Марина Сергеевна Шабета
Геннадий Феодосьевич Рыковский
Виктор Иванович Парфенов

Мохообразные хвойных лесов
Беларуси

таксономия, биоморфология, экология,
биоиндикация, география, созология

LAP LAMBERT Academic Publishing
Impressum / Выходные данные
Alle in diesem Buch genannten Marken und Produktnamen unterliegen warenzeichen-, marken- oder patentrechtlichem Schutz bzw. sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Inhaber. Die Wiedergabe von Marken, Produktnamen, Gebrauchsnamen, Handelsnamen, Warenbezeichnungen u.s.w. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Библиографическая информация, изданная Немецкой Национальной Библиотекой. Немецкая Национальная Библиотека включает данную публикацию в Немецкий Книжный Каталог; с подробными библиографическими данными можно ознакомиться в Интернете по адресу http://dnb.d-nb.de.
Любые названия марок и брендов, упомянутые в этой книге, принадлежат торговой марке, бренду или запатентованы и являются брендами соответствующих правообладателей. Использование названий брендов, названий товаров, торговых марок, описаний товаров, общих имен, и т.д. даже без точного упоминания в этой работе не является основанием того, что данные названия можно считать незарегистрированными под каким-либо брендом и не защищены законом о бреднах и их можно использовать всем без ограничений.

Coverbild / Изображение на обложке предоставлено: www.ingimage.com

Verlag / Издатель:
LAP LAMBERT Academic Publishing
ist ein Imprint der / является торговой маркой
OmniScriptum GmbH & Co. KG
Bahnhofstraße 28, 66111 Saarbrücken, Deutschland / Германия
Email / электронная почта: info@lap-publishing.com

Herstellung: siehe letzte Seite /
Напечатано: см. последнюю страницу
ISBN: 978-3-659-87177-1

Zugl. / Утверд.: Минск, ГНУ "Институт экспериментальной ботаники имени В.Ф. Купревича НАН Беларуси", 2014"

Copyright / АВТОРСКОЕ ПРАВО © 2016 OmniScriptum GmbH & Co. KG
Alle Rechte vorbehalten. / Все права защищены. Saarbrücken 2016
Государственное научное учреждение
«Институт экспериментальной ботаники имени В.Ф. Куприевича НАН Беларуси»

Шабета Марина Сергеевна
Рыковский Геннадий Феодосьевич
Парфёнов Виктор Иванович

Мохообразные хвойных лесов Беларуси
Научный редактор:
В.И. Парфенов, академик НАН Беларуси

Рецензенты:
Е.А. Сидорович, член-корреспондент НАН Беларуси, доктор биологических наук
С.А. Дмитриева, доктор биологических наук

Шабета М.С., Рыковский Г.Ф., Парфёнов В.И. 2016
ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ..4
Глава 1 ИСТОРИЯ ИЗУЧЕНИЯ БРИОФЛОРЫ ХВОЙНЫХ ЛЕСОВ БЕЛАРУСИ..............7
Глава 2 МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ15
Глава 3 ХАРАКТЕРИСТИКА РАЙОНА ИССЛЕДОВАНИЙ21
Глава 4 ТАКСОНОМИЧЕСКИЙ АНАЛИЗ ..24
Глава 5 ЭКОЛОГО-БИОМОРФОЛОГИЧЕСКИЙ АНАЛИЗ41
 5.1 Формы роста (биоморфы) ..41
 5.2 Жизненные стратегии ...45
 5.3 Экоморфы по отношению к влажности и трофности субстрата (среды)49
 5.4 Субстратная приуроченность ..54
 5.4.1 Эпигейды ..56
 5.4.2 Эпиксили ...66
 5.4.3 Эпифиты ..76
 5.4.4 Эпилиты ..82
 5.5 Лесотипологические особенности бриокомпонента88
 5.5.1 Характеристика бриокомпонентов серий типов леса90
 Лишайниковая серия ..94
 Вересковая серия ..94
 Брусничная серия ..95
 Миштая серия ..97
 Орляковая серия ..99
 Кислиця серия ..100
 Сытевая серия ..102
 Крапивная серия ..103
 Папоротниковая серия ...104
 Чернильная серия типов ...105
 Прирученько-травяная серия ..107
 Долгомомощная серия ..108
 Багульниковая серия ..110
 Осоковая серия ..110
 Осоково- сфагновая серия ...112
 Сфагновая серия ..113
 5.5.2 Анализ по экологически сходным группам типов леса114
Глава 6 ГЕОГРАФИЧЕСКИЙ АНАЛИЗ ...124
 6.1 Географическая структура ..124
 6.2 Хорологический анализ в зональном аспекте126
 6.3 Полесская хорологическая дизъюнкция ...136
Глава 7 СОЗОЛОГИЧЕСКИЙ АНАЛИЗ ..139
ЗАКЛЮЧЕНИЕ ...143
BRYOPHYTE DIVERSITY IN THE BELARUS CONIFEROUS FORESTS149
ЛИТЕРАТУРА ..154
ВВЕДЕНИЕ

Вследствие своей специфической организации, экологических и географических особенностей мохообразные существенно дополняют характеристику растительных сообществ, важным компонентом которых они зачастую являются. Изучение мохообразных в составе различных растительных сообществ позволяет более глубоко оценить состояние и динамику развития последних. Учитывая, что территория Беларуси находится в лесной зоне, особого внимания заслуживают мохообразные лесных сообществ и, прежде всего, в составе преобладающих в лесном фонде хвойных формаций. Аборигенные хвойные леса на территории Беларуси, обладая рядом общих структурно-функциональных признаков, вместе с тем представлены двумя различными формациями: азональными сосновыми и зональными еловыми лесами, находящимися здесь на границе своего сплошного распространения. С этим связано подразделение территории страны на две геоботанические зоны.

Важно отметить, что сосна является более слабым эдификатором, чем ель, и с этим связана меньшая степень устойчивости микроклимата в ее сообществах. В такой связи сосна образует сообщества преимущественно на почвах недостаточно обеспеченных элементами питания при широкой экологической амплитуде по характеру увлажнения (от сухих до избыточно увлажненных), что отчасти компенсирует ее слабую эдификаторную способность. Данное обстоятельство способствует образованию в сосняках в совокупности большого разнообразия экони, заселяемых видами различной экологии, в том числе экстремальной.

В отличие от сосны ель – сильный эдификатор, вследствие чего занимает более плодородные эдафотопы и формирует более устойчивый микроклимат в своих сообществах, что благоприятно для многих стенотопных видов мохообразных.

Вместе с тем мохообразные представляют собой неотъемлемый автотрофный компонент хвойных сообществ, взаимоотношение которого с древостоям сложилось в их взаимной ценотической адаптации, восходя еще к третичному периоду, и это во многом определяет здесь функционирование и сукцессионный процесс.

На территории Беларуси третичные отложения перекрыты в основном мощ-
ным чехлом четвертичных отложений, принесенных ледниками со Скандинавии и состоящими главным образом из кисловых силикатных материалов. В такой связи здесь преобладают обедненные элементами питания песчаные почвы, покрытые преимущенно сосновыми сообществами. В них зачастую развивается сплошной мховой покров из видов, которые не обнаруживаются в спорово-пьyleвых спектрах третичных отложений. Это, прежде всего, малотервабельные олигохетофитные виды, такие как Pleurozium schreberi, Dicranum polysetum и другие мхи, приуроченные обычно к обедненным эдафотопам. Необходимо отметить, что некоторое обеднение элементами питания почвенного покрова Беларуси относительно третичного периода, совместно с воздействием антропогенных факторов привело к преобладанию лесов сосной формации в составе лесного покрова, тогда как ель составляет небольшую часть лесопокрытия. При этом у ели экологическая амплитуда уже, чем у сосны и в Пolesье ель представлена лишь отдельными небольшими «островами» участками. В такой связи целесообразно рассматривать бриокомплексы сосновых и еловых лесов в сравнительном аспекте для выявления их особенностей, которые могут быть использованы в лесоустроительной практике.

В связи со спецификой организации мохообразные являются надежными показателями экологических особенностей всего спектра типов леса и их динамики (Цыганов, 1983). Следовательно, изучение бриоразнообразия сосновых и еловых лесов Беларуси и сравнительный анализ мохообразных исследуемых сообществ позволят установить их видоспецифичность в зависимости от типа леса, реакции отдельных видов на различные антропогенные нагрузки, а также уточнить систему классификации типов хвойных лесов страны на основе бриокомплексов.

Существенное отличие от сосудистых растений по типу организации позволяет выделить мохообразные как особый объект исследования, без учета которого изучение состава и структуры лесных, прежде всего, хвойных сообществ, недостаточно. Это важно не только для современного лесоводства, но и прогностной характеристики лесных сообществ, а также при воссоздании определенных лесных экосистем в будущем. Традиционный учет при геоботанических описаниях только напочвенного мохового покрова в лесных сообществах в настоящее время уже не приемлем. Необходим учет мохообразных в лесных фитоценозах на всех субстратах и, в частности, в хвойных сообществах. Своей экологической спецификой в них характеризуются такие экологические группы, как эпигеиды, эпиксили, эпифиты и, в случае наличия камней, эпилиты. В совокупности они отражают экологические условия в лесных сообществах более полноценно, поскольку их распределение здесь связано не только с особенностями субстратов, но еще и в большой степени с микроклиматом. Последний, как отмечено выше, более устойчив по степени увлажнения и температурного режима в еловых лесах, что способствует здесь успешному заселению мохообразными всего спектра экони, где они в состоянии закрепиться. В связи с этим изучение состава и структуры бриокомплекта (бриокомплекса) хвойных лесов актуально, так как назвел необходимость изучения всего биоразнообразия экосистем как относительно целостных образований.
Глава 1
ИСТОРИЯ ИЗУЧЕНИЯ БРИОФЛОРЫ ХВОЙНЫХ ЛЕСОВ БЕЛОРУСИ

Первый список мохообразных для Беларуси был опубликован Ж.Э. Жилибером (Gilibert, 1781) по части гербарной коллекции, где приводится 82 вида для окрестностей Гродно, а вслед за ним опубликована работа Ю. Юндзилла (Jundzill, 1830), в которой указано 163 вида для западной части Беларуси и примыкающих к ней областей. В связи с тем, что в последней публикации местонахождения и экотопы большинства бриофитов не упоминаются, невозможно выделить те виды, которые были собраны в хвойных лесах Беларуси. К тому же для латинских названий видов не приводятся авторы, что затрудняет определение принадлежности таксона согласно современной систематике.

В статье Х. Доннера (Downar, 1861) приводится несколько видов мохообразных для окрестностей Могилева. Через 20 лет К. Филипович (Filipowicz, 1881) указывает для окрестностей Бреста 49 видов мохообразных (8 – печеночники, 41 – мхи), характерных для хвойных сообществ. Затем Ф. Блонски (Blonski et al., 1888) приводит материалы о мохообразных, собранных в Беловежской пуще в 1887 году, включая и польскую ее часть, без точного указания пунктов сбора, что делает сомнительным нахождение некоторых видов на территории Беларуси. К составу бриофлоры Беларуси, вероятнее всего, следует отнести 97 видов, из них для сосновых лесов характерных 88 видов (14 – печеночники, 74 – мхи). В следующей публикации (Blonski, Drymmer, 1889) для Беловежской, Свислочской и Лядской пущ, обследованных в 1888 году, указывает 35 видов, из которых к территории Беларуси относится, по-видимому, 21 вид. Относительно хвойных лесов конкретных указаний нет, но приводится Riccardia chamedryfolia для сосновых колод и на торфе, однако определение данного вида может быть ошибочным (Рыковский, Масловский, 2009).

Значительный вклад в изучение бриофлоры южной половины Беларуси внес М.А. Алексенко, обследовавший бывшую Могилевскую губернию (юго-восточная часть) и «Литовское» Полесье (территория к югу от р. Неман и к западу от городов Новогрудок, Барановичи и Пинск). Для юго-восточной Беларуси им (Алексенко, 1898) приводится 115 видов бриофитов, из которых для хвойных лесов – около 90 (15 – печеночники, 75 – мхи) без упоминания типов леса. Для юго-западной части Беларуси (бывших Пружанского, Слонимского, Волковысского, Брест-Литовского и Кобринского уездов) он указывает (Алексенко, 1900-1901) еще большее бриоразнообразие – 188 видов, из которых для хвойных лесов характерны 45 видов (11 – печеночники, 34 – мхи). Однако поскольку бывший Пружанский уезд частично заходил прежде на территорию Польши, то нахождение некоторых видов в Беларуси при отсутствии точных данных о местах их сбора сомнительно. Хранящиеся в гербарии Ботанического института им. В.Л. Комарова РАН образцы 42 видов мхов, собранных М.А. Алексенко в Беловежской пуще, также не содержат более конкретных сведений.
об их местонахождениях.

К. Шафнагелем (Szafnagel, 1908) приведены результаты более или менее тщательного бриофлористического обследования территории бывших Ошмянского, Вилейского, Свенцинского, Игуменского и Минского уездов (северо-запад и центр Минской и северо-востока Гродненской областей). Для этих уездов и соседних областей Литвы указывается около 200 видов мхов, для большинства из которых отмечена их экология. Среди них 93 вида мхов приводится для хвойных лесов, а остальные — для других экотопов либо вовсе без указания экологии. Кроме того, в данной публикации имеется список из 72 видов мхов, собранных в 1885 году в Беловежской пуще, но без конкретных указаний местонахождений.

В публикации Г.К. Крейера для бассейна р. Лахвы (Могилевская обл.) приводится 50 видов бриофитов в основном луговых и болотных сообществ (Крейер, 1914-1916), среди которых есть указание на произрастание в хвойно-осоковом болотном сообществе Hamatocaulis vernicosus и Calliergon giganteum, а также при просмотре Г.Ф. Рыковским хранящихся в гербарии БИНа РАН образцов мохообразных этого района отмечен 31 вид, не указанный в данных публикациях, причем 12 из них приводится для хвойных и смешанных лесов (сосняки – 4, ельники – 9).

