<thead>
<tr>
<th>Вид</th>
<th>Коллекция</th>
<th>Молярная доля Г + Ц, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATCC</td>
<td>NCPPB</td>
</tr>
<tr>
<td>C. flacumfaciens</td>
<td>— 1446</td>
<td>68,3—73,7</td>
</tr>
<tr>
<td>C. beta</td>
<td>— 374</td>
<td>—</td>
</tr>
<tr>
<td>C. fasciens</td>
<td>12974 —</td>
<td>62,9—67,6</td>
</tr>
<tr>
<td>C. ilicis</td>
<td>14264 1228</td>
<td>61,5</td>
</tr>
<tr>
<td>C. insidiosum</td>
<td>— 1109</td>
<td>71,8—73,8</td>
</tr>
<tr>
<td>C. iranicum</td>
<td>— 2581</td>
<td>68,2—71,2</td>
</tr>
<tr>
<td>C. michiganense</td>
<td>— 2979</td>
<td>72,5—74,0</td>
</tr>
<tr>
<td>C. nebraskense</td>
<td>— 2581</td>
<td>76,6</td>
</tr>
<tr>
<td>C. oortii</td>
<td>28233 —</td>
<td>—</td>
</tr>
<tr>
<td>C. poinsettiae</td>
<td>9682 —</td>
<td>—</td>
</tr>
<tr>
<td>C. rathyi</td>
<td>— 2980</td>
<td>—</td>
</tr>
<tr>
<td>C. sepedonicum</td>
<td>33113 —</td>
<td>718—730</td>
</tr>
<tr>
<td>C. tritici</td>
<td>11403 —</td>
<td>69,6—72,8</td>
</tr>
</tbody>
</table>

**Примечание:** «—» данные отсутствуют.
### Таблица 3. Типовые штаммы бактерий рода Erwinia

<table>
<thead>
<tr>
<th>Вид бактерий</th>
<th>Коллекция</th>
<th>Молярная доля Г - Ц, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATCC</td>
<td>PDDCC</td>
</tr>
<tr>
<td>E. ananas</td>
<td>1846</td>
<td>53,1 — 54,1</td>
</tr>
<tr>
<td>E. amylovora</td>
<td>2176</td>
<td>53,6 — 54,1</td>
</tr>
<tr>
<td>E. cancerogena</td>
<td>439</td>
<td>50,5 — 53,1</td>
</tr>
<tr>
<td>E. carnegiana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. carotovora</td>
<td>549</td>
<td>51,3 — 53,1</td>
</tr>
<tr>
<td>E. carotovora subsp.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. chrysanthemi</td>
<td>11663</td>
<td>55,1 — 57,1</td>
</tr>
<tr>
<td>E. cyripedii</td>
<td>1591</td>
<td>54,1 — 54,6</td>
</tr>
<tr>
<td>E. dissolvens</td>
<td>23373</td>
<td>54,6 — 55,1</td>
</tr>
<tr>
<td>E. guercina</td>
<td>29281</td>
<td>52,6 — 57,7</td>
</tr>
<tr>
<td>E. herbicola</td>
<td>29573</td>
<td>46,8 — 51,0</td>
</tr>
<tr>
<td>E. mallotivora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. nigriluens</td>
<td>13028</td>
<td>56,1</td>
</tr>
<tr>
<td>E. niphpressuralis</td>
<td>9912</td>
<td>51,0 — 53,1</td>
</tr>
<tr>
<td>E. rhapontici</td>
<td>29283</td>
<td>53,0 — 54,5</td>
</tr>
<tr>
<td>E. rubrifaciens</td>
<td>29291</td>
<td>53,0 — 54,5</td>
</tr>
<tr>
<td>E. salicis</td>
<td>15712</td>
<td>51,3 — 51,5</td>
</tr>
<tr>
<td>E. stewartii</td>
<td>8199</td>
<td>54,6 — 55,1</td>
</tr>
<tr>
<td>E. tracheiphila</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. uredovora</td>
<td>19321</td>
<td>53,0 — 54,5</td>
</tr>
</tbody>
</table>

Примечание: «—» — данные отсутствуют.

### Таблица 4. Типовые и ссылочные штаммы фитопатогенных бактерий рода Pseudomonas

<table>
<thead>
<tr>
<th>Вид</th>
<th>Штамм</th>
<th>Коллекция</th>
<th>Молярная доля Г + Ц, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATCC</td>
<td>PDDCC</td>
<td>NCPPB</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>10145</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. agarici</td>
<td>25941</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. amygdali</td>
<td>23061</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. andropogonis</td>
<td>23835</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. aspleni</td>
<td>19860</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. avenae</td>
<td>25418</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. carcapapayae</td>
<td>25418</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. carophyli</td>
<td>25418</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. cattleyae</td>
<td>25416</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. cepacia</td>
<td>25416</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>P. cichorii</td>
<td>10857</td>
<td>5707</td>
<td>943</td>
</tr>
</tbody>
</table>
Продолжение табл. 4

<table>
<thead>
<tr>
<th>Вид</th>
<th>Штамм</th>
<th>Коллекция</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ATCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Молярная доля ІЧ-Ц, %</td>
</tr>
<tr>
<td>P. cissicola</td>
<td>т 13525</td>
<td>—</td>
</tr>
<tr>
<td>P. corrugata</td>
<td>т 13525</td>
<td>—</td>
</tr>
<tr>
<td>P. fluorescens</td>
<td>т 10844</td>
<td>3553</td>
</tr>
<tr>
<td></td>
<td>биовар I</td>
<td>т 13525</td>
</tr>
<tr>
<td></td>
<td>биовар II</td>
<td>т 13525</td>
</tr>
<tr>
<td>P. marginalis pv. marginalis</td>
<td>т 10844</td>
<td>3553</td>
</tr>
<tr>
<td>P. marginalis pv. alfalfa</td>
<td>с —</td>
<td>5708</td>
</tr>
<tr>
<td>P. gladioli</td>
<td>т 10248</td>
<td>3950</td>
</tr>
<tr>
<td>P. gladioli pv. gladioli</td>
<td>с 19302</td>
<td>2804</td>
</tr>
<tr>
<td>P. gladioli pv. allicola</td>
<td>с — —</td>
<td>—</td>
</tr>
<tr>
<td>P. glumae</td>
<td>т 19307</td>
<td>—</td>
</tr>
<tr>
<td>P. rubrilineans</td>
<td>т 19307</td>
<td>—</td>
</tr>
<tr>
<td>P. rubrisubalbicans</td>
<td>т 19307</td>
<td>—</td>
</tr>
<tr>
<td>P. solanacearum</td>
<td>т 11696</td>
<td>5712</td>
</tr>
<tr>
<td>P. syringae</td>
<td>т 19310</td>
<td>3023</td>
</tr>
<tr>
<td>P. woodsii</td>
<td>т 19311</td>
<td>—</td>
</tr>
</tbody>
</table>

Примечание: «—» — данные отсутствуют, т — типовой штамм, с — ссылочный сптамм.

Таблица 5. Типовые штаммы бактерий рода Xanthomonas

<table>
<thead>
<tr>
<th>Вид</th>
<th>Штамм</th>
<th>Коллекция</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ATCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 + Ц мол. %</td>
</tr>
<tr>
<td>X. campestris</td>
<td>т</td>
<td>—</td>
</tr>
<tr>
<td>X. fragariae</td>
<td>т</td>
<td>—</td>
</tr>
<tr>
<td>X. albilineans</td>
<td>т</td>
<td>—</td>
</tr>
<tr>
<td>X. axonopodia</td>
<td>т</td>
<td>19312</td>
</tr>
<tr>
<td>X. ampelina</td>
<td>т</td>
<td>—</td>
</tr>
</tbody>
</table>

Примечание: т — типовой штамм, «—» — данные отсутствуют.

469
### Таблица 6. Неопатотипные, патотипные штаммы бактерий рода Xanthomonas campestris

<table>
<thead>
<tr>
<th>Вид</th>
<th>Штамм</th>
<th>ATCC</th>
<th>PDDCC</th>
<th>NCPPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. c. pv. aberrans</td>
<td>HT</td>
<td>—</td>
<td>4805</td>
<td>2986</td>
</tr>
<tr>
<td>X. c. pv. alangii</td>
<td>HT</td>
<td>—</td>
<td>5717</td>
<td>1336</td>
</tr>
<tr>
<td>X. c. pv. alfalfa</td>
<td>HT</td>
<td>—</td>
<td>5718</td>
<td>2062</td>
</tr>
<tr>
<td>X. c. pv. amaranthicola</td>
<td>HT</td>
<td>11645</td>
<td>441</td>
<td>570</td>
</tr>
<tr>
<td>X. c. pv. amorphophalli</td>
<td>HT</td>
<td>—</td>
<td>3033</td>
<td>2371</td>
</tr>
<tr>
<td>X. c. pv. aracearum</td>
<td>HT</td>
<td>—</td>
<td>5381</td>
<td>2632</td>
</tr>
<tr>
<td>X. c. pv. arecae</td>
<td>HT</td>
<td>—</td>
<td>5719</td>
<td>2649</td>
</tr>
<tr>
<td>X. c. pv. argemones</td>
<td>HT</td>
<td>—</td>
<td>1617</td>
<td>1593</td>
</tr>
<tr>
<td>X. c. pv. armoresciae</td>
<td>HT</td>
<td>—</td>
<td>7</td>
<td>347</td>
</tr>
<tr>
<td>X. c. pv. arracaceae</td>
<td>HT</td>
<td>—</td>
<td>3158</td>
<td>2436</td>
</tr>
<tr>
<td>X. c. pv. azadirachtae</td>
<td>HT</td>
<td>—</td>
<td>3102</td>
<td>2388</td>
</tr>
<tr>
<td>X. c. pv. badrii</td>
<td>HT</td>
<td>11672</td>
<td>571</td>
<td>571</td>
</tr>
<tr>
<td>X. c. pv. barbareae</td>
<td>HT</td>
<td>13460</td>
<td>438</td>
<td>983</td>
</tr>
<tr>
<td>X. c. pv. bauhiniae</td>
<td>HT</td>
<td>—</td>
<td>5720</td>
<td>1335</td>
</tr>
<tr>
<td>X. c. pv. begoniae</td>
<td>HT</td>
<td>—</td>
<td>194</td>
<td>1396</td>
</tr>
<tr>
<td>X. c. pv. beteicola</td>
<td>HT</td>
<td>11677</td>
<td>312</td>
<td>2972</td>
</tr>
<tr>
<td>X. c. pv. biophyti</td>
<td>HT</td>
<td>—</td>
<td>2780</td>
<td>2228</td>
</tr>
<tr>
<td>X. c. pv. blepharidis</td>
<td>HT</td>
<td>17995</td>
<td>5722</td>
<td>1757</td>
</tr>
<tr>
<td>X. c. pv. caiani</td>
<td>HT</td>
<td>11639</td>
<td>444</td>
<td>573</td>
</tr>
<tr>
<td>X. c. pv. campestris</td>
<td>HT</td>
<td>—</td>
<td>13</td>
<td>528</td>
</tr>
<tr>
<td>X. c. pv. cannabis</td>
<td>HT</td>
<td>—</td>
<td>6570</td>
<td>2877</td>
</tr>
<tr>
<td>X. c. pv. carrissae</td>
<td>HT</td>
<td>—</td>
<td>3034</td>
<td>2373</td>
</tr>
<tr>
<td>X. c. pv. carotae</td>
<td>HT</td>
<td>—</td>
<td>5723</td>
<td>1422</td>
</tr>
<tr>
<td>X. c. pv. cassavae</td>
<td>HT</td>
<td>—</td>
<td>204</td>
<td>101</td>
</tr>
<tr>
<td>X. c. pv. cassiae</td>
<td>HT</td>
<td>11638</td>
<td>358</td>
<td>2973</td>
</tr>
<tr>
<td>X. c. pv. celebensis</td>
<td>HT</td>
<td>19045</td>
<td>1488</td>
<td>1832</td>
</tr>
<tr>
<td>X. c. pv. centellae</td>
<td>HT</td>
<td>—</td>
<td>6746</td>
<td>—</td>
</tr>
<tr>
<td>X. c. pv. cerealis</td>
<td>HT</td>
<td>—</td>
<td>1409</td>
<td>1944</td>
</tr>
<tr>
<td>X. c. pv. citri</td>
<td>HT</td>
<td>—</td>
<td>24</td>
<td>409</td>
</tr>
<tr>
<td>X. c. pv. clerodendri</td>
<td>HT</td>
<td>1676</td>
<td>445</td>
<td>575</td>
</tr>
<tr>
<td>X. c. pv. clitoria</td>
<td>HT</td>
<td>—</td>
<td>6574</td>
<td>3092</td>
</tr>
<tr>
<td>X. c. pv. convolvuli</td>
<td>HT</td>
<td>—</td>
<td>5380</td>
<td>2498</td>
</tr>
<tr>
<td>X. c. pv. coracanae</td>
<td>HT</td>
<td>—</td>
<td>5724</td>
<td>1786</td>
</tr>
<tr>
<td>X. c. pv. coriandri</td>
<td>HT</td>
<td>17996</td>
<td>5725</td>
<td>1758</td>
</tr>
<tr>
<td>X. c. pv. corylina</td>
<td>HT</td>
<td>19313</td>
<td>5726</td>
<td>935</td>
</tr>
<tr>
<td>X. c. pv. cucurbitae</td>
<td>HT</td>
<td>—</td>
<td>2299</td>
<td>2597</td>
</tr>
<tr>
<td>X. c. pv. cyamopsidis</td>
<td>HT</td>
<td>—</td>
<td>616</td>
<td>637</td>
</tr>
<tr>
<td>X. c. pv. desmodii</td>
<td>HT</td>
<td>11640</td>
<td>315</td>
<td>481</td>
</tr>
<tr>
<td>X. c. pv. desmodiivangetici</td>
<td>HT</td>
<td>11671</td>
<td>577</td>
<td>577</td>
</tr>
<tr>
<td>X. c. pv. desmodiiflaxiflori</td>
<td>HT</td>
<td>—</td>
<td>6502</td>
<td>3086</td>
</tr>
<tr>
<td>X. c. pv. desmodiiorundifolii</td>
<td>HT</td>
<td>—</td>
<td>168</td>
<td>885</td>
</tr>
<tr>
<td>X. c. pv. dieffenbachiae</td>
<td>HT</td>
<td>—</td>
<td>5727</td>
<td>1833</td>
</tr>
<tr>
<td>X. c. pv. durantae</td>
<td>HT</td>
<td>—</td>
<td>5728</td>
<td>1456</td>
</tr>
<tr>
<td>X. c. pv. erythrinae</td>
<td>HT</td>
<td>11679</td>
<td>446</td>
<td>578</td>
</tr>
<tr>
<td>X. c. pv. esculenti</td>
<td>HT</td>
<td>—</td>
<td>5729</td>
<td>2190</td>
</tr>
<tr>
<td>X. c. pv. eucalypti</td>
<td>HT</td>
<td>—</td>
<td>5382</td>
<td>2337</td>
</tr>
<tr>
<td>X. c. pv. euphorhiae</td>
<td>HT</td>
<td>—</td>
<td>5730</td>
<td>1828</td>
</tr>
<tr>
<td>X. c. pv. fascicularis</td>
<td>HT</td>
<td>—</td>
<td>5731</td>
<td>2230</td>
</tr>
<tr>
<td>Вид</td>
<td>Штамм</td>
<td>ATCC</td>
<td>PDDCC</td>
<td>NCPPB</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>X. c. pv. fici</td>
<td>нт</td>
<td>3036</td>
<td>2372</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. glycines</td>
<td>нт</td>
<td>5732</td>
<td>554</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. graminis</td>
<td>нт</td>
<td>5733</td>
<td>2700</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. guizotiae</td>
<td>нт</td>
<td>5734</td>
<td>1932</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. gummisudans</td>
<td>нт</td>
<td>5780</td>
<td>2183</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. hederae</td>
<td>нт</td>
<td>453</td>
<td>939</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. heliotropii</td>
<td>нт</td>
<td>5778</td>
<td>2057</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. holcicola</td>
<td>нт</td>
<td>3103</td>
<td>2417</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. hordei</td>
<td>нт</td>
<td>5735</td>
<td>2389</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. hyacinthi</td>
<td>нт</td>
<td>19314</td>
<td>189</td>
<td>599</td>
</tr>
<tr>
<td>X. c. pv. incanae</td>
<td>нт</td>
<td>13462</td>
<td>574</td>
<td>937</td>
</tr>
<tr>
<td>X. c. pv. lonicidii</td>
<td>нт</td>
<td>5736</td>
<td>1334</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. juglandis</td>
<td>нт</td>
<td>35</td>
<td>411</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. knayae</td>
<td>нт</td>
<td>671</td>
<td>536</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. lantanae</td>
<td>нт</td>
<td>5736</td>
<td>1455</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. laurelina</td>
<td>нт</td>
<td>84</td>
<td>1155</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. lawsoniae</td>
<td>нт</td>
<td>11674</td>
<td>319</td>
<td>579</td>
</tr>
<tr>
<td>X. c. pv. leana</td>
<td>нт</td>
<td>5738</td>
<td>2299</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. lespedezae</td>
<td>нт</td>
<td>13463</td>
<td>439</td>
<td>993</td>
</tr>
<tr>
<td>X. c. pv. maculfoliogardeniae</td>
<td>нт</td>
<td>318</td>
<td>318</td>
<td>971</td>
</tr>
<tr>
<td>X. c. pv. malvacearum</td>
<td>нт</td>
<td>5739</td>
<td>633</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. mangiferaeindicae</td>
<td>нт</td>
<td>11637</td>
<td>5740</td>
<td>490</td>
</tr>
<tr>
<td>X. c. pv. manihotis (б. пигм.)</td>
<td>нт</td>
<td>5741</td>
<td>1834</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. martyniicola</td>
<td>нт</td>
<td>82</td>
<td>1148</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. melhusii</td>
<td>нт</td>
<td>11644</td>
<td>619</td>
<td>994</td>
</tr>
<tr>
<td>X. c. pv. merremiae</td>
<td>нт</td>
<td>6747</td>
<td>3114</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. musacearum</td>
<td>нт</td>
<td>2870</td>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. nakataecorchori</td>
<td>нт</td>
<td>5742</td>
<td>1337</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. nigromaculans</td>
<td>нт</td>
<td>23390</td>
<td>80</td>
<td>1935</td>
</tr>
<tr>
<td>X. c. pv. olitorii</td>
<td>нт</td>
<td>359</td>
<td>464</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. oryzae</td>
<td>нт</td>
<td>3125</td>
<td>3002</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. oryzicola</td>
<td>нт</td>
<td>5743</td>
<td>1585</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. papavericola</td>
<td>нт</td>
<td>1417</td>
<td>220</td>
<td>2970</td>
</tr>
<tr>
<td>X. c. pv. passiflora</td>
<td>нт</td>
<td>3151</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. patelii</td>
<td>нт</td>
<td>167</td>
<td>840</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. pedali (б. пигм.)</td>
<td>нт</td>
<td>3030</td>
<td>2368</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. pelargonii</td>
<td>нт</td>
<td>4321</td>
<td>2985</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. phaseoli</td>
<td>нт</td>
<td>9563</td>
<td>5834</td>
<td>3035</td>
</tr>
<tr>
<td>X. c. pv. phleipratensis</td>
<td>нт</td>
<td>5744</td>
<td>1837</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. phormicola</td>
<td>нт</td>
<td>4294</td>
<td>2983</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. phyllanthi</td>
<td>нт</td>
<td>5745</td>
<td>2066</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. phylloidica</td>
<td>нт</td>
<td>586</td>
<td>761</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. physalidica</td>
<td>нт</td>
<td>17994</td>
<td>5746</td>
<td>1756</td>
</tr>
<tr>
<td>X. c. pv. physalis</td>
<td>нт</td>
<td>570</td>
<td>762</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. plantaginis (н/патог)</td>
<td>С</td>
<td>23382</td>
<td>1028</td>
<td>1061</td>
</tr>
<tr>
<td>X. c. pv. poinsettica</td>
<td>нт</td>
<td>11643</td>
<td>5779</td>
<td>581</td>
</tr>
<tr>
<td>X. c. pv. pruni</td>
<td>нт</td>
<td>19316</td>
<td>51</td>
<td>416</td>
</tr>
<tr>
<td>X. c. pv. punicae</td>
<td>нт</td>
<td>360</td>
<td>466</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. raphani</td>
<td>нт</td>
<td>140</td>
<td>1946</td>
<td></td>
</tr>
<tr>
<td>X. c. pv. rhynchoslae</td>
<td>нт</td>
<td>5748</td>
<td>1827</td>
<td></td>
</tr>
</tbody>
</table>

471
Продолжение табл. 6

<table>
<thead>
<tr>
<th>Вид</th>
<th>Штамм</th>
<th>ATCC</th>
<th>PDDCC</th>
<th>NCPPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>X. c. pv. ricini (н/патоген)</td>
<td>ПТ</td>
<td>19317</td>
<td>5747</td>
<td>1063</td>
</tr>
<tr>
<td>X. c. pv. secalis</td>
<td>НТ</td>
<td>—</td>
<td>5749</td>
<td>2822</td>
</tr>
<tr>
<td>X. c. pv. sesami</td>
<td>НТ</td>
<td>—</td>
<td>621</td>
<td>631</td>
</tr>
<tr>
<td>X. c. pv. sesbaniae</td>
<td>НТ</td>
<td>11675</td>
<td>367</td>
<td>582</td>
</tr>
<tr>
<td>X. c. pv. shermanoces</td>
<td>ПТ</td>
<td>17998</td>
<td>5751</td>
<td>1760</td>
</tr>
<tr>
<td>X. c. pv. tamarindi</td>
<td>ПТ</td>
<td>19318</td>
<td>579</td>
<td>940</td>
</tr>
<tr>
<td>X. c. pv. tardin crescens</td>
<td>НТ</td>
<td>—</td>
<td>4295</td>
<td>2984</td>
</tr>
<tr>
<td>X. c. pv. theicola</td>
<td>ПТ</td>
<td>—</td>
<td>6777</td>
<td>—</td>
</tr>
<tr>
<td>X. c. pv. trichodesmiae</td>
<td>НТ</td>
<td>—</td>
<td>5852</td>
<td>1452</td>
</tr>
<tr>
<td>X. c. pv. translucens</td>
<td>НТ</td>
<td>19319</td>
<td>5752</td>
<td>973</td>
</tr>
<tr>
<td>X. c. pv. tribuli</td>
<td>НТ</td>
<td>—</td>
<td>5753</td>
<td>1454</td>
</tr>
<tr>
<td>X. c. pv. undulosa</td>
<td>НТ</td>
<td>—</td>
<td>5755</td>
<td>2821</td>
</tr>
<tr>
<td>X. c. pv. uppalii</td>
<td>НТ</td>
<td>11641</td>
<td>5756</td>
<td>586</td>
</tr>
<tr>
<td>X. c. pv. vasculorum</td>
<td>НТ</td>
<td>—</td>
<td>5757</td>
<td>796</td>
</tr>
<tr>
<td>X. c. pv. vernoniae</td>
<td>НТ</td>
<td>—</td>
<td>5758</td>
<td>1787</td>
</tr>
<tr>
<td>X. c. pv. vesicatoria</td>
<td>НТ</td>
<td>—</td>
<td>63</td>
<td>422</td>
</tr>
<tr>
<td>X. c. pv. vignae radiatae</td>
<td>НТ</td>
<td>—</td>
<td>5759</td>
<td>2053</td>
</tr>
<tr>
<td>X. c. pv. vignicola</td>
<td>НТ</td>
<td>11648</td>
<td>333</td>
<td>1838</td>
</tr>
<tr>
<td>X. c. pv. vitians</td>
<td>НТ</td>
<td>19320</td>
<td>336</td>
<td>976</td>
</tr>
<tr>
<td>X. c. pv. viticola (б. пигм)</td>
<td>НТ</td>
<td>—</td>
<td>3867</td>
<td>2475</td>
</tr>
<tr>
<td>X. c. pv. vitiscarnosae</td>
<td>НТ</td>
<td>—</td>
<td>90</td>
<td>1149</td>
</tr>
<tr>
<td>X. c. pv. vitis trifoliate</td>
<td>НТ</td>
<td>—</td>
<td>5761</td>
<td>1451</td>
</tr>
<tr>
<td>X. c. pv. vitis woodrowii</td>
<td>НТ</td>
<td>11636</td>
<td>3965</td>
<td>1014</td>
</tr>
<tr>
<td>(б. пигм)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X. c. pv. zantedeschiae</td>
<td>НТ</td>
<td>—</td>
<td>2872</td>
<td>2978</td>
</tr>
<tr>
<td>X. c. pv. zinniae</td>
<td>НТ</td>
<td>—</td>
<td>5762</td>
<td>2439</td>
</tr>
</tbody>
</table>

Примечание: «—» — данные отсутствуют, НТ — неопатотипный штамм, ПТ — патотипный штамм, С — ссылочный.

Таблица 7. Типовые штаммы бактерий рода Agrobacterium

<table>
<thead>
<tr>
<th>Вид</th>
<th>Коллекция</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ATCC</td>
</tr>
<tr>
<td>A. tumefaciens</td>
<td>23308</td>
</tr>
<tr>
<td>A. radiobacter</td>
<td>19358</td>
</tr>
<tr>
<td>A. rhizogenes</td>
<td>11325</td>
</tr>
<tr>
<td>A. rubi</td>
<td>13334</td>
</tr>
</tbody>
</table>

Примечание: «—» — данные отсутствуют.
Как установлено, поражение гречихи болезнью, похожей на микоплазмоз, вызывается вирусом табачной мозаики (ВТМ). Методы борьбы с упомянутым заболеванием должны применяться с учетом свойств этого вируса и биологических особенностей гречихи.