При геоботаническом исследовании болот Полесья к северу от р. Припять В.С. Доктuroвским (1913, 1916 а, б) приведено 84 вида мохообразных для болотных сообществ, а также на лесных болотах отмечено 18 видов (Доктuroвский, Жуков, 1916 а, б). По итогам обследования М. Флейшер (Fleisher, 1919) рассматривает в целом моховую растительность лесов Беловежской пущи, упоминая при этом более 80 видов бриофитов, из которых около 12 видов мхов приводится конкретно для сосно- вых лесов, 17 — для болотных лесов, а для хвойных лесов в целом — 39 мхов и 9 печеночников. Ф. Тессендорф (Tessendorff, 1922) указывает 32 вида мохообразных для территории, расположенной к северу от Барановичей, из них 26 видов — обычны для хвойных лесов.

Новый этап в изучении бриофлоры Беларуси начинается после Октябрьской революции, когда в существовавших тогда границах (в восточной части) республики были широко развернуты работы геоботанического характера. В итоге геоботанического исследования территории Гомельской области (Высоцкий и др., 1925, Высоцкий, 1925) отмечено 112 видов бриофитов, из которых для сосняка без указания типа леса (Турская опытная станция) приводятся Spagnum centrale и Sph. fallax, а также для сосняков багульниковых (Петриковский и Лельчицкий районы) 6 видов сфагнумов (Sph. capillifolium, Sph. centrale, Sph. compactum, Sph. magellanicum, Sph. papillosum, Sph. rubellum), 36 видов мхов отмечено в хвойных сообществах, но приведены они без указаний типов леса. О.С. Полянская (1925 а, б) на территории Белорусского Полесья в окрестностях д. Б. Городятчи (пруто Оресь р. Хохлы) приводит для островного ельника с подлеском из дуба, крушины, орешника, березы и лины 9 ви- дов мхов (Aulacomnium pallustre, Hylocomium splendens, Plagiomnium affine, Pleurozium schreberi, Polytrichum juniperinum, Rhitidiadelphus triquetrus, Rhodobryum roseum, Sphagnum centrale, Sph. girgensohnii), а для ельников кисличных (Полянская, 1927) –

Для западного Полесья Б. Шафран (Szafran, 1930, 1952) публикует сведения о 20 видах сфагнумов, из которых Sphagnum capillifolium и Sph. squarrosum приводятся для сосновых болотных лесов.

Ссылки на нахождение в Беларуси 14 видов печеночников, характерных для лесных сообществ, содержатся в книге «Определитель печеночных мхов севера европейской части СССР», из которых конкретные указания для сосновых и еловых сообществ имеются для 5 видов (Савич, Ладыженская, 1936).

В 1936-1937 гг. изучением бриофлоры восточной части Беларуси занимался известный украинский бриолог А.С. Лазаренко. В 1938 году опубликованы результаты обследований окрестностей д. Козыня и южной части территории современного НП «Браславские озера» (между оз. Богинское и уроцищем Журавовщина, в окр. д. Замошье), где С. Мачук (Macuk, 1938) отмечает 31 вид мохообразных.

Начиная с 1960-х годов, изучением бриофлоры Беларуси занимается Г.Ф. Рыковский. Первоначально он указывал несколько видов мхов (Рыковский, 1963) в дополнение к сведениям, приведенным в Определителе лиственных мхов БССР А.С. Лазаренко (1951).

В статье Т.Н. Клакоцкой и Г.Ф. Рыковского (1976) для сосновых лесов на территории Припятского ландшафтно-гидрологического заповедника приводится 66 ви-
дов бриофитов (8 – печеночники, 58 – мхи) и представлены характеристики для лишайникового, верескового, мшнистого, орлякового, черничного, долгомощного и сфагнового типов леса.

В частично опубликованном перечне образцов мхов гербария Государственно-го природоведческого музея АН Украины, критически обработанных К.О. Уличной (1976, 1978), приведен ряд видов с территории Беларуси, а также в биологическом гербарии Института ботаники им. Н.Г. Холодного НАН Украины хранятся гербарные образцы около 100 видов бриофитов для различных областей Беларуси.

Поэже О.М. Масловский (1986) опубликовал список листостебельных мхов Минской возвышенностии, где для хвойных сообществ приводит 95 видов.

Г.Ф. Рыковским, М.П. Млыначук и О.М. Масловский (1988) по материалам изучения бриофитов, произрастающих на бетонных сооружениях, указываются для хвойных сообществ 56 видов бриевых мхов.

В начале 90-х годов Г.Ф. Рыковским и И.П. Юконене (1991) были опубликованы списки мохообразных, собранных в зоне Игналинской АЭС (район оз. Дрисвяты), где для хвойных лесов Беларуси приведен 91 вид мохообразных. Из них указания конкретного типа хвойных лесов есть лишь для 37 видов.

В результате обобщения и анализа многолетних бриофлористических исследований территории Беларуси выходят из печати первый том фундаментального издания «Флора Беларуси. Мохообразные» (Рыковский, Масловский, 2004), посвящен-
ный андреевым и бриевым мхам, затем — второй том (Рыковский, Масловский, 2009), включающий остальные мохообразные — сфагновые мхи, печеночники и антцеротовые, причем для двух последних групп это — первая опубликованная свodka в истории Беларуси. В данных двух источниках для бриофлоры республики всего приведено 445 видов и разновидностей, в том числе 346 — мхи, 97 — печеночники и 2 — антцертовые. Указания о распространении мохообразных в хвойных сообществах имеются для 208 видов, в большинстве случаев без упоминания конкретных типов леса. Среди бриофитов, приводимых для Беларуси, упоминаются и некоторые такие, существование которых на данной территории весьма сомнительно.

На основе обработки выполненных исследований С.А. Цветкова (2007) приводит 151 вид бриофитов (44 — печеночники, 107 — мхи) с их систематическим и экологогеографическим анализом для разных типов еловых лесов Беларуси, в т.ч. рассматриваются экоморфы по влажности и трофности, флористический состав и приводятся некоторые фитоценотические показатели, касающиеся мохового покрова островных ельников в Полесье.

Далее, Г.Ф. Рыковским и О.М. Масловским (2009) в обзорной статье о новых и редких видах печеночников для хвойных сообществ приводится 6 видов.

В период 2011–2012 гг. Г.Ф. Рыковским и М.С. Шабетой были проведены комплексные исследования бриофлоры НП «Браславские озера». На основе обработки этих материалов опубликована монография (Рыковский, Шабета и др., 2012). В ней всего для территории парка приводится 216 видов бриофитов, из них в хвойных лесах отмечено 114 (печеночники — 19, мхи — 95), в т.ч. в сосняках — 80 (печеночники — 9, мхи — 71), в ельниках — 99 (печеночники — 15, мхи — 84). В монографии проведен разносторонний анализ бриофлоры, рассмотрены биоморфы и жизненные стратегии

По Ярославской области (Россия) Т.В. Мальцева (1973) указывает для некоторых типов соевых лесов (долгомощный, лишайник-карликовый, чернично-сфагновый, черничный) преобладающие виды мохообразных, их обилие, проектное покрытие, встречаемость, формы роста, положение в нанорельф, синузацное положение, ритмы сезонного развития спорофитов, отношение к освещенности, прирост и годичный отпад, фитомассу, микроклимат, явление регенерации мохового покрова после нарушения при содействии возобновлению сосны.

Использование эколого-биологических особенностей бриофитов в экологическом мониторинге отражено в работе Н.Н. Серебряковой (2009) на примере Пензенской области России. Автор приводит конспект флоры листостебельных мхов (118 видов), в том числе и для хвойных лесов без выделения их типов. В работе представлен таксономический и эколого-географический анализ данной бриофлоры, место в составе природных экосистем, выделены экологические группы по отношению к субстратам, рассмотрены мхи урбанизированной территории и их состояние, а также предложены варианты использования физиологических и биохимических параметров мхов в оценке состояния окружающей среды, кроме того автором выделены редкие виды и обозначены проблемы их охраны.
В своей работе Л.Н. Анищенко (2009) рассматривает биоразнообразие мохового покрова и перспективы его использования в фитоиндикации экосистем района хвойно-широколиственных лесов европейской части Российской Федерации, характеризует фитоценотическую активность бриофитов в синэкологическом пространстве для выявления видов-индикаторов по отношению к свойствам субстрата. Автором выделены активные и высокоактивные виды, хорошо диагностирующие те или иные условия, формирующиеся в ценозах, как абсолютный индикатор синтаксонов и надежный индикатор экологических условий местообитаний. Проводится бриоиндикация чистоты атмосферного воздуха для исследованной территории.

Из анализа материалов имеющихся литературных источников в данной области следует, что бриокомпонент хвойных лесов Беларуси изучен недостаточно, в связи с чем проводимое исследование актуально, как в научном, так и в прикладном отношениях.
Глава 2
МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Употребление термина «бриокомпонент» вызвано изменением представления об эволюционной дифференциации мохообразных и трактовкой их как надотдела, в связи с чем было необходимо показать роль бриофитов в качестве неотъемлемого компонента хвойных лесных сообществ. Этот термин отвечает положению, занимаемому бриофитами (как неотъемлемой органически составной части более или менее сложной структуры лесных сообществ). Понятие это (в сущности – компонент сообщества) более универсальное, чем, например, понятие «бриокомплекс», поскольку последнее как бы декларирует свою независимость от сообщества. В настоящее время не приемлемо употребление таких выражений, как «моховой покров» (архаично, поскольку игнорирует группу печеночников) и «бриофлора» в отношении ценоз-групп, к которым относятся, в частности, и хвойные леса. Строго говоря, бриокомпонент – это комплекс видов бриофитов в составе порциальной ценозфороны.

Основной целью исследования являлось достаточно полное выявление видового состава бриокомпонента Беларуси по типам аборигенного хвойного леса, как сошного, так и елового с их сравнительной характеристикой по сериям типов леса, выявление таксономической, биоморфологической, экологической, географической структуры, а также общих (интегрирующих) и специфичных (дифференцирующих) видов по данным двум формациям и проведение созологического анализа.

Использованы собственные биорелические сборы (около 5000 образцов); гербарные коллекции мохообразных ИЭБ НАН Беларуси (MSK-B), БИА РАН, Института ботаники им. Н.Г. Холодного НАН Украины, Института экологии Карпат, ГГУ им. Я. Купалы, ГГУ им. Ф. Скорины и некоторых других коллекций, а также дополненные и переработанные отчетные материалы лаборатории флоры и систематики растений и другие научные работы.
Рисунок 2.1. – Карта-схема размещения обследованных объектов

Таблица 2.1. – Количество описаний в разрезе типов леса и геоботанических подзон
Аббревиатуры: Coniferous forests: Cl cladinosum; Ca callunosum; Va vacciniosum; Pl pleuroziosum; Pt pteridiosum; Ox oxalidosum; Ae aegopodiosum; Ur urticosum; F filicosum; My myrtillosum; FH fontinale-herbosum; Po polytrichosum; Le ledosum; C caricosum; CS caricoso-sphagnosum; S sphagnosum.

<table>
<thead>
<tr>
<th>Подзона</th>
<th>Количество описаний по сериям типов леса, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cl</td>
</tr>
<tr>
<td>PINETUM</td>
<td></td>
</tr>
<tr>
<td>Эдафотопы</td>
<td></td>
</tr>
<tr>
<td>дубово-</td>
<td>3</td>
</tr>
<tr>
<td>темнохвойных лесов</td>
<td></td>
</tr>
<tr>
<td>ельно-грабовых</td>
<td>3</td>
</tr>
<tr>
<td>дубрав</td>
<td></td>
</tr>
<tr>
<td>широколиствен-</td>
<td>3</td>
</tr>
<tr>
<td>сосных лесов</td>
<td></td>
</tr>
<tr>
<td>ВСЕГО</td>
<td>9</td>
</tr>
<tr>
<td>PICEETUM</td>
<td></td>
</tr>
<tr>
<td>Эдафотопы</td>
<td></td>
</tr>
<tr>
<td>дубово-</td>
<td>-</td>
</tr>
<tr>
<td>темнохвойных лесов</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>26</td>
</tr>
</tbody>
</table>

16

К собранным гербарным образцам составлялись типовые этикетки, в которых указаны географическое месторасположение, экологические условия, растительные сообщества и субстратная приверочность. Для количественной оценки видового состава определялось проектное покрытие мохообразными субстратов в растительных сообществах методом глаэомерной оценки, в некоторых случаях приводилась оценка обилия по шкале Друде. Также указывались такие важные показатели, как субстратное распределение (для эпифитов — распределение по породам деревьев и характер их расположения на данном субстрате).

| елово-грaabвых | - | - | - | 3 | 13 | 6 | 12 | 10 | 6 | 4 | 13 | 4 | 7 | - | 5 | 3 | - |
|-----------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| широколиственнов- | - | - | - | 3 | 19 | - | - | 3 | 16 | 4 | 4 | - | 3 | 3 | - | - |
| сосновых лесов | - | - | - | 42 | 17 | 100| 22 | 13 | 39 | 82 | 18 | 17 | - | 15 | 9 | - |
| **ВСЕГО** | - | - | - | 42 | 17 | 100| 22 | 13 | 39 | 82 | 18 | 17 | - | 15 | 9 | - |

По современной классификации у мхов в составе бриофитов хвойных лесов Беларуси представлены классы: Sphagnopsida, Andreaeopsida, Polytrichopsida, Tetraphidopsida, Bryopsida. Однако мы вслед за Г.Ф. Рыковским (2011 б) считаем такую классификацию не вполне оправданной; ведь, исходя из типа организации бриевых мхов, такие группы, как политриховые и тетрафисовые, относятся к классу Bryopsida, а их относительная примитивность по структуре спороногов не дает достаточного основания для выделения их на уровне классификационного ранга Sphagnopsida и Andreaeopsida. Последние два класса в эволюционном отношении представляют собой высокоспециализированные группы, которые значительны удалены по признакам организации (прежде всего, спороногов) от целостного класса Bryopsida. На этом основании полагаем, что тетрафисовые и политриховые могут рассматриваться как подклассы класса Bryopsida.

Цитирование видовых названий сосудистых растений приводится по (Определитель…, 1999), а сокращения авторов латинских названий их таксонов по стандартам при цитировании (Authors…., 1992; Vascular…., 1992).

При выяснении экологической приуроченности мохообразных различается 7 основных экотопов: почва с развитой дерниною или лесной подстилкой, обнаженная почва или грунт, кора живых деревьев (стволь с ветвями и основания стволов с выступающими корнями), гниющая древесина, камни, разлагающиеся экскременты и водная среда. Нами считается целесообразным изучение мохообразных всех экотопов, поскольку в настоящее время при выделении типов леса применяются методы, требующие учет полного флористического состава, при этом зачастую именно второстепенные по степени обилия виды, играют важную роль при выделении синтаксономических единиц.

В зависимости от степени увлажнения предпочитаемых местообитаний в направлении ее возрастания выделяются гидроморфы бриофитов: мезоксерофиты, ксеромезофиты, мезофиты, гигромеозофиты, мезотрогофиты, гигротрогофиты, гигрофиты. В зависимости от степени обеспеченности субстрата элементами питания в направлении его возрастания выделяются трофоморфы: олиготрофы, олиго-
мезотрофы, мезотрофы, эвмезотрофы, мезоэвтрофы, эвтрофы. Реакция среды (рН) связана с различными почвенными факторами и не является для бриофитов узко ограничивающим фактором. Как правило, существуют группы видов, встречающиеся при различных значениях рН. Однако для разных групп характерна разная амплитуда кислотности. Выделяются группы: гиперацидофиллы, ацидофиллы, ацидонейтрофиллы, мезоацидофиллы, мезоацидонейтрофиллы, мезоацидонейтробазифиллы, эврифиллы (Кушов, 1948; Лавренко, 1962).

Выделение экологических особенностей мохообразных проведено согласно методикам установления степени участия видов бриофитов в лесных насаждениях и антропогенно нарушенных экотопах (Шабета, 2010 а-б, 2012; Зенцова (Шабета), 2009 а-г; Маврищев, Зенцова (Шабета), 2009 а-б, 2010; Шабета, Маврищев, 2010), где

где x и у — количество видов специфичных для двух сравниваемых флор; z — количество общих, или совместных видов.

Для наполнения информационного блока данных по бриофлоре хвойных лесов Беларуси создана и адаптирована к специфике организации и экологии мохообразных база данных «Мохообразные» (Шабета, 2015 а, Шабета, Рыковский, 2015 в).

Глава 3
ХАРАКТЕРИСТИКА РАЙОНА ИССЛЕДОВАНИЙ

Географическое положение, тектоника и рельеф. Беларусь располагается в географическом центре Европы, и ее территория простирается с севера на юг на 560 км и с запада на восток – на 650 км, занимая площадь – 207,6 тыс. км². В тектоническом отношении страна находится в пределах западной окраины Восточно-Европейской (Русской) платформы со средней абсолютной высотой 159 м. Мощность осадочного чехла колеблется от нескольких метров (Украинский щит) до 6 км (Припятский прогиб). В нескольких местах кристаллический фундамент выходит на поверхность (окрестности деревни Глушковичи Лельчицкого района Гомельской области). Высшая точка – гора Дзержинская (345 м), минимальная абсолютная отметка (80 м) – в месте пересечения Нёманом белорусско-литовской границы. Рельеф понижается на север и на юг от центра. Основные рельефообразователи – четвертичные отложения. В общих чертах рельеф отражает особенности тектонического строения Восточно-Европейской платформы. В формировании современного облика рельефа территории большое значение имели четвертичные оледенения.

Гидрография. Особенности тектоники кристаллического фундамента находят свое отражение в рисунке гидрографической сети. Вследствие равнинности рельефа течение рек плавное, питание преимущественно грунтово-снеговое. Реки замерзают на период 30-120 дней; разливаются весной, мелют летом. Здесь около 11 000 озер (в основном ледникового происхождения), больше всего в Белорусском Поеззье.

Климатические особенности. Территория Беларуси находится в пределах западной области северного умеренного пояса и характеризуется умеренно-континентальным типом климата. Среднегодовой радиационный баланс положительный и увеличивается с северо-востока на юго-запад с 1500 до 1800 МДж/м², в среднем с ноября по февраль он отрицателен, а максимален в июне. Атмосферное давление в среднем за год постепенно возрастает с севера и северо-запада на юг и юго-восток, максимально – в январе. Зимой преобладают ветры западных и юго-западных направлений, а летом – западных и северо-западных.

Важнейший климатообразующий процесс – западный перенос воздушных масс, в гораздо меньшей степени – арктические и тропические воздушные массы. Морские умеренные воздушные массы господствуют здесь в течение всего года и сопровождаются зимой потеплением, летом – похолоданием, а континентальные – вызывают зимой похолодание, а летом – потепление и сухость.

Среднегодовая температура воздуха повышается с северо-востока (4,4 °C) на юго-запад (7,4 °C). Минимальные среднемесячные температуры наблюдаются в январе (-8,5 °C на северо-востоке и -4,5 °C на юго-западе), максимальные – в июле (17 °C на севере, 19,7 °C на юге). Годовые амплитуды температур повышаются с запада на восток (соответственно 23 °C и 26 °C).
Годовой ход абсолютной влажности воздуха совпадает с годовым ходом температур. Среднегодовая относительная влажность – 80%, максимальна в зимний период (88-90%), а минимальна в мае и июне (30%). Количество пасмурных дней колеблется от 135 на юго-востоке до 175 на северо-западе страны в год и достигает максимума зимой (≥80% дней), а минимально летом (45-55%). С высокой относительной влажностью связана частая повторяемость туманов, которые регистрируются 35-100 дней в году.

Среднегодовое количество осадков колеблется от 500 до 700 мм в год (зона достаточного увлажнения) и уменьшается с северо-запада на юго-восток. Наибольшее количество осадков характерно для июля и августа, наименьшее – для января и февраля. Около 70% всех осадков выпадает с апреля по октябрь.

Почвенный покров. Около 45% территории Беларуси занимают автоморфные почвы. Зональными для смешанных и широколиственных лесов являются дерново-подзолистые почвы. Под хвойными лесами развиваются подзолистые почвы. Во всех областях встречаются дерново-карбонатные почвы (наибольшие площади – в бассейнах Припяти, Святити и Горьки), бурые лесные – на северо-западе и западе Беларуси (Гродненский район, территория НП «Беловежская пуща») под елово-дубовыми и другими лесами. Полугидроморфные (заболоченные) почвы интразональны и занимают около 40% территории. Дерново-подзолистые почвы образуются под травянистой, мохово-травянистой и лесной растительностью и занимают около 23% территории.

Флора и растительность. Флора Беларуси включает около 1650 видов сосудистых растений, из которых приблизительно 1500 видов относится к травам и не сколько более 100 видов – к древесным растениям, около 2000 видов водорослей, около 600 видов лишайников и примерно 430 видов мохообразных.

Зональный тип растительности – леса (лесопокрытость территории – около 79 тыс. км², или 35%), из которых преобладают сосняки (50,2% лесов республики), а ельники по занимаемой площади находятся лишь на четвертом месте (9,4%). Листяги и прочие хвойные на территории Беларуси представлены исключительно лесными культурами брусничной, миштой, кисличной, снеговой и черничной сериями и типов леса, характеризуются минимальным моховым разнообразием, характерным для аналогичных типов хвойных лесов и занимают лишь 0,01% лесопокрытой площади, по этой причине мы посчитали целесообразным ими пренебречь при анализе биокомпонента хвойных лесов.

Распространение хвойных лесов. Расположение Беларуси в месте перехода евросибирской хвойной к европейской широколиственной геоботанической области (зоне) отражает сложный флороценотический состав на территории страны, где выделяется три четко очерченные подзоны. В северной части территории значительно участие в составе фитоценозов элементов бореальной флоры (дубравно- кустарниковые темнохвойные южнотаежные леса), а к югу их количество и степень участия несколько снижается, и они постепенно замещаются неморальными, атлантическими и понтийскими видами (подзона широколиственно-сосновых лесов). На
стыке указанных двух областей выделяется переходная подзона, в пределах которой имеет место смещение примерно в равной мере как западноевропейских, так и бореальных элементов.

В 60-е годы XX века И.Д. Юркевичем и В.С. Гельтманом (1965) был разработан современный вариант лесорастительного и геоботанического районирования, согласно которому на территории Беларуси выделяется 3 подзоны, 7 округов и 25 районов. Северная подзона – дубово-темнохвойных лесов, ограниченная с юга северной границей распространения граба, охватывает Белорусское Поозерье, основные воззвышенности Белорусской гряды и Восточнобелорусскую равнину. Центральная подзона – елово-гробовых дубрав занимает территорию между северной границей граба и южной границей сплошного распространения ели, охватывает основные равнины Предполяя. Южная подзона – широколиственно-сосных лесов – расположена южнее границы сплошного распространения ели и занимает основную часть территории Белорусского Полесья.

Сосняки представлены во всех геоботанических подзонах, округах и районах Беларуси, а елово-лиственные – зональны, и их участие в лесном фонде в направлении с севера на юг постепенно уменьшается. Относительно подзон участие сосных лесов изменяется от 51,7% в подзоне дубово-темнохвойных лесов до 62,9% в подзоне елово-гробовых дубрав и 60,2% в подзоне широколиственно-сосных лесов, а еловых – от 70,8%, до 26,9% и 2,3% (островные местообитания) соответственно. Наиболее крупные массивы сосновых лесов находятся в Полоцкой, Нарочано-Вилейской, Верхнеманской низинах, на Центральнооберезицкой равнине, во многих местах Полесской низменности и других (Юркевичич, Ловчий, 1984; Лесной кадастр…, 2008) на бедных песчаных почвах, а на богатых гумусистых и и других почвах их доля невелика. Здесь представлены преимущественно биодоминантные елово-сосные фитоценозы.

Удельный вес ельников составляет более 10% до южных отрогов Белорусской гряды почти повсеместно. Особенно широко ельники распространены на плодородных почвах Оршанской возвышенности и северной части Оршанско-Могилевского плато (35,8%), менее представлены в бассейне Западной Двины (14,9%); на Минской возвышенности, Борисовских и Ошмянских грядах их доля несколько увеличивается (16,3%) по сравнению с возвышенностями западной части Белорусской гряды (12,3%). В Предполяе количество ельников резко снижается (6,3%). Исключение составляют Беловежская пуща и Копыльская гряда (10-15%). В Полесье участие ельников составляет менее 1% (островное распространение). В Белорусском Полесье около 30 островных местонахождений ели (Полянская, 1927; Парфенов, 1964; Ребриста, Шmidt, 1972; Ермохин, Пугачевский, 2009), из которых наиболее крупные участки ели расположены в районах Малориты, Столина, Лельчиц и др.
Глава 4
ТАКСОНОМИЧЕСКИЙ АНАЛИЗ

К настоящему времени после обработки собранного обширного гербарного материала, а также литературных и отчетных данных в составе бриофлоры хвойных лесов Беларуси выявлено 255 видов из 134 родов, 65 семейств, 21 порядка, 5 классов и 2 отделов надотдела Bryobionta (Шабета, 2016; таблицы 4.1-4.3). Видовой состав бриокомпонента хвойных лесов сравнительно богат и составляет 57,3% от числа видов известных в составе бриофлоры Беларуси. Важно отметить, что реально на обследованной территории возможно нахождение еще некоторых видов бриофитов как известных в других лесных экотопах, так и отмеченных на соседних территориях.