Основным источником инфекции растений в поле служат послеуборочные остатки, сборные (вьюнок, кресс-крупка, гречка вьюнковая, коммелина обыкновенная, редька дикая и др.), а также культурные (табак, махорка, пасленовые и др.) растения.

Возбудитель зимует в многолетних сорных растениях (вьюнок, кресс-крупка), а в следующем году распространяется вьюнковой цикадкой во время ее массового лета (15 июня — 15 июля). Кроме того, ВТМ хорошо сохраняется в почве и может заразить растение через корни.

Так как сортов растений гречихи, иммунных к этому заболеванию, не выявлено, то в борьбе с ним целесообразно применять систему агротехнических и химических мероприятий. Гречиху следует возделывать в соответствии с разработанной технологией [4], используя в качестве ее предшественников растения, не поражающиеся ВТМ. Опыт показывает, что лучшими предшественниками гречихи являются пропашные культуры и озимые зерновые, засеваемые после пропашных. Поле, засеянное пропашными культурами (при хорошей технологии возделывания), лучше очищено от сорняков: озимые зерновые культуры быстро растут и подавляют развитие сорняков. При размещении гречихи необходимо учитывать ее биологические особенности, состояние зараженности, а также видовой состав сорняков.

Нельзя допускать возделывания гречихи на одних и тех же участках в течение нескольких лет, так как это способствует накоплению инфекций в почве и размножению насекомых — переносчиков болезней. Не рекомендуется высевать гречиху на участках, расположенных вблизи сушильных сооружений (сушка табака), а также посевов пасленовых, табака и махорки — расстояние от них должно составлять 600—1000 м. Это необходимо для предотвращения заноса ВТМ персиковой тлей, табачным трипсом и вьюнковой цикадкой.

При ранней вспашке поля из-под пропашных культур (перед посевом на нем гречихи) послеуборочные остатки полнее и быстрее разлагаются, уничтожаются переносчики. Вероятность сохранения инфекции значительно снижается.

Химические меры борьбы с насекомыми — переносчиками ВТМ следует вести, главным образом, путем обработки растений инсектицидами в местах скопления переносчиков. Обычно для наземного опрыскивания используют инсектициды системного действия; БИ-58 (рогор, он же фосфамид) в виде 0,2 %-ного раствора, 0,3 %-ный раствор хлорофоса, 0,15 %-ный раствор овадофоса или такой же раствор фолицина (метилинтрофоса), 0,2 %-ный раствор метилмеркаптофоса или такой же раствор 60 %-ного концентрата эмульсии гептахлора. Каждый из этих препаратов можно применять из расчета 300—400 л рабочего раствора на 1 га. При своевременном оповещении службы сигнализации достаточно однократной обработки мест зимовки переносчиков и 10-метровой изолирующей полосы вокруг таких мест.
Большое значение в комплексе агротехнических мероприятий по повышению урожайности гречихи имеет борьба с сорняками — резерваторами ВТМ. Наиболее эффективный метод борьбы с сорняками — применение гербицидов. Однако следует помнить, что гречиха очень чувствительна к гербицидам и признаки поражения ее этими препаратами сходны с таковыми при поражении ее ВТМ. Поэтому обработать посевы гербицидами нужно не позже чем за 2—3 сут до появления всходов, или вносить их в предпосевную культивацию в таких количествах (из расчета на 1 га): 1—1,5 кг 2,4Д; 1—1,5 кг 2М-4Х. Обработка гречихи гербицидом 2,4Д обеспечивает уничтожение около 80 % однолетних сорняков [4].

Приложение 2
НАБЛЮДЕНИЕ ЗА ПОСЕВАМИ.
ОЦЕНКА ВРЕДОНОСНОСТИ МИКОПЛАЗМОЗОВ

Для своевременного выявления микоплазменных и вирусных болезней зерновых колосковых культур необходимо регулярно обследовать их посевы. Первое обследование проводят в фазе кущения растений, второе — весной в фазе выхода в трубку.

Обычно просматривают по 50 растений на 50 участках — по диагонали и по краям поля, так как микоплазменные и вирусные заболевания распространяются неравномерно и, как правило, больше по краям поля. Определяют процент пораженных растений и интенсивность поражения по четырехбалльной системе: один балл — слабое проявление заболевания (1—5 % пораженных растений); два балла — среднее проявление заболевания (10—30 % пораженных растений); три балла — сильное проявление заболевания (более 30 % пораженных растений); четыре балла — все растения поражены.

Степень поражения посевов вычисляют по формуле

\[ P = \frac{6}{H} \times 100, \]

где \( P \) — общее число пораженных растений, %; \( 6 \) — абсолютное число больных растений; \( H \) — абсолютное число учтенных растений.

Вредоносность заболевания выражается в недоборе урожая и определяется по проценту погибших или сформировавших урожай растений. Вычисляют вредоносность заболеваний пшеницы по обще принятой методике:

\[ B = \frac{(A - a)}{A} \times 100, \]

где \( B \) — вредоносность при потере урожая, %; \( A \) — урожай здоровых растений, г; \( a \) — урожай больных растений, г.
Перечень вирусов, классифицированных после 1982 г.

Cauliflower mosaic virus group — группа вируса мозаики цветной капусты
Blueberry red ringspot virus — вирус красной кольцевой пятнистости голубики
Soybean chlorotic mottle virus — вирус хлоротической крапчатости сои
Sweet potato cauli-mo-like virus — каулимоподобный вирус батата

Maize streak virus group — группа вируса полосатости кукурузы
Bean enation dwarf virus — вирус деформирующей карликовости фасоли
Cotton leaf crumpled disease — вирус морщинистости листьев хлопчатника
Eupatoruim yellow vein virus — вирус пожелтения жилок евпаториума
Horsegram yellow mosaic virus — вирус желтой мозаики долихоса
Jatropha mosaic virus — вирус мозаики ятрофы
Oat chlorotic stripe virus — вирус хлоротической полосатости овса
Potato yellow mosaic virus — вирус желтой мозаики картофеля
Squash leaf curl virus — вирус скручивания листьев тыквы
Solanum apical leaf curling virus — вирус скручивания верхушечных листьев паслена
Soybean crinkle virus — вирус морщинистой сои
Tomato pseudo-curlly virus — вирус ложной курчавости томата

Plant rhabdovirus — рабдовирусы растений
Banana streak virus — вирус штриховатости банана
Barley yellow striate mosaic virus — вирус желтой штриховатой мозаики ячменя
Camellia infectious variegation virus — вирус инфекционной пестролистности камелии
Canna yellow mottle virus — вирус желтой крапчатости канны
CYNodon chlorotic streak virus — вирус хлоротической крапчатости свинороя

Lotus streak virus — вирус штриховатости лядвенца
Tomato vein clearing virus — вирус посветления жилок томата

Turnip yellow mosaic virus group — группа вируса желтой мозаики турнепса
Passionfruit yellow virus — вирус желтухи страстоцвета
Poinsetta mosaic virus — вирус мозаики пансетеи
Voandzeia necrotic mosaic virus — вирус некротической мозаики земляного ореха

Southern bean mosaic virus group — группа вируса южной мозаики фасоли

* Приведены вирусы, охарактеризованные после 1982 г. [147] как новые члены таксономических групп.
Ginger chlorotic fleck virus — вирус хлоротической пятнистости имбиря
Tomato bushy stunt virus group — группа вируса кустистой карликовости томатов
Maroccan pepper virus — вирус перца марокканского
Tombus virus Neckar — вирус Некара
Beet yellow virus group — группа вируса желтухи сахарной свеклы
Nandina domestica clostero — вирус желтухи нандины домашней
Potato Y virus group — группа Y-вируса картофеля
Dioscorea alata ring mottle virus — вирус кольцевой крапчатости ямса
Cardamon mosaic virus — вирус мозаики кардамона
Peanut chlorotic ring mottle virus — вирус хлоротической кольцевой пятнистости
Peanut mild virus — вирус слабой крапчатости арахиса
Peanut stripe virus — вирус полосатости арахиса
Tulip chlorotic blotch virus — вирус хлоротической пятнистости тюльпана
Carnation latent virus group — группа латентного вируса гвоздики
Caper latent virus — латентный вирус каперсов
Potato X virus group — группа X-вируса картофеля
Groundnut chlorotic mottle — вирус хлоротической крапчатости арахиса
Tobacco mosaic virus group — группа вируса мозаики табака
Hypochoeris mosaic virus — вирус мозаики гипохориса
Carnation ringspot virus group — группа вируса кольцевой пятнистости гвоздики
Sweet clover necrotic mosaic virus — вирус некротической мозаики донника
Cowpea mosaic virus group — группа вируса мозаики коровьего гороха
Desmodium virus — вирус десмодиума
Pea green mottle virus — вирус зеленой крапчатости гороха
Pea mild mosaic virus — вирус слабой мозаики гороха
Pea symptomless virus — бессимптомный вирус гороха
Sesbania mosaic virus — вирус мозаики сесбаннии
Ullucus virus — С-вирус уллюкуса
Tobacco ringspot virus group — группа вируса кольцевой пятнистости табака
Cassava green mottle virus — вирус зеленой крапчатости маннока
Olive latent virus I — латентный вирус оливы I
Tobacco rattle virus group — группа вируса курчавой полосатости табака
Broad bean yellow band virus — вирус желтой полосатости конских бобов
Brome mosaic virus group — группа вируса мозаики костра
Cassia yellow blotch virus — вирус желтой пятнистости кассии
Spring beauty latent virus — латентный вирус весенней красавицы
СПИСОК ЛИТЕРАТУРЫ

К главе I

1. Абрамов И. Н. Болезни сельскохозяйственных растений на Дальнем Востоке.— Владивосток: Дальгиз, 1938.— 232 с.
2. Азбукина З. М. Ржавчинные грибы Дальнего Востока.— М.: Наука, 1974.— 527 с.
5. Васецкая М. Н., Култкова Г. Н., Борзюнова Т. И. Виды септориальных грибов, распространенные на сортах пшеницы в СССР // Микология и фитопатология.— 1983.— 17, № 3.— С. 210—213.
6. Васильевский Н. И., Каракулин Б. П. Паразитные несовершенные грибы. Ч. 1. Гифомицеты.— М.; Л.: Изд-во АН СССР, 1937.— 516 с.
12. Головин П. Н. Мучнистороссые грибы, паразитирующие на культурных и полезных растениях.— М.; Л.: Изд-во АН СССР, 1960.— 266 с.
13. Горленко М. В. Эволюция паразитизма фитопатогенных грибов // Микология и фитопатология.— 1976.— 10, № 1.— С. 5—10.
15. Губанов Г. Я. Вилт хлопчатника.— М.: Колос, 1972.— 455 с.
17. Дорожкин Н. А., Бельская С. И. Болезни картофеля.— М.: Наука и техника, 1979.— 246 с.
19. Дьяков Ю. Т. О болезнях растений.— М.: Агрофирма, 1985.— 222 с.
20. Дьяков Ю. Т., Семенкова И. Г., Успенская Г. Д. Общая фитопатология с основами иммунидта.— М.: Колос, 1976.— 256 с.
22. Жуков А. М. Патогенные грибы облепиховых ценозов Сибири.— Новосибирск: Наука, 1979.— 240 с.
23. Исаева Е. В. Атлас болезней плодовых и ягодных культур.— Киев : Урожай, 1977.— 120 с.
24. Каратьгин И. В. Возбудители головни зерновых культур.— Л.: Наука, 1986.— 112 с.
27. Кублицкая М. А., Рябцев Н. А. Разновидности гриба Botrytis cinerea на винограде // Микология и фитопатология.— 1969.— 3, № 3.— С. 258—260.
28. Купревич В. Ф., Траншель В. Г. Флора споровых растений СССР. Ржавчинные грибы. Сем. мелампсоровые.— М.; Л.: Изд-во АН СССР, 1957.— 420 с.
33. Милько А. А. Определитель мукоральных грибов.— Киiv: Наук. думка, 1974.— 303 с.
34. Наумов Н. А. Болезни сельскохозяйственных растений.— М.; Л.: Сельхозиздат, 1952.— 664 с.
36. Николаева С. И., Мартина Л. А. Myrothecium verrucaria Ditm. ex Fr.— новый возбудитель микоза огурцов // Микология и фитопатология.— 1982.— 6, № 4.— С. 358—359.
38. Оранская М. С., Гончарова Л. Ф., Безбородов А. М. Алкалоиды спорыньи // Микробиол. синтез.— 1969.— № 2.— С. 14.
40. Пересыпкин В. Ф., Коваленко С. Н. Симптомы септориоза озимой пшеницы в условиях лесостепи Украины // Микология и фитопатология.— 1977.— 11. № 5.— С. 441—444.
41. Пересыпкин В. Ф., Зрядчевская Т. Г., Пидопличко В. Н., Лопатин В. М. Словарь-справочник по фитопатологии / Под ред. В. А. Пересыпкина.— Киев : Урожай, 1985.— 200 с.
42. Пересыпкин В. Ф., Пожар З. А., Сигарева Д. Д. и др. Болезни технических культур / Под ред. В. Ф. Пересыпкина.— М.: Агропромиздат.— 1986.— 317 с.
43. Пидопличко Н. М. Грибная флора грубых кормов.— Киев : Изд-во АН УССР, 1953.— 366 с.
45. Пидопличко Н. М., Милько А. А. Атлас мукоральных грибов.— Киiv: Наук. думка, 1971.— 115 с.
46. Родицин М. Н. Общая фитопатология.— М.: Высш. шк., 1978.— 365 с.
Семенов А. Я., Абрамова Л. П., Хохряков М. К. Определитель паразитных грибов на плодах и семенах культурных растений. — Л.: Колос, 1980.— 302 с.


Синадский Ю. В., Корнеева Н. Т., Доброхинская И. Б. и др. Вредители и болезни цветочно-декоративных растений. — М.: Наука, 1982.— 592 с.


Справочник по защите растений / Под ред. Ю. Н. Фадеева.— М.: Агропромиздат, 1985.— 415 с.


Тарп С. Основы патологии растений / Пер. с англ. под ред. М. С. Дунинна.— М.: Мир, 1975.— 587 с.


Хохряков М. К., Потлайчук В. И., Семенов А. Я., Элбакян М. А. Определитель болезней сельскохозяйственных культур. — Л.: Колос, 1984.— 304 с.

Ясевич А. А. Основы микологии / Под ред. Н. А. Наумова.— М.; Л.: ОГИЗ, 1933.— 1036 с.


Simmons E. G. Helminthosporium allii as type of a new genus / Mycologia.— 1971.— 63, N 2.— P. 380—386.

К главе 2


20. Гвоздяк Р. И., Яковлева Л. М. Бактериальные болезни лесных по­род.— Киев Наук. думка, 1979.— 242 с.
22. Гойман Э. Инфекционные болезни растений.— М.: Изд-во иностран­лит. 1954.— 607 с.
23. Гойчук А. Ф. Бактериальные болезни дуба черешчатого в лесостепи УССР. Автореф. дис. ... канд. биол. наук.— Киев, 1984.— 25 с.
24. Гойчук А. Ф., Гвоздяк Р. И. Бактериозы жолудей и боротьба с ни­ми.— Лісове господарство, лісова, паперова і деревообробна про­мысловість. 2 — Київ: Техніка, 1984.— С. 9—10.
25. Гораль В. М., Гвоздяк Р. И., Лаппа Н. В., Мурас В. О. Дія фітопа­тогенных бактерій родів Erwinia ma Pseudomonas на деяких шкідлив­них комах // Мікробіол. журн.— 1976.— 38, № 4.— С. 439—442.
28. Горленко М. В., Найденко А. И. Бактериальная пятнистость листь­ев овса (Bacterium coronafaciens ELL.) в СССР // Докл. АН СССР.— 1944.— 42, № 8.— С. 379—382.
29. Диагностика бактериального увядания сельскохозяйственных раст­ений и меры борьбы с ним (Методические рекомендации).— М.: Изд-во ВАСХНИЛ, 1986.— 20 с.
30. Дорожкин Н. А., Бельская С. И. Болезни картофеля.— Минск: Наука і техніка, 1979.— 246 с.
31. Жеребило О. Е. Взаимосвязь вирулентности и декарбоксилазной активности у бактерий рода Erwinia группы «carotovora» // Микро­биол. журн.— 1982.— 44, № 5.— С. 24—32.
32. Жеребило О. Е., Гвоздяк Р. И., Матышевская М. С. и др. Поли­амины некоторых видов рода Pseudomonas Xanthomonas и Coryne­bacterium // Там же.— 1985.— 47, № 1.— С. 81—82.
33. Захарова И. Я., Варбанец Л. Д. Углеводсодержащие биополимеры мембран бактерий.— Киев: Наук. думка,— 1983.— 128 с.
34. Захарова И. Я., Здоровенко Г. М., Косенко Л. В., Васильев В. И. Полосахариды микроорганизмов // Микробиол. журн.— 1978.— 40, № 2.— С. 186—195.
37. Кіпріанова О. А., Айзенман Б. Е., Бойко О. І. Фізіологічні особ­ливості флюоресціючих сапрофітних бактерій роду Pseudomonas, здатних розріджувати желатину // Мікробіол. журн.— 1972.— 34, № 2.— С. 139—145.
38. Кіпріанова О. А., Айзенман Б. Ю., Бойко О. І., Гарагуля А. Д. Фенотипові ознаки і ідентифікації деяких видів роду Pseudomo­nas // Там же.— 1976.— 38, № 4.— С. 420—428.
40. Коробко О. П. Судинний бактеріоз — нове захворювання огірків, виявлене на Україні // Мікробіо́л. журн.— 1972.— 34, № 6.— С. 707—711.
41. Коробко О. П. Erwinia toxica sp. nova — збудник судинного бактеріозу огірків // Там ж е.— 1973.— 35, № 6.— С. 699—704.
42. Королева И. Б. К изучению вопроса о бактериозе озимой пшеницы в районах Полесья и Лесостепи Украины // Фитопатогенные бактерии.— Київ: Наук. думка, 1975.— С. 149—152.
43. Королева И. Б., Сидоренко В. П. Биологические свойства Pseudomonas fluorescens Migula, выделенной из озимой пшеницы на Украине // Мікробіо́л. журн.— 1982.— 44, № 2.— С. 15—18.
44. Красильников Н. А. Определитель бактерий и актиномицетов.— М.— Л.: Изд-во АН СССР, 1949.— 830 с.
45. Краснова М. В. Бактериозы сои и меры борьбы с ними: Автореф. дис. ... канд. биол. наук.— Кишинев, 1963.— 16 с.
46. Кучеренко Л. В. Erwinia betae Busse comb. nova.— возбудитель бактериоза сахарной свеклы во время вегетации и хранения // Фитопатогенные бактерии.— Київ: Наук. думка, 1975.— С. 188—193.
47. Ладыженская Н. В. Бактериальный вилт люцерны // Там ж е.— С. 183—184.
49. Матвеева Е. В., Чумаковская М. А. Диагностика бактериального увядания сельскохозяйственных растений и меры борьбы с ним (методические указания).— М.— 1986.— 20 с.
52. Минько Н. Д., Королева И. Б. Pseudomonas atrofaciens — основной возбудитель бактериоза яровой пшеницы в Лесостепи Украины // Микробио́л. журн.— 1980.— 42, № 4.— С. 415—419.
53. Мишенина Д. У. Усыхание тополя сибирского // Защита растений.— 1973.— № 3.— С. 45—46.
54. Мурас В. А., Варбанец Л. Д., Житкевич Н. В. Липополисахариды S и R форм Pseudomonas syringae pv. phaseolicola // Мікробіо́л. журн.— 1987.— 49, № 4.— С. 8—11.
55. Мурас В. А., Геохзяк Р. И., Житкевич Н. В., Азимцев А. Г. Естественная изменчивость морфоло-биохимических и патогенных свойств коллекционных культур фитопатогенных бактерий // Там ж е.— 1983.— 45, № 5.— С. 35—42.
56. Мурас В. А., Геохзяк Р. И., Житкевич Н. В., Азимцев А. Г. Чувствительность к антибиотикам гладких и шероховатых форм некоторых фитопатогенных бактерий // Там ж е.— 1985.— 47, № 5.— С. 53—57.
57. Мурас В. А., Житкевич Н. В., Самойленко В. И., Рубан В. И. Выявление лизогенного состояния R-формы Pseudomonas phaseolicola 4012 // Там ж е.— 1984.— 46, № 4.— С. 76—77.
58. Немшенко Ф. Е. Болезни кукурузы.— Днепропетровск: Сельхозиздат, 1957.— 230 с.

60. Овечников Л. Н. Изучение взаимоотношений среди фитопатогенных бактерий типа Pseudomonas syringae van Hall: Автореф. дис. ... канд. биол. наук.— М., 1970.— 26 с.

61. Озанян А. А., Пучинян Л. Н., Гюсян М. М., Вартанян Н. А. Уточнение роли бактериальной инфекции в процессе увядания перца и помидоров в Армении // Состояние и перспективы развития научных исследований по предотвращению резистентности у вредителей и возбудителей болезней к пестицидам и разработка эффективных мер борьбы с бактериальными болезнями растений. Тезисы докладов на IV совещании (Ереван, 22—24 дек. 1980), М.: Колос, 1980.— С. 87.

62. Озолинь Р. К., Гришиня П. П., Савенкова Л. Ф. Аспарагиназа и цириндиgidратаза микроорганизмов.— Рига: Зинатне, 1985.—150 с.

63. Павлович Д. Я., Лаузне Э. Я. Значение антибиотиков и бактериофага в ограничении развития фитопатогенной бактерии P. tachrimans // Бактериальные болезни растений и методы борьбы с ними.— Киев: Наук. думка, 1968.— С. 118—121.

64. Пастушенко Л. Т., Мурас В. А. О видах фитопатогенных бактерий рода Pseudomonas // Бактериальные болезни растений. — М.: Колос, 1981.— С. 27—42.

65. Пастушенко Л. Т., Симонович И. Д. Серологические группы фитопатогенных бактерий рода Pseudomonas. I. Антигенное родство внутри видов // Микробиол. журн.— 1979.— 41, № 3.— С. 222—228.


67. Перепыхатка В. И. Биологические свойства штаммов Agrobacterium tumefaciens различного происхождения: Автореф. дис. ... канд. биол. наук.— Киев, 1986.— 20 с.

68. Перепыхатка В. И. Полиамины бактерий семейства Rhizobiales // Микробиол. журн.— 1986.— 48, № 3.— С. 83—84.

69. Перепыхатка В. Ф., Севастьянов И. М. Овый рипак.— Киев: Держсільгоспвидав, 1956.— 63 с.

70. Перепыхатка В. Ф. Атлас болезней полевых культур.— М.: Колос, 1981.— 247 с.

71. Пирудян Э. С., Андраников В. М. Плазмиды агробактерий и генетическая инженерия растений.— М.: Наука, 1985.— 279 с.

72. Попкова К. В., Шнейдер Ю. Н., Воловик А. С., Шмыгля В. А. Болезни и вредители картофеля.— М.: Россельхозиздат, 1974.—136 с.

73. Перепыхатка В. И., Сидоренко С. С., Пряжийская Н. П. Электронно-микроскопическое изучение морфологии клеток возбудителя туберкулеза свеклы // Микробиол. журн.— 1984.— 46, № 4.— С. 72—74.

74. Рубан В. И. Сравнительное изучение биологических свойств фагов бактерий рода Pseudomonas структуры бактерий P. vignae и морфогенеза в ней фага: Автореф. дис. ... канд. биол. наук.— Киев, 1974.— 21 с.

75. Рыбалко Т. М., Гукасян А. Б. Бактериозы хвойных Сибири.— Новосибирск: Наука, 1986.— 78 с.

76. Рыбалко Т. М., Гукасян А. Б. Бактериозы хвойных Сибири.— Новосибирск: Наука, 1986.— 78 с.