Таблица 4.1. – Таксономический состав бриокомпонента хвойных лесов

<table>
<thead>
<tr>
<th>Отдел / Класс</th>
<th>Порядок</th>
<th>Количество, шт.</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>семейств</td>
<td>Hвойн.</td>
<td>Сосн.</td>
<td>Ел.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>родов</td>
<td>Hвойн.</td>
<td>Сосн.</td>
<td>Ел.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>видов</td>
<td>Hвойн.</td>
<td>Сосн.</td>
<td>Ел.</td>
<td></td>
</tr>
<tr>
<td>1. Marchantiophyta</td>
<td>7</td>
<td>25 20 23</td>
<td>35 25 31</td>
<td>57 41 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Jungermanniopsida</td>
<td>6, в т.ч.</td>
<td>22 17 20</td>
<td>31 21 28</td>
<td>53 37 47</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pelliiales</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>3 2 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pallaviciniales</td>
<td>1 0 1</td>
<td>1 0 1</td>
<td>1 0 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metzgeriales</td>
<td>2 2 2</td>
<td>3 3 3</td>
<td>5 4 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Porellales</td>
<td>3 1 3</td>
<td>3 1 3</td>
<td>3 1 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pilidiales</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>2 2 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jungermaniales</td>
<td>14 12 12</td>
<td>22 15 19</td>
<td>39 28 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Marchantiopsida</td>
<td>14</td>
<td>40 37 38</td>
<td>99 87 86</td>
<td>198 166 158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Sphagnopsida</td>
<td>Sphagnales</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>26 26 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Andreaeopsida</td>
<td>Andreaeales</td>
<td>1 1 0</td>
<td>1 1 0</td>
<td>1 1 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Bryopsida</td>
<td>12, в т.ч.</td>
<td>38 35 37</td>
<td>97 85 85</td>
<td>171 139 141</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Polytrichiales</td>
<td>1 1 1</td>
<td>4 4 3</td>
<td>10 9 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 Buxbaumiales</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3 Funariales</td>
<td>1 1 1</td>
<td>2 2 1</td>
<td>2 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.4 Encalyptales</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 Grimmiales</td>
<td>1 1 1</td>
<td>4 4 2</td>
<td>5 5 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.6 Dicraniales</td>
<td>5 5 5</td>
<td>17 15 14</td>
<td>33 25 27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7 Splachniales</td>
<td>2 2 2</td>
<td>2 2 1</td>
<td>2 2 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8 Orthotrichiales</td>
<td>1 1 2</td>
<td>2 2 1</td>
<td>5 4 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9 Hymenostomata</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td>1 1 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.10 Bryales</td>
<td>5 5 5</td>
<td>9 9 9</td>
<td>29 24 23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.11 Hypnales</td>
<td>18 15 18</td>
<td>53 44 49</td>
<td>81 64 73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Итого: 2 / 5</td>
<td>21</td>
<td>65 57 61</td>
<td>134 112 117</td>
<td>255 207 208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Семейство</td>
<td>Род</td>
<td>Вид</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Отдел Marchantiophyta
Класс Marchantiopsida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Порядок Marchantiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Marchantiaceae</td>
<td>Marchantia</td>
<td>Marchantia polymorpha L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Conocephalaceae</td>
<td>Conocephalum</td>
<td>Conocephalum conicum (L.) Dumort.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Ricciaceae</td>
<td>Riccia</td>
<td>Riccia fluitans L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ricciocarpos</td>
<td>Ricciocarpos natans (L.) Corda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Класс Jungermanniopsida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Порядок Pelliales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Pelliaceae</td>
<td>Pellia</td>
<td>Pellia endiviifolia (Dicks.) Dumort.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pellia epiphylla (L.) Corda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pellia neesiana (Gottsche) Limpr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Порядок Pallaviciniales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Moerckiaceae</td>
<td>Moerckia</td>
<td>Moerckia flotoviana (Nees) Schiffn.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Порядок Metzgeriales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Aneuraceae</td>
<td>Aneura</td>
<td>Aneura pinguis (L.) Dumort.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Riccardia</td>
<td>Riccardia latifrons (Lindb.) Lindb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riccardia multifida (L.) Gray</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Riccardia palmata (Hedw.) Carruth.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Порядок Porellales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Radulaceae</td>
<td>Radula</td>
<td>Radula complanata (L.) Dumort.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Lejeuneaceae</td>
<td>Lejeunea</td>
<td>Lejeunea cavifolia (Ehrh.) Lindb.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Порядок Ptilidiales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Ptilidiaceae</td>
<td>Ptilidium</td>
<td>Ptilidium ciliare (L.) Hampe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ptilidium pulcherrimum (Weber) Vain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Порядок Jungermaniales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Trichocoleaceae</td>
<td>Trichocolea</td>
<td>Trichocolea tomentella (Ehrh.) Dumort.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Lepidoziaceae</td>
<td>Bazzania</td>
<td>Bazzania trilobata (L.) Gray</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lepidozia</td>
<td>Lepidozia reptans (L.) Dumort.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chiloscyphus</td>
<td>Chiloscyphus latifolius (Nees) J.J. Engel et R.M. Schust.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lophocoleaceae</td>
<td>Chiloscyphus minor (Nees) J.J. Engel et R.M. Schust.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chiloscyphus pallescens (Ehrh. Ex Hoffm.) Dumort.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chiloscyphus polyanthos (L.) Corda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Таблица 4.2. – Таксономическая структура бриокомпонента хвойных лесов Беларуси
<table>
<thead>
<tr>
<th>Семейство</th>
<th>Род</th>
<th>Вид</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>32. Cephalozia connivens (Dicks.) Lindb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33. Cephalozia lunulifolia (Dumort.) Dumort.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34. Cephalozia pleniceps (Austin) Lindb.</td>
</tr>
<tr>
<td></td>
<td>22. Nowellia</td>
<td>35. Nowellia curvifolia (Dicks.) Mitt.</td>
</tr>
<tr>
<td></td>
<td>23. Odontoschisma</td>
<td>36. Odontoschisma denudatum (Mart.) Dumort.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38. Cephalozia ellachista (J.B. Jack ex Gottsche et Rabenh.) Schiffn.</td>
</tr>
<tr>
<td></td>
<td>26. Isopaches</td>
<td>42. Isopaches bicrenatus (Schmidel ex Hoffm.) H. Buch</td>
</tr>
<tr>
<td></td>
<td>27. Lophozia</td>
<td>43. Lophozia ascendens (Warnst.) R.M. Schust.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44. Lophozia excisa (Dicks.) Dumort.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45. Lophozia longiflora (Nees) Schiffn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>46. Lophozia ventricosa (Dicks.) Dumort.</td>
</tr>
<tr>
<td>28. Orthocalycaceae</td>
<td>29. Scapania</td>
<td>47. Orthocalyx attenuatus (Mart.) A. Evans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48. Scapania apiculata Spruce</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49. Scapania irrigua (Nees) Nees</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51. Mylia anomala (Hook.) Gray</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53. Calypogeia muelleriana (Schiffn.) Muell. Frib.</td>
</tr>
<tr>
<td>23. Jungermanniaceae</td>
<td>33. Liochlaena</td>
<td>55. Liochlaena lanceolata Nees</td>
</tr>
<tr>
<td></td>
<td>24. Geocalycaceae</td>
<td>34. Geocalyx</td>
</tr>
</tbody>
</table>

Отдел Бурыфиты
Класс Sphagnopsida
8. Порядок Sphagnales

<table>
<thead>
<tr>
<th>Семейство</th>
<th>Род</th>
<th>Вид</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>59. Sphagnum balticum (Russow) C.E.G. Jensen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60. Sphagnum capillifolium (Ehrh.) Hedw.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61. Sphagnum centrale C.E.G. Jensen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62. Sphagnum compactum Lam. & DC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>63. Sphagnum contortum Schultz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64. Sphagnum cuspidatum Ehrh. ex Hoffm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65. Sphagnum fallax (H.Klinggr.) H. Klinggr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>66. Sphagnum fimbriatum Wilson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67. Sphagnum flexuosum Dozy & Molk.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68. Sphagnum fuscom (Schimp.) H. Klinggr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69. Sphagnum girgensohnii Russow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70. Sphagnum magellanicum Brid.</td>
</tr>
<tr>
<td>Семейство</td>
<td>Род</td>
<td>Вид</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>71. Sphagnum obtusum Warnst.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>72. Sphagnum palustre L.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>73. Sphagnum papillosum Lindb.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>74. Sphagnum platyphyllum (Lindb. ex Braithw.) Warnst.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>75. Sphagnum quinquefarium (Lindb. ex Braithw.) Warnst.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>76. Sphagnum riparium Angstr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>77. Sphagnum rubellum Wilson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>78. Sphagnum russowii Warnst.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>79. Sphagnum squarrosum Crome</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80. Sphagnum subsecundum Nees</td>
<td></td>
</tr>
<tr>
<td></td>
<td>81. Sphagnum teres (Schimp.) Angstr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82. Sphagnum warnstorffii Russow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>83. Sphagnum wulfianum Girg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Andreaeopsida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37. Andreaea</td>
<td>84. Andreaea rupestris Hedw.</td>
</tr>
<tr>
<td></td>
<td>10. Bryopsida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85. Atrichum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>86. Atrichum tenellum (Roehl.) Bruch et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>87. Atrichum undulatum (Hedw.) P. Beauv.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>88. Pogonatum nanum (Hedw.) P. Beauv.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>89. Polytrichastrum formosum (Hedw.) G.L.Sm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>90. Polytrichastrum longisetum (Sw. ex Brid.) G.L.Sm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>91. Polytrichum commune Hedw.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>92. Polytrichum juniperinum Hedw.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>93. Polytrichum piliferum Hedw.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>94. Polytrichum strictum Brid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Tetraphidiales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>95. Tetraphis pellucida Hedw.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12. Buxbaumiales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>96. Buxbaumia aphylla Hedw.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13. Funariales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>97. Funaria hygrometrica Hedw.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>98. Physcomitrium pyriforme (Hedw.) Hampe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14. Encalyptales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>99. Encalypta streptocarpa Hedw.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15. Grimmiales</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100. Bucklandiella heterosticha (Hedw.) Bednarek-Ochyra & Ochyra</td>
<td></td>
</tr>
<tr>
<td></td>
<td>102. Grimmia pulvinata (Hedw.) Sm.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>103. Niphophrichum canescens (Hedw.) Bednarek-Ochyra & Ochyra</td>
<td></td>
</tr>
<tr>
<td>Семейство</td>
<td>Род</td>
<td>Вид</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>50. Schistidium</td>
<td>104. Schistidium apocarpum (Hedw.) Bruch et al.</td>
<td></td>
</tr>
<tr>
<td>34. Leucobryaceae</td>
<td>51. Campylopus</td>
<td>105. Campylopus flexuosus (Hedw.) Brid.</td>
</tr>
<tr>
<td>52. Dicranodontium</td>
<td>106. Dicranodontium denudatum (Brid.) E. Britton</td>
<td></td>
</tr>
<tr>
<td>53. Leucobryum</td>
<td>107. Leucobryum glaucum (Hedw.) Angstr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>109. Dicranella crispa (Hedw.) Schimp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>110. Dicranella heteromalla (Hedw.) Schimp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>111. Dicranella varia (Hedw.) Schimp.</td>
</tr>
<tr>
<td>55. Dicranum</td>
<td>112. Dicranum bonjeanii De Not.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>113. Dicranum flagellare Hedw.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>114. Dicranum majus Turner</td>
<td></td>
</tr>
<tr>
<td></td>
<td>115. Dicranum montanum Hedw.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>116. Dicranum polysetum Sw.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>117. Dicranum scoparium Hedw.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>118. Dicranum spurium Hedw.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>119. Dicranum viride (Sull. & Lesq.) Lindb.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>58. Ditrichium</td>
<td>122. Ditrichium cylindricum (Hedw.) Grout</td>
</tr>
<tr>
<td></td>
<td>59. Pleuridium</td>
<td>123. Pleuridium subulatum (Hedw.) Rabenh.</td>
</tr>
<tr>
<td></td>
<td>61. Bryoerythrophyllum</td>
<td>125. Bryoerythrophyllum recurvirostrum (Hedw.) P.C. Chen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>126. Didymodon fallax (Hedw.) R.H. Zander</td>
</tr>
<tr>
<td></td>
<td></td>
<td>127. Didymodon rigidulus Hedw.</td>
</tr>
<tr>
<td></td>
<td>63. Syntrichia</td>
<td>129. Tortella tortuosa (Hedw.) Limpr.</td>
</tr>
<tr>
<td></td>
<td>64. Tortella</td>
<td>130. Tortula acaulon (With.) R.H. Zander</td>
</tr>
<tr>
<td></td>
<td>65. Tortula</td>
<td>131. Tortula lanceola R.H. Zander</td>
</tr>
<tr>
<td></td>
<td></td>
<td>132. Weissia controversa Hedw.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>134. Fissidens bryoides Hedw.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>135. Fissidens osmundoides Hedw.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>136. Fissidens taxifolius Hedw.</td>
</tr>
<tr>
<td>39. Meesiaceae</td>
<td>68. Leptobryum</td>
<td>137. Leptobryum pyriforme (Hedw.) Wilson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>138. Leptobryum pyriforme (Hedw.) Wilson</td>
</tr>
<tr>
<td>40. Splachnaceae</td>
<td>70. Splachnum</td>
<td>139. Splachnum ampullaceum Hedw.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>141. Orthotrichum obtusifolium Brid.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>142. Orthotrichum pumilum Sw.</td>
</tr>
<tr>
<td></td>
<td>42. Orthotrichum</td>
<td>143. Orthotrichum speciosum Nees</td>
</tr>
<tr>
<td></td>
<td>72. Ulota</td>
<td>144. Ulota crispa (Hedw.) Brid.</td>
</tr>
</tbody>
</table>

17. Порядок Splachnales

18. Порядок Orthotrichales

19. Порядок Hedwigiales
<table>
<thead>
<tr>
<th>Семейство</th>
<th>Род</th>
<th>Вид</th>
</tr>
</thead>
<tbody>
<tr>
<td>44. Mielichhoferiaceae</td>
<td>76. Pohlia</td>
<td>147. Bryum argenteum Hedw.</td>
</tr>
<tr>
<td>45. Mniaceae</td>
<td>77. Mnium</td>
<td>148. Bryum bimum (Schreb.) Turner</td>
</tr>
<tr>
<td>47. Aulacomniaceae</td>
<td>82. Aulacomnium</td>
<td>150. Bryum capillare Hedw.</td>
</tr>
<tr>
<td>52. Pylaisiadelphaceae</td>
<td>88. Platygyrium</td>
<td>155. Bryum turbinatum (Hedw.) Turner</td>
</tr>
<tr>
<td>53. Anomodontaceae</td>
<td>89. Anomodon</td>
<td>156. Rhodobryum roseum (Hedw.) Limpr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>157. Pohlia cruda (Hedw.) Lindb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>158. Pohlia nutans (Hedw.) Lindb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>159. Pohlia wahlenbergii (F.Weber & D.Mohr) A.L.Andrews</td>
</tr>
<tr>
<td>57. Plagiomnium</td>
<td>78. Plagiomnium</td>
<td>163. Plagiomnium affine (Blandow ex Funck) T.J. Kop.</td>
</tr>
<tr>
<td>60. Leucodon</td>
<td>86. Leucodon</td>
<td>166. Plagiomnium ellipticum (Brud.) T.J. Kop.</td>
</tr>
<tr>
<td>63. Anomodon</td>
<td>89. Anomodon</td>
<td>169. Plagiomnium undulatum (Hedw.) T.J. Kop.</td>
</tr>
<tr>
<td>64. Hypnum</td>
<td>87. Hypnum</td>
<td>170. Pseudobryum cinclidioiides (Huebener) T.J.Kop.</td>
</tr>
<tr>
<td>65. Leucodonta</td>
<td>86. Leucodon</td>
<td>171. Rhizomnium punctatum (Hedw.) T.J.Kop.</td>
</tr>
<tr>
<td>67. Anomodon longifolius (Brid.) Hartm.</td>
<td>174. Aulacomnium palustre (Hedw.) Schwaegr.</td>
<td></td>
</tr>
</tbody>
</table>

20. Порядок Bryales

21. Порядок Hypnales
<table>
<thead>
<tr>
<th>Семейство</th>
<th>Род</th>
<th>Вид</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>91. Neckera</td>
<td>188. Homalia trichomanoides (Hedw.) Bruch et al.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>189. Neckera complanata (Hedw.) Huebener</td>
</tr>
<tr>
<td></td>
<td></td>
<td>190. Neckera pennata Hedw.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>192. Hylocomium splendens (Hedw.) Bruch et al.</td>
</tr>
<tr>
<td></td>
<td>93. Hylocomium</td>
<td>193. Pleurozyum schreberi (Brid.) Mitt.</td>
</tr>
<tr>
<td></td>
<td>94. Pleurozium</td>
<td>194. Rhytiadielphus squarrosus (Hedw.) Warnst.</td>
</tr>
<tr>
<td></td>
<td>95. Rhytiadielphus</td>
<td>195. Rhytiadielphus triquetrus (Hedw.) Warnst.</td>
</tr>
<tr>
<td>57. Lembophyllaceae</td>
<td>97. Brachytheciumstrum</td>
<td>197. Brachytheciastrum velutinum (Hedw.) Ignalov & Huttunen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>198. Brachythecium albicans (Hedw.) Bruch et al.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>199. Brachythecium campestre (Muell. Hal.) Bruch et al.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200. Brachythecium mildeanum (Schimp.) Schimp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>201. Brachythecium rivulare Bruch et al.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>202. Brachythecium rutabulum (Hedw.) Bruch et al.</td>
</tr>
<tr>
<td>58. Brachytheciaceae</td>
<td>98. Brachythecium</td>
<td>204. Cirriphyllum piliferum (Hedw.) Grout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>205. Eurhynchieastrum pulchellum (Hedw.) Ignalov & Huttunen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>207. Homalothecium sericeum (Hedw.) Bruch et al.</td>
</tr>
<tr>
<td></td>
<td>102. Kindbergia</td>
<td>208. Kindbergia praelonga (Hedw.) Ochyra</td>
</tr>
<tr>
<td></td>
<td>103. Oxyrrhynchieastrum</td>
<td>209. Oxyrrhynchieastrum hians (Hedw.) Loeske</td>
</tr>
<tr>
<td></td>
<td></td>
<td>210. Oxyrrhynchieastrum speciosum (Brid.) Warnst.</td>
</tr>
<tr>
<td>104. Pseudoscleropodium</td>
<td>211. Pseudoscleropodium purum (Hedw.) M.Fleisch. ex Broth.</td>
<td></td>
</tr>
<tr>
<td>105. Sciuro-hypnum</td>
<td></td>
<td>212. Sciuro-hypnum oedipodium (Mitt.) Ignatov & Huttunen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>213. Sciuro-hypnum populeum (Hedw.) Ignatov & Huttunen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>214. Sciuro-hypnum reflexum (Starke) Ignatov & Huttunen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>215. Sciuro-hypnum starkei (Brid.) Ignatov & Huttunen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>217.Calliergon cordifolium (Hedw.) Kindb.</td>
</tr>
<tr>
<td></td>
<td>107. Straminergon</td>
<td>218. Straminergon stramineum (Dicks. Ex Brid.) Hedenaes</td>
</tr>
<tr>
<td></td>
<td>110. Sanionia</td>
<td>220. Hamatocalvis vernicosus (Mitt.) Hedenaes</td>
</tr>
<tr>
<td></td>
<td>111. Scorpidiæa</td>
<td>221. Sanionia uncinata (Hedw.) Loeske</td>
</tr>
<tr>
<td>60. Scorpidiæa</td>
<td></td>
<td>222. Scorpidiæa scorpioides (Hedw.) Limpr.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Семейство</td>
<td>Род</td>
<td>Вид</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>113. Callicladium</td>
<td>Loeske</td>
<td>Callicladium haldanianum (Grev.) H.A. Crum</td>
</tr>
<tr>
<td>114. Calliergonella</td>
<td>Loeske</td>
<td>Calliergonella cuspidata (Hedw.) Loeske</td>
</tr>
<tr>
<td>115. Homomallium</td>
<td>Loeske</td>
<td>Homomallium incurvatum (Schrad. ex Brid.)</td>
</tr>
<tr>
<td>116. Ptilium</td>
<td>Loeske</td>
<td>Ptilium crista-castrensis (Hedw.) De Not.</td>
</tr>
<tr>
<td>117. Pyralisia</td>
<td>Loeske</td>
<td>Pyralisia polyantha (Hedw.) Bruch et al.</td>
</tr>
<tr>
<td>118. Stereodon</td>
<td>Lindb.</td>
<td>Stereodon fertilis (Sendtn.)</td>
</tr>
<tr>
<td>119. Pseudoleskeella</td>
<td>Nyholm</td>
<td>Pseudoleskeella nervosa (Brid.)</td>
</tr>
<tr>
<td>120. Leskea</td>
<td>Hedw.</td>
<td>Leskea polycarpa Hedw.</td>
</tr>
<tr>
<td>123. Pelekium</td>
<td>Touw</td>
<td>Pelekium minutulum (Hedw.)</td>
</tr>
<tr>
<td>124. Thuidium</td>
<td>Lindb.</td>
<td>Thuidium assimile (Mitt.) A. Jaeger</td>
</tr>
<tr>
<td>125. Amblystegium</td>
<td>Bruch et al.</td>
<td>Thuidium recognitum (Hedw.)</td>
</tr>
<tr>
<td>126. Campyliadelphus</td>
<td>R.S. Choppa</td>
<td>Campyliadelphus hirsutus (Myrin) Ochyra</td>
</tr>
<tr>
<td>127. Campylium</td>
<td>Lindb.</td>
<td>Campylium procerum (Brid.) Kindb.</td>
</tr>
<tr>
<td>128. Campylium</td>
<td>Jensen</td>
<td>Campylium stellatum (Hedw.) C.E.O. Jensen</td>
</tr>
<tr>
<td>129. Cratoneuron</td>
<td>Spruce</td>
<td>Cratoneuron filicinum (Hedw.)</td>
</tr>
<tr>
<td>130. Drepanocladus</td>
<td>Warnst.</td>
<td>Drepanocladus aduncus (Hedw.)</td>
</tr>
<tr>
<td>131. Hygroamblystegium</td>
<td>Hedenas</td>
<td>Hygroamblystegium humile (P. Beauv.) Vanderp., Goffinet & Hedenas</td>
</tr>
<tr>
<td>132. Leptodictyum</td>
<td>Warnst.</td>
<td>Leptodictyum riparium (Hedw.)</td>
</tr>
<tr>
<td>133. Serpoleskea</td>
<td>Loeske</td>
<td>Serpoleskea subtilis (Hedw.)</td>
</tr>
<tr>
<td>134. Tomentypnum</td>
<td>Loeske</td>
<td>Tomentypnum nitens (Hedw.)</td>
</tr>
</tbody>
</table>

В хвойных лесах Беларуси отдел печеночников (Marchantiophyta) включает 57 видов из 35 родов, 25 семейств, 7 порядков и 2 классов, не равноценных по объему. В классе юнгерманниев (Jungermanniopsida) – 53 вида из 31 рода, 22 семейств, 6 порядков, а в классе маршанциев (Marchantiopsida) – лишь 4 вида из 4 родов, 3 семейств, 1 порядка, поскольку последние приурочены большей частью к открытым экотопам, наследуя тем самым исходную для них экологическую арену.
Таблица 4.3. – Показатели систематического разнообразия бриокомпонента хвойных лесов

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Хвойные леса</th>
<th>Сосныки</th>
<th>Ельники</th>
</tr>
</thead>
<tbody>
<tr>
<td>Число видов</td>
<td>255</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Число родов</td>
<td>134</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Число семейств</td>
<td>65</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Число видов в 3 ведущих семействах</td>
<td>60</td>
<td>23,5</td>
<td>54</td>
</tr>
<tr>
<td>Число видов в 10 ведущих семействах</td>
<td>134</td>
<td>52,5</td>
<td>114</td>
</tr>
<tr>
<td>Число видов в ведущих семействах (с числом видов выше среднего)</td>
<td>189</td>
<td>74,1</td>
<td>160</td>
</tr>
<tr>
<td>Число видов в ведущих родах (с числом видов выше среднего)</td>
<td>111</td>
<td>43,5</td>
<td>97</td>
</tr>
<tr>
<td>Среднее число видов в семействе</td>
<td>3,9</td>
<td>-</td>
<td>3,6</td>
</tr>
<tr>
<td>Среднее число видов в роде</td>
<td>1,9</td>
<td>-</td>
<td>1,8</td>
</tr>
<tr>
<td>Число семейств с 1 видом</td>
<td>30</td>
<td>46,2</td>
<td>26</td>
</tr>
<tr>
<td>Число семейств с 2 видами</td>
<td>6</td>
<td>9,2</td>
<td>9</td>
</tr>
<tr>
<td>Число родов с 1 видом</td>
<td>94</td>
<td>70,1</td>
<td>82</td>
</tr>
<tr>
<td>Число родов с 2 видами</td>
<td>15</td>
<td>11,2</td>
<td>14</td>
</tr>
<tr>
<td>Число семейств с 1 родом</td>
<td>39</td>
<td>60,0</td>
<td>28</td>
</tr>
</tbody>
</table>

В составе отдела мхов (*Bryophyta*) в хвойных лесах представлено 198 видов из 99 родов, 40 семейств, 14 порядков, 3 классов: в классе сфагновых (*Sphagnopsida*) – 26 видов из 1 рода, в классе андреевых (*Andreaceopsida*) – 1 вид, в классе бриевых (*Bryopsida*) – 171 вид из 97 родов и 38 семейств, 12 порядков.

Из порядков печёночников в хвойных лесах по видовой насыщенности выделяется *Jugermanniales* (39 видов), из порядков мхов – *Hypnales* (84), *Dicranales* (33), *Bryales* (29), *Sphenales* (26).

В лесах сосновой формации выявлено 207 видов из 112 родов, 57 семейств, 20 порядков, 5 классов, 2 отделов (81,2% видов бриофитов хвойных лесов Беларуси).

Печёночки сосняков – 41 вид из 25 родов, 20 семейств, 6 порядков, 2 классов. В классе юнгерманниевых – 37 видов из 21 рода, 17 семейств, 5 порядков, в классе маршанциевых – 4 вида из 4 родов, 3 семейств, 1 порядка.

Мхи сосняков – 166 видов из 87 родов, 37 семейств, 14 порядков, 3 классов. В классе сфагновых – 26 видов из 1 рода, в классе андреевых – 1 вид, в классе бриевых – 139 видов из 85 родов и 35 семейств, 12 порядков.

В еловых лесах выявлено 208 видов из 117 родов, 61 семейства, 20 порядков, 4 классов и 2 отделов (81,6% от числа видов в составе хвойных лесов Беларуси).

Печёночки ельников – 50 видов из 31 рода, 23 семейств, 7 порядков, 2 класс-
сов. В классе юнгерманиевых – 47 видов из 28 родов, 20 семейств, 6 порядков, в классе маршанцевых – 3 вида из 3 родов, 3 семейств, 1 порядка.

Мхи ельников – 158 видов из 86 родов, 38 семейств, 13 порядков, 2 классов. В классе сфагновых – 17 видов из 1 рода, в классе бриевых – 141 вид из 85 родов и 37 семейств, 12 порядков.

Из порядков мохообразных в еловых лесах по видовой насыщенности выделяются: у печёночников – Jugennnialles (33 вида), у мхов – Hypnales (73), Dicranales (27), Bryales (23), Sphagnales (17).

В целом брио-компонент хвойных лесов Беларуси представлен 65 семействами, из которых 25 – печёночники (84,4% бриоразнообразия Беларуси), 40 – мхи (81,6%). Антоцертовые не выявлены. В сосняках у печёночников – 20 семейств (80,8% бриоразнообразия Беларуси), у мхов – 37 (75,0%), в ельниках соответственно 23 (82,1%) и 38 (79,6%).

Для оценки биоразнообразия бриофитов данной территории следует привести средние данные по числу видов, приходящихся на 1 семейство, что составляет 3,9 (Таблица 4.3). Относительно отделов печёночников и мхов соответственно – 2,3 и 5,0. В целом по республике данный показатель равен соответственно 5,8, 3,5 и 7,0. В сосняках этот коэффициент по мохообразным равен 3,7, по печёночникам – 2,1, по мхам – 4,6. В ельниках среднее число видов приходящихся на 1 семейство у мохообразных в целом – 3,4, у печёночников – 2,2, а у мхов – 4,0. В сосняках видовая насыщенность семейств выше, чем в ельниках, а относительно отделов бриофитов хвойных лесов наблюдается большая степень «таксомической сборности» печёночников в сравнении со мхами, что свидетельствует о большем соответствия экологических условий в регионе для мхов, чем печёночников, а также для сосновых лесов сравнительно с еловыми. При этом поскольку сосна является довольно слабым доминантом, то в образуемых ею сообществах не проявляются жесткие конкурентные отношения, и эти экосистемы являются более открытыми для проникновения различных маловидовых таксономических групп (т.е. собраны 1-2-видовые таксоны) в отличие от ельников, где более выражены конкурентные отношения и таксономические группы более насыщены видами.

В хвойных лесах по числу видов выделяются семейства среди печёночников – Scapaniaceae (9 видов), Cephaloziaceae (7), Lophocoleaceae (5), Aneuraceae и Cephaloziellaceae (4 вида), среди мхов – Sphagnaceae (26 видов), Brachytheciaceae (19), Amblystegiaceae (15), Dicranaeae (13), Mniaceae (12), Bryaceae (11), Polytrichaceae, Pottiaceae (п. 10), Pylaisiaceae (9), Thuidiaceae (6), Plagiotheciaceae (7), Orthotrichaceae и Grimmiaecae (п. 5). В сосновых и еловых лесах по отдельности спектр ведущих семейств сходный с таковым хвойных лесов в целом. Десять ведущих семейств в составе брио-компонента хвойных лесов объединяют 134 вида, что составляет 52,5% видовой представленности бриофитов. Такая тенденция характерна для многих флор мохообразных Северного полушария. Доля семейств с числом видов выше среднего высока и составляет 74,1% (в сосняках – 77,3%, в ельниках – 66,8%). Одно- и двуvidовые семейства составляют более половини бриоразнообра-
зия хвойных лесов (55,4%; в сосняках – 60,3%, в ельниках – 53,3%).

Высокая степень участия в сложении бриокомпонента видов семейств Sphagnumaceae, Amblystegiaceae, Calliergonaceae и Thuidiaceae соответствует повышенному увлажнению исследуемых биотопов, а значительная доля семейств Brachytheciaceae, Bryaceae, Dicranaceae, Mniaceae, Orthotrichaceae, Polytrichaceae, Plagiotheciaceae – высокому разнообразию экотопической структуры лесов. Вместе с тем бриокомпонент сосновых лесов беден болотными видами бриевых мхов, характеризуясь преимущественно широким участием сфагновых в отличие от бриофлоры Беларуси в целом, что связано с более или менее выраженной олиготрофностью данных местообитаний. Место в составе бриокомпонентов сосновых, еловых и хвойных лесов в целом для каждого семейства отделов печёночников и мхов указано соответственно в таблицах 4.4 и 4.5.