77. Садовников Ю. П., Бобырь А. Д. Риккетсиеподобные бактерии — возбудители болезней растений // Микробиол. журн.— 1987.— 49, № 1.— С. 87—107.
77. Самх Юсри эль-Саид Ахмед. Биологические свойства возбудителей бактериальных болезней дынь и арбузов на Украине: Автореф. дис. ... канд. биол. наук.— Киев, 1977.— 22 с.
78. Самойленко Б. И. Вивчення специфічності бактеріофагів до збудників бактеріозів квасолі // Мікробіол. журн.— 1972.— 34, № 1.— С. 118—119.
79. Самойленко В. И. Бактериофаги возбудителей бактериозов бобовых рода Pseudomonas: Автореф. дис. ... канд. биол. наук.— Киев, 1973.— 23 с.
80. Самойленко В. И., Губанова Н. Я., Рябуха Л. Д. Адсорбция специфичных фагов на клетках и липополисахаридов Pseudomonas phaseolicola // Мікробіол. журн.— 1985.— 47, № 3.— С. 31—33.
81. Самуций Т. М. Бактериальные болезни плодовых деревьев в Краснодарском крае и биология их возбудителей: Автореф.— дис. ... канд. биол. наук.— Киев, 1973.— 22 с.
82. Сидоренко С. С. Биология возбудителей бактериозов цветной капусты в УССР: Автореф. дис.— Киев, 1964.— 16 с.
83. Сидоренко С. С. Pseudomonas allllicola (Starr and Burkholder) — збудник бактериального захворювання цибулі // Мікробіол. журн.— 1972.— 34, № 1.— С. 111—113.
85. Скрипаль И. Г. Бактериальные заболевания плодовых деревьев в Западных областях УССР: Автореф. дис. ... канд. биол. наук.— Киев, 1969.— 22 с.
86. Скрипаль И. Г. Bacterium nodoantrum nova sp.— збудник туберкулеза яблони // Мікробіол. журн.— 1970.— 32, № 1.— С. 50—53.
88. Смирнов В. В., Резник С. Р., Василевская И. А. Спорообразующие аэробные бактерии — продуценты биологически активных веществ.— Киев: Наук. думка, 1982.— 277 с.
89. Справочник по защите растений / Под ред. Ю. Н. Фадеева.— М.: Агропромиздат, 1985.— 415 с.
90. Тихоненко А. С. Ультраструктура вирусов бактерий.— М.: Наука, 1968.— 258 с.
91. Тыдельская И. Л., Королева И. Б. Бактериальные болезни злаковых культур.— М.: Агропромиздат, 1985.— 287 с.
92. Чернин Л. С., Авдиенко И. Д. Плазмиды и гены фитогормонов и их роль в онкогенезе растений // Молекуляр. биология.— 1985. — 19, Вып. 4.— С. 869—890.
93. Чумаевская М. А. Возбудитель туберкулеза олеандра в СССР // Докл. ВАСХНИЛ.— 1956.— № 9.— С. 40—42.
94. Чумаевская М. А., Матвеева Е. В., Королева И. Б. Бактериальные болезни злаковых культур.— М.: Агропромиздат, 1985.— 287 с.
96. Шнейдер Ю. И., Терентьева Л. Л., Мешечкина З. Ф., Плетнева В. А. Бурая бактериальная гниль картофеля // Состояние


137. Dye D. W., Starr M. P., Stolp H. Taxonomic clasification of Xanthomonas vesicatoria based upon host specificity bacteriophage sensi-


16* + 1/4

487


161. Kennedy King. Angular leaf spot of strawberry caused by Xanthomonas fragariae sp. nov. // Phytopathology.— 1962.— 52, N 9.— P. 873—875.


К главе 3


5. Власов Ю. И., Геворкян З. Г. Микоплазменные болезни сельскохозяйственных растений.— Ереван: Изд-во АН АрмССР, 1981.— 126 с.


7. Закарашили Т. Н., Алексеенко И. П., Скрипаль И. Г. Ультраструктурное исследование тканей шелковицы, пораженной курча-
вой мелколистностью // Микробиол. журн.— 1983.— 45, № 4.— С. 64—67.
8. Каган Г. Я. Микоплазмология — новая отрасль микробиологии // Микробиол. журн.— 1981.— 43, № 3.— С. 393—404.
10. Николаенко М. П., Омельченко Л. И. Особенности эпифитотий вируса желтой карликовости ячменя и возможности предупреждения потерь урожая пшеницы, ячменя и тритикале // Сельскохоз. биол.— 1985.— № 8.— С. 63—68.
13. Онищенко А. Н. Влияние различных факторов на инкубационный период фитопатогенных микоплазм в растениях и цикадках-переносчиках // Микробиол. журн.— 1984.— 46, № 5.— С. 52—56.
17. Развезкина Г. М. Вирусные заболевания злаков.— Новосибирск: Наука, 1975.— 292 с.
18. Рекомендации по борьбе с корневыми гнилями, фузаризомиозы и бактериозами озимой пшеницы.— К.: Мінсільгосп УРСР, 1974.— 16 с.
21. Скрипаль И. Г., Онищенко А. Н., Алексеенко И. П. и др. Ультраструктура растительных микоплазм и их взаимодействие с клетками специфичных и неспецифичных хозяев // Микробиол. журн.— 1978.— 40, № 1.— С. 58—64.
24. Скрипаль И. Г. Биология микоплазм — возбудителей желтух растений: Автореф. дис. ... докт. биол. наук.— Киев, 1983.— 50 с.
25. Скрипаль И. Г., Малиновская Л. П. Каротиногенез у фитопатогенных микоплазм // Микробиол. журн.— 1983.— 45, № 6.— С. 71—77.
27. Скрипаль И. Г., Малиновская Л. П., Онищенко А. Н. Метод выделения микоплазм — возбудителей желтух растений // Микробиол. журн.— 1984.— 46, № 1.— С. 93—96.
30. Тимаков В. Д., Казан Г. Я. Формы бактерий и семейство Mycoplasmataceae в патологии.— М.: Медицина, 1973.— 392 с.
31. Ткаченко А. Н. Рабочая тетрадь агронома по интенсивным технологиям возделывания озимых культур.— Киев: Урожай, 1985.— 148 с.
32. Федотина В. Л., Цыпленков А. Е. Микоплазмоподобные тела в клетках столбучных растений // Тр. Биол.-почв. ин-та.— 1974.— 21, № 124.— С. 41—44.
34. Цыпленков А. Е. Вирусные и микоплазменные болезни томатов в зоне Нижнего Поволжья: Автореф. дис. ... канд. биол. наук.— Л.: Пушкин, 1971.— 18 с.
35. Цыпленков А. Е. Столбух томатов в зоне Нижнего Поволжья // Тр. Всесоюз. ин-та защиты растений.— 1974.— Вып. 41.— С. 119—127.
37. Шуровенко Ю. Б., Михайлова Н. А. Устойчивость пшеницы к насекомым // Защита растений.— 1985.— 12, № 15.— С. 18—19.
39. Black L. M. Mechanical transmission of aster-yellows virus to leaf hoppers // Phytopathology.— 1940.— 30, N 1.— P. 2.
40. Black L. M. Further evidence for multiplication of the asteryellows virus in the aster leathopper // Ibid.— 1941.— 31, N 2.— P. 120—135.


93. Jensen D. D. A plant virus lethal to its vector // Virology.— 1959.— 8, N1.— P. 164—175.


147. Schaper U., Converse R. H. Detection of mycoplasmalike organisms in infected blueberry cultivars by the DAPI technique // Plant Disease.— 1985.— 69, N 3.— P. 193—196.

148. Schneider H. Graft transmission and host range of the pear decline causal agent // Phytopathology.— 1970.— 60, N 2.— P. 204—207.

149. See m i l l e r E. Fluoreszezoptischer direct nach weis von mucoplasma- ahulichen organismen in phloem pear-decline und triebsucht-kranker Bäume // Phytopathol. Z.— 1976.— 85, N 2.— P. 368—372.


151. Sinha R. C., Chaykowski L. N. Initial and subsequent sites of aster yellows virus infection in a leafhopper vector // Virology.— 1967.— 33, N 4.— P. 702—708.


157. Stoddard E. M Immunization of peach trees to X-disease by chemotherapy // Phytopathology.— 1947.— 34, N 8.— P. 1011—1012.


176. Worley J. E. Possible replicative forms of a mycoplasma-like organism and their location in aster yel lows diseased Nicotiana and aster // Phytopathology.—1970.—60, N 2.—P. 284—293.

1. Агол В. И., Атабеков И. Г., Крылов В. Н., Тихоненко Т. И. Молекулярная биология вирусов.— М.: Наука, 1971.— 493 с.
2. Артюкова Е. В., Горбулев В. Г., Родионова Н. П. и др. Сравнительное изучение структурных особенностей и трансляции РНК потексвирусов // Молекуляр. биол.— 1985.— 19, № 4.— С. 1021—1028.
5. Бужоряну В. В., Мордован М. Я. Ультраструктура вирусных включений в растительной клетке. Атлас.— Кишинев: Штиница.— 1982.— 166 с.
6. Вахабов А. Х., Вахабова З. И., Исамухамедов М. З. Некоторые свойства и идентификация вируса мозаики редиса // Узбек, биол. ж.— 1982, № 6.— С. 15—17.
7. Вердеревская Т. Д., Маринеску В. Г. Вирусные и микоплазменные заболевания плодовых культур и винограда.— Кишинев: Штиница.— 1985.— 311 с.
10. Дехканова З. Н., Вахабов А. Х. Поражаемость редиса и редьки вирусом мозаики в условиях Узбекистана // Узбек, биол. ж.— 1982.— 238 с.
11. Зрика Т. И. Атлас вирусных и микоплазменных болезней декоративных растений.— Киев : Наук, думка, 1984.— 151 с.
12. Зарецкий М. Н., Кошко Ф. Е., Кисюк Я. Г. Структура и морфология вируса курчавой карликовости картофеля сем. Rhabdoviridae // Микробиол. журн.— 1987.— 49, № 2.— С. 73—77.
13. Журавлев Ю. Н. Фитовирусы в целом растении и модельных системах.— М.: Наука.— 1979.— 247 с.
14. Журавлев Ю. Н. Фитовирусы в целом растении и модельных системах.— М.: Наука.— 1979.— 247 с.
15. Зарицкий М. Н., Кошко Ф. Е., Кисюк Я. Г. Структура и морфология вируса курчавой карликовости картофеля сем. Rhabdoviridae // Микробиол. журн.— 1987.— 49, № 2.— С. 73—77.
22. Козар Ф. Е., Курбала М. Я., Щербина Н. В., Зарицкий Н. М. Курчавая карликовость — вирусная болезнь, вызванная бациллоидным вирусом из группы рабдовирусов // Вирусные болезни сельскохозяйственных культур.— М. : Колос, 1980.— С. 69—76.


28. Методические указания по диагностике и идентификации вироиды веретеновидности клубней картофеля: (ВВКК).— М., 1982. 28 с.— В надзаг.: ВАСХНИЛ. Отд. защиты растений, Куйбышев. с.-х. ин-т, Всесоюз. НИИ фитопатологии.


32. Морозов С. Ю., Горбулев В. К., Новиков В. К. и др. Первая структура 5'- и 3'-концевых участков геномной РНК Х-вируса картофеля // Докл. АН СССР. Сер. В.— 1981.— 259, № 3.— С. 723—725.

33. Морозов С. Ю., Захарьев В. М., Чернов В. К. и др. Анализ первичной структуры и локализация гена оболочки белка в геномной РНК Х-вируса картофеля // Докл. АН СССР. Сер. В.— 1983.— 271, № 1.— С. 211—215.

34. Московец С. М., Бобир А. Д., Глушак Л. Ю., Онищенко А. Н. Вирусные хворобы с.-г. культур,— Київ : Урожай, 1975.— С. 115—122.

35. Московец С. М., Грама Д. И. Вирусы и вирусные хворобы картофелі.— Київ : Наук. думка, 1973.— І66 с.

36. Московец С. М., Крае В. Г., Порембська Н. Б. вируси і вірусні хвороби бобових культур на Україні.— Київ : Наук. думка, 1971.— 136 с.

37. Мунтяну С. К. Возбудитель карликовости гороха // Изв. АН МССР. Сер. биол. и хим. н.— 1985.— № 5.— С. 65.

38. Надди Ж. Э., Узунов И. С., Шмыгля В. М. Изучение вироида экзокортиса цитрусовых.— Изв. ТСХА, 1982.— № 4.— С. 187—189.

39. Наср Эль-Чамех, Мизенина О. А., Борисова О. В., Атамбекова Т. И. Вирус мозаики хеноподиевых: выделение, характеристика, имму-
40. Новиков В. К., Драмлян А. Х., Варциев Ю.А., Атабеков И. Г. Препаративное выделение и физико-химическая характеристика фракций, содержащих антиген вируса скручивания листьев картофеля // Там же.— С. 42—47.

41. Общая вирусология (Под ред. Лурия С. и др.). — М.: Мир.— 1981.— 660 с.

42. Развязкина Г. М. Вирусные заболевания злаков.— Новосибирск: Наука. Сиб-кое отд., 1975.— 291 с.

43. Сибирякова И. И., Гнутова Р. В., Толкаг В. Ф. и др. Биологические свойства местного изолята вируса некроза табака и получение специфических антисывороток // С.-х. биология, 1987.— 22, № 5.— С. 55—60.

44. Терминологический указатель вирусов, поражающих сельскохозяйственные культуры в СССР (методические указания) (Сост.: Крылов А. В., Ларина Э. И.). — Л., 1983.— 18 с.


46. Френкель-Конрат X. Химия и биология вирусов.— М.: Мир, 1972.— 336 с.

47. Хейбл К., Зальцман Н. Р. Методы вирусологии и молекулярной биологии.— М.: Мир, 1972.— 444 с.


49. Шелудько Ю. М., Рейфман В. Г. Вироиды — новый класс патогенов.— М.: Наука, 1978.— 87 с.

50. Шмигель В. А. Изучение вироида экзокортиса цитрусовых // Изв. ТСХА.— 1984, № 4.— С. 187—189.


57. Berks R. White clover mosaic virus // Ibid.— 1971.— N 3.— P. 41/1—41/3.


70. Brunt A. A. Dahlia mosaic virus // Ibid. — 1971.— N 3.— P. 51/1—51/3.
77. Dias H. F. Cucumber necrosis virus // Ibid. — 1972.— N 5.— P. 82/1—82/4.
123. Jones R. A. C., Fribourg C. E. Host plant reactions, some properties and serology of wild potato mosaic virus // Phytopathology.— 1979.— 69 N 5.— P. 446—449.
125. Kassanis B. Satellite virus // Ibid.— 1970.— N 1.— P. 15/1—15/3.
131. Koenig R., Fribourg C. E., Jones R. A. C. Symptomatological, serological and electrophoretic diversity of isolates of Andean potato latent virus from different regions of the Andes // Phytopathology.— 1979.— 69 N 7.— P. 748—753.
139. Lister R. Tobacco rattle virus // Intervirology.— 1986.— 26, N 1.— P. 61—73.
УКАЗАТЕЛЬ ЛАТИНСКИХ НАЗВАНИЙ ГРИБОВ*

Acremoniella Sacc. 143
| — atra (Cda) Sacc. 143, 144
| — occulta Ca. 95
| — verrucosa Tognini 143

Acremonium Lk: Fr. 97
| — apii (Sm. et Ramsey) Gams 97
| — charticola (Lind.) Gams 97
| — diospyri (Grandall) Gams 97
| — sclerotiorum (F. et Moreau: Valenta) Gams 97

Agonomycetales 85

Albuginaceae 39

Albugo 39
| — candida (Gmel. Pers.) O. Kunze 39
| — tragopogonis (Pers.) Schroet. 39

Alternaria Nees 9, 84, 119
| — allii Nolla 122
| — alternata (Fr.) Keissl. 123, 124
| — brassicae (Berk.) Sacc. 121
| — brassicae Sacc. var. macrospora Sacc. 124

— brassicicola Willst. 124
| — capsici — annui Sav. et Sandu — Ville 123
| — carotae (Ell. et Lange) Stev. et Wellman 123
| — citri Ell. et Pierce 123
| — cucumerina (Ell. et Ev.) Elliot. 120

— cucurbitae Letendre 123
| — dauci (Kuhn) Grov. et Skolko. 123

— dauci (Kuhn) Grov. et Skolko. sp. porri (Ell.) Neerg. 122

Alternaria dauci sp. solani (Ell. et Mart.) Neerg. 120
| — dianthi Stev. et Hall. 123
| — gossypii (Jacz.) Nisikado 123
| — helianthi (Hansf.) Tubaki et Nishihara 132

— lini Dey 123
| — linicola Neerg. 120, 121
| — linicola Grov. et Skolko. 121
| — porri (Ell.) Cif. 123, 125
| — porri (Ell.) Saw. 122

— f. sp. dauci (Kuhn.) Neerg. 123

— f. sp. solani (Ell. et Mart.) Neerg. 120
| — radicina Neier. Drechs. et Eddy 122, 125
| — rudbeckia Nelen 123
| — solani (Ell. et Mart.) Sor. 120, 121

— solani (Ell. et Mart.) Neerg. 125
| — tenuis Nees 123
| — vitis Cav. 124

Aphanomices d By 23
| — comptostylus Drechs. 25
| — cladogamus Drechs. 24
| — eureiches Drechs. 24
| — raphani Kendr. 25

Aphylophorales 61

Ascomycetes 43

Ascochyta Lib. 55, 210
| — abelmoshi Hart.
| — arachidis Woronich. 213
| — batatae Chochr et Djurinsky
| — betae Prill. et Delacr. 213
| — boltshauseri Sacc. 213
| — brassicae — rapae Bond.— Mont
| — capsici Bond.— Mont. 213
| — citrullina Sm. 213
| — cucumis Fautr. et Roum. 57, 213
| — fabae Speg 214
| — fagopyri Bres. var. tulensis Bond.
| — fragaria Sacc. 213
| — helianthi Abramov 212
| — hortorum (Speg.) Sm.

* Курсивом набраны синонимы.
— cueumeris Frank 116
— fulvum Cooke 144
— gossypii Jacz.
— griseo-olivaceum Pidopl. et Deniak 118
— herbarum (Pers.) Lk 117, 118, 119
— lonicola Pidopl. et Deniak
— maydis Miy. 22
— transchelii var. semenicola Pidopl. et Bilai 118
— viticolum Ces. 139
— carpophilum Aderh. 134
— clathrospora diplospora (Ell. et Ev.) Wehm. 123
— elynae Rab. 123
— coccomyces hiemalis Higg. 197
— cochliobolus Drechs. 54
— carbonum Nees. 131
— heterostrophus Drechs. 54, 131
— miyabeanus (Ito et Kuribay.) Drechs. 130
— sativus (Ito et Kuribay.) Drechs. et Dastur. 54, 127
— colletotrichum Sacc. 187, 195
— antramentarium (Berk, et Br.) Taub. 190
— brioniae Maire 189
— canticola Heald. et Wolf. 189
— corni (Woronich.) Vassil. 191
— cucurbitarum Berk. et Br. 191
— glossulariae Jacz. 192
— gossypii Southw. 190
— hisbic Poll. 191
— impomoeae Cam. 191
— lagenarium (Pass.) Ell. et Halst. 189
— lagenarium (Pass.) Sacc. et Roum. 189
— lindemuthianum (Sacc. et Mang.) Br. et Cav. 188, 189, 191, 194, 196
— lini Mans. et Boll. 189
— lini (Westerd.) Tochin. 189
— lonicola Petybr. et Laff. 189
— mali Woronich. 191
— oligochaetum (Sacc.) Cav. 189
— orbiculare (Berk. et Mont) Arx 189
— pisi Pat. 188
— phomoides (Sacc.) Chest. 191
— tabium (Hall.) Pethybr. 191
— truncatum (Schw.) Andrus et Moore 188
— valerianae Kwashm. 192
— vitis 200
— zeae Lob. 192
— coniothyrium Cda 220
— diploidiella Speg.) Sacc. 220, 221
— follarum Bond. 220
— corynespora Guiss. 141
— cassicola (Berk. et Curt.) Well. 142
— melonis (Cooke) Lind. 142
— coryneum beyerinkii Oud. 134
— cronartium Fr. 75
— ribiola Dietr. 75
— curvularia Boed. 84, 119
— inaequalis (Shear.) Boed. 119
— lunata (Wakk.) Boed. 119
— sigmoidea (Cav.) Hara 140
— trifolii (Kaufm.) Boed. 119
— tuberculata Sain. 119
— cylindrocarpon Wr. 84, 183
— destructans (Zinss.) Sholten 183, 185
— heteronema (Berk. et Br.) Wr. 184
— mali (Allesch.) Wr. 184
— var. flavus Wr. 184
— radicicola Wr. 183
— cylindrosporium Ung. 55, 197
— cydonia (Mont.) Schoschiaschwi-li 198
— fragaria (Br. et Har.) Vassil. 198
— hiemalis Higg. 197
— juglandis Wolf. 198
— lutescens Higg. 197
— maculans (Bereng.) Jacz. 198
— mespili Woronich. 198
— mori (Lev.) Berl. 198
— padi Karst. 197, 198
— nini (Lib.) Karst. 198
— prunophorae Higg. 197
— tubeufianum Allesch. 197
— cytospora Ehrenb. 217
— capitata (Sacc.) et Shulz. 217, 218, 219, 222
— microspora (Cda) Rabenh. 219
— pupica Sacc. 218
— rosinum Grev. 218
— schulzeri Sacc. et Syd. 217
— sydowi Gutn. 218
— vitis Mont. 218

511
Cystopus candidus Pers. 39
Dematiaceae 85, 113
Dematiurn pullulans DB. 113
Deuteromycetes 83, 85
Deuterophoma tracheiphilla 203
Diapore lupini Harkn. 206
— phaseolorum Sacc. var. sojae
Wehm. 207
— pungens Nitschke 207
— sarmenticola Sacc. 207
— vexans Sacc. 205
Didimaria perforans (Ell. et Ev.)
Dandeno 195
Didymella Sacc. 57
— brioniae (Auersw.) Rehm. 57, 213
— applanataz Niesl. 58
— melonis Pass. 57
Didymellina Burt. 140
Diplodia Fr. 222
— citrullina Gross.
— malorum Fuck. 222
— maydis Sacc. 222
— zeeae (Schw.) Lev. 222
Diplodina West. 223
— destructiva (Plowr.) Perrak 223
Doratomyces Cda 146
— stemonitis (Pers.: Fr.) Mot. et
Sm. 146
Dothideales 53
Drechslera Ito 84, 127
— avenae (Eidam.) Sharif Ito
et Kurib. 129
— carbonum Ulstr. 131
— graminea (Rab.) 128, 130, 141
— maydis (Nisicado) Subram. 54, 131
— oryzae (V. Breda de Haan) Subram. 130
— sorokinians (Sacc.) Subram. 54, 127
— teres (Sacc.) Shoem., Ito 129
— turcica (Pass.) Subram. et Jain.
130, 131, 132
Echinobryum Cda 147
Embellisia Simmons 132
— allii (Campaniel) E. Simmons
132, 134
— chlamydospora (Hoes et al.)
E. Simmons 133
— hellanthi (Hansf.) Pidopl. 132
— hyacinthi de Hoog, Muller 134
Entomophthorales 40
Epicoccum Lk 186
— neglectum Desm. 186
— purpurascens Ehrenb. 186
Erysiphales 46
Erysiphaceae 46
Erysiphe Lk 46
— betae (Vanha) Weltzien
— cichoracearum DC 49, 93, 94
— f. cucurbitacearum Pot. 49
— communis (Wallr.) Grev.
— f. betae Jacz. 48
— f. brassicae Hamar! 49
— f. fagopyri Jacz. 49
— f. glycine Jacz. 49
— f. gossypii Zapr. 48
— s. lini Jacz. 48
— f. medicaginis Dietr. 49
— f. pisi Dietr. 49
— f. solani — lycopersici Jacz.
49
— f. trifolii Rabh. 49
— graminis DC 49, 94, 96, 97
— f. avenae Em. March. 47
— f. hordei Em. March. 47
— f. secalis Em. March. 46
— f. tritici Em. March. 46
— solani Vanha. 94
Euascomycetidae 45, 46, 51
Euoidium 49
Exobasidiopsis caulivora (Kikchn.)
Karak 197
— viciae Karak 197
Fabraca fragariae Kleb. 195
Fulvia Ciferri 144
— fulva (Cooke) Ciferri 144, 216
Fumago Pers. 145
— vagans Pers. 145
Fungi Imperfecti 83
Fusarium Lk: Fr. 25, 84, 147,
148, 183
— acuminatum (Ell. et Ev.) Booth
154
— argillaceum (Fr.) Sacc. 178
— arthrosporioides Booth 153
— avenaceum (Fr.) Sacc. 142, 150,
153—155, 162—168, 174, 177,
180, 187
— var. de tonianum (Sacc.)
Raillo 150
— buharicum (Jacz.) Raillo 164
— bulbigenum Cooke et Massall
168
— caudatum Wr. 152, 160
— var. fiiiferum Raillo 152
— chlamydosporum (Wr.) Raillo 154
— chlamydosporum (Wr. et Rg.)
Booth 166
— citriforme Jamalainen 166
— compactum (Wr.) Raillo 160
— concolor (Reink.) Booth 152
— conglutinans Wr. 168
— var. betae Stewart. 172
— culmorum (Sm.) Sacc. 163
— var. cereale (Cke.) 160
— equiseti (Corda) Sacc. 152, 153
— subsp. ossicolum (Berk. et Curt.) Raillo 162
— var. bullatum (Sherb.) Wr. 155
— farina Schw. 166
— flocciferum Corda 157
— gibbosum App. et Wr. emend Bilai 152
— var. acuminatum (Ell. et Ev.) Raillo 154
— var. ballatum Sherb. 155
— — var. bullatum (Sherb.) Bilai 154
— graminearum Schwabe 155, 156
— heteronema Berk. et Br. 184
— heterosporum Nees 147
— — var. negundinis (Sherb.) Raillo 157
— javanicum Koord 176
— var. ensiforme Wr. et Rg. 176
— var. radicicola Wr. 177
— lactis Pir. et Rib. 174, 175
— lateritium Nees 158, 160, 167, 177
— f. sp. ciceri (Padw.) Erw. 158
— — var. buxi Booth 158
— var. longum Wr. 159
— var. majus Wr. 158
— var. minus Wr. 158
— var. mori Desm. 158
— var. stilboides (Wr.) Bilai 158
— — var. uncinatum Wr. 158
— lini Boll. 172
— mali Alesch. 184
— martii App. et Wr. 177
— var. minus Sherb. 177
— phaseoli Burk 177
— pisi Jones 177
— macroceras Wr. et Rg. 165
— merismoides Cda 182
— moniliforme Sheld. 172
— var. lacticolor Raillo 174
— var. lactis (Pir. et Rib.) Bilai 171, 174
— var. majus Wr. et Rg. 172
— subsp. majus (Wr. et Rg.) Raillo 172
— var. subglutinans Wr. et Rg. 174
— neoceras Wr. et Rg. 174
— nivale (Fr.) ces. 182
— orobanches Jacz. 172
— orthoceras App. et Wr. 168, 172
— var. apiit (Nels. et Cochr.) Wr. et Rg. 172
— var. longins (Sherb.) Wr. 168, 172
— var. pisi Lindford 172
— ossicolum (Berk. et Curt.) Sacc. 162
— oxysporum Schlecht. emend. \\nSnyd. et Hans. 168, 170
— var. cepae (Harz.) Raillo 168
— var. orthoceras (App. et Wr.) Bilai 172
— f. spinaceae sub. sec. Pseudomartiella Raillo 181
— var. redolens Gord. 181
— var. redolens Booth 181
— poae (Pk.) Wr. 166
— redolens Wr. 181
— var. solani Sherb. 181
— var. spinaceae Wr. 181
— reticulatum Mont. 157
— sambucinum Fuck. 107, 160— 
164, 167, 177, 180
— var. cereale (Cooke) Raillo 160
— var. coeruleum Booth 163
— var. minus Wr. 164
— var. ossicolum (Berk. et Curt.) Bilai 160
— var. sublunatum (Rg.) Bilai 162
— scirpi Lamb. et Fautr. 152
— var. acuminatum (Ell. et Ev.) Wr. 153
— susp. acuminatum (Ell. et Ev.) Raillo 155
— var. caudatum Wr. 152, 160
— var. filiferum (Preuss.) Wr. 154
— semitectum Berk. et Rav. 152
— solani (Mart.) App. et Wr. 12, 177, 180
— var. argillaceum (Fr.) Bilai 178
— var. coeruleum (Lib.) Bilai 180
— var. redolense (Wr.) Bilai 181
— spinaceae Sherb. 181
— sporotrichiella Bilai 166
— var. poae (Pk.) Wr. emend Bilai 166
— var. sporotrichioides Sherb. \\nvar. minus Wr. 166, 170
— var. sporotrichioides (Sherb.) Bilai 168