Таблица 4.4. – Видовая насыщенность семейств печёночников

<table>
<thead>
<tr>
<th>Семейство</th>
<th>Хвойные леса</th>
<th>Сосны</th>
<th>Ельники</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Число видов</td>
<td>Место во флоре</td>
<td>Число видов</td>
</tr>
<tr>
<td>Aneuraceae</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Calypogeiaceae</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Cephaloziaceae</td>
<td>7</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Cephaloziellaceae</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Conocephalaceae</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Frullaniaceae</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Geocalycaceae</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Gymnomitriaceae</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Jamesoniellaceae</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Jungermanniaceae</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Lejeuneaceae</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Lepidoziaceae</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Lophocoleaceae</td>
<td>5</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Marchantiaceae</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Metzgeriaceae</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Moerckiaceae</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Myliaceae</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Pelliaceae</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Plagiochilaceae</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Pseudolepicoleaceae</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Ptilidiaceae</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Radulaceae</td>
<td>1</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Ricciaceae</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Scapaniaceae</td>
<td>9</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Trichocoleaceae</td>
<td>1</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>
Таблица 4.5. – Видовая насыщенность семейств мхов

<table>
<thead>
<tr>
<th>Семейство</th>
<th>Хвойные леса</th>
<th>Сосны</th>
<th>Ельники</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Число видов</td>
<td>Место во флоре</td>
<td>Число видов</td>
</tr>
<tr>
<td>Ammophyllaceae</td>
<td>15</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>Andreaeaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Anomodontaceae</td>
<td>3</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Aulacomniaceae</td>
<td>2</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>Bartramiaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Brachytheciaceae</td>
<td>19</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>Bryaceae</td>
<td>11</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Buxbaumiaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Calliergonaceae</td>
<td>4</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Climaciaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Dicranaceae</td>
<td>13</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Ditrichaceae</td>
<td>3</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Encalyptaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Fissidentaceae</td>
<td>4</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Fontinalaceae</td>
<td>1</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Funariaceae</td>
<td>2</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>Grimmiaaceae</td>
<td>5</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Hedwigiaaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Hylomciaceae</td>
<td>4</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Hypnaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Lembophyllaceae</td>
<td>1</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Leskeaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Leucobryaceae</td>
<td>3</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Leucodontaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Meesiaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Mielichhoferiaceae</td>
<td>3</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Mniaceae</td>
<td>12</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Neckeraeae</td>
<td>3</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Orthotrichaceae</td>
<td>5</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Plagiotheciaceae</td>
<td>6</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Polytrichaceae</td>
<td>10</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Pottiaceae</td>
<td>10</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Pseudoleskeellaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Pylaiaceae</td>
<td>9</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Pylaiadelphaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Scorpidiaceae</td>
<td>3</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Splachnaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Sphagnaceae</td>
<td>26</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>Tetraptidaceae</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Thuidiaceae</td>
<td>7</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>
На родовом уровне бриокомпонент хвойных лесов в целом представлен 134 таксонами, из которых 35 родов – печёночники, 99 – мхи. На один род надотдела мохообразных хвойных лесов приходится 1,9 вида, относительно отделов печёночников и мхов соответственно – 1,6 и 2,0. В сососновых лесах представлено 112 родов, на каждый из которых в среднем приходится 1,8 вида (1,6 – у печёночников, 1,9 – у мхов), в еловых – 117 родов, на каждый из которых в среднем приходится 1,75 вида (1,6 – у печёночников, 1,8 – у мхов).

Среди печёночников наиболее представительны роды *Chiloscyphus* (5 видов), а также *Lophozia*, *Cephalozia* и *Cephaloziella* (по 4), среди мхов – *Sphagnum* (26 видов), за которым следуют *Bryum* (10), *Dicranum* (8), *Plagiomnium* (7), *Brachythecium* (6), *Plagiothecium* (5), *Thuidium*, *Sciuro-hypnum*, *Polytrichum*, *Orthotrichum*, *Fissidens*, *Dicranella* (по 4). Высокое положение этих родов характерно для переходных бореально-неморальных бриофлор. Спектр ведущих родов отдельно для сососновых и еловых лесов сходен с таковым хвойных лесов в целом. Четырнадцать ведущих родов мохообразных объединяют 95 видов бриофитов (37,3% от общего их состава). Роды с числом видов больше среднего объединяют 43,5% бриоразнообразия хвойных лесов Беларуси (в сосняках – 46,9% и ельниках – 47,6%).

Бриокомпонент хвойных лесов Беларуси характеризуется высоким положением в спектре родов *Sphagnum*, *Bryum*, *Dicranum*, *Plagiomnium*, *Brachythecium*, *Plagiothecium*, что свидетельствует о сравнительно высоком таксономическом разнообразии и соответствии его систематической структуры большинству бриофлор Севера Голарктики. По видовому разнообразию выделяются также роды *Thuidium*, *Sciuro-hypnum*, *Polytrichum*, *Orthotrichum*, *Fissidens*, *Dicranella*, *Chiloscyphus* и *Cephalozia*, что отражает биотопическое разнообразие данных лесов. Место в составе бриокомпонента сососных и еловых, а также хвойных лесов в целом для каждого рода отделов печёночников и мхов указано соответственно в таблицах 4.6 и 4.7.

Таблица 4.6. – Видовая насыщенность родов печёночников

<table>
<thead>
<tr>
<th>Род</th>
<th>Хвойные леса</th>
<th>Сосняки</th>
<th>Ельники</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Число видов</td>
<td>Место во флоре</td>
<td>Число видов</td>
</tr>
<tr>
<td>Aneura</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Bazzania</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Blepharostoma</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Calypogea</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Cephalozia</td>
<td>5</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Cephaloziella</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Chiloscyphus</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Conocephalum</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Crossocalyx</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Frullania</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Geocalix</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Isopaches</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
Окончание таблицы 4.6

<table>
<thead>
<tr>
<th>Род</th>
<th>Хвойные леса</th>
<th>Сосняки</th>
<th>Ельники</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Число видов</td>
<td>Место во флоре</td>
<td>Число видов</td>
</tr>
<tr>
<td>Jamesoniella</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Lejeunea</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Lepidodinia</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Lophozia</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Marchantia</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Metzgeria</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Moercizia</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Mylia</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Nowellia</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Odontoschisma</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Orthocaulis</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Pellia</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Plagiochila</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Prilidium</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Radula</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Riccardia</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Riccia</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Ricciocarpos</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Scapania</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Schistochilopsis</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Solenostoma</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Trichocolea</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Таблица 4.7. – Видовая насыщенность родов мхов

<table>
<thead>
<tr>
<th>Род</th>
<th>Хвойные леса</th>
<th>Сосняки</th>
<th>Ельники</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Число видов</td>
<td>Место во флоре</td>
<td>Число видов</td>
</tr>
<tr>
<td>Abietinella</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Amblystegium</td>
<td>2</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Andreaae</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Anomodon</td>
<td>3</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Atrichum</td>
<td>3</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Aulacomnium</td>
<td>2</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Barbula</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Brachythe西亚strum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Brachythecium</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Breidleria</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Bryoerythrophyllum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Bryum</td>
<td>10</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Bucklandiella</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Buxbaumia</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Callicladium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Calliergon</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Calliergonella</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Campyladelphus</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>
Продолжение таблицы 4.7

<table>
<thead>
<tr>
<th>Род</th>
<th>Хвойные леса</th>
<th>Сосны</th>
<th>Ельники</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Число видов</td>
<td>Место во флоре</td>
<td>Число видов</td>
</tr>
<tr>
<td>Campylidium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Campylium</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Campylopus</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Cratodod</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Cirriphyllum</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Climacium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Cratoneuron</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Dicranella</td>
<td>4</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Dicranodontium</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Dicranum</td>
<td>8</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Didymodon</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Ditrichium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Drepanocladas</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Encalypta</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Eurhynchiastrum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Eurhynchium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Fissidens</td>
<td>4</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Fontinalis</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Funaria</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Grimmia</td>
<td>2</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Hamatocaulis</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Hedwigia</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Helodium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Herzogiella</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Homalia</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Homalothecium</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Homomallium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Hygroamblystegium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Hygrohypnum</td>
<td>3</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Hypnum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Isothecium</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Kindbergia</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Leptobryum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Leptodictyum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Leskea</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Leucobryum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Leucodon</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Mnium</td>
<td>3</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Neckera</td>
<td>2</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Niphophrichum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Orthotrichum</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Oxyrrhynchium</td>
<td>2</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Paraleucobryum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Pelekiium</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Philonotis</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Physcomitrium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

38
Окончание таблицы 4.7

<table>
<thead>
<tr>
<th>Род</th>
<th>Хвойные леса</th>
<th>Сосны</th>
<th>Ельники</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Число видов</td>
<td>Место во флоре</td>
<td>Число видов</td>
</tr>
<tr>
<td>Plagiomnium</td>
<td>7</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Plagiothecium</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Platygyrium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Pleuridium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Pleurozium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Pogonatum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Pohlia</td>
<td>3</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Polytrichastrum</td>
<td>2</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Polytrichum</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Pseudobryum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Pseudoleskeella</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Pseudoscleropodium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Prilium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Pylaisia</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Rhizomnium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Rhodobryum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Rhytidiadelphus</td>
<td>2</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Sanionia</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Schistidium</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Scruro-hynpum</td>
<td>4</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Scorpidium</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Serpoleskea</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Sphagnum</td>
<td>26</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>Splachnum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Stereodon</td>
<td>2</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Straminergon</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Syntrichia</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Tetrachis</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Thuidium</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Tomentypnum</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Tortella</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Tortula</td>
<td>3</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Ulota</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Warnstorfia</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Weissia</td>
<td>1</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Относительно бриофлоры Беларуси в целом бриокомпонент хвойных лесов составляет 57,3% видовой представленности и 84,4% семейственной, а в ведущей десятке семейств отличается порядком их расположения: теряют свои позиции лидирующие во флоре Беларуси семейства Pottiaceae и Bryaceae, а их места занимают Brachytheciaceae, Amblystegiaceae, Dicranaceae.

Сравнительный таксономический анализ бриокомпонентов сосняков и ельников показал слабое их отличие по видовой представленности таксонов всех уровней (Рисунок 4.1), несмотря на существенные экологические отличия формируемых ими
сообществ – сосняки в отличие от ельников формируются в большем диапазоне экотопов, азональны и представляют менее благоприятные условия (по микроклимату) для бриофитов.

Рисунок 4.1. – Распределение числа таксонов в сосняках и ельниках, шт.
Глава 5
ЭКОЛОГО-БИОМОРФОЛОГИЧЕСКИЙ АНАЛИЗ

5.1 Формы роста (биоморфы)

К.О. Улычна (1970), а вслед за ней М.Ф. Бойко (1999 б) обращают внимание на то, что термин «форма роста» («жизненная форма», «экобиоморфа») в бриологии являются понятием как морфологическим, так и экологическим. В связи с этим виды мохообразных с определенной формой роста можно рассматривать как показатель определенных экологических условий. К.О. Улычна полагает, что на основе анализа форм роста бриофитов можно дать определенную экологическую оценку той или иной растительной группировки и тех сукцессионных смен, которые наступают в растительном покрове. Согласно М.Ф. Бойко, жизненная форма отражает взаимодействие видов мохообразных с биотическими и абиотическими компонентами экосистем, представляя собой ответную реакцию вида на общие условия среды. По мнению Г.Ф. Рыковского (2011 а), первостепенное значение при этом имеет режим влажности, зависящий от теплового режима, степени освещенности, физико-химических свойств субстрата. Учет специфики биоморф, обусловленными жизненными стратегиями мохообразных, позволяет пролить свет на их роль и место в экосистемах. Кроме того, на основе изучения динамики биоморф бриофитов возможен мониторинг включающих их экосистем в целом (Шабега, Рыковский, 2014 а, 2015 а).

Всего у мохообразных хвойных лесов выделено 13 форм роста. Дерновина представлена настоящей, подушковидной, открытой и мутовчато-ветвистой; ковер бывает плоским, вертикально-ветвистым и талломным; сплетение — перисто-ветвистым, разветвленно-ветвистым, слабоветвистым; подушка — собственно подушкой и дерновидной подушкой. Выделена также дендрофитная форма. В группе форм роста дерновина отмечена у 118 видов (42,9% разнообразия мохообразных хвойных лесов).

Настоящая дерновина представлена у 78 видов (28,4% от бриоразнообразия хвойных лесов), причем почти исключительно бревных мхов и в основном акрокарпных. Это пионерные мхи из родов Atrichum, Barbula, Bryum, Dicranella, Didymodon, Funaria, Physcomitrium, Tortula и др., а также исконно лесные — виды родов Dicranum, Euirhynchium, Fissidens, Mnium, Plagiommium, Pohlia, Polytrichum, Rhodobryum, Rhizomnium, Tetrathis и лугово-болотные, способные произрастать в лесах в условиях достаточного и избыточного увлажнения — Aulacomnium palustre, Plagiommium elatum, Plagiommium ellipticum, Polytrichum strictum, Straminergon stramineum и др., в основном относящиеся к эпигенам. Из печёночников — это Bazzania trilobata и виды рода Plagiochila.

Подушковидная дерновина — у 12 видов бревных мхов и 1 вида анд рейвых. Это виды родов Aulacomnium, Bryum, Ceratodon, Dicranum, Fissidens, Paraleucobryum,

Мутовчато-ветвистая дерновина представлена исключительно у сфагновых мхов – 26 видов (9,5% разнообразия мохообразных хвойных лесов).

К группе форм роста ковер относятся 108 видов (39,1% разнообразия мохообразных хвойных лесов), из них 20 видов печеночников и 88 видов мхов.

Доминирует такая форма роста, как плоский ковер (88 видов или 32,0% разнообразия мохообразных хвойных лесов), в том числе у большинства печеночников (43 вида или 72,9% печеночников хвойных лесов), а также у бриевых мхов (45 видов или 20,8% разнообразия мхов хвойных лесов). Это мохообразные, произрастающие на гниющей древесине, коре живых деревьев, почве и виды более широкого диапазона в отношении субстратов, в основном лесной экологии.

Вертикально-ветвистый ковёр образуют 9 видов. К ним относятся 2 печеночника-эпиксилы (Riccardia latifrons, Riccardia palmata) и 7 видов бриевых мхов, представленных эпифитами, эпигенами, эпиксилами (Anomodon attenuatus, Brachythecium mildeanum, Eurhynchiastrum pulchellum, Leucodon sciuroides, Plagiothecium cavitolium, Plagiothecium latebricola, Sanionia uncinata).