513
--- var. tricinctum (Cda) Bilai 169
--- var. tricinctum (Cda) Wr., Booth. 166
--- sporotrichioides (Sherb.) Bilai 166
--- stilbioides (Wr.) Booth 161
--- sublunatum 161
--- sulfureum (Schlecht.) Booth 161
--- tabacinum (Beyama) Gams
detonianum Sacc. 150
--- tricinctum (Cda) Wr., Booth 166
--- tricinctum (Cda) Sacc. 166
--- vasinfectum Atk. 168
--- ventricosum Booth 178
--- wollenweberii Raillo 152
Fusicladium carpophilum (Thuem.)
--- pirinum (Lib.) Fuck. 54
Fusisporium mori Mont. 198
Gaeumannomyces Riess 53
--- graminis (Sacc.) V. Arx. et
M. Oliv. 53
Geotrichum Lk 84, 91
--- candidum Lk emend J. Carm.
91
Gibberella acuminata Wr. 154
--- baccata (Walr.) Sacc. 158
--- var. major Wr.
--- var. moricola (De Not.)
Wr.
--- fujikuroi (Saw.) Wr. 174
--- var. subglutinans Erw.
174
gordonia Booth 158
--- intricans Wr. 155
--- pulicaris (Fr.) Sacc. 160
--- var. minor Wr.
--- saubinetii (Mont.) Sacc. 155
--- stilbioides Gordon : Booth 160
Gliocladium Cda 97
--- beticola Pidopl. 98
--- cholodny Pidopl. 98
--- roseum (Lk) Bain. 98, 99
--- salmonicolor Raillo 98
--- verticilloides Pidopl. 98
Gloeosporium Desm. et Mont. 192, 195
--- ampelinum (DB.) Jacz. 192,
194, 195
--- ampelophagum (Pass.) Sacc.
192
--- caulltorum Kirchn. 196
--- culvatum Oud. 193
--- cucurbitarum Berk. 189
--- epicarpii Thuem. 194
--- graminicolum Ell. et Ev.
--- lagenarium (Pass.) Sacc. et Ro-
um 189
--- ribis (Lib.) Mont. et Desm.
193
--- f. nigri Kleb. 193
--- f. rubri Kleb. 193
--- f. grossulariae Kleb. 193
--- trifolii Peck. 196
--- trifoliorum Roturers. 193
--- perenans Zeller et Childs. 194
--- piperatum Ell. et Ev. emend
Higg. 194
--- venetum Spec. 194
Glomerella Ces. et de Not 188
--- goessypii Ed. 191
Gnomonia leptostyla (Fr.) Ces.
et de Not. 195
Graphium Cda 145
--- cubanicum Sczerykin — Parfe-
enko 146
--- guttillifera Pidop. 146
--- persica Kebadze 146
--- stilboideum Cda 146
--- ulmi Schwarz 146
Grifophospheria nivalis Mull. et
Arx. 183
Harsia Costantin 143
Helicobasidium purpureum (Tul.)
Pat 87
Helminthosporium Lk et Fr. 12
--- avenae Eidam 129, 141
--- carbonum Ultr. 131
--- gramineum Rabenh. 128
--- echinulatum Berk. 141
--- helianthi Hansf. 132
--- hordei Eidam 129
--- maydis Nisikado et Miy 131
--- oryzae Breda de Haan 130
--- papawerts Sawada
--- sattoum pam. King et Bakke
127
--- sigmoideum Cav. 140
--- solani Dur. et Mont. 126
--- ieres Sacc. 129
--- turicum Pass. 130
Hemiascomycetidae 45
Helotiales hormodendrum Bon. 51
Heterobasidiomycetidae 59
Heterosporium Klotzsch. 140
--- avenae Oud. 140
--- betae Dows. 141
--- circinale Klotzsch.
--- dianthi Sacc. et Roum 142
--- echinulatum (Berk.) Cooke 141
--- hordei Bub. 141
--- maydis Lob. 141
--- signoideum Cav. 140
--- solani Dur. et Mont. 126
--- ieres Sacc. 129
--- turicum Pass. 130
Hemiascomycetidae 45
Helotiales hormodendrum Bon. 51
Heterobasidiomycetidae 59
Heterosporium Klotzsch. 140
--- avenae Oud. 140
--- betae Dows. 141
--- circinale Klotzsch.
--- dianthi Sacc. et Roum 142
--- echinulatum (Berk.) Cooke 141
--- hordei Bub. 141
--- maydis Lob. 141
— phlei Greg. 141
— syringae Kleb. 141
— variabile Cke. 141
Holobasidiomycetes 59, 61
Hymenomycetes 61
Hyphomycetes asclepiadiz Zerova 180
— ipomoae (Hals.) Wr. 177
— solani Rke et Berth. 179
Kabatiella Bub. 196
— caulivora (Kirchn.) Karak. 193, 196, 197
— linii (Laff.) Karak. 114
— nigricans (Atk. et Edg.) Karak. 196
Kuska oryzae Huds. 95
Lagenidiales 23
Lecytophora Nannf. 94
Leptomytales 23
Leptosphaeria heterospora Niessl. 123
— rostrupii Lind. 202
— salviini Cat. 140
Leveillula Arn. 92
— taurica Arn. 92
Loculoascomycetes 45
Loculoascomycetidae 53
Macrophoma cucurbitacearum Trav. 213
— âcorticans Allesch. 213
— hennebergii (Kuhn.) Berl. et Vogl. 215
— sheltoni Robig
Macrophomina (Maubl.) Ashby 87, 221
— phaseoli (Maubl.) Ashby 221
— phaseolina (Tassi) Goid. 221
Macrosorum allii Nolla 122
— alliorum Cooke et Mass. 124
— brassicae Berk. 121
— carotae Ell. et Langl. 123
— commune Rabehn. 124
— cucumerinum Ell. et Ev. 120
— dauci (Kuhn.) Rostr. 123
— gossypii Jacz. 121
— parasiticum Thuem. 124
— porri Ell. 122
— sarcina Berk. 124
— solani Ell. et Mart. 120
Margarinozymes Laxa 94
Marssonina Magn. 195
— juglandis (Lib.) Mayn. 195
— mali (Henn.) Ito 195
— panattoniana (Berl.) Magn. 195
— poteniiiae (Desm.) Magn. f. fragaria (Lib.) Ohl. 195
— rosae (Lib.) Died 195
— secalis Oud. 108
Melampsora Cast. 73
— allii — populina Kleb. 74
— linii (Pers.) Lev. 73, 151
— var. liniperda Koern. 73
— liniperda Koern Palm. 73
Melamporaceae 73
Melanconiales 85, 187
Moniliinae cinerea (Schroet.) Honey 89
— cydoniae (Schell.) Whetz.
— fructigena 88, 89
— laxa Sacc. 89
— pistaciae Zapromet. 88
Monilinia cinerea (Schroet.) Honey 89
— adnata (Aderh. et Ruhl.) Honey 89
Moniliales 85, 88
Moniliopsis foliicola (Woronich.) Slem. 88
Monoblephariaceae 19
Monopodium uredopsis Delacr. 143
— verrucosum Morozzk. 143
Mucoraceae 41
Mucorales 40, 41
— allicina Auersw. 55
— brassicicola (Duby) Catt. 55
— cannabis Rche. 208
— circumvaga Mig. 57
— citrullina (C. O. Sm.) Grossenb. 57
— fragaria (Tul.) Sacc. 111
— linorum (Wr.) Carsia-Rada 55
— melonis (Pass.) Chin. et L. Walk 57
— phaseolina (Desm.) Sacc. 137
— phaseolorum Simaschko 57
— pinodes (Berk. et Blox) Mig. 211
— tabafica Prill. et Delacr. 200
— tassiana (de N.) Joh. 117
— vitis (Rabenh.) Schroet. 57
Myrothecium Tode 187
rorida Tode 187
Nakatea Har a 139
sigmaidea (Cav.) Subram. 139
Nectria galligena Bres. 185
radicicola Gerl. et Nils. 184
Nigrospora Zimm. 95
gallarum (Moll) Potlajtschuk 95
gossypii Jacz. 95
maydis (Garov.) Jechova 95
musae Mc Len et Jacz. 95
oryzae (Berk. et Br.) Petch. 95
Oedoccephalum Preuss. 91
eticola Oud. 92
Olpidiaceae 19, 20
Olpidium A. Br. 20
brassicae (Woron.) Dang. 20
borzii de Wild. 20
radicicola de Wild. 20
radicis de Wild. 20
Oidiopsis Scalia 92
taurica Salm. 92
Oidium Sacc. 93
fragariae Harz. 94
dianthi Jacz. 94
lactis Fress. 91
lini Bond. 94
lycopersicum Cooke et Mass. 94
monilioides Lk 94
solani auct. 94
tabaki Thuem. 94
tuckeri Berk. 93
Oomycetes 23
Oospora Wallr. 90
betae Delacr. 91
lactis (Fress.) Sacc. 91
lactis — parasitica Pritch. et Port. 91
pustulans Owen. et Wak. 90, 91
— verticilloides Sacc. 91
Ophiocladium hordei Cav. 96
Ophiobolus Riess. 53
— graminis Sacc. 53
— heterotrophus Drechs. 54
— porphyrogenus (Tode) Sacc. 201
Ophiostoma ulmi (Buils.) Nannf. 146
Ovosphaerella lapathi Laibach. 96
Ovularia Sacc. 96
— brassicae Bres. et Allesch. 97
— cucurbitae Sacc. 97
— hordei (Cav.) Sprague 96
— medicaginis Br. et Cav. 97
— monospora (West.) Sacc. 97
— oblique (Cooke) Oud. 96
— vitis Rich. 97
Pellicularia filamentosa Spraque 85
Penicillium roseum Lk 98
Peridermium strobi Kleb. 75
Peronospora Cda 30
— aestivalis Syd. 33
— arborescens (Berk.) dBy. 33
— brassicae Gäum. 32
— cubensis (Berk. et Curt.) 32
— destructor (Berk.) Fr. 31
— effusa (Grov.) Tul. 33
— tabae Jacz. et Serg. 34
— farinosa (Fr.) Fr. 33
— lentis Gau. 33
— lepidii (Mc Alp.) Wilson
— manschurica (N. Naum.) Syd. 32
— pisi Syd. 33
— ruegeriae Gäum. 34
— rumicis Cda 33
— schachtii Fuck. 33
— schleideniana Cornu 31
— tabacina Adam 30
— trifolii-hybridi Gäum. 34
— viciae-sativae Gäum. 34
Peronosporales 23, 25
Peronosporaceae 23, 30
Peronosporales 23, 25
Peronosporaceae 23, 30
Peronosporales 23, 25
Peronosporaceae 23, 30
Phaeostagonosporopsis zeae Woronich. 222
Phialophora Medlar 84, 94
— asteris (Dows.) Burge et Isaak 95
— atra Beyama 95
— cinerescens (Wr.) van Beyma 94
— malorum (Kidd. et Beaum.) Mc Coloch 95
Phloesporella mori (Lev.) Sacc
— moricola (Pass.) Sacc.
— padi (Lib.) Arx. 197
Phoma Fr. 55, 200
— amygdali Oud. 204
— apicola Kleb.
— betae Fr. 200
— condifolia Brun. 206
— destructiva Plowr. 223

516
— diplodiella Speg. 220
— exigua Desm. 201
— i. linicola (Naum. et Vass.) Maas. 201
— fructicola Siemaszko 205
— henebergii Kuhn. 215
— jaczewskii Speckn. 204
— lingam (Tode) Desm. 204
— negeriana Thuem. 205
— pomi Pass. 204
— punicae Tassi 204
— rostrupii Sacc. 202, 205, 206
— sanguinolenta Rostr. 202
— solani Halst. 205
— solanica Priel. et Delacr. 202
— sphaerocarpa Rostr. 200
— tracheiphila Allesch. 203, 204
— unicova Berk. et Curt.
— vinifera Cooke 206
— viticola Sacc. 206
— vitis Bon. 204
Phomopsis Sacc. 204
— ambigua Trav. 207
— cinerescens (Sacc.) Trav. 207
— cordifolia (Brun.) Died. 206
— dauci Arx. 206
— juglandina (Sacc.) Hoehn. 207
— leptostromiformis (Kuhn.) Bub. 206
— mori Woronich. 206
— osmanthi Dzhalag. 207
— ribesia (Sacc.) Died. 207
— sarmentella (Sacc.) Trav. 207
— sojae Lehm. 207
— solani Grove 206
— tulasnei Sacc. 206
— vexans (Sacc. et Syd.) Hart. 205
— viticola Sacc. 206
Phyllectaena maculans Fauhr. 206
Phyllosticta Pers. 55, 207
— acetosa Sacc. 210
— alliicola Lob 210
— avenue Lob. 209
— betae Oudem 200
— brassicae West. 210
— cannabis Speg. 208, 209, 210
— caricae Massal.
— cucurbitacearum Sacc. 210
— cydoniae (Desm.) Allesch.
— dianthi Westl.
— glycineum Tehon. et Deniels
— gossypina Ell et Mart. 210
— helianthi Ell. et Ev. 208
— hortorum Speg. 205
— humuli Sacc. et Speg. 208, 209
— lupulina Kab. et Bub. 209
— lycopersici Peck. 210
— medicaginis Sacc. 210
— nicotianae Ell. et Ev. 210
— onobrychidis Panas 210
— sojaecola Massal. 209
— solani Ell. et Mart. 210
— sorghina Sacc. 210
— spinaciae Zimm. 210
— tabafica Prill. 200
— trifoliorum Barb. 210
— zeina Panasenko 210
Physoderma Wallr. 22
— maydis Miy. 22
— zeae-maydis Shav. 22
Physodermiaeae 22
Phytophthoraceae 23, 28
Phytophthora dBy 9, 28
— cactorum (Leb. et Cohn.) Schroet. 29
— capsici Leonian 29
— cinnamoni Rands 29
— citricola Saw. 29
— citrophthora (Sm. et Sn.) Leonian 29
— fragaria Hickman 29
— infestans dBy, 9, 28, 139
— parasitica Dastur 29
— phaseoli Thaxt. 29
Piricularia Sacc. 109
— grisea (Cooke) Sacc. 110
— oryzae Cav. 109
Plasmodiophorales 14
Plasmodiophoraceae 14
Plasmodiophoromycetes 14
Plasmodiophora Woron. 14
— brassicae Woron. 14, 15
Plasmpara Schroet. 9, 36
— halstedtii Berl. et de Toni 36, 37
— ribicola Schroet. 36
— viticola Berl. et de Toni 36
Pleosporaceae 53
Pleospora betae (Berl.) Newod. 200
— infectoria Fuck. 123
Pleosphaerulina sojiecola Miura 209
Polomyxa Led. 18
— beta Keskin 18
Polyspora lini Laff. 114
Pseudocercospora Speg 147
— vitis (Lev.) Speg. 35, 147
Preudooidium 47
Pseudoperonospora Rostow. 34
— cubensis Rostow. 35
— humuli (Miy. et Tak.) E. Wils. 35
Pseudoplea trifolii (Rostr.) Petri 125
Pseudopeziza ribis Kleb. 193
— radicinum (Meier, Drechs. et Eddy) Subram. 122, 133
Puccinia Pers. 9, 78
— allii (DC) Rudolph. 82
— anomala Rostr. 80
— coronata Cda 80
— coronifera Kleb. 80
— glumarum Eriks. et Henn. 79
— graminis Pers. 78, 81
— helianthi Schwein. 81
— hordei Otth. 80
— lolii Niels 80
— maydis Bereng. 81
— simplex (Koern.) Eriks. et Heenn. 80
— sorghi Schev. 81
— striiformis West. 79
Pucciniaceae 76
Pullularia pullulans Berkh. 113
Pyenidiales 200
Pyenomycetes 46
— aphanidermatum (Edson) Fitzp. 27
— aristosporum Vanterpool 26
— arthronemanes Drechs. 26
— artotrogus (Mont.) dBy. 27
— debarianum Hess 26
— hypogynum Midd. 26
— irregularare Buis. 27
— mamillatum Meurs. 27
— monospermum Pringsh. 27
— oligandrum Drechs. 27
— paroecandrum Drechs. 27
— periplocum Drechs. 26
— polymorphon Sid. 27
— pulchrums Mdn. 27
— tardicrescens Vanterpool 26
— ultimum Trow 27
— vitis Serb. 27
Ramularia Ung. 55, 110
— ampeolophaga Pass. 192
— betae Rostr. 110, 111
— destructans Zins 183
— graminiculum Ell. et Ev.
— hordei Mc Alpine 111
— macrospora Wr. 183
— medicaginis Bond. et Lebed. 111
— onobrichidis Allesch. 111
— rhei Allesch. 111
— tulasnei Sacc. 111
Rhacidiella Peyr. 185
— vitis Sterenberg 185
Rhizoctonia DC 85
— aderholdii (Ruhl.) Kolosh. 86, 92
— baticola Jacz. 221
— baticola (Taub.) Butl. 221
— craccorum (Pers.) DC 87
— medicaginis DC 87
— solani Kuhn. 85
— vilaceae Tul. 87
— zeae Voorh. 86
Rhizopus Ehrenb. 41
— arrihus Fisch. 42
— nigricans Ehrenb. 42
— nodosus Namysl. 42
— oryzae Went et Pringle 42
— stolonifer Bain. 42
Phytophthora graminicola He-
in. 108
Saprogleniaceae 23
Saprolegniales 23
Sclerospora Schrot. 7
— graminicola (Sacc.) Schrot. 37.
— var. setariae-italicae Traverso 37
— graminicola Schrot. 37
— macrospora Sacc. 38
— maydis (Racib.) Butl. 38
— secalina N. Naum 38
Sclerotiniaceae 51
Scolerotrichium melophtorum Prill. et Delacr. 116
Sclerotinia Fuck. 51
— bulborum Kleb.
— bulborum Wakk.
— compactum DC 51
— libertiana Fuck. 51
— minutum Desm.
— sclerotiorum (Lib.) dBy 51
Sclerotium Tode 87, 221
— baticola Taub. 87, 221
— cepivorum Berk. 88
— oryzae Catt. 140
— rolfsii Sacc. 88
Septogloeum mori Br. et Cav. 198
Septonema vitis Lev. 147
Septoria Fr. 55, 214
— amygdali Woronich. 217
— appi (Br. et Cav.) Chest. 214, 217
— avenae Frank 216
— cari Brezschn. 214
— caroatae Nagorny 217
— carvi Syd. 217

518
— cucurbitacearum Sacc. 217
— fragariae Desm. 217
— glumarum Pass. 215
— graminum Desm. 215, 216
— grossulariae (Lib.) West. 217
— hordei Jacz. 216
— humuli West. 216, 217, 221
— humulina Bond. 216
— lycopersici Spec. 216
— linicola (Spec.) Garb. 217
— linicola (Spec.) Yarassini 57
— mori Lev. 198
— moricola Pass. 198
— nodorum Berk. 215
— onobrichidis Bond. 217
— padi Lasch 197
— padi (Lib.) Thuem. 197
— panici — miliacei Xybina
— pastinacina Sacc. 214
— pastinaceae Westend. 214
— petroselini Desm. 214, 217
— pisi West. 217
— rhapontici Thuem. 217
— ribis Desm.
— roae Desm. 217
— rubi West. 217
— tritici Rob. et Desm. 215
— umbelliferum Desm. 214

Sorosporium Rudolph. 67
— holci-sorghi (Riv.) Noecz 68
— pinici-miliariae (Pers.) Tak. 67
— reilianum (Kuhn.) Mc Alp. 68
— f. zeae Gesch. 68
— f. sorghi Gesch. 68
— sorghi Lk 67

Sphaeloma ampelinum DB. 192
Sphaelotheca dBy 66
— cruenta (Kuhn.) Potter 67
— panici-miliariae (Pers.) Bub. 67
— reiliana Clint. 66
— relliana (Kuhn.) Clint. 68
— sorghi (Lk) Clint. 67
— sorokiniana Cif. 67

Sphaeria purpurea Fr. 50
Sphaeropsideae 200
Sphaeropsis malorum Peck. 222
Spondicladium atrovires Harx. et Sacc.

Spongiosa Brunch. 16
— subterranea (Wallr.) Lagerh.
— var. subterranea Tomps. 16, 17
— solani Brunch. 16

Spodopterium malorum Kidd. et Beaum. 95
— maydis Garov. 95
— poae Peek. 166

Stagonospora avenae Sm. et Ramsb. 216

Stemophilium Wallr. 124
— allii Oud. 125
— botryosum Wallr. 124
— cannabina (Bachtin et Gütter) M. Chochr. 126
— radicinum (M. D. et E.) Neerg. 122
— sareiniforme (Gav.) Wiltsch. 125
— solani Weber 125

Stigmina Sacc. 134
— carpophila (Lev.) Ell. 134, 141
— hippochaes A. Zuckov. sp. nov. 135

Stillbellaceae 145

Styxus stemonitis (Pers.) Cda 146

Synchytriaceae 19, 21
Synchytrium D. B. et Woron. 21
— endobioticum (Schilb.) Perc. 21
Teliosporomycetidae 59, 60, 62
Thielaviopsis Went. 84, 114
— basicola (Berk. et Br.) Ferr. 115, 144
— f. gossypii Zapr. 115
Thyrostroma Hohnel 134
Thyrostromella Syd. 134

Tilletia Tul. 68
— caries (DC.) Tul. 69, 70, 117
— controversa Kuchn. 69
— foetida (Bauer) Liro
— intermedia (Gassner) Savul. 69, 70

Thielaviopsis Went. 84, 114
— basicola (Berk. et Br.) Ferr. 115, 144
— f. gossypii Zapr. 115
Thyrostroma Hohnel 134
Thyrostromella Syd. 134

Tilletia Tul. 68
— caries (DC.) Tul. 69, 70, 117
— controversa Kuchn. 69
— foetida (Bauer) Liro
— intermedia (Gassner) Savul. 69, 70

Tilletiaceae 61, 69

Trichornetasphaeria turcica Luttr. 130

Trichocladium 84
Trichothecium Lk 108
— griseum Cooke 110
— roseum Lk 108

Tubercularia Tode 185
— acinorum Cav. 185
— rubi Rabenh. 185
— tritici (Koern.) Liro 71

Tuberculariaceae 85, 147
Tuburcinia hordei Cif. 72
Typhula Fr. et Karst. 61
— graminum Karst. 61
— incarnata Jasch.: Fr. 61

519
— *itiana* Imai 61
Uncinula necator Buril 193
Uredinales 73
Uromyces Lk. 76
— betae (Pers.) Lev. 76
— fabae (Pers.) dBy 77
*medicaginis* Pass. 77
— *medicaginia-falcatae* (DC) Wint. 77
— pisi (Pers.) Schroet. 77
— striatus Schroet. 77
— trifolii-repentis (Cast.) Liro 78
Urocystis Rabenh. 71
— cepulae Frost. 72
— hordei (Cif.) Pidopl. 72
— occulta (Wallr.) Rabenh. 72
— tritici Koern. 71
Ustilaginales 60, 62
Ustilagogenales 60, 62
Ustilago (Pers.) Roussel 62
— avena (Pers.) Jens. 65
— *cruenta* Kuhn. 67
— hordei (Pers.) Lagerh. 63
— kollezi Will. 65
— *levis* (Kell. et Sw.) Magn. 65
— maydis (DC) Cda 64
— nuda (Jens.) Rostr.
— *panici-miliacei* (Pers.) Wint. 67
— reilliana Kuhn. 68
— sorghi Pass. 67
— tritici (Pers.) Jens. 62
— vavilovi Jacz. 66
— zeae (Beckm.) Ung. 64
Uredinales 60
Vakrabeeja sigmoidea (Cav.) Subram. 140
— *sigmoideum* Cav. 140
Valsa Nits 217
— rasarum de Not 219
— *vitis* (Schw.) Fuck. 218
Vermicularia atramentaria Berk. et Br. 191
— polytricha Cooke
Verticilium Nees 104, 105
— trunca*ta* Schw.
Vorticillium Nees 104, 105
— albo — atrum Rke et Berth. 106
— cornicolor Mschvidobadze 107
— dahiae Kleb. 104, 107
— foexii v. Beyma 107
— ibericum Mschvidovadze 107
— lateritium Berk. 107
— lycopersici Pitchard. et Porte 107
— malorum (Kidd. et Beaum.) Mc Coloch. 95
— nigrescens Pethybr. 107
— nubilum Pethybr. 107
— prolificans Pidopl.
— wilworini (Gueg.) Westerm. et Luijk 95
Ventricillium Nees 104, 105
— carpophila E. E. Fisch. 118
— cerasi Aderh.
— cucumerinumLinf.
— inaequalis Wint.
— pirina Aderh. 54, 118, 134, 218
Ventricillium Nees 104, 105
— carpophila E. E. Fisch. 118
— cerasi Aderh.
— cucumerinumLinf.
— inaequalis Wint.
— pirina Aderh. 54, 118, 134, 218
Ventricillium Nees 104, 105
— carpophila E. E. Fisch. 118
— cerasi Aderh.
— cucumerinumLinf.
— inaequalis Wint.
— pirina Aderh. 54, 118, 134, 218
Venturiaceae
Whetzellinia (Lib.) dBy 51
Wetzelinia sclerotiorum (Lib.) dBy 51, 52
<table>
<thead>
<tr>
<th>Латинское название</th>
<th>Русское название</th>
<th>Страницы</th>
</tr>
</thead>
<tbody>
<tr>
<td>aberrans (Xanthomonas campestris pv. a.)</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>aceris (Pseudomonas syringae pv. a.)</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>aceti (Acetobacter)</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>aceti (Acetobacter a. subsp. Ilquefaciens)</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>Acetobacter</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Acetobacteraceae</td>
<td>225, 226</td>
<td></td>
</tr>
<tr>
<td>acetoethylicus (Aerobacillus)</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>acetoethylicum (Bacillus)</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>acetoethylicum (Bacillus polymyxa var. a.)</td>
<td>310</td>
<td></td>
</tr>
<tr>
<td>aerugineum (Bacterium)</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>aeropusor (Bacillus)</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>aeruginosa (Pseudomonas)</td>
<td>227, 228, 230, 231</td>
<td></td>
</tr>
<tr>
<td>aeruginosum (Bacterium)</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>agglomerans (Enterobacter)</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Agrobacterium</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>agropyri (Agrobacterium)</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>agropyri (Aplanobacter)</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>agropyri (Bacterium)</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>agropyri (Corynebacterium)</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>agropyri (Empedobacter)</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>agropyri (Phytomonas)</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>agropyri (Pseudobacterium)</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>alangii (Xanthomonas campestris pv. a.)</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>albilineans (Agrobacterium)</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>albilineans (Bacterium)</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>albilineans (Phytomonas)</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>albilineans (Pseudomonas)</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>albilineans (Xanthomonas a. var. paspali)</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>alboprecipitans (Pseudomonas)</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>alfalfa (Bacterium)</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>alfalfa (Phytomonas)</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>alfalfa (Pseudomonas)</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>alfalfa (Xanthomonas campestris pv. a.)</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>allilica (Phytomonas)</td>
<td>228, 234</td>
<td></td>
</tr>
<tr>
<td>allilica (Pseudomonas)</td>
<td>228, 229, 234</td>
<td></td>
</tr>
<tr>
<td>amaranthicola (Xanthomonas campestris pv. a.)</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>amorphophalli (Xanthomonas campestris pv. a.)</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>amelina (Xanthomonas)</td>
<td>265, 325</td>
<td></td>
</tr>
<tr>
<td>Ampelopsorae (Bacterium)</td>
<td>286</td>
<td></td>
</tr>
<tr>
<td>amygdali (Pseudomonas)</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>amylobacter (Bacillus)</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>amylobacter (Metallobacter)</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>amylovora (Erwinia)</td>
<td>239, 289, 291, 292, 293, 295, 299, 325</td>
<td></td>
</tr>
<tr>
<td>amylovora (Erwinia a. var. quercina)</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>amylovora (Erwinia a. var. salicis)</td>
<td>304</td>
<td></td>
</tr>
<tr>
<td>amylovorus (Bacillus)</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>amylovorus (Bacterium)</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>amylovorus (Micrococcus)</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>anaerogenes (Enterobacter pigmentees a.)</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>anandensis (Xanthomonas)</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>andropogonis (Pseudomonas)</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>ananas (Bacillus)</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>ananas (Erwinia)</td>
<td>292, 293, 295, 296</td>
<td></td>
</tr>
<tr>
<td>ananas (Pectobacterium)</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>ananas (Erwinia herbicola var. a.)</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>antirrhini (Bacterium)</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>antirrhini Phytomonas</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>antirrhini (Pseudomonas)</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>antirrhini (Pseudomonas syringae pv. a.)</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>api (Phytomonas)</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>api (Pseudomonas)</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>api (Pseudomonas syringae pv. a.)</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>aprivorus (Bacillus)</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>aptata (Phytomonas)</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>aptata (Pseudomonas)</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>aptata (Pseudomonas syringae pv. a.)</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>aptatum (Bacterium)</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>arallavora (Erwinia)</td>
<td>296</td>
<td></td>
</tr>
</tbody>
</table>
araliavorus (Bacillus) 296
arecae (Xanthomonas campestris pv. a.) 279
argemones (Xanthomonas campestris pv. a.) 279
armoraciae (Xanthomonas campestris pv. a.) 279
aroideae (Bacillus) 297
aroideae (Bacterium) 298
aroideae (Erwinia) 298
aroideae (Pectobacterium) 298
arracaciae (Xanthomonas campestris pv. a.) 279
Arthrobacter 316, 319
asplenii (Phytomonas) 261
asplenii (Pseudomonas) 261
asteracearum (Bacillus) 296
asteracearum (Erwinia) 296
asterospora (Astaria) 311
asterosporus (Aerobacillus) 311
asterosporus (Bacillus) 311
aterrimus (Bacillus) 313
aterrimus (Bacillus subtilis var. a.) 313
atrofaciens (Bacterium) 242
atrofaciens (Phytomonas) 242
atrofaciens (Pseudomonas) 242
atrofaciens (Pseudomonas syringae pv. a.) 241
atropurpurea (Bacterium coronafaciens var. a.) 243
atropurpurea (Phytomonas coronafaciens var. a.) 243
atropurpurea (Pseudomonas syringae pv. a.) 243
atroseptica (Erwinia carotovora subsp. a.) 290, 297, 298
aurantiaca (Pseudomonas) 228
avenae (Bacillus) 244
avenae (Phytomonas) 244
avenae (Pseudomonas) 244, 261
axonopodis (Xanthomonas) 266
azadirachtae (Xanthomonas campestris pv. a.) 279
baccarani (Bacillus) 299
Bacillaceae 225
Bacillus 225
badrii (Xanthomonas campestris pv. b.) 279
barbareae (Xanthomonas campestris pv. b.) 269
barkeri (Berridge 1924) Clara 1934, 238
bauhiniae (Xanthomonas campestris pv. b.) 279
begoniae (Bacterium) 270
begoniae (Pseudomonas) 270
begoniae (Phytomonas) 270
begoniae (Phytomonas flav a b.) 270
begoniae (Xanthomonas campestris pv. b.) 270
berberidis (Bacterium) 243
berberidis (Phytomonas) 243
berberidis (Pseudomonas) 243
berberidis (Pseudomonas syringae pv. b.) 243
betae (Bacillus) 297
betae (Erwinia) 297
betanigrificans (Bacillus) 310
betavasculorum (Erwinia carotovora subsp. b.) 298
beticola (Bacillus) 303
beticola (Bacterium) 266, 303
beticola (Phytomonas) 266
beticola (Pseudomonas) 266
beticola (Xanthomonas) 226, 266
beticolum (Bacterium) 266
betivora (Erwinia) 298
betivorum (Bacterium) 298
betivorus (Bacillus) 297
beticola (Xanthomonas campestris pv. b.) 279
biophyti (Xanthomonas campestris pv. b.) 279
blepharidis (Xanthomonas campestris pv. b.) 279
Bradyrhizobium 285
burgeri (Bacillus) 297
bussei (Bacillus) 297
bussei (Erwinia) 297
butyricum (Clostridium) 314
butyricum (Bacillus) 314
butyricum (Corynebacterium b. var phytopathogenicum) 314, 315
cacticida (Erwinia) 297
cacticidus (Bacillus) 297
cajani (Xanthomonas campestris pv. c.) 279
campestris (Bacterium) 268
campestris (Bacillus) 268
campestris (Phytomonas) 268
campestris (Pseudomonas) 268
campestris (Xanthomonas) 265, 268
campestris (Xanthomonas c. pv. campestris) 233, 268
cancerogena (Erwinia) 299
cannabina (Pseudomonas syringae pv. c.) 243
cannabis (Xanthomonas campestris pv. c.) 279
carissae (Xanthomonas campestris pv. c.) 279
cornegieana (Erwinia) 306
carotae (Phytomonas) 270
carotae (Pseudomonas) 270
carotae (Xanthomonas campestris pv. c.) 270
carotovora (Erwinia) 239, 290, 292, 293, 295, 297, 299
carotovora (Erwinia c. f. sp. parthenii) 299
carotovora (Erwinia c. subsp. carotovora) 233, 234, 297, 298
carotovora (Erwinia c. var. para­disiaca) 299
carotovora (Erwinia c. var. zeae) 299
carotovorum (Bacterium) 298
carotovorum (Pectobacterium) 298
carotovorum (Pectobacterium c. var. graminarum) 299
carotovorum (Bacterium c. f. sp. parthenii) 299
carotovorus (Bacillus) 297
cassavae (Xanthomonas campestris pv. c.) 279
cassave (Erwinia) 300
cassiae (Xanthomonas campestris pv. c.) 280
cattleyae (Bacterium) 262
cattleyae (Phytomonas) 262
cattleyae (Pseudomonas) 262
celebensis (Xanthomonas campestris pv. c.) 280
centellae (Xanthomonas campestris pv. c.) 280
capacia (Pseudomonas) 229, 231, 325
cassavae (Xanthomonas campestris pv. c.) 279
cassave (Erwinia) 300
cassiae (Xanthomonas campestris pv. c.) 280
cattleyae (Bacterium) 262
cattleyae (Phytomonas) 262
cattleyae (Pseudomonas) 262
celebensis (Xanthomonas campestris pv. c.) 280
centellae (Xanthomonas campestris pv. c.) 280
capacia (Pseudomonas) 229, 231, 232, 237, 262
cepivora (Aplanobacter) 297
cepivora (Phytomonas) 298
cepivorum (Bacterium) 298
capivorus (Bacillus) 297
cerasi (Bacterium) 237
cerasi (Phytomonas) 237
cerasi (Bacterium) 277
cerasi (Phytomonas c. var. prunica) 237
cerasi (Pseudomonas c. var. prunica) 238
ceras (Bacillus) 237
cerasus (Pseudomonas) 238
cerealium (Bacterium) 310
cerealium (Bacillus) 310
chrysanthemi (Erwinia) 290, 292, 293, 295
chrysanthemi (Erwinia carotovora var. c.) 299
chrysanthemi (Pectobacterium) 299
chrysanthemi (Pectobacterium carotovorum f. sp. c.) 299
chrysanthemi (Pectobacterium carotovorum var. c.) 299
chrysanthemi (Pectobacterium parthenii var. c.) 299
ciccaronei (Pseudomonas syringae pv. c.) 243
chichorii (Bacterium) 232
chichorii (Phytomonas) 232
chichorii (Pseudomonas) 232
clissicola (Aplanobacter) 262
clissicola (Pseudomonas) 262
citrarefaciens (Bacterium) 237
citrarefaciens (Pseudomonas) 238
citi (Bacillus) 270
citi (Bacterium) 270
citi (Phytomonas) 270
citi (Pseudomonas) 270
citi (Xanthomonas campestris pv. c.) 270
citrimaculans (Erwinia) 300
citriputeale (Bacterium) 237
citriputeale (Phytomonas) 237
Clavibacter 225, 316, 318
clerodendri (Xanthomonas campestris pv. c.) 280
clitoriae (Xanthomonas campestris pv. c.) 280
Clostridium 225, 314
convoluuli (Xanthomonas campestris pv. c.) 280
coracanae (Xanthomonas campestris pv. c.) 280
coriandri (Xanthomonas campestris pv. c.) 280
coronafaciens (Bacterium) 244
coronafaciens (Phytomonas) 244
coronafaciens (Pseudomonas syringae pv. c.) 244
coronafaciens (Pseudomonas c. var. atropurpurea) 243
corrugata (Pseudomonas) 262
corylina (Pseudomonas) 271
corylina (Xanthomonas campestris pv. c.) 271
corylina (Xanthomonas) 271
Corynebacterium 225, 316
croci (Bacillus) 297
croci (Erwinia) 298
cubonianum (Bacillus) 251
Cubonianus (Bacterium) 251
cucurbitae (Bacterium) 271
cucurbitae (Phytomonas) 271
cucurbitae (Pseudomonas) 271
cucurbitae (Xanthomonas) 271
cucurbitae (Xanthomonas campestris pv. c.) 271
Curto bacter 318
Curto bacterium 225, 321
cyamopsidis (Xanthomonas campestris pv. c.) 280
cynodontis (Clavibacter xyli subsp. c.) 225, 316
cypripedii (Bacillus) 297
cypripedii (Erwinia) 292, 293, 295, 298, 306
cytolytica (Erwinia) 298
dahliae (Bacillus) 297
dahliae (Erwinia) 298
delphini (Bacillus) 244
delphini (Bacterium) 244
delphini (Pectobacterium) 298
delphini (Phytomonas) 244
delphini (Pseudomonas) 244
delphini (Pseudomonas syringae pv. d.) 244
deraceae (Bacillus) 297
deraceae (Erwinia) 298
desmodii (Xanthomonas campestris pv. d.) 280
desmodii (Xanthomonas campestris pv. d.) 280
desmodiigantetici (Xanthomonas campestris pv. d.) 280
desmodilaxiflori (Xanthomonas campestris pv. d.) 280
desmodirotundifolii (Xanthomonas campestris pv. d.) 280
destructans (Bacterium) 298
destructans (Phytomonas) 298
destructans (Pseudomonas) 298
dieffenbachiae (Bacterium) 271
dieffenbachiae (Erwinia) 299
dieffenbachiae (Phytomonas) 271
dieffenbachiae (Xanthomonas campestris pv. d.) 271
diminita (Pseudomonas) 227
diphtheriae (Corynebacterium) 317
dissolvens (Erwinia) 306
durantae (Xanthomonas campestris pv. d.) 280
dysoxyli (Pseudomonas syringae pv. d.) 245
edgeworthiae (Bacillus) 299
edgeworthiae (Erwinia) 299
deriviae (Phytomonas) 232
deriviae (Pseudomonas) 232
Enterobacter 289
Enterobacteriaceae 225, 289
eriobotryae (Bacterium) 245
eriobotryae (Phytomonas) 245
eriobotryae (Pseudomonas) 245
eriobotryae (Pseudomonas syringae pv. e.) 245
erivanense (Bacillus) 299
erivanense (Bacterium) 299
erivanensis (Bacillus) 299
erivanensis (Erwinia) 299
Erwina 225, 233, 289, 290, 292, 293, 295, 306
erythrinae (Xanthomonas campestris pv. e.) 280
esculenti (Xanthomonas campestris pv. e.) 280
Escherichia 289
eucalypti (Xanthomonas campestris pv. e.) 280
euphorbiae (Xanthomonas campestris pv. e.) 280
exitiosa (Phytomonas) 278
exitiosa (Pseudomonas) 278
exitosum (Bacterium) 278
fascicularis (Xanthomonas campestris pv. f.) 280
fascians (Bacterium) 323
fascians (Corynebacterium) 323
fascians (Phytomonas) 323
fascians (Pseudobacterium) 323
fascians (Pseudomonas) 323
fici (Xanthomonas campestris pv. f.) 281
flaccumfaciens (Bacterium) 321
flaccumfaciens (Corynebacterium) 321
flaccumfaciens (Curtobacterium) 321
flaccumfaciens (Phytomonas) 321
flaccumfaciens (Pseudomonas) 321
flaccumfaciens (Corynebacterium f. subsp. betae) 321
flaccumfaciens (Corynebacterium f. subsp. flaccumfaciens) 321
flaccumfaciens (Corynebacterium f. subsp. oortii) 322
flavozonatum (Bacterium) 270
flavozonatum (Xanthomonas) 270
fluorescens (Bacillus) 230
fluorescens (Bacterium) 232
fluorescens (Phytomonas) 230, 232, 233
fluorescens (Bacillus f. liquefaciens) 232
fluorescens (Liquidomonas) 232
fluorescens (Pseudomonas f. var. napl) 233
fluro-violaceus (Pseudomonas) 233
formosanum (Bacterium) 232
fragariae (Xanthomonas) 268
Frateraria 227
garcae (Pseudomonas syringae pv. g.) 261
gladioli (Bacterium) 234
gladioli (Phytomonas) 234
gladioli (Pseudomonas) 229, 234, 262
gladioli (Pseudomonas g. pv. allicola) 234
globigii (Bacillus) 313
Gluconobacter 226
glycinea (Phytomonas) 246
glycinea (Pseudomonas) 246
glycinea (Pseudomonas syringae pv. g.) 229, 246
glycines (Bacterium) 272
glycines (Phytomonas) 272
glycines (Pseudomonas) 272
glycines (Xanthomonas campestris pv. g.) 272
glycineum (Bacterium) 246
graminis (Xanthomonas campestris pv. g.) 281
guizotiae (Xanthomonas campestris pv. g.) 281
gummisudans (Xanthomonas campestris pv. g.) 281
gypsophilae (Agrobacterium) 299
hederea (Xanthomonas campestris pv. h.) 281
helianthi (Bacterium) 248
helianthi (Phytomonas) 248
helianthi (Pseudomonas) 248
helianthi (Bacterium h. var. tuberosi) 248
helianthi (Phytomonas h. var. tuberosi) 248
helianthi (Pseudomonas syringae pv. g.) 248
heliotropii (Xanthomonas campestris pv. h.) 281
herbicola (Bacterium) 299, 300
herbicola (Erwinia) 292, 293, 300
herbicola (Pseudomonas) 300
herbicola (Bacterium h. aureum) 300
herbicola (Erwinia h. var. ananas) 296
herbicola (Erwinia h. var. herbicola) 300
hibisci (Bacterium) 237
hibisci (Phytomonas) 237
hibisci (Pseudomonas) 238
holci (Bacterium) 237
holci (Phytomonas) 237
holci (Pseudomonas) 238
holcicola (Bacterium) 273
holcicola (Phytomonas) 273
holcicola (Pseudomonas) 273
holcicola (Xanthomonas) 273
holcicola (Xanthomonas campestris pv. h.) 273
hordei (Xanthomonas campestris pv. h.) 281
horticola (Erwinia) 225, 300
hyacinthi (Bacillus) 273, 297
hyacinthi (Bacterium) 273
hyacinthi (Phytomonas) 273
hyacinthi (Pseudomonas) 273
hyacinthi (Bacillus) 273, 297
hyacinthi (Xanthomonas) 273
hyacinthi (Xanthomonas campestris pv. h.) 273, 325
hyacinthi (Bacillus h. septicus) 297
hyacinthi (Bacterium h. septicus) 298
hyacinthus (Erwinia h. septicus) 298
ilicis (Arthrobacter) 316
incanae (Phytomonas) 273
incanae (Xanthomonas) 273
incanae (Xanthomonas campestris pv. i.) 273
insidiosa (Burcholderiella) 318
insidiosa (Erwinia) 318
insidiosa (Phytomonas) 318
insidiosum (Aplanobacter) 318
insidiosum (Bacterium) 318
insidiosum (Corynebacterium) 318
insidiosum (Mycobacterium) 318
insidiosum (Clavibacter michiganense subsp. i.) 316
insidiosum (Corynebacterium michiganense subsp. i.) 318
ionidii (Xanthomonas campestris pv. i.) 281
iranicum (Corynebacterium) 318
iranicum (Clavibacter) 316
ixiae (Bacillus) 301
ixiae (Erwinia) 301
jaggeri (Bacterium) 241
jaggeri (Phytomonas) 241
jaggeri (Pseudomonas) 241
japonica (Pseudomonas striafaciens var. j.) 248
japonica (Pseudomonas syringae pv. j.) 248
juglandis (Bacillus) 274
juglandis (Bacterium) 274
juglandis (Phytomonas) 274
juglandis (Pseudomonas) 274
juglandis (Xanthomonas) 274
michiganense (Clavibacter m. subsp. tessellarium) 316
michiganense (Clavibacter m. subsp. neorakente) 316
michiganense (Clavibacter m. subsp. sepedonicum) 316
michiganense (Corynebacterium m. subsp. michiganense) 316
michiganense (Corynebacterium m. subsp. sepedonicum) 320
michiganense (Mycobacterium flavum subsp. m.) 319
milletiae (Bacillus) 299
milletiae (Bacterium) 300
milletiae (Erwinia) 300
mongiferae (Erwinia) 300
mori (Bacillus) 251
mori (Bacterium) 251
mori (Phytomonas) 251
mori (Pseudomonas) 251
mori (Pseudomonas syringae pv. m.) 251
mors-prunorum (Agrobacterium) 252
mors-prunorum (Bacterium) 252
mors-prunorum (Phytomonas) 252
mors-prunorum (Pseudomonas) 252
mors-prunorum (Pseudomonas syringae pv. m.) 229, 252
multivora (Erwinia) 302
musacearum (Xanthomonas campestris pv. m.) 281
musae (Bacillus) 236
musarum (Bacillus) 236
nakataecorchori (Xanthomonas campestris pv. n.) 282
natto (Bacillus) 313
navicula (Amylobacter) 314
navicula (Bacillus) 314
navicula (Bacterium) 314
nicotianae (Bacillus) 236
nicotianae (Erwinia) 236
niger (Bacillus) 313
niger (Bacillus subtilis var. n.) 313
nigrifluens (Erwinia) 306
nigromaculans (Xanthomonas campestris pv. n.) 282
n1mipressuralis (Erwinia) 302
nodoantrum (Bacterium) 307
oleae (Bacillus) 256
oleae (Bacterium) 256
oleae (Bac. o. tuberculosi) 256
olitorii (Xanthomonas campestris pv. o.) 282
omnivorum (Bacillus) 297
oortii (Corynebacterium flaccumfaciens subsp. o.) 322
oortii (Curtobacterium flaccumfaciens pv. o.) 322
oryzae (Bacterium) 275
oryzae (Phytomonas) 275
oryzae (Pseudomonas) 275
oryzae (Xanthomonas) 275
oryzae (Xanthomonas campestris pv. o.) 275
oryzicola (Xanthomonas) 275
oryzicola (Xanthomonas campestris pv. o.) 275
panic (Bacterium) 252
panic (Phytomonas) 252
panic (Pseudomonas) 252
panic (Xanthomonas) 252
panic (Pseudomonas syringae pv. p.) 252
panic-miliacei (Bacterium) 252
panic-miliacei (Pseudomonas) 252
papavericola (Bacterium) 275
papavericola (Phytomonas) 275
papavericola (Xanthomonas campestris pv. p.) 275
papaveris (Bacillus) 297
papaveris (Bacterium) 298
papaveris (Erwinia) 298
papulans (Pseudomonas syringae pv. p.) 253
paradisiaka (Erwinia) 299
paraherbicola (Pseudomonas) 300
parthenii (Erwinia carotovora f. sp. p.) 299
parthenii (Pectobacterium) 299
parthenii (Pectobacterium p. var. chrysanthemi) 299
passiflorae (Phytomonas) 253
passiflorae (Pseudomonas) 253
passiflorae (Pseudomonas syringae pv. p.) 253
passiflorae (Xanthomonas campestris pv. p.) 282
pastinaceae (Pseudomonas marginalis pv. p.) 282
patellii (Xanthomonas campestris pv. p.) 282
Pectobacterium 225, 307
pedalii (Xanthomonas campestris pv. p.) 282
pelargonii (Bacterium) 275
pelargonii (Phytomonas) 275
pelargonii (Pseudomonas) 275
pelargonii (Xanthomonas) 275
527
pelargonii (Xanthomonas campestris pv. p.) 275
persicae (Pseudomonas syringae pv. p.) 253
phaseoli (Bacillus) 276
phaseoli (Bacterium) 270
phaseoli (Phytomonas) 276
phaseoli (Xanthomonas) 276
phaseoli (Bacterium p. var. sojense) 272
phaseoli (Phytomonas p. var. sojense) 272
phaseoli (Xanthomonas campestris pv. p.) 276
phaseolicola (Pseudomonas) 254
phaseolicola (Pseudomonas syringae pv. p.) 229, 254
phaseolicola (Bacterium medicaginis var. p.) 254
phaseolicola (Phytomonas medicaginis var. p.) 254
phaseolicola (Pseudomonas medicaginis var. p.) 254
phaseolicola (Xanthomonas campestris pv. ph.) 282
phaseolicola (Xanthomonas campestris pv. ph.) 282
phaseolicola (Xanthomonas medicaginis var. p.) 254
phleipratensis (Xanthomonas campestris pv. ph.) 282
phormicola (Xanthomonas campestris pv. ph.) 282
phyllanthi (Xanthomonas campestris pv. ph.) 282
Phylobacterium 285
physalidicola (Xanthomonas campestris pv. ph.) 282
physalidis (Xanthomonas campestris pv. ph.) 282
phytophthora (Erwinia) 298
phytophthorum (Bacterium) 298
phytophthorum (Pectobacterium) 298
phytophthorus (Bacillus) 298
pisi (Bacterium) 255
pisi (Pseudomonas) 255
pisi (Phytomonas) 255
pisi (Pseudomonas syringae pv. p.) 229, 255
pisi (Xanthomonas campestris pv. p.) 282
plantaginis (Xanthomonas campestris pv. p.) 282
poinsettiae (Bacterium) 323
poinsettiae (Phytomonas) 323
poinsettiae (Corynebacterium flaccumfaciens pv. p.) 322, 323
poinsettica (Xanthomonas campestris pv. p.) 282
polycolor (Pseudomonas) 230
polymyx (Aerobacillus) 311
polymyx (Clostridium) 311
polymyx (Bacillus) 311
polymyx (Granulobacter) 311
populi (Aplanobacter) 284
populi (Bacillus) 311, 312
populi (Xanthomonas) 284
Providencia 289
prillieuxianus (Bacillus) 256
primulae (Phytomonas) 255
primulae (Pseudomonas) 255
primulae (Pseudomonas syringae pv. p.) 229, 255
prun (Bacillus) 277
prun (Bacterium) 277
prun (Phytomonas) 277
prun (Pseudomonas) 277
prun (Xanthomonas) 277
prun (Xanthomonas campestris pv. p.) 239, 277
prun (Xanthomonas campestris pv. ph.) 239, 277
prun (Phytomonas) 237
prun (Pseudomonas) 238
prun (Phytomonas cerasi var. p.) 237
prun (Pseudomonas cerasi var. p.) 238
Pseudomonas 225, 227, 229, 229, 230
pueratiae (Bacterium) 254
pueratiae (Phytomonas) 254
punctulans (Bacterium) 259
punctulans (Phytomonas) 259
punctulans (Pseudomonas) 238, 259
punicae (Xanthomonas campestris pv. p.) 282
puniceum (Clostridium) 315
pyocyanea (Pseudomonas) 230
pyocyanum (Bacterium) 230
pyocyanus (Bacillus) 230
pyocianes (Micrococcus) 230
quericola (Erwinia) 306
quericina (Erwinia) 292, 293, 295, 303
radiobacter (Agrobacterium) 245, 285
radiobacter (Agrobacterium r. pv. rhizogenes) 288
radiobacter (Agrobacterium r. var. rhizogenes) 288
radiobacter (Agrobacterium r. pv. tumefaciens) 288
radiobacter (Agrobacterium r. var. tumefaciens) 286
raphani (Xanthomonas campestris pv. r.) 282
rathayi (Agrobacterium) 319
rathayi (Aplanobacter) 319
rathayi (Bacterium) 319
rathayi (Clavibacter) 316
rathayi (Corynebacterium) 319
rathayi (Erwinia) 319
rathayi (Pseudobacterium) 319
rhapontici (Erwinia) 292, 293, 295, 305
rhenavum (Flavobacterium) 300
Rhizobiaceae 225, 284
Rhizobium 284
rhizogenes (Agrobacterium) 285, 288
rhizogenes (Bacterium) 288
rhizogenes (Phytomonas) 288
rhizogenes (Pseudomonas) 288
rhizogenes (Agrobacterium radiobacter pv. r.) 288
rhizogenes (Agrobacterium radiobacter var. r.) 288
Rhodococcus 225, 318, 323
rhynchosiae (Xanthomonas campestris campestris pv. r.) 282
ribicola (Pseudomonas syringae pv. r.) 256
ricini (Bacterium) 277
ricini (Phytomonas) 277
ricini (Xanthomonas) 277
ricini (Xanthomonas campestris pv. r.) 265, 277
ricinicola (Bacterium 277
ricinicola (Phytomonas) 277
ricinicola (Pseudomonas) 277
ricinicola (Xanthomonas) 277
Rickettsia 225
rimaefaciens (Pseudomonas) 238
rubri (Agrobacterium) 285, 288
rubrifaciens (Erwinia) 290, 292
293, 295, 306
rubrilineans (Bacterium) 263
rubrilineans (Phytomonas) 263
rubrilineans (Pseudomonas) 262
rubrilineans (Xanthomonas) 263
rubrisubalbicans (Bacterium) 263
rubrisubalbicans (Phytomonas) 263
rubrisubalbicans (Pseudomonas) 263
rubrisubalbicans (Xanthomonas) 263
sacchari (Erwinia) 306
saliciperda (Pseudomonas) 304
salicis (Bacterium) 304
salicis (Erwinia) 292, 293, 295, 304
salicis (Phytomonas) 304
salicis (Pseudobacterium) 304
salicis (Erwinia amylovora var. s.) 304
savastanoi (Agrobacterium) 256
savastanoi (Bacterium) 256
savastanoi (Phytomonas) 256
savastanoi (Pseudomonas) 256
savastanoi (Pseudomonas syringae pv. s.) 230, 256
scabiegene (Erwinia) 306
schaecylkiliensis (Aerobacillus) 310
secalis (Xanthomonas campestris pv. s.) 282
sepedonica (Phytomonas) 320
sepedonicum (Aplanobacter) 320
sepedonicum (Bacterium) 320
sepedonicum (Corynebacterium) 236, 320
sepedonicum (Mycobacterium) 320
sepedonicum (Pseudomonas) 320
sepedonicum (Clavibacter michiganense subsp. s.) 316
sepedonicum (Corynebacterium michiganense subsp. s.) 320
serbinowi (Bacillus) 303
serbinowi (Erwinia) 303
sesami (Bacterium) 257
sesami (Phytomonas) 257
sesami (Pseudomonas) 257
sesami (Pseudomonas syringae pv. s.) 257
sesami (Xanthomonas campestris pv. s.) 282
sesamicola (Bacterium) 257
sesamicola (Phytomonas) 257
sesbaniae (Xanthomonas campestris pv. s.) 282
sojae (Bacterium) 246
sojae (Phytomonas) 246
sojae (Pseudomonas) 246
sojense (Bacterium phaseoli var. s.) 272
sojense (Phytomonas phaseoli var. s.) 272
sojense (Xanthomonas phaseoli var. s.) 272
solanacearum (Bacillus) 236
solanacearum (Bacterium) 236
solanacearum (Phytomonas) 236
solanacearum (Pseudomonas) 227, 230, 236, 237
solanacearum (Xanthomonas) 236
solanisapra (Erwinia) 298
<table>
<thead>
<tr>
<th>Species/Genus</th>
<th>Synonyms</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>solanisaprum (Bacterium)</td>
<td></td>
<td>298</td>
</tr>
<tr>
<td>solanisaprus (Bacillus)</td>
<td></td>
<td>298</td>
</tr>
<tr>
<td>soli (Bacillus)</td>
<td></td>
<td>310</td>
</tr>
<tr>
<td>spermacoceus (Xanthomonas campestris pv. s.)</td>
<td></td>
<td>282</td>
</tr>
<tr>
<td>spongiosa (Phytomonas)</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>spongiosa (Pseudomonas)</td>
<td></td>
<td>238</td>
</tr>
<tr>
<td>spongiosum (Bacterium)</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>spongiosus (Bacillus)</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>stewartii (Erwinia)</td>
<td></td>
<td>289, 292, 293, 295, 305, 325</td>
</tr>
<tr>
<td>stewartii (Pseudomonas)</td>
<td></td>
<td>305</td>
</tr>
<tr>
<td>stizolobii (Aplanobacter)</td>
<td></td>
<td>261</td>
</tr>
<tr>
<td>stizolobii (Pseudomonas)</td>
<td></td>
<td>261</td>
</tr>
<tr>
<td>striafaciens (Bacterium)</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>striafaciens (Phytomonas)</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>striafaciens (Pseudomonas)</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>striafaciens (Pseudomonas syringae pv. s.)</td>
<td></td>
<td>257, 300</td>
</tr>
<tr>
<td>subtilis (Bacillus)</td>
<td></td>
<td>313</td>
</tr>
<tr>
<td>subtilis (Bacillus s. var. niger)</td>
<td></td>
<td>313</td>
</tr>
<tr>
<td>syringae (Bacterium)</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>syringae (Phytomonas)</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>syringae (Pseudomonas)</td>
<td></td>
<td>229, 237, 291</td>
</tr>
<tr>
<td>syringae (Pseudomonas s. pv. syringae)</td>
<td></td>
<td>229, 239, 240</td>
</tr>
<tr>
<td>tabaca (Phytomonas)</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>tabaceae (Phytomonas)</td>
<td></td>
<td>257</td>
</tr>
<tr>
<td>tabaci (Pseudomonas)</td>
<td></td>
<td>251, 257</td>
</tr>
<tr>
<td>tabacum (Bacterium)</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td>tabaci (Pseudomonas syringae pv. t.)</td>
<td></td>
<td>229, 257, 258</td>
</tr>
<tr>
<td>tagetis (Pseudomonas syringae pv. t.)</td>
<td></td>
<td>258</td>
</tr>
<tr>
<td>tamarindii (Xanthomonas campestris pv. t.)</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>taraxani (Xanthomonas campestris pv. t.)</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>tardicrescens (Xanthomonas campestris pv. t.)</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>tessellarius (Clavibacter michiganensis subsp. t.)</td>
<td></td>
<td>316</td>
</tr>
<tr>
<td>theae (Bacillus)</td>
<td></td>
<td>259</td>
</tr>
<tr>
<td>theae (Pseudomonas syringae pv. t.)</td>
<td></td>
<td>259</td>
</tr>
<tr>
<td>theicola (Xanthomonas campestris pv. t.)</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>thirumalacharrii (Xanthomonas campestris pv. t.)</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>tomato (Bacterium)</td>
<td></td>
<td>259</td>
</tr>
<tr>
<td>tomato (Phytomonas)</td>
<td></td>
<td>259</td>
</tr>
<tr>
<td>tomato (Pseudomonas)</td>
<td></td>
<td>259</td>
</tr>
<tr>
<td>tomato (Pseudomonas syringae pv. t.)</td>
<td></td>
<td>229, 259</td>
</tr>
<tr>
<td>tonelliana (Pseudomonas)</td>
<td></td>
<td>238</td>
</tr>
<tr>
<td>toxica (Erwinia)</td>
<td></td>
<td>225, 306</td>
</tr>
<tr>
<td>tracheiphila (Erwinia)</td>
<td></td>
<td>292, 293, 295, 305</td>
</tr>
<tr>
<td>tracheiphilum (Bacterium)</td>
<td></td>
<td>305</td>
</tr>
<tr>
<td>tracheiphilus (Bacillus)</td>
<td></td>
<td>305</td>
</tr>
<tr>
<td>tracheiphilus (Bacillus t. f. cucumis)</td>
<td></td>
<td>305</td>
</tr>
<tr>
<td>translucens (Bacterium)</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>translucens (Phytomonas)</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>translucens (Pseudomonas)</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>translucens (Xanthomonas)</td>
<td></td>
<td>278</td>
</tr>
<tr>
<td>translucens (Xanthomonas campestris pv. t.)</td>
<td></td>
<td>277</td>
</tr>
<tr>
<td>tribuli (Xanthomonas campestris pv. t.)</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>trichodesmae (Xanthomonas campestris pv. t.)</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>trifoli (Pseudomonas)</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>trifoli (Xanthomonas)</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>trifoliorum (Bacterium)</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>trifoliorum (Phytomonas)</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>trifoliorum (Pseudomonas)</td>
<td></td>
<td>238</td>
</tr>
<tr>
<td>tritici (Agrobacterium)</td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>tritici (Bacterium)</td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>tritici (Clavibacter)</td>
<td></td>
<td>316</td>
</tr>
<tr>
<td>tritici (Corynebacterium)</td>
<td></td>
<td>320, 325</td>
</tr>
<tr>
<td>tritici (Phytomonas)</td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>tritici (Pseudomonas)</td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>tuberculosis (Bacillus oleae t.)</td>
<td></td>
<td>256</td>
</tr>
<tr>
<td>tuberosi (Phytomonas helianthi var. t.)</td>
<td></td>
<td>248</td>
</tr>
<tr>
<td>tumefaciens (Agrobacterium)</td>
<td></td>
<td>295</td>
</tr>
<tr>
<td>tumefaciens (Bacillus)</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td>tumefaciens (Bacterium)</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td>tumefaciens (Phytomonas)</td>
<td></td>
<td>266</td>
</tr>
<tr>
<td>tumefaciens (Pseudomonas)</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td>tumefaciens (Agrobacterium radiobacter. var. t.)</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td>tumefaciens (Agrobacterium radiobacter pv. t.)</td>
<td></td>
<td>286</td>
</tr>
<tr>
<td>typhi (Bacterium t. flavum)</td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>ulmi (Micrococcus)</td>
<td></td>
<td>304</td>
</tr>
<tr>
<td>ulmi (Pseudomonas syringae pv. u.)</td>
<td></td>
<td>261</td>
</tr>
<tr>
<td>undolosa (Xanthomonas campestris pv. p.)</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>uppalii (Xanthomonas campestris pv. u.)</td>
<td></td>
<td>283</td>
</tr>
<tr>
<td>uredovora (Erwinia)</td>
<td></td>
<td>292, 293, 295, 306</td>
</tr>
<tr>
<td>utiformica (Bacterium)</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>utiformica (Phytomonas)</td>
<td></td>
<td>237</td>
</tr>
<tr>
<td>utiformica (Pseudomonas)</td>
<td></td>
<td>238</td>
</tr>
<tr>
<td>uvae (Bacterium)</td>
<td></td>
<td>306</td>
</tr>
<tr>
<td>uvae (Erwinia)</td>
<td></td>
<td>306</td>
</tr>
<tr>
<td>vagans (Bacillus)</td>
<td></td>
<td>310</td>
</tr>
<tr>
<td>valachia (Erwinia)</td>
<td></td>
<td>306</td>
</tr>
</tbody>
</table>
vasculorum (Xanthomonas campestris pv. v.) 283
vendrelli (Bacillus) 230
vendrelli (Pseudomonas) 230
vernoniae (Xanthomonas campestris pv. v.) 283
vesicatoria (Phytomonas) 278
vesicatoria (Pseudomonas) 278
vesicatoria (Xanthomonas campestris pv. v.) 278
vesicatorium (Bacterium) 278
vesicularis (Pseudomonas) 227
viburni (Bacterium) 260
viburni (Phytomonas) 259
viburni (Pseudomonas) 260
viburni (Pseudomonas syringae pv. v.) 259
vignae (Bacterium) 237
vignae (Phytomonas) 237
vignae (Pseudomonas) 238
vignae (Phytomonas v. var. leguminophila) 238
vignaeradiatae (Xanthomonas campestris pv. v.) 283
vignicola (Xanthomonas campestris pv. v.) 278
vignicola (Xanthomonas) 278
viridifaciens (Bacterium) 237
viridifaciens (Phytomonas) 238
viridifaciens (Pseudomonas) 238
viridifiava (Phytomonas) 260
viridifiava (Pseudomonas) 230, 260
viridiflavum (Bacterium) 260
viticans (Xanthomonas campestris pv. v.) 283
viticola (Xanthomonas campestris pv. v.) 283
vitiscarescensae (Xanthomonas campestris pv. v.) 283
vitiswoodrowii (Xanthomonas campestris pv. v.) 283
vitivirus (Erwinia) 300
vitivirus (Bacillus) 299
vulgatus (Bacillus) 313
woodsii (Bacterium) 263
woodsii (Phytomonas) 263
woodsii (Pseudomonas) 263
Xanthomonas 225, 227, 264
xyli (Clavibacter x. subsp. cynodontis) 225, 316
xyli (Clavibacter x. subsp. xyli) 225, 316, 317
Yersinia 289
zantedescliae (Xanthomonas campestris pv. z.) 283
zinniae (Xanthomonas campestris pv. z.) 283
Zoogloea 227
УКАЗАТЕЛЬ РУССКИХ НАЗВАНИЙ
ВИРУСОВ И ВИРОИДОВ