Галломный ковёр специфичен для печеночников (11 видов), у которых его образуют маршанниевые (Conocephalum conicum, Marchantia polymorpha, Riccia canaliculata, Riccia sorocarpa, Ricciocarpos natans) и юнгерманниевые (Aneura pinguis, Lejeunea cavifolia, Metzgeria furcata, виды рода Pellia).

Дендроидной формой роста характеризуются 4 вида. Это бриевые мхи, из которых данная форма наиболее выражена у Climacium dendroides и проявляется у Brachythecium rivulare, Eurhynchium angustirete и Plagiommium undulatum.

Группа форм роста подушка отмечена у 10 видов бриевых мхов.

Собственно подушка свойственна 8 видам, из которых 5 – эпифиты (виды рода Orthotrichum и Ulota crispa), 2 – эпилиты (Grimmia pulvinata, Schistidium apocarpum) и 1 – эпигей (Leucobryum glaucum). Все эти виды отвечают условиям равнинного рельефа умеренных широт, но Leucobryum glaucum – вид из рода тропического происхождения эпифитной экологии, адаптировавшийся к произрастанию на почве в лесных сообществах умеренных широт. Это форма роста в наибольшей мере способствует удержанию поглощенной атмосферной влаги в своей структуре.

Дерновидная подушка характерна для 5 видов мхов собственно эпиллитной группы: Bucklandiella heterosticha, Grimmia muehlenbeckii, Hedwigia ciliata, Niphotrichum canescens, а также эпилиту Schistidium apocarpum, который образует дерновидные подушки наряду с собственно подушками. Выраженная ксероморфность данных видов в форме роста обеспечивает быстрое поглощение и некоторое
удержание влаги в капиллярах подушек, а также предохраняет от чрезмерного иссушення и механического разрушения совокупность побегов.

Сплетения, как и ковры, — продвинутая в эволюционном отношении форма роста, приспособленная к функционированию в условиях ослабленного освещения на почве под пологом сообществ, формируемых деревьями, а также при затенении крупными кустарниками и травами. Для эпигеев лесной экологии основная сложность заключается не в отношении закрепления на субстрате, а в получении достаточной для нормального функционирования световой энергии, к чему и предназначена данная форма роста, тогда как удержание влаги в ее структуре — вторичное явление, тем более, если это касается болотных и заболевенных лесов.

Относительно более распространено и при этом только у бриевых мхов перисто-ветвистое сплетение, имеющееся у 16 видов. Это — обитатели сообществ болотных и заболевенных лесов (Cratoneuron filicinum, Drepanocladus aduncus, Drepanocladus polygamus, Hamatocaulis vernicosus, Helodium blandowii, Tomentypnum nitens, Warnstorfia fluitans), а также лесные мезофильные мхи (Hylocomium splendens, Pelekium minutulum, Ptilium crista-castrensis, Rhytidiadelphus triquetrus, виды рода Thuidium). За сферу этих экологических условий выходит Abietinella abietina, относящаяся к лугово-степным ксероморфным видам, т.е. внелесным, поселяющимся в открытых местах. Однако это — вторичная адаптация его лесного предшественника из рода Thuidium, к которому относили этот вид прежде (2011 б). Что касается таких видов, как Thuidium assimile и Thuidium recognitum, то они перешли преимущественно к произрастанию на сырохраняевых лугах и луговинах, хотя не утратили связи и с исходными лесными сообществами, как отмечает этот же автор.

Разветвленно-ветвистое сплетение образуют 12 видов мхов — обитателей болотных и заболевенных лесов (Calliergonella cuspidata, Campylium protensum, Campylium stellatum, Hygroamblystegium humile, Hygroamblystegium tenax) и мезофильных условий (Campyliadelphus chrysophyllus, Campylidium sommerfeltii, Cirriphyllum piliferum, Oxyrrhynchium hians, Pseudoscleropodium purum, Pleurozium schreberi, Rhytidiadelphus squarrosus).

Слабоветвистое сплетение свойственно бриевому мху Calliergonella lindbergii, проявляется также у Drepanocladus aduncus, Warnstorfia fluitans.

Биоморф сплетение в водной среде присуща гидрофитам родов Fontinalis, Hygroamblystegium, Leptodictyum riparium, печёночнику Riccia fluitans, факультативным гидрофитам Drepanocladus aduncus, Drepanocladus sendtneri.

Сравнительный анализ печеночников и мхов хвойных лесов по степени насыщенности видами форм роста показал, что печеночники представлены лишь 4 формами роста, из которых талломный ковер присутствует только у, плоский ковер отмечается в равной степени как у печеночников, так и у мхов, в отношении вертикально-ветвистого ковра и настоящей дерновины различия со мхами незначительны (Рисунок 5.1). Такой ограниченный набор экоморф, вероятно, связан со спецификой организации печеночников, вызванной интш, чем у мхов, условиями их генезиса.
Сравнение бриокомпонентов сосняков и ельников показывает, что при отсутствии резкого контраста в сосняках более представлены группы подушка и дерновина, в равной мере – вертикально-ветвистый ковер, дендроидная форма и перистоветвистое сплетение, реже – слабоветвистое и гидрофитное сплетение, плоский и талломный ковры (Рисунок 5.2), что отражает в сосняках более ксероморфные условия, а в ельниках – большее разнообразие биоморф, присущих печеночникам.
5.2 Жизненные стратегии

Широкое проявление у бриофитов пioniерных свойств (эксплерентности) как производных от их основных жизненных стратегий, реализуемых зачастую благодаря исторически выработанным формам роста, способствует поселению этих растений в экосистемах различных экосистем, а также освоению ими не только экониц, возникающих при антропогенном нарушении естественного растительного покрова, но и широком спектре экониц антропогенного происхождения. Мохообразные, уклоняясь от конкуренции с более крупными сосудистыми растениями, активно используют разнообразные свободные экониции, возникающие в структуре сообществ сосудистых растений и их микроклимата. Без огромного разнообразия сосудистых растений не могло возникнуть и то большое формовое разнообразие, которое присуще мохообразным на территории материков в настоящее время (Рыковский, 2008). Для них общеклиматическая обстановка корректируется микроклиматом, обусловленным функционированием эмбриофитов-диплонтов. С этим, как и с историческим фактором, связано формирование бриофитами обычно более обширных ареалов, чем у сосудистых растений (Абрамов, 1969 а-б; Herzog, 1924). Поэтому число космополитов среди бриофитов неспоспавимо с таковым у сосудистых растений, а возраст бриофлор обычно превышает возраст соответствующих флор эмбриофитов-диплонтов (Бардунов, 1961). Важно еще и то обстоятельство, что жизненными стратегиями у мохообразных определяется выработка определенных форм роста (в связи с особенностями освоенных мест произрастания), которые могут иметь с этими стратегиями обратную связь. Жизненная стратегия определяет место и роль того или иного вида в экосистемах, взаимоотношения его с другими видами, его реакцию на воздействие абиотических факторов, характер и особенности роста, эколого-биологическую специфику вида (Рыковский, 2008).

Бриовиоленты – мохообразные, способные к энергичному развитию, захватывают и длительно удерживают территорию, в той или иной мере доминируют в фитоценозах, где сложились конкурентные отношения.

Основные жизненные стратегии мохообразных таковы, что не предполагают наличие среди них виолентов сопоставимых с сосудистыми растениями. Наиболее соответствуют этой биоморфе только сфагновые мхи (в хвойных лесах – 26 видов, из них в сосных – 26, в еловых – 17), поскольку, разрастаясь, они вытесняют другие растения, в том числе бриевые мхи и печёночники, хотя часть последних более адаптировалась к произрастанию со сфагнумами, чем бриевые.

Сфагны могут формировать среди сообщества, когда образуют сплошной более или менее плотный покров, и здесь они выступают в качестве эдификаторов, определяя возможность поселения других высших растений. Это трансформация – от уклонения к доминированию вследствие социального образа жизни в специфических условиях, обязанных их жизнедеятельности.
В условиях хвойных лесов эдификаторами выступают чаще всего Sphagnum fallax и Sphagnum magellanicum. Из мохообразных хвойных лесов условно к брио-вилентам относятся около 20 видов.

При определенных условиях сплошной покров способны образовывать бривые мхи, характеризующиеся биоморфами настоящая дерновина (виды рода Polytrichum, Dicranum polysetum, Plagiomnium affine, Aulacomnium palustre), разветвлено-вествое сплетение (Pleuroziurn schreberi, Rhytidiadelphus squarrosus), перистовествое сплетение (Hylocomium splendens, Ptilium crista-castrensis, Rhytidiadelphus triquetrus, Abietinella abietina), подушка и сходные с ней образования (Leucobryum glaucum, Niphotrichum canescens, Syntrichia ruralis), плоский ковёр (Brachytheicum albicans), дендроннакая форма (Climacium dendroides). Это большей частью лесные обитатели, но среди них также представлены бриофиты открытых местообитаний (опушек лесов, обочин дорог, троп, лугово-болотные и некоторые виды более широкой экологии относительно субстрата) – Niphotrichum canescens, Syntrichia ruralis, Abietinella abietina, Brachytheicum albicans.

Из печёночников в роли локальных бриовилентов могут выступать образующие щелевые ковры крупные маршианцевые – Marchantia polymorpha и Conocephalum conicum, а также бриофиты формирующие плоские ковры, которые присущи умеренным – Plagiochila porelloides и Trichocolea tomentella. При этом, разрастаясь, указанные мохообразные могут вытеснять и другие бриофиты, что особенно касается космополита Marchantia polymorpha, у которой развита специальная усложненная система для закрепления на почвенных обнажениях.

Основным жизненным стратегиям бриофитов больше всего отвечают патентность и эксплериентность.

Бриопатенты ценоэпические способны постоянно выносить давление более сильных конкурентов – сосудистых растений, ограничивающих развитие мохообразных в местах благоприятных для растений. Это наиболее крупная группа, включающая 152 вида, или 46,3% бриофитного разнообразия хвойных лесов (печёночников – 31, мхов – 121). В хвойных лесах они представлены в основном эпигензами. Среди биоморф наиболее представительна сборная группа дерновина – 88 видов, или 51,5% (настоящая – 53 вида, или 31,0%, мутовчато-ветвистая – 26 видов, или 15,2%, подушковидная – 9 видов, или 5,3%), менее представительны группа ковры – 50 видов, или 29,2% (плоский – 39 видов, или 22,8%, талломный – 7 видов, 4,1%, вертикальноветвистый – 4 вида, или 2,3%) и сплетение – 27 видов, или 15,8% (перистовествое – 15 видов, или 8,8%, разветвленовествое – 8 видов, или 4,7%, слабовествистое – 4 вида, или 2,3%), реже встречаются дендроннакая форма – 4 вида, или 2,3% и подушка – 2 вида, или 1,2% (самостоятельно подушка и дерновидная – 1 виду, или по 0,6%).

Бриопатенты экотопические, уклоняясь от конкуренции, приспособились к таким неблагоприятным (стрессовым) условиям среды, как недостаточное или избыточное увлажнение, обедненное питание, дефицит тепла, света, перенасыщенность субстрата солями, высокая кислотность или щелочность. Сюда относятся обитатели
гиюющей древесины, коры живых деревьев и кустарников, камней и различных субстратов антропогенного происхождения, а также водной среды. Основное большинство бриопатиентов экотопических — сильванты. Из биоморф в их составе наиболее представлены ковёр — 74 вида, или 53,6% (плоский — 61 вид, или 44,2%, вертикально-ветвистый — 7 видов, или 5,1%, талломный — 6 видов, или 4,3%), группы дерновина — 33 вида, или 23,9% (настоящая — 22 вида, или 15,9%, подушковидная — 11 видов, или 8,0%), сплетения — 19 видов, или 13,8% (перисто-ветвистое и развевательно-ветвистое — по 8 видов, или по 5,8%, слабо-ветвистое — 1 вид, или 0,7%), подушка — 12 видов, или 8,7% (дерновидная — 7 видов, или 5,1%, собственно подушка — 5 видов, или 3,6%).

Бриопатиенты экотопические охватывают почти весь спектр субстратов (кроме почвы) и в условиях хвойных лесов объединяют 124 вида или 37,8% бриофитного разнообразия хвойных лесов (печёночников — 34, мхов — 90). К бриопатиентам гидрофитным относится 11 видов, из которых 3 — маршианальные печёночки (водная форма — Marchantia polymorpha, гидрофиты Riccia fluitans и Ricciocarpos natans), 6 — брзевые мхи (истинные гидрофиты — виды рода Fontinalis, Hygroamblystegium humile и способные произрастать в водной среде — Drepanoclados aduncus, Drepanoclados sendtneri, Leptodictyum riparium, Hygrohypnum luridum) и 1 вид сфагнумов (Sphagnum cuspidatum), хотя к нему приближаются по уровню обводненности местообитаний и такие виды, как Sphagnum riparium, Sphagnum obtusum, виды из секции Subsecunda и др.

К бриозъёмным относятся виды мохообразных не обладающие выраженной конкурентной способностью, но способные к быстрому освоению свободных или вновь образовавшихся субстратов, но не в состоянии длительно удерживать за собой занятую территорию, хотя наиболее адекватны такой генеральной жизненной стратегии мохообразных как уклонение от конкуренции.

В хвойных сообществах они представлены 32-мя видами, в т.ч. печёночников — 10, мхов — 22. К ним относятся виды ряда родов, из которых более представительны рода Bryum (9 видов), Cephaloziella, Dicranelia (4), Atrichum (3), Didymodon (2). В составе этой биоморфы также Buxbaumia aphylla, Bryoerythrophyllum recurvirostrum и др. В числе этих видов, прежде всего, космополиты Ceratodon purpureus, Bryum argenteum, Bryum caespiticium, Funaria hygrometrica, распространение которых по всем континентам планеты связано в известной мере с антропогенной деятельностью, т.е. это как бы «синантропные» бриофиты. Действительно, данные виды характеризуются выраженной способностью к освоению нарушенных земель, в том числе, в результате антропогенных воздействий, из них своей убиквитностью особо выделяется Ceratodon purpureus, заселяющий разнообразные субстраты как природного, так и антропогенного происхождения, отличаясь высокой споровой продуктивностью.