Бессимптомный вирус гороха (комовирус) 476
Болгарский латентный вирус винограда (неповирус) 440
Бромовирусы 452
Вироид бледности плодов огурца 461
— веретеновидности клубней картофеля 461
— желтопятнистого вырождения кокосовой пальмы 463
— хмеля 463
— хризантемы 463
— кустистости верхушки томата 464
— солнечных пятен авокадо 463
— хлоротической крапчатости хризантемы 464
— экзокортиса цитрусовых 464
Вироиды 461
Вирус аспермии томатов (кукумовирус) 449
— аукуба-мозаики картофеля (потексвирус) 427
— болезни Фиджи сахарного тростника (фидживирус) 383, 384
— кущения злаков (фидживирус) 383
— бороздчатости древесины винограда (клостеровирус) 405
— яблони (клостеровирус) 405
— временного пожелтения риса (рабдовирус) 386
— голубой карликовости арренатерума (фидживирус) 383
— овса (группа вируса тонкой штриховатости кукурузы) 400
— гравированных колец гвоздики (каулимовирус) 378, 380
— линий свинороя (группа вируса тонкой штриховатости кукурузы) 400
— гравировки табака (потивирус) 414
— датского линейного узора сливы (иларавирус) 453
— дегенерации нарцисса (потивирус) 413
— деревянистости пассифлоры (потивирус) 413
— деформирующей мозаики гороха (группа вируса деформирующей мозаики гороха) 445
— Desmodium (комовирус) 476
— желтой мозаики дерева какао (тимовирус) 395
— картофеля (геминивирус) 475
— Kennedy* (тимовирус) 395
— клевера (потексвирус) 424
— маши (геминивирус) 382
— стальника (тимовирус) 395
— турнепса (тимовирус) 393, 394, 395
— фасоли (потивирус) 413, 416
— карликовости картофеля (рабдовирус) 385, 386
— лука (потивирус) 413, 416
— свеклы (клостеровирус) 404
— томатов (геминивирус) 382
— ячменя (лютеовирус) 396, 397, 398
— полосатой мозаики ячменя (рабдовирус) 386
— полосатости поррея (потивирус) 413
— пятнистости кассии (бромовирус) 475

* Здесь и далее латинские названия растений выделены полужирным шрифтом.
--- —— шелковицы (неповирус) 440
--- —— крапчатости арахиса (тимовирус) 395
--- —— канн (рабдовирус) 475
--- —— риса (собемовирус) 401
--- —— цикория (неповирус) 439
--- —— Desmodium (тимовирус) 395
--- —— сетчатости Lychnis (гордеивирус) 460
--- —— Sonchus (рабдовирус) 385
--- —— штриховатой мозаики ячменя (рабдовирус) 475
--- —— желтухи бобовых (лютеовирус) 397
--- —— желтухи клевера (клостеровирус) 405
--- —— лопуха (клостеровирус) 404
--- —— свеклы (клостеровирус) 404
--- —— трастацвета (тимовирус) 475
--- —— жилок клевера (потивирус) 413
--- —— осота (рабдовирус) 385
--- —— листьев моркови (клостеровирус) 404
--- —— пшеницы (клостеровирус) 405
--- —— западной желтухи свеклы (лютеовирус) 397
--- —— звездчатой мозаики Petunia (томбусвирус) 400
--- —— зеленой крапчатой мозаики огурца (тобамовирус) 431, 432
--- —— крапчатости гороха (комовирус) 478
--- —— золотистой мозаики томатов (геминивирус) 382
--- —— фасоли (геминивирус) 382
--- —— индонезийской карликовости сои (лютеовирус) 397
--- —— итальянской кольцовой пятнистости гвоздики (тобамовирус) 436, 437
--- —— желтой пятнистости гвоздики (дивантовирус) 434
--- —— морщинистости баклажана (рабдовирус) 400
--- —— желтухи клевера (потивирус) 413
--- —— желтухи андийского картофеля (томбусвирус) 339
--- —— Lychnis (гордеивирус) 460
--- —— Odontoglossum (тобамовирус) 431
--- —— короткоузлия винограда (неповирус) 397
--- —— морщинистости ячменя (тобамовирус) 399
--- —— баклажана (тобамовирус) 400
--- —— морщинистости картофеля (комовирус) 435, 436
--- —— арахиса (потивирус) 433
--- —— белладонны (тимовирус) 395
--- —— бобов фасоли (комовирус) 385
--- —— вяза (иларвирус) 453
--- —— вельветового табака (группа вируса вельветового табака) 446
--- —— ежи сборной (собемовирус) 397
--- —— желтой пятнистости гвоздики (потивирус) 413, 417
--- —— красного клевера (комовирус) 436, 437
--- —— краснолистности моркови (лютеовирус) 413
--- —— моркови (тогавирус) 392
--- —— норичника (тимовирус) 395
--- —— паслена горького (тимовирус) 395
--- —— подорожника (тимовирус) 395
--- —— фиалки (потексвирус) 425
--- —— кроме (лютеовирус) 397

533
— подземного клевера (лютеовирус) 397
— курчавой карликовости картофеля (рабдовирус) 387
— курчавости листьев свеклы (геминивирус) 382
— кабачка (геминивирус) 475
— табака (геминивирус) 382
— кустистой карликовости томатов (тобамовирус) 399, 400
— линейного узора сливы (американский) (иларвирус) 453
— морковного перца (себемовирус) 476
— мозаики арбуза I (потивирус) 414, 417
— 2 (потивирус) 414
— баклажана (тимовирус) 395
— бамии (тимовирус) 395
— белены (потивирус) 413
— белого клевера (потексвирус) 425
— бородатого ириса (потивирус) 413
— георгины (каулимовирус) 478, 479
— глицинии (комовирус) 435
— голубиного гороха (комовирус) 435
— гороха, передающегося семенами (потивирус) 413
— дикого огурца (тимовирус) 395
— дынного дерева (потексвирус) 425
— дынной груши (потекскварус) 425
— жилок вистерии (потивирус) 414
— кабачка (комовирус) 436
— карданоны (потивирус) 476
— коммелины (потивирус) 413
— конопли (тобамовирус) 431
— корьового гороха (комовирус) 435, 436
— корьового гороха (Blackeye) (потивирус) 413
— — —, передающийся тлями (потивирус) 413
— костра (бромовирус) 452
— красного жасмина (тобамовирус) 431
— крупного проса (потивирус) 413
— кукурузы (рабдовирус) 386
— лаконоса (потивирус) 413
— латука (потивирус) 413
— лисохвоста (потекскварус) 424
— люцерны (группа вируса мозаики люцерны) 459
— маниока (потивирус) 413
— марбаллиса (каулимовирус) 379
— молочая (геминивирус) 382
— марцики (потекскварус) 425, 434
— норичника (каулимовирус) 379
— нотоскордума (можомовирус) 413
— огурца (кукумовирус) 449
— озими пшеницы (группа вируса полосатости риса) 461
— пастернака (потивирус) 413
— перепелиного гороха (комовирус) 435
— пуансеттис (тимовирус) 475
— подорожника (тобамовирус) 431
— редиса (комовирус) 436, 438
— розы (иларвирус) 453
— сахарного тростника (потивирус) 414
— свеклы (потивирус) 413, 418, 419
— сельдерея (потивирус) 413
— сесбанни (комовирус) 476
— сои (потивирус) 414, 420
— тамарильо (потивирус) 414
— томата (тобамовирус) 431
— тополя (карлавирус) 409, 410
— турнепса (потивирус) 414
— фасоли сорта Азуки (потивирус) 413
— физалиса (тимовирус) 395
— маревых (собемовирус) 401
— хмеля (карлавирус) 409
— цветной капусты (каулимовирус) 378, 379
— цимбидиума (потекскварус) 424, 429, 430
— элевзины (рабдовирус) 386
— яблоки (иларвирус) 453, 457
— Туаре (иларвирус) 453
— ятрыши (геминивирус) 475
— I. ypochoer's (тобамовирус) 476
— морщинистой мозаики фасоли (комовирус) 435
— морщинистости земляники (рабдовирус) 386
— листвев хлопчатника (геминивирус) 475
— сои (геминивирус) 475
— цитрусовых (иларвирус) 453
— нандины домашней (клостеровирус) 476
— некроза жилок сетчатой дыни (карлавирус) 409
— кофейного дерева (неповирус) 440
— овсяницы (клостеровирус) 405
— табака (некровирус) 402, 403
— некротического пожелтения жилок свеклы* (тобамовирус) 432, 433
— некротической жилтухи брокколи (рабдовирус) 385
— латука (рабдовирус) 385
— кольцевой пятьнстиости Prunus (иларвирус) 453, 458
— мозаики донника (диантовирус) 476
— земляного ореха (тимовирус) 475
— красного клевера (диантовирус) 434
— пятнистости гвоздики (клостеровирус) 404
— обыкновенной мозаики маниока (потексвирус) 424
— фасоли (потивирус) 413, 421, 422
— окаймления жилок земляники (каулимовирус) 379
— окаямления конских бобов (комовирус) 435
— опунции Sammon's (тобамовирус) 431
— пестролепестности тюльпан (потивирус) 414, 422, 423
— пестролепестности Citrus (иларвирус) 453
— погрмковости табака (тобравирус) 448
— пожелтения жилок клевера (потивирус) 413
— — Clitoria (тимовирус) 395
— полосатости ежии сборной (потивирус) 413
— кукрузы (геминивирус) 381, 382
— осва (рабдовирус) 386
— риса (группа вируса полосатости риса) 461
— табака (иларвирус) 453
— прижиликовой мозаики красного клевера (карлавирус) 409
— псевдокурачавости томата (геминивирус) 475
— пятнистого увядания томатов (группа вируса пятнистого увядания томатов) 398
— раневых опухолей клевера (фторовирус) 383
— раннего побурения гороха (тобравирус) 448
— резкой крапчатости Plantago (потексвирус) 425
— мозаики перца (потивирус) 413
— розеточной мозаики персика (неповирус) 440
— розеточности турнепса (собовирус) 401
— русской мозаики озимой пшеницы (рабдовирус) 386
— северной мозаики злаков (рабдовирус) 386
— скручивания верхушечных листвьев паслена (геминивирус) 475
— листвев гороха (лютеовирус) 397
— картофеля (лютеовирус) 397, 399
— Pelargonium (томбусвирус) 400
— Черешни (неповирус) 439, 443
— слабого пожелтения свеклы (лютеовирус) 397, 398
— слабой крапчатости коровьего гороха (карлавирус) 409
— гороха (комовирус) 476
— ириса (потивирус) 413
— стерильной карликовости осва (фидживирус) 383
— суровой мозаики ириса (потивирус) 413
— коровьего гороха (комовирус) 435
— табачной мозаики (тобамовирус) 431

* В настоящее время этот и некоторые другие вирусы относят к группе фуровирусов

535
— тонкой штриховатости кукурузы (группа вируса тонкой штриховатости кукурузы) 403
— тонколистности моркови (потивирус) 413
— травянистой карликовости риса (группа вируса полосатости риса) 461
— тристецы Citrus (клостеровирус) 405, 406
— хлороза жилок малины (рабдовирус) 386, 389
— хлоротической карликовости кукурузы (группа вируса хлоротической карликовости кукурузы) 392, 393
— кольцевой пятнистости Prunus (иларвирус) 453, 454
— крапчатости арахиса (потивирус) 476
— злаков (рабдовирус) 386
— корового гороха (бромовирус) 452
— сои (каулимовирус) 475
— полосатости овса (геминивирус) 475
— пятнистости имбиря (собемовирус) 476
— листьев сирени (клостеровирус) 405
— яблони (клостеровирус) 407
— штриховатости банана (рабдовирус) 475
— шпината (рабдовирус) 386
— хойя бланка риса (группа вируса полосатости риса) 461
— хромовой мозаики винограда (неповирус) 440
— черной кольцевой пятнистости картофеля (неповирус) 440, 443
— томата (неповирус) 440, 443
— черно-полосатой карликовости риса (фидживирус) 383
— шарки сливы (потивирус) 413
— шероховатой карликовости кукурузы (фидживирус) 383
— шнуровидности черники (собемовирус) 401
— Datura (потивирус) 413
— штриховатой мозаики пшеницы (потивирус) 438
— хлорис (геминивирус) 382
— ячменя (гординвирус) 460
— штриховатости астрагала (рабдовирус) 475
— гороха (карлавирус) 409
— ежи сборной (потивирус) 413
— DIGITALIA (рабдовирус) 386
— щетковидности верхушки картофеля (тобамовирус) 433
— южной мозаики фасоли (собемовирус) 400, 401
— энаций райграса (фидживирус) 383
— люцерны (рабдовирус) 386
— эндивия (рабдовирус) 386
— 2 кахтуса (карлавирус) 409
— 4 огуру (тобамовирус) 431
— Геминивирусы 381
— Гордевирусы 460
— Группа вируса деформирующей мозаики гороха 444
— крапчатости вельветового табака* 446
— мозаики люцерны 459
— полосатости риса 461
— пятнистого увядания томата 389
— тонкой штриховатости кукурузы 403
— хлоротической карликовости кукурузы 461
— Диантовирусы 434
— Иларвирусы 453
— Карлавирусы 409
— Каулимовирусы 378
— Клостеровирусы 409
— Комовирусы 435
— Кукумовирусы 449
— Латентный вирус андийского картофеля (тимовирус) 395, 396
— весенний красавиц (бромовирус) 476
— гвоздики (карлавирус) 409
— дынной груши (карлавирус) 409
— желтущика (тимовирус) 395
— жимолости (карлавирус) 409
— кольцевой пятнистости земляники (неповирус) 444
— — — — мирабели (неповирус) 383
— — — — Hibiscus (неповирус) 440
— В настоящее время вирус отнесен к группе собемовирусов (Sobemovirus)
— — клевера инкарнатного (неповирус) 440
— — маниок (геминивирус) 382
— — морков (рабдовирус) 386
— — петрушь (рабдовирус) 386
— — оливы I (неповирус) 476
— — хмеля (карлавирус) 409
— — хрена (каулимовирус) 379
— — шелковицы (карлавирус) 409
— — шпината (иларвирус) 453
— — Mellilotus (рабдовирус) 386
— — Nerine (карлавирус) 409
Лютеовирусы 396
Некровирусы 402
Неповирусы 439
Полулатентный вирус Роа (гордевирус) 460
Потексирирусы 424
Потивирусы 413
Рабдовирусы 384
Реовирусы 382
Собемовирусы 400
Симовирусы 393
Тобамовирусы 431
Тобравирусы 446
Гагавирусы 392
Тогавирусы 393
Фидживирусы 383
Фитореовирусы 382

A-вирус арракачи (неповирус) 439
— — картофеля (потивирус) 414, 424
— — хмеля (иларвирус) 453
В-вирус хмеля (иларвирус) 453
— — хризантемы (карлавирус) 409
C-вирус уллюкуса (комовирус) 476
М-вирус картофеля (карлавирус) 409, 411
S-вирус картофеля (карлавирус) 409, 412
T-вирус картофеля (кластеровирус) 408
U-2 вирус табака (тобамовирус) 431
X-вирус кактуса (потексвирус) 424, 429, 430
— — картофеля (потексвирус) 424, 425, 426
— — лилии (потексвирус) 425
— — подорожника (потексвирус) 425
— — Commelina (потексвирус) 424
— — Nerine (потексвирус) 425
У-вирус картофеля (потивирус) 413, 414
### УКАЗАТЕЛЬ МЕЖДУНАРОДНЫХ НАЗВАНИЙ
**ВИРУСОВ И ВИРОИДОВ РАСТЕНИЙ**

<table>
<thead>
<tr>
<th>Name</th>
<th>Group/Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa mosaic virus</td>
<td>(Alfalfa mosaic virus group) 459</td>
</tr>
<tr>
<td>Alfalfa mosaic virus group</td>
<td>459</td>
</tr>
<tr>
<td>Amaranthus leaf mottle virus</td>
<td>(Potyvirus) 413</td>
</tr>
<tr>
<td>Andean potato latent virus</td>
<td>(Tomovirus) 394, 396</td>
</tr>
<tr>
<td>— mottle virus (Comovirus)</td>
<td>435, 436</td>
</tr>
<tr>
<td>Apple chlorotic leaf spot virus</td>
<td>(Closterovirus) 407</td>
</tr>
<tr>
<td>— mosaic virus (Ilarvirus)</td>
<td>453, 457</td>
</tr>
<tr>
<td>— stem growing virus (Closterovirus)</td>
<td>405</td>
</tr>
<tr>
<td>Arabis mosaic virus</td>
<td>(Nepovirus) 439, 442</td>
</tr>
<tr>
<td>Arracacha virus A</td>
<td>(Nepovirus) 439</td>
</tr>
<tr>
<td>Arrhenatherum blue dwarf virus</td>
<td>(Fijivirus) 383</td>
</tr>
<tr>
<td>Artichoke Italian latent virus</td>
<td>(Nepovirus) 439</td>
</tr>
<tr>
<td>— mottled crinkle virus (Tobamovirus)</td>
<td>399</td>
</tr>
<tr>
<td>— yellow ringspot virus (Nepovirus)</td>
<td>439</td>
</tr>
<tr>
<td>Azuki bean mosaic virus</td>
<td>(Potyvirus) 413</td>
</tr>
<tr>
<td>Avocado sun blot viroid</td>
<td>463</td>
</tr>
<tr>
<td>Banana streak virus</td>
<td>(Rhabdovirus) 475</td>
</tr>
<tr>
<td>Barley stripe mosaic virus</td>
<td>(Hordeivirus) 460</td>
</tr>
<tr>
<td>— yellow dwarf virus (Luteovirus)</td>
<td>396, 397</td>
</tr>
<tr>
<td>— striate mosaic virus (Rhabdovirus)</td>
<td>475</td>
</tr>
<tr>
<td>Bean common mosaic virus</td>
<td>(Potyvirus) 413, 421, 422</td>
</tr>
<tr>
<td>— enation dwarf virus (Geminivirus)</td>
<td>475</td>
</tr>
<tr>
<td>— golden mosaic virus (Geminivirus)</td>
<td>382</td>
</tr>
<tr>
<td>— pod mottle virus (Comovirus)</td>
<td>435</td>
</tr>
<tr>
<td>— rugose mosaic virus</td>
<td>(Comovirus) 435</td>
</tr>
<tr>
<td>— yellow mosaic virus</td>
<td>(Potyvirus) 413, 416</td>
</tr>
<tr>
<td>Bearded iris mosaic virus</td>
<td>(Potyvirus) 413</td>
</tr>
<tr>
<td>Beet curly top virus</td>
<td>(Geminivirus) 382</td>
</tr>
<tr>
<td>— leaf curl virus (Rhabdovirus)</td>
<td>386</td>
</tr>
<tr>
<td>— mild yellowing virus (Luteovirus)</td>
<td>397, 398</td>
</tr>
<tr>
<td>— mosaic virus (Potyvirus)</td>
<td>413, 418, 419</td>
</tr>
<tr>
<td>— necrotic yellow vein mosaic virus (Tobamovirus)</td>
<td>432</td>
</tr>
<tr>
<td>— western yellows virus (Luteovirus)</td>
<td>397</td>
</tr>
<tr>
<td>— yellow stunt virus (Closterovirus)</td>
<td>404</td>
</tr>
<tr>
<td>— yellows virus (Closterovirus)</td>
<td>404, 405</td>
</tr>
<tr>
<td>Belladonna mottle virus</td>
<td>(Tymovirus) 395</td>
</tr>
<tr>
<td>Bermuda grass etches line virus</td>
<td>Maize rayado fino virus group 403</td>
</tr>
<tr>
<td>Bidens mottle virus</td>
<td>(Potyvirus) 413</td>
</tr>
<tr>
<td>Blackeye cowpea mosaic virus</td>
<td>(Potyvirus) 313</td>
</tr>
<tr>
<td>Blueberry leaf mottle virus</td>
<td>(Nepovirus) 439</td>
</tr>
<tr>
<td>— red ringspot virus (Caulimovirus)</td>
<td>475</td>
</tr>
<tr>
<td>— shoestring virus (Sobemovirus)</td>
<td>401</td>
</tr>
<tr>
<td>Boussingaultia mosaic virus</td>
<td>(Potexvirus) 424</td>
</tr>
<tr>
<td>Broad bean mottle virus</td>
<td>(Bromexvirus) 452</td>
</tr>
<tr>
<td>— stain virus (Comovirus)</td>
<td>435</td>
</tr>
<tr>
<td>— true mosaic virus (Comovirus)</td>
<td>437</td>
</tr>
<tr>
<td>— yellow band virus (Tobamovirus)</td>
<td>476</td>
</tr>
</tbody>
</table>

538
Broccolli necrotic yellows virus (rhabdovirus) 385
Brome mosaic virus (bromovirus) 452
Bromovirus 452
Burdock yellows virus (closterovirus) 404
Cacao yellow mosaic virus (tymovirus) 395
Cactus virus X (potexvirus) 424, 429, 430
— virus 2 (carlavirus) 409
Canna yellow mottle virus (rhabdovirus) 476
Caper latent virus (carlavirus) 476
Cardamon mosaic virus (potyvirus) 476
Carlavirus 409
Carnation etched ring virus (cauli-movirus) 378, 380
— Italian ringspot virus (tombus-virus) 399
— latent virus (carlavirus) 409
— necrotic fleck virus (closterovirus) 404
— ringspot virus (dianthovirus) 434, 435
— vein mottle virus (potyvirus) 413, 417
Carrot latent virus (rhabdovirus) 386
— mottle virus (togaviridae) 392
— red leaf virus (luteovirus) 397
— thin leaf virus (potyvirus) 413
— yellow leaf virus (closterovirus) 404
Cassava common mosaic virus (potexvirus) 424
— green mottle virus (nepovirus) 476
— latent virus (geminivirus) 382
Cassia yellow blotch virus (bromovirus) 476
Cauliflower mosaic virus (cauli-movirus) 378, 379
Caulimovirus 378
Celery mosaic virus (potyvirus) 413
Cereal chlorotic mottle virus (rhabdovirus) 386
— striate virus (rhabdovirus) 386
— tillering disease virus (fijivirus) 383
Cherry leaf roll virus (nepovirus) 439, 443
— rugose mosaic virus (ilarvirus) 453
Chicory yellow mottle virus (nepovirus) 439
Chloris striate mosaic virus (geminivirus) 382
Chrysanthemum virus B (carlavirus) 409
Chrysanthemum chlorotic motile viroid 464
Chrysanthemum frutescens virus (rhabdovirus) 386
Chrysanthemum stunt viroid 463
Citrus exocortis viroid 464
Citrus leaf rugose virus (ilarvirus) 453
— tristeza virus (closterovirus) 405, 406
— variegation virus (ilarvirus) 453
Clitoria yellow vein virus (tymovirus) 395
Closterovirus 404
Clover yellow mosaic virus (potexvirus) 424
— yellow vein virus (potyvirus) 413
— yellows virus (closterovirus) 405
Cockfoot mottle virus (sobemovirus) 401
— streak virus (potyvirus) 413
Cocoa necrosis virus (nepovirus) 440
Coconut cadang-cadang viroid 463
Coffee ringspot virus (rhabdovirus) 386
Colocasia bobone disease virus (rhabdovirus) 386
Colombian datura virus (potyvirus) 413
Commelina mosaic virus (potyvirus) 413
— virus X (potexvirus) 424
Comovirus 435
Cotton leaf crumpled disease virus (geminivirus) 475
Cow parsnip mosaic virus (rhabdovirus) 386
Cowpea aphid-borne mosaic (potyvirus) 413
— chlorotic mottle virus (brumovirus) 452
— mild mottle virus (carlavirus) 409
— mosaic virus (comovirus) 435, 436
— severe mosaic virus (comovirus) 435
Crimson clover latent virus (nepovirus) 440
Cucumber green mottle mosaic virus (tobamovirus) 431, 432
— mosaic virus (cucumovirus) 449
— pale fruit viroid 461
— virus 4 (tobamovirus) 431
Cucumovirus 449
Cymbidium mosaic virus (potexvirus) 424, 429
— ringspot virus (tobamovirus) 399
Cynara virus (rhabdovirus) 386
Cynodon chlorotic streak virus (rhabdovirus) 475
Dahlia mosaic virus (caulimovirus) 378, 380
Dasheen mosaic virus (potyvirus) 413
Datura shoestring virus (potyvirus) 413
Desmodium yellow mottle virus (tymovirus) 395
— virus (comovirus) 476
Dianthovirus 434
Digitaria striate virus (rhabdovirus) 386
Dioscorea alata ring mottle virus (potyvirus) 476
Dulcamara mottle virus (tymovirus) 395
Eggplant mosaic virus (tymovirus) 395
— mottled crinkle virus (tobamovirus) 400
— — dwarf virus (rhabdovirus) 385
Elderberry virus (carlavirus) 409
Elm mottle virus (ilarvirus) 453
Endive rhabdovirus (rhabdovirus) 386
Erysimum latent virus (tymovirus) 395
Euphorbia mosaic virus (geminivirus) 382
Festuca necrosis virus (closterovirus) 405
Figwort mosaic virus (caulimovirus) 379
Fiji disease virus (fijivirus) 383, 384
Fijivirus 383
Finger millet mosaic virus (rhabdovirus) 386
Foxtail mosaic virus (potexvirus) 424
Frangipant mosaic virus (tobamovirus) 431
Geminivirus 381
Ginger chlorotic fleck virus (sobemovirus) 476
Glycine mosaic virus (comovirus) 435
Gomphrena virus (rhabdovirus) 386
Grapevine Bulgarian latent virus (nepovirus) 440
— chrome mosaic virus (nepovirus) 440
— fanleaf virus (nepovirus) 440, 441
— stem-pitting associated virus
— (closterovirus) 405
Groundnut chlorotic mottle virus (potexvirus) 476
Guinea grass mosaic virus (potyvirus) 413
Helenium virus S (carlavirus) 409
Henbane mosaic virus (potyvirus) 413
Hibiscus latent ringspot virus (nepovirus) 440
Hippeastrum mosaic virus (potyvirus) 413, 417
Hop virus A (ilarvirus) 453
— virus B (ilarvirus) 453
— latent virus (carlavirus) 409
— mosaic virus (carlavirus) 409
— stunt viroid 463
Hordeivirus 460
Horsegram yellow mosaic virus (geminivirus) 475
Horseradish latent virus (caulimovirus) 379
Hydrangea ringspot virus (potexvirus) 424, 428, 429
Hypochoeris mosaic virus (tobamovirus) 476
Indonesian soybean dwarf virus (luteovirus) 397
Iris mild mosaic virus (potyvirus) 413
— severe mosaic virus (potyvirus) 413
Jatropha mosaic virus (geminivirus) 475
Kennedia yellow mosaic virus (tobamovirus) 395
Leek yellow stripe virus (potyvirus) 413
Legume yellows virus (luteovirus) 397
Lettuce mosaic virus (potyvirus) 413
— necrotic yellows virus (rhabdovirus) 385
Lilac chlorotic leafspot virus (closterovirus) 405
— mottle virus (carlavirus) 409
— ring mottle virus (ilarvirus) 453
Lily symptomless virus (carlavirus) 409
— virus X (potexvirus) 424
Lollum enation virus (fijivirus) 383
Lonicera latent virus (carlavirus) 409
Lotus streak virus (rhabdovirus) 475
Lucerne Australian latent virus (nepovirus) 440
— enation virus (rhabdovirus) 386
— Lychnis ringspot virus (hordeivirus) 460
Maize chlorotic dwarf virus (Maize chlorotic dwarf virus group) 392, 393
— — — group 392
— dwarf mosaic virus (potyvirus) 414
— mosaic virus (rhabdovirus) 386
— rayado fino virus maize rayado fino virus group 403
— — — group 403
— rough dwarf virus (fijivirus) 383
— streak virus (geminivirus) 382
— stripe virus rice stripe virus group 461
— yellows virus (luteovirus) 397
Marrocan papper virus (sobemovirus) 476
Medinilla latent virus (rhabdovirus) 386
Mirabilis mosaic virus (caulimovirus) 379
Mulberry latent virus (carlavirus) 409
— ringspot virus (nepovirus) 440
Mungbean yellow mosaic virus (geminivirus) 382
Muskmelon vein necrosis virus (carlavirus) 409
Myrobalan latent ringspot virus (nepovirus) 440
Nandina domestica virus (clostervirus) 476
Narcissus degeneration virus (potyvirus) 413
— latent virus (carlavirus) 409
— mosaic virus (potexvirus) 425
Necrovirus 402
Nepovirus 439
Nerine latent virus (carlavirus) 409
— virus X (potexvirus) 425
North American plum line pattern virus (ilarvirus) 453
Northern cereal mosaic virus (rhabdovirus) 386
Nothoscordum mosaic virus (potyvirus) 413
Oat blue dwarf virus maize rayado fino virus group 403
— chlorotic stripe virus (geminivirus) 475
— sterile dwarf virus (fijivirus) 383
— striate virus (rhabdovirus) 386
Odontoglossum ringspot virus (tobamovirus) 431
Okra mosaic virus (tymovirus) 395
Olive latent virus 1 (nepovirus) 476
Onion yellow dwarf virus (potyvirus) 413, 416
Ononis yellow mosaic virus (tymovirus) 395
Papaya mosaic virus (potexvirus) 413
— ringspot virus (potyvirus) 413
Parsley latent virus (rhabdovirus) 386
Parsnip mosaic virus (potyvirus) 413
Paspalum striate mosaic virus (geminivirus) 413
Passiflora latent virus (carlavirus) 409
Passionfruit yellow virus (tymovirus) 475
— woodiness virus (potyvirus) 413
Peach early-browning virus (tobravirus) 448
— enation mosaic virus pea enation mosaic virus group 445
— — — group 444
— leaf roll virus (luteovirus) 397
— mild mosaic virus (comovirus) 476
— mosaic virus (potyvirus) 413
— green mottle virus (comovirus) 476
— seed-borne mosaic virus (potyvirus) 413
— streak virus (carlavirus) 409
— symptomless virus (comovirus) 476
Peach rosette mosaic virus (nepovirus) 440
Peanut chlorotic ring mottle virus (potyvirus) 476
— mild mottle virus (potyvirus) 476

541
— mottle virus (potyvirus) 413
— stunt virus (comovirus) 449, 451
— stripe virus (potyvirus) 476
— yellow mottle virus (tymovirus) 395

Pelargonium leaf curl virus (tobravirus) 400
— vein clearing virus (rhabdovirus) 386

Pepino latent virus (carlavirus) 409
— mosaic virus (potexvirus) 425
Pepper mottle virus (potyvirus) 413
— severe mosaic virus (potyvirus) 413
— veinal mottle virus (potyvirus) 413

Petunia asteroid mosaic virus (tobravirus) 400
Physalis mosaic virus (tymovirus) 395
Phytoreovirus 382
Pisum virus (rhabdovirus) 386

Pittosporum vein yellowing virus (rhabdovirus) 386

Plantago mottle virus (tymovirus) 395
— severe mottle virus (potexvirus) 425
— virus X (potexvirus) 425
Plum (American) line pattern virus (ilarvirus) 454
— pox virus (potyvirus) 413, 423

Poa semilatent virus (hordeivirus) 460

Poinsettia mosaic virus (tymovirus) 475

Pokeweed mosaic virus (potyvirus) 413

Poplar mosaic virus (carlavirus) 409, 410

Potato virus A (potyvirus) 414, 424
— aucuba mosaic virus (potexvirus) 427
— black ringspot virus (nepovirus) 440, 443
— leaf roll virus (luteovirus) 397, 399
— virus M (carlavirus) 409, 411
— mop top virus (tobamovirus) 433
— spindle tuber viroid 462
— virus S (carlavirus) 409, 412
— virus T (closterovirus) 408
— virus X (potexvirus) 424, 425, 426
— virus Y (potyvirus) 414

— yellow dwarf virus (rhabdovirus) 385, 386
— mosaic virus (geminivirus) 475
Potexvirus 424
Potyvirus 423
Prunus dwarf virus (ilarvirus) 453, 454
Prunus necrotic ringspot virus (ilarvirus) 453, 458
Qual pea mosaic virus (comovirus) 435
Radish mosaic virus (comovirus) 436, 438

Raphanus virus (rhabdovirus) 386
Raspberry ringspot virus (nepovirus) 440, 441
— vein chlorosis virus (rhabdovirus) 386, 389
Red clover mottle virus (comovirus) 436, 437
— necrotic mosaic virus (dianthovirus) 434
— vein mosaic virus (carlavirus) 409

Ribgrass mosaic virus (tobamovirus) 431

Rice black streaked dwarf virus (fijivirus) 383
— dwarf virus (phytoreovirus) 383
— grassy stunt virus rice stripe virus group 461
— hoja blanca virus rice stripe virus group 461
— stripe virus rice stripe virus group 461
— — group
— transitory yellowing virus (rhabdovirus) 386
— yellow mottle virus (sobemovirus) 401

Russian winter wheat mosaic virus (rhabdovirus) 386
Sammon’s opuntia virus (tobamovirus) 431
Scrophularia mottle virus (tymovirus) 395

Sesbania mosaic virus (comovirus) 476

Shallot latent virus (carlavirus) 409
Sobemovirus 400

Solanum apical leaf curl virus (geminivirus) 475
— yellows virus (luteovirus) 397
Sonchus virus (rhabdovirus) 385
— yellow net virus (rhabdovirus) 385
Sorghum stunt mosaic virus (rhabdovirus) 386
Southern bean mosaic virus (sobemovirus) 400, 401
Sowbane mosaic virus (sobemovirus) 401
Sowthistle yellow vein virus (rhabdovirus) 385
Soybean chlorotic mottle virus (caulimovirus) 475
- crinkle virus (geminivirus) 475
- dwarf virus (luteovirus) 397
- mosaic virus (potyvirus) 414, 420
Spinach latent virus (ilarvirus) 453
Spring beauty latent virus (bromovirus) 476
Squash leaf curl virus (geminivirus) 475
- mosaic virus (comovirus) 436
Strawberry crinkle virus (rhabdovirus) 386
- latent ringspot virus (nepovirus) 444
- vein banding virus (caulimovirus) 379
Subterranean clover red leaf virus (luteovirus) 397
Sugar beet yellows virus (closterovirus) 404, 405
Sugarcane mosaic virus (potyvirus) 414
Sunhemp mosaic virus (tobamovirus) 431
Sweet clover necrotic mosaic virus (dianthovirus) 436
- potato caulimo-like virus (caulimovirus) 475
Tamarillo mosaic virus (potyvirus) 414
Tobacco etch virus (potyvirus) 414
- leafcurl virus (geminivirus) 382
- mosaic virus (tobamovirus) 431, 432
- necrosis virus (necrovirus) 402, 403
- necrotic dwarf virus (luteovirus) 397
- rattle virus (tobravirus) 448
- ringspot virus (nepovirus) 439, 440
- streak virus (ilarvirus) 453
- yellow dwarf virus (geminivirus) 382
Tobamovirus 431
Tobravirus 446
Togaviridae 392

Tomato aspermy virus (cucumovirus) 449
- black ring virus (nepovirus) 440, 443
- bushy stunt virus (tombusvirus) 339, 400
- golden mosaic virus (geminivirus) 382
- leaf curl virus (geminivirus) 382
- mosaic virus (tobamovirus) 431
- pseudo-curl virus (geminivirus) 475
- ringspot virus (nepovirus) 440, 441
- spotted wilt virus tomato spotted wilt virus group 389
- - - - group 389
- yellow dwarf virus (geminivirus) 382
- - leafcurl virus (geminivirus) 382
- - mosaic virus (geminivirus) 382
Tombusvirus 383
Tulare apple mosaic virus (ilarvirus) 453
Turnip yellow mosaic virus (tymovirus) 394, 395
- yellows virus (luteovirus) 397
Tymovirus 393
Ullucus virus C (comovirus) 476
Velvet tobacco mottle virus Velvet tobacco mottle virus group 446
- - - - group 446
Viola mottle virus (potexvirus) 425
Voandzeia necrotic mosaic virus (tymovirus) 475
Watermelon mosaic virus 1 (potyvirus) 414, 417
- - - 2 potyvirus 414
Wheat (American) striate mosaic virus (rhabdovirus) 385
- chlorotic streak virus (rhabdovirus) 386
- dwarf virus (geminivirus) 382
- striate mosaic virus (rhabdovirus) 385
- yellow leaf virus (closterovirus) 405
White clover mosaic virus (potexvirus) 425
Wild cucumber mosaic virus (tymovirus) 395
Wisteria wein mosaic virus (potyvirus) 414
Wound tumor virus (phytoreovirus) 383

543
УКАЗАТЕЛЬ РУССКИХ И ЛАТИНСКИХ НАЗВАНИЙ РАСТЕНИЙ

Абрикос обыкновенный (Armeniacas vulgaris), 89, 107, 118, 134, 176, 185, 252, 277, 373, 408, 423, 456
Авокадо американское (Persea americana) 463
Агератум (Ageratum sp.) 381
Айва продолговатая (Cydonia oblonga) 118, 198, 205, 218, 408
Аконит (Aconitum sp.) 245, 327
Алыча, слива разлогая (Prunus divaricata) 286, 423
Ананас крупнохохолковый (Ananas comosus) 296, 371
Апельсин кислый (Citrus aurantium) 407
— сладкий (C. sinensis) 407
Арбуз обыкновенный (Citrullus vulgaris) 26, 35, 189, 206, 213, 217, 249, 417
Аргемона (Argemone sp.) 279
Арракача (Arracacia xanthoriza) 279, 439
Арахис подземный (Arachis hypogea) 87, 213, 391, 449, 451, 476
Артишок посевной (Cynara scolymus) 34, 439
Африканская масличная пальма (Elaeis guineensis) 463
Африканское просо, пеннизатум сизый (Pennisetum glaucum) 393
Баклажан синий (Solanum melongena) 104, 191, 202, 205, 236, 237, 241, 258, 331, 391, 459
Барбарис (Berberis sp.) 243
Барвинок травянистый (Vinca herbacea) 343, 370, 372
Бархатцы, прямостоячие (Tagetes erecta) 259
Батат (Ipomoea batatas) 110, 192, 213, 475
Баугиния (Bauhinia sp.) 270
Береза (Betula sp.) 283
Биофитум чувствительный (Biophyllum sensitivum) 279
Блефарис (Blepharis sp.) 279
Бодяк полевой (Cirsium arvense) 327
Боярышник (Crataegus sp.) 198, 218
Васильек (Centauria sp.) 327
Вербена (Verbena sp.) 380
Виноград виноносный (Vitis vinifera) 27, 57, 87, 93, 124, 139, 147, 173, 176, 185, 192, 200, 204, 206, 217, 220, 223, 283, 286, 308, 400, 401, 440, 449, 454
Вишня антипка (Prunus mahaleb) 458
— обыкновенная (P. cerasus) 286
Вьюнок полевой (Convolvulus arvensis) 280, 331, 360, 473
Вяз (Ulmus sp.) 357, 453
Гвоздика абиссинская (Quisotia abyssinica) 281
Гвоздика бородатая (Dianthus barbatus) 380, 409
— садовая (D. caryophyllus) 94, 123, 141, 163, 231, 263, 380, 409, 417, 434
Гезеве (Hevea sp.) 177
Гелиотроп (Heliotropium sp.) 281
Георгина (Dahlia sp.) 380, 391
Гербера (Gerbera sp.) 233, 234, 391
Гиацинт (Hyacinthus sp.) 134, 233, 234, 273, 302
Гибелия лисохвостая (Goebelia alopecuroides) 360
Гипохерис, пазник (Hypohoeris sp.) 476
Гиппеаструм (Hippeastrum sp.) 417
Гладиолус (Gladiolus sp.) 141, 234, 281, 302, 335, 370, 416, 449
Глициния (Wisteria sp.) 435
Голубика (Vaccinium uliginosum) 475
Горошек (Vicia sp.) 255
Гортензия крупнолистная (Hydrangea macrophylla) 327, 428, 429
Горощек (Vicia sp.) 255
Гортензия крупноцветковая (Hydrangea arborescens) 327, 428, 429
Горчица белая (Sinapis alba) 398
— полевая (S. arvensis) 39, 421
— черная (Brassica nigra) 386
Граб (Carpinus sp.) 314
Гранат обыкновенный (Punica granatum) 282
Грейпфрут (Citrus paradisi) 407
Грецких (Fagopysum sp.) 49, 201, 473
Груша (Pyrus sp.) 54, 89, 118, 185, 207, 219, 240, 248, 286, 291, 357, 408
Гуар (Cyamopsis sp.) 280, 453, 455
Дельфиниум (Delphinium sp.) 232, 244, 245
Джут (Corchorus olitorius) 115, 176, 280, 282
Дикий картофель (Solanum sp.) 418
Диффенбахия распиновая (Diffenbachia picta) 271
Долихос (Dolichos sp.) 420, 475
Донник (Melilotus sp.) 235, 269, 318, 416, 445, 476
— белый (M. albus) 383
— желтый (M. luteus) 418
Дуб (Quercus sp.) 29, 146, 184, 218, 240, 301, 306, 312
Дуранта (Duranta sp.) 280
Дурман обыкновенный (Datura stramonium) 22, 396, 399, 400, 408, 426, 429, 430
— индийский (D. metel) 411, 427, 428
Дурнинник зобовидный (Eupatorium chinense) 82, 279
Душистый горошек (Lathyrus odoratus) 401, 445, 446
Дыня посевная (Cucumis melo) 26, 35, 49, 91, 106, 142, 213, 217, 249, 259, 305, 306, 417
Евпаториум, посконник китайский (Eupatorium chinense) 475
Ежа сборная (Dactylis glomerata) 281, 319
Ежевика сизая (Rubus caesius) 453
Елевзина (Eleusina sp.) 180
Жасмин (Jasminum sp.) 240
Женьшень (Panax ginseng) 296
Жерушник (Rorippa sp.) 269
Земляника (Fragaria sp.) 29, 42, 43, 94, 106, 109, 120, 137, 189, 195, 198, 213, 217, 234, 248, 266, 268, 370, 389, 444, 453
Зорька (Lychnis sp.) 460
Ива белая (Salix alba) 286, 313
Иксора (Ixora sp.) 281
Ильм (Ulmus sp.) 146, 261, 305
Имбирь лекарственный (Zingiber officinale) 303, 476
Инжир обыкновенный (Ficus carica) 139, 207, 281
Ирис (Iris sp.) 233, 234, 235, 283
Кабачок обыкновенный (Cucurbita pepo) 306, 313, 343, 436
Какао дерево (Theobroma cacao) 177
Календула лекарственная (Calendula officinalis) 391
| **Калина обыкновенная (Viburnum opulus)** | 260 |
| **Камелия японская (Camélia japonica)** | 475 |
| — китайская (C. sinensis) | 283 |
| **Калла (Zantedeschia aethiopica)** | 233, 234, 283, 450 |
| **Каперсы (Cappari sp.)** | 476 |
| **Капуста огородная (Brassica oleraceae)** | 14, 20, 26, 27, 31, 39, 49, 56, 85, 86, 101, 121, 125, 201, 210, 233, 250, 268, 269, 279, 282, 327, 379, 380, 394, 398, 421, 449 |
| — китайская (B. chinensis) | 396 |
| **Кассия (Cassia sp.)** | 280, 476 |
| **Кедр (Cedrus sp.)** | 75 |
| **Кизил (Cornus sp.)** | 107, 192 |
| **Кисличка (Oxalis sp.)** | 81 |
| **Китайская астра садовая (Callistephus chinensis)** | 95, 296, 297, 326, 327, 329, 354, 370, 372, 386, 450 |
| **Клевер (Trifolium sp.)** | 25, 26, 34, 49, 77, 78, 85, 87, 113, 119, 120, 139, 144, 176, 210, 235, 241, 261, 318, 370, 421, 445, 451 |
| — гибридный (T. hybridum) | 139, 327 |
| — луговой (T. pratense) | 102, 113, 119, 126, 139, 154, 176, 181, 193, 196, 210, 386, 411, 435, 436, 437 |
| — подземный (T. subterraneum) | 139, 176 |
| — ползучий (T. repens) | 126, 139, 176, 210, 213 |
| — пурпурный (T. incarnatum) | 383, 440 |
| **Клеатония виргинская (Cleytonia virginica)** | 476 |
| — пронзеннолистная (C. perfoliata) | 397 |
| **Клен (Acer sp.)** | 240 |
| **Клеродендрон (Clerodendron sp.)** | 280 |
| **Клещевина обыкновенная (Ricinus communis)** | 139, 277 |
| **Клитория (Clitoria sp.)** | 280 |
| **Козлобородник (Tragopogon sp.)** | 327, 386 |
| **Кокосовая пальма (Cocos nucifera)** | 283, 463 |
| **Колоказия (Colocasia sp.)** | 473 |
| **Кошень (Cinnamomum sativa)** | 101, 126, 139, 154, 186, 208, 243, 279 |
| **Кориандр посевной (Coriandrum sativum)** | 110, 280, 392 |
| **Коровий горох (Vigna inquiculata, V. sinensis)** | 278, 391, 435, 449, 451, 452, 453, 455 |
| **Костер безостый (Bromus inermis)** | 110, 243, 281, 452 |
| **Кофейное дерево (Coffeea arabica)** | 177, 440 |
| **Кресс-салат (Lepidium sativum)** | 360, 473 |
| **Крестовник обыкновенный (Seneio vulgaris)** | 327, 398 |
| **Крушина ломкая (Frangula alnus)** | 80 |
| **Крыжовник отклоненный (Grossularia reclinata)** | 36, 75, 192, 193, 207, 223 |
| **Кукуруза обыкновенная (Zea mays)** | 22, 26, 27, 38, 43, 64, 81, 86, 87, 90, 91, 95, 108, 110, 118, 130, 141, 144, 155, 160, 162, 164, 176, 186, 192, 210, 213, 222, 250, 261, 263, 265, 273, 283, 305, 306, 313, 314, 318, 382, 393, 397, 403, 449, 461 |
| **Кунжут индийский (Sesamum indicum)** | 257, 282 |
| **Лайм настоящий (Citrus aurantifolia)** | 407 |
| — сладкий (C. limetta) | 407 |
| **Латанта сводочная (Lantanta camara)** | 281 |
| **Лаурелия новозеландская (Laurelia nove-zelandiae)** | 281 |
| **Лебеда (Atriplex sp.)** | 240 |
| Левкой однолетний (Matthiola annua) | 269, 273, 329 |
| **Ледия (Laelia sp.)** | 302 |
| **Лен (Linum sp.)** | 20, 27, 48, 56, 73, 85, 86, 94, 101, 106, 114, 115, 117, 121, 154, 171, 181, 546 |
Леспедеца (Lespedeza sp.) 281
Лилия (Lilium sp.) 112, 227, 302, 423, 449
Лисохвост луговой (Alopecurus pratensis) 261, 281
Лобелия садовая (Lobelia erinus) 383
Лук репчатый (Allium seraphinum) 31, 55, 72, 82, 88, 101, 102, 123, 125, 170, 231, 233, 235, 416, 449
Люпин (Lupinus sp.) 25, 26, 27, 85, 101, 102, 125, 176, 184, 188, 201, 206, 213, 235, 248, 255, 277, 282, 327, 391, 420, 445, 449, 451, 459
Лядвенец (Lotus sp.) 475
Мак (Papaver sp.) 120, 275
Малина (Rubus sp.) 227, 371
— обыкновенная (R. idaeus) 43, 58, 146, 185, 194, 199, 217, 389, 440, 441, 453
Манго индийский (Mangifera indica) 281
Маргаритка многолетняя (Bellis perennis) 327, 329
Маргиния (Martinia sp.) 281
Марь амарантовая (Chenopodium amaranticolor) 409, 411, 417, 421, 427, 428, 431, 432, 434
— белая (Ch. album) 412, 420
— рисовая (Ch. quinoa) 396, 406, 409, 411, 417, 418, 420, 432, 434
— сизая (Ch. glaucum) 432
— стенная (Ch. murale) 432
Маслина европейская (Olea europaea) 207, 256
Махорка (Nicotiana rustica) 343, 386, 388, 418, 449, 473
Маш, фасоль золотистая (Phaseolus aureus) 101, 102, 115, 176, 213
Мукуна (Mucuna sp.) 282
Миндаль (Amygdalus sp.) 134, 177, 204, 217, 240, 261, 308
Молочай (Euphorbia sp.) 77, 280, 282, 323, 360
Морковь посевная (Daucus sativus) 27, 36, 86, 101, 122, 125, 137, 184, 201, 202, 206, 217, 231, 233, 234, 235, 270, 286, 308, 316, 327, 392, 449
Мушмула японская (Eriobotrya japonica) 198, 207, 245
Мыльянка (Saponaria sp.) 327, 380
Мята полевая (Mentha arvensis) 110
Мятлик луговой (Poa pratensis) 460
Нандина домашняя (Nandina domestica) 476
Нарцисс (Narcissus sp.) 107, 110, 141, 233, 416, 434
Настурция (Tropaeolum sp.) 241, 283
Нектарина (Prunus persica var. nectarina) 458
Нут обыкновенный (Cicer arietinum) 233, 255, 280
Облепиха (Hippophae sp.) 135, 141
Овсяница (Festuca sp.) 281
Одуванчик двурогий (Taraxacum bicorne) 87, 203
— лекарственный (T. officinale) 327
Олеандр (Nerium sp.) 240, 286
Оперник (Opinia sp.) 306, 371, 430
Орешник (Corylus sp.) 471
Осот полевой (Sonchus arvensis) 87, 327
Осокоркодочник волосистый (Oxytropis pilosa) 327
Пажитник (Trigonella sp.) 269
Пальма ареак (Areca catechu) 279
547
Паслен рогатый (Solanum rostratum) 412
— сладко-горький (S. dulcamara) 22, 88, 101
— черный (S. nigrum) 87, 101, 465, 475
Пастернак посевной (Pastinaca sativa) 36
Пастушья сумка обыкновенная (Capsella bursa-pastoris) 87, 22, 88, 101
Патиссон (Cucurbita pepo) 249
Пеларгония (Pelargonium sp.) 275
Первоцвет (Primula sp.) 327
Перец бетель (Piper bettle) 279
— стручковый однолетний (Capsicum annuum) 29, 123, 139, 194, 213, 236, 241, 282, 392, 427, 449, 459, 476
Перистощетинник пурпурный (Pennisetum purpureum) 283
Персик обыкновенный (Prunus persica) 253, 308, 357, 370, 371, 408, 440, 454, 456, 458
Петуния (Petunia sp.) 258, 343, 396
Петруш (Piper bettle) 279
— струцковый однолетний (Capsicum annuum) 29, 123, 139, 194, 213, 236, 241, 282, 392, 427, 449, 459, 476
Перистощетинник пурпурный (Pennisetum purpureum) 283
Персидская пшеница (Pennisetum kahverengi) 279, 327, 356
Подорожник (Plantago sp.) 282, 327, 398
Подсолнечник обыкновенный (Helianthus annuus) 43, 51, 81, 101, 109, 132, 136, 175, 176, 208, 212, 236, 248, 286, 372, 453
Примула (Primula sp.) 255
Просо (Panicum sp.) 26, 68, 118, 146, 210, 252, 253, 265, 283, 370, 382, 393
Птицемлечник (Ornithogalum sp.) 80
Роза (Rosa sp.) 195, 199, 217, 453, 457, 458
Ромашка (Rudbeckia sp.) 123, 386
Рогоз (Scirpus sp.) 281
Рябина обыкновенная (Sorbus aucuparia) 218, 219, 457
Салат, латук посевной (Lactuca sativa) 20, 25, 27, 34, 195, 201, 231, 232, 233, 241, 327, 391, 398, 449, 450
Сахарный тростник (Saccharum officinarum) 250, 263, 265, 283, 306, 317, 371, 382, 384
Свекла (Beta sp.) 234, 241, 266, 286, 298, 306, 314, 321, 401, 405, 409, 418, 432
— кормовая (B. vulgaris var. macroris) 76, 141
Пырей ползучий (Agropyrum repens) 62, 110, 243, 363, 364
Райграс (Lolium sp.) 243
— английский (L. perenne) 281
— итальянский (L. multiflorum) 281
Рапс (Brassica napus) 101
Ревень (Rheum sp.) 110, 111, 198, 217, 306
Редис посевной (Raphanus sativus var. sativus) 39, 107, 123, 269, 398, 473
Резуха шершавая (Arabis hirsuta) 439, 442
Репа (Brassica rapa) 39, 49, 86, 97, 213, 269
Рис посевной (Oryza sativa) 27, 38, 109, 110, 130, 140, 248, 275, 397, 461, 476
Рожь (Secale cereale) 26, 38, 46, 50, 61, 66, 69, 72, 79, 94, 110, 112, 117, 127, 139, 140, 162, 164, 175, 182, 213, 235, 244, 248, 282, 283, 363, 364, 370, 397
Роза (Rosa sp.) 195, 199, 217, 453, 457, 458
Ромашка аптечная (Matricaria chamomilla) 110, 327
— непахнущая (M. inodora) 327
— садовая (Leucanthemum vulgare) 386
Рудбекия (Rudbeckia sp.) 123, 386
Рябина обыкновенная (Sorbus aucuparia) 218, 219, 457
Салат, латук посевной (Lactuca sativa) 20, 25, 27, 34, 195, 201, 231, 232, 233, 241, 327, 391, 398, 449, 450
Сахарный тростник (Saccharum officinarum) 250, 263, 265, 283, 306, 317, 371, 382, 384
Свекла (Beta sp.) 234, 241, 266, 286, 298, 306, 314, 321, 401, 405, 409, 418, 432
— кормовая (B. vulgaris var. macroris) 76, 141
Свинорой, цинодон пальчатый (Cynodon dactylon) 317, 475
Сельдерея пахучая (Apium graveolens) 97, 122, 217, 231, 233, 241, 392, 449
Сесбания (Sesbania sp.) 476
Синяк обыкновенный (Echium vulgare) 327
Сирень (Syringa sp.) 238, 240, 313, 453
Скерда двухлетняя (Crepis biennis) 327
Скополия (Scopolia sp.) 462
Слива домашняя (Prunus domestica) 89, 107, 197, 204, 218, 240, 247, 252, 286, 308, 400, 408, 423, 453, 454, 456, 458
Смоловка широколистная (Silene latifolia) 383
Смородина золотистая (Ribes aureum) 256
— красная (R. rubrum) 36, 138, 193, 207, 217, 220, 286
— черная (R. nigrum) 36, 75, 138, 193, 207, 217, 220
Сорго (Sorghum sp.) 22, 26, 27, 38, 66, 67, 68, 94, 95, 95, 117, 210, 213, 261, 263, 265, 273, 283, 452
Спаржа лекарственная (Asparagus officinalis var. albilis) 87, 181
Спондия (Spondias sp.) 281
Страстоцвет (Passiflora sp.) 253, 281, 475
Суданская трава (Sorghum sudanense) 262, 263, 273
Сурепка обыкновенная (Barbarea vulgaris) 269
Табак вельветовый (Nicotiana ve- lutina) 446, 451
— дебни (N. debney) 408, 411, 412
— клейкий (N. glutinosa) 386, 396, 406, 409, 431
— кливлейденский (N. clevelandii) 396, 418
Тиковое дерево (Tecono gravidis) 281
Тимофеевка луговая (Phleum pratense) 110, 144, 281, 282
Томарин индийский (Tomarindus indicans) 280, 282
Тополь (Populus sp.) 74, 240, 284, 286, 299, 303, 312, 313, 318, 410
Триумфетта (Triumfetta sp.) 283
Турнепс (Brassica rapa var. rapifera) 316, 421
Тюльпан (Tulipa sp.) 29, 233, 423, 449, 476
Тыква обыкновенная (Cucurbita pepo) 26, 35, 49, 88, 97, 123, 189, 210, 217, 223, 249, 271, 305, 313, 396, 417, 475
Укроп пахучий (Anethum graveolens) 122
Фенхель обыкновенный (Foeniculum vulgare) 280
Физалис (Physalis sp.) 22, 282, 399, 465
Филант (Phyllanthus sp.) 282, 283
Флокс метельчатый (Phlox paniculata) 327
Фрезия (Fresia sp.) 134
Хинное дерево (Cinona sp.) 29
Хмель обыкновенный (Humulus lupulus) 35, 87, 101, 106, 207, 208, 209, 217, 453, 458, 463
Хрен обыкновенный (Armoracia rusticana) 39, 139, 213, 269, 279, 421, 475
Хризантема (Chrysanthemum sp.) 241, 260, 286, 299, 386, 391, 463, 464
Хурма восточная (Diospyros kaki) 97, 139
Цезальпина (Caesalpinia sp.) 283
Центелля (Centella sp.) 280
Цеструм ночной (Cestrum nocturnum) 279
Цикламен (Cyclamen sp.) 95, 233
Цикорий обыкновенный (Cichorium intybus) 232, 233, 331, 360, 386, 440
Цимбидиум гибридный (Cymbidium hybridum) 429
Цинерария гибридная (Cineraria hybrida) 327
Цинния стройная (Zinnia elegans) 284, 381, 391
Цитрон (Citrus medica) 464
Чай китайский (Thea sinensis) 200, 259
Черешня (Prunus avium) 89, 107, 197, 252, 286, 400, 408, 440, 454, 458
Черника (Vaccinium myrtillus) 371, 439, 443
Чеснок посевной (Allium sativum) 31, 55, 73, 74, 82, 87, 88, 132, 327
Чечевица (Lens sp.) 33, 85, 101, 102, 213, 235, 248
Чина (Lathyrus sp.) 25, 77, 235, 255
— лесная (L. sylvestris) 327
Чумиза зеленая (Setaria viridis) 253
Шелковица (Morus sp.) 139, 176, 206, 251, 329, 334, 354, 357, 360, 371, 440
Шпинат огородный (Spinacia oleracea) 27, 33, 34, 141, 210, 398, 401, 405, 418, 449, 453
Щавель воробьиный (Rumex acetosella) 95, 327
— кислый (R. acetosella) 33, 95, 97, 110, 210, 327
Щетинник (Setaria sp.) 253, 393
Ширица (Amaranthus sp.) 279, 381, 417, 418
— хвостатая (A. caudatus) 381, 418
Эвкалипт лимоннопахнущий (Eucalyptus citriodora) 280
Энсета вздутая (Enseta ventricosa) 281
Эритрина (Erythrina sp.) 280
Эспарцет виколистный (Onobrychis vicifolia) 34, 87, 110, 111, 184, 210, 213, 317, 235
Яблоня (Malus sp.) 89, 95, 97, 107, 118, 185, 192, 194, 196, 199, 207, 218, 222, 239, 240, 253, 406, 407, 453, 457
Якорцы стеляющиеся (Tribulus terrestris) 283
Ямс (Dioscorea sp.) 476
Ясень (Fraxinus sp.) 240
Ятрофа хлопколистная (Jatropha gossypifolia) 475
Ячмень обыкновенный (Hordeum vulgare) 27, 38, 47, 50, 61, 63, 72, 79, 80, 96, 112, 117, 127, 128, 129, 139, 140, 141, 154, 162, 175, 181, 182, 235, 242, 244, 248, 257, 281, 282, 283, 310, 362, 363, 368, 370, 397, 451, 452, 460, 475
Хмель обыкновенный (Humulus lupulus) 35, 87, 101, 106, 207, 208, 209, 217, 453, 458, 463
Хрен обыкновенный (Armoracia rusticana) 39, 139, 213, 269, 279, 421, 475
Хризантема (Chrysanthemum sp.) 241, 260, 286, 299, 386, 391, 463, 464
Хурма восточная (Diospyros kaki) 97, 139
Цезальпина (Caesalpinia sp.) 283
Центелля (Centella sp.) 280
Цератум ночной (Cestrum nocturnum) 279
Цикламен (Cyclamen sp.) 95, 233
Цикорий обыкновенный (Cichorium intybus) 232, 233, 331, 360, 386, 440
Цимбидиум гибридный (Cymbidium hybridum) 429
Цинерария гибридная (Cineraria hybridra) 327
Цинния стройная (Zinnia elegans) 284, 381, 391
Яблоня (Malus sp.) 89, 95, 97, 107, 118, 185, 192, 194, 196, 199, 207, 218, 222, 239, 240, 253, 406, 407, 453, 457
Янтарная трава (Tribulus terrestris) 283
Ячмень обыкновенный (Hordeum vulgare) 27, 38, 47, 50, 61, 63, 72, 79, 80, 96, 112, 117, 127, 128, 129, 139, 140, 141, 154, 162, 175, 181, 182, 235, 242, 244, 248, 257, 281, 282, 283, 310, 362, 363, 368, 370, 397, 451, 452, 460, 475