В отношении биоморф у эксплерентов преобладают виды, относящиеся к группе настоящая дерновина — 21 вид, или 65,6% и ковёр — 11 видов, или 34,4% (плоский — 7 видов, или 21,9%, талломный — 4 вида, или 12,5%). Наибольшая представ-
Ленность биоморфы дерновина у экспериментаторов отвечает этой стратегии относительно мхов. В далеком историческом прошлом данная биоморфа, вероятно, была представлена у мхов чрезвычайно широко, что связано с характером их конкурентных отношений с сосудистыми растениями.

Сфагновые мхи, некоторые бриевые и маршинальные печёночки демонстрируют переход от пациентности или экспериментности (как следствия уклонения от конкуренции) к виолентности. Вместе с тем допустимо, что освоение экстремальных эконий бриофитами может быть не связано с уклонением от конкуренции, а явилось следствием реализации их экологического потенциала, связанного с особенностями их организации.

Сравнительный анализ распределения печеночников и мхов по жизненным стратегиям показал, что печеночки больше представлены бриозэксперентами и бриопатиентами экотопическими, тогда как бриофионентность у них проявляется лишь у мало их доли (Рисунок 5.3), что связано со спецификой субстратной приуроченности печеночников. Сфагновые и некоторые представители бриевых мхов, а также маршинальных печеночные демонстрируют переход от пациентности и экспериментности (как следствие уклонения от конкуренции) к виолентности. Вместе с тем вполне возможно, что освоение экстремальных эконий бриофитами не связано с уклонением от конкуренции, а является следствием реализации их экологического потенциала, связанного с особенностями их организации (Шабета, Рыковский, 2015).

Отличия, хотя и слабые, в спектре жизненных стратегий бриофитов сосняков и ельников (Рисунок 5.4) в основном связаны с микроклиматическими предпочтениями печеночников, более выраженными в ельниках.

Рисунок 5.3. – Распределение печеночников и мхов хвойных лесов по жизненным стратегиям
5.3 Экоморфы по отношению к влажности и трофности субстрата (среды)

Будучи неотъемлемым компонентом растительного покрова в своей экологической структуре мохообразные отражают специфику их взаимодействия со средой. В связи с особенностями организации наиболее значение для мохообразных в условиях лесных сообществ имеет показатель влагообеспеченности мест их произрастания. Анализ мохообразных по экоморфам в отношении влажности и трофности выявляет степень их соответствия местным условиям как индикаторов в современной экологической обстановке и в перспективе (Шабета, Рыковский, 2015 а). С этим связаны особенности заполнения бриофитами экологических ниш. Такая оценка бриофитов позволяет прогнозировать дальнейшее развитие их группировок в свете возможного изменения экологических условий во времени.

Гидроморфы. По отношению к такому важнейшему для мохообразных экологическому фактору как влажность бриофиты хвойных лесов представлены всеми гидроморфами известными во флоре Беларуси (Таблица 5.1). Наиболее выделяются здесь мезофиты – 98 видов (34,9%), которым заметно уступают по числу видов гигрофиты – 49 (17,4%), гигромезофиты – 40 (14,2%), ксеромезофиты – 38 (13,5%) и тем более гигрогидрофиты – 20 (7,1%), мезогигрофиты – 18 (6,4%), гидрофиты и мезоксерофиты – по 9 (по 3,2%).

В сосных лесах спектр гидроморф в составе бриофитов таков: мезофиты – 33,2%, гигрофиты – 19,2%, ксеромезофиты и гигромезофиты – по 13,5%, гигрогидрофиты – 8,3%, мезогигрофиты – 6,1%, мезоксерофиты – 3,5%, гидрофиты – 2,6%; в еловых: мезофиты – 38,2%, гигрофиты – 16,7%, гигромезофиты – 15,4%, ксеромезо-
Таблица 5.1. – Распределение видов мохообразных хвойных лесов по гидроморфам

<table>
<thead>
<tr>
<th>Гидроморфы</th>
<th>МОХООБРАЗНЫЕ</th>
<th>Печёночники</th>
<th>Мхи</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Хвойные леса</td>
<td>%</td>
<td>Сосны</td>
</tr>
<tr>
<td>Мезоксерофиты</td>
<td>9</td>
<td>3,2</td>
<td>8</td>
</tr>
<tr>
<td>Ксеромезофи́ты</td>
<td>38</td>
<td>13,5</td>
<td>31</td>
</tr>
<tr>
<td>Мезофи́ты</td>
<td>98</td>
<td>34,9</td>
<td>76</td>
</tr>
<tr>
<td>Гиromезофи́ты</td>
<td>40</td>
<td>14,2</td>
<td>31</td>
</tr>
<tr>
<td>Мезогидрофи́ты</td>
<td>18</td>
<td>6,4</td>
<td>14</td>
</tr>
<tr>
<td>Гидрофи́ты</td>
<td>49</td>
<td>17,4</td>
<td>44</td>
</tr>
<tr>
<td>Гиromгидрофи́ты</td>
<td>20</td>
<td>7,1</td>
<td>19</td>
</tr>
<tr>
<td>Гидрофи́ты</td>
<td>9</td>
<td>3,2</td>
<td>6</td>
</tr>
</tbody>
</table>

Таблица 5.2. – Распределение видов мохообразных хвойных лесов по трофоморфам

<table>
<thead>
<tr>
<th>Трофоморфы</th>
<th>МОХООБРАЗНЫЕ</th>
<th>Печёночники</th>
<th>Мхи</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Хвойные леса</td>
<td>%</td>
<td>Сосны</td>
</tr>
<tr>
<td>Эвтрофы</td>
<td>41</td>
<td>16,6</td>
<td>25</td>
</tr>
<tr>
<td>Мезоэвтрофы</td>
<td>76</td>
<td>30,8</td>
<td>63</td>
</tr>
<tr>
<td>Эхемотрофы</td>
<td>9</td>
<td>3,6</td>
<td>9</td>
</tr>
<tr>
<td>Мезотрофы</td>
<td>80</td>
<td>32,4</td>
<td>66</td>
</tr>
<tr>
<td>Олигомезотрофы</td>
<td>33</td>
<td>13,4</td>
<td>31</td>
</tr>
<tr>
<td>Олиготрофы</td>
<td>8</td>
<td>3,2</td>
<td>8</td>
</tr>
</tbody>
</table>
фиты – 12,7%, мезогидрофиты – 6,6%, гигроксидрофиты – 4,8%, гидрофиты – 3,1%, мезоксерофиты – 2,6% (Рисунок 5.5). Отсюда следует, что в составе биокомпонента хвойных лесов выделяются мезофиты, в меньшей мере гидрофиты, гигромезофиты и ксеромезофиты, что отражает разнообразие экотопов.

В хвойных лесах виды с высокой требовательностью к степени увлажнения составляют 10,3%, а с повышенной требовательностью к влаге – 23,8%, мезофитной ориентации – 49,1%, а с более или менее ксероморфной организацией – 16,7%. В сосняках: ксеромезофитов и мезоксерофитов – 17,0%, мезофитов и гигромезофитов – 46,7%, гибридных и мезогидрофитов – 25,3%, гигроксидрофитов и гидрофитов – 10,9%. В ельниках: ксеромезофитов и мезоксерофитов – 15,4%, мезофитов и гигромезофитов – 53,5%, гибридных и мезогидрофитов – 23,2%, гигроксидрофитов и гидрофитов – 7,9%. Более низкая доля группы мезофитов и гигромезофитов в сосняках по сравнению с ельниками и более высокая доля остальных групп отвечает большему разнообразию экотопов, заселяемых мохообразными, в лесах данной формации.

В составе бриофитов хвойных лесов преобладание менее требовательных к степени влажности среди гидроморф (мезоксерофиты, ксеромезофиты, мезофиты,
гиromезофиты – 65,8%) над более требовательными к этому фактору (мезогигрофиты, гигрофиты, гигрогидрофиты и гидрофиты – 34,2%) свидетельствует о соотношении соответствующих экотопов. В основных лесах данное соотношение таково: 63,8% и 36,2%, в словах – 68,9% и 31,1%.

Представляет интерес также сопоставление распределения по гидроморфам отдельно печёночников и мхов. В хвойных лесах среди печёночников по числу видов выделяются мезофиты и гигромезофиты – по 19 видов (29,2%), им уступают мезогигрофиты – 9 видов (13,8%), гигрофиты – 7 видов (10,8%), ксеромезофиты – 5 видов (7,7%), мезоксерофиты, гигрогидрофиты и гидрофиты – по 2 вида (по 3,1%). Спектр гидроморф печёночников сосняков следующий: мезофиты и гигромезофиты – по 28,3%, мезогигрофиты – 15,2%, гигрофиты – 10,9%, ксеромезофиты – 6,5%, мезоксерофиты – 2,2%, гигрогидрофиты и гидрофиты – по 4,3%; ельников: гигромезофиты – 31,0%, мезофиты – 27,6%, мезогигрофиты – 13,8%, гигрофиты – 12,1%, ксеромезофиты – 8,6%, мезоксерофиты – 3,4%, гигрогидрофиты и гидрофиты – по 1,7%.

Среди мхов в хвойных лесах по числу видов среди гидроморф первое место занимают мезофиты (79 видов – 36,6%), на втором месте – гигрофиты (42 вида – 19,4%) и ксеромезофиты (33 вида – 15,3%), за ними следуют гигромезофиты (21 вид – 9,7%) и гигрогидрофиты (18 видов – 8,3%), мезогигрофиты (9 видов – 4,2%), мезоксерофиты и гидрофиты (по 7 видов – по 3,2%). Спектр гидроморф мхов сосняков таков: мезофиты – 34,4%, гигрофиты – 21,3%, ксеромезофиты – 15,3%, гигромезофиты – 9,8%, гигрогидрофиты – 9,3%, мезоксерофиты и мезогигрофиты – по 3,8%, гидрофиты – 2,2%; ельников – мезофиты – 42,1%, гигрофиты – 18,1%, ксеромезофиты – 14,0%, гигромезофиты – 9,9%, гигрогидрофиты – 5,8%, мезогидрофиты – 4,1%, гидрофиты – 3,5%, мезоксерофиты – 2,3%.

Трофоморфы. В составе бриофитов хвойных лесов представлены все экоморфы по трофности (Таблица 5.2). Из них наиболее представительны мезотрофы – 80 видов (в т.ч. 31 – печёночники и 49 – мхи), или 32,4%, за ними следуют мезоэвтрофы – 76 видов (в т.ч. 8 – печёночники, 68 – мхи), или 30,8%, эвтрофы – 41 (в т.ч. 9 – печёночники и 32 – мхи), или 16,6%; олигомезотрофы – 33 (в т.ч. 5 – печёночники и 28 – мхи), или 13,4%, эвмезотрофы – 9 (в т.ч. 1 – печёночники, 8 – мхи), или 3,6%. Олиготрофы представлены только мхами – 8 видов (3,2%). Если группировать экходные трофоморфы мохообразных хвойных лесов, то эвтрофов и мезоэвтрофов совместно 47,4% видов, эвмезотрофов и мезотрофов – 36,0%, олигомезотрофов и олиготрофов – 16,6% видов.

В основных лесах спектр трофоморф следующий: эвтрофы – 25 видов (в т.ч. 5 – печёночники, 20 – мхи), или 12,4%, мезоэвтрофы – 63 вида (в т.ч. 7 – печёночники, 56 – мхи), или 31,2%, эвмезотрофы – 9 видов (в т.ч. 1 – печёночник, 8 – мхи), или 4,5%, мезотрофы – 66 видов (в т.ч. 23 – печёночники, 43 – мхи), или 32,7%, олигомезотрофы – 31 вид (в т.ч. 4 – печёночники, 27 – мхи), или 15,3%, олиготрофы – 8 видов (только мхи), или 4,0%. Совместно эвтрофов и мезоэвтрофов – 43,6% видов, эвмезотрофов и мезотрофов – 37,1%, олигомезотрофов и олиготрофов – 19,3% видов (Рисунок 5.6).

52
В еловых лесах спектр трофоморф следующий: эвтрофы – 37 видов (в т.ч. 9 – печёночники, 28 – мхи), или 18,4%, мезоэвтрофы – 63 видов (в т.ч. 6 – печёночники, 57 – мхи), или 31,3%, эвметрофы – 7 видов (в т.ч. 1 – печёночники, 6 – мхи), или 3,5%, мезотрофы – 68 видов (в т.ч. 28 – печёночники, 40 – мхи), или 33,8%, олигометрофы – 25 видов (в т.ч. 4 – печёночники, 21 – мхи), или 12,4%, олиготрофы – 1 бриевый мох, или 0,5%. Совместно эвтрофов и мезоэвтрофов – 49,8% видов, эвметрофов и мезотрофов – 37,3%, олигометрофов и олиготрофов – 12,9% видов (Рисунок 5.6). Соответственно в еловых лесах относительно сосных выше доля участия видов групп эвтрофов и мезоэвтрофов, а доля олигометрофов и олиготрофов – значительно ниже, что отвечает трофической предпочтительности ели как лесообразующей породы.

Среди бриофитов хвойных лесов по численности видов выделяются мезотрофы и мезоэвтрофы. Довольно значительно также видовая представленность эвтрофов и олигометрофов. Распределение видов по крайним трофоморфам – эвтрофным и олиготрофным – существенно различно, так как это наиболее богатые и наиболее бедные местообитания. Соответственно, в последней трофоморфе и число видов мохообразных наименьшее. К олиготрофам относятся Sphagnum rubellum, Polytrichum piliferum и др., а к эвтрофам – Fissidens bryoides, Funaria hygrometrica, Fontinalis antipyretica, Pellia epiphylla, виды родов Chiloscyphus, Plagiomnium и др.

Распределение печёночников хвойных лесов по трофоморфам следующее: мезотрофные – 31 вид (57,4%), эвтрофные – 9 (16,7%), мезоэвтрофные – 8 (14,8%), олигометрофные – 5 (9,3%), эвметрофные – 1 (1,9%). Спектр трофоморф отдельно у печёночников сосняков таков: мезотрофы (57,5%), мезоэвтрофы (17,5%), эвтрофы (12,5%), олигометрофы (10,0%), эвметрофы (2,5%); у печёночников ельников:

Рисунок 5.6. – Распределение видов бриофитов в сосняках и ельниках по трофоморфам
мезотрофы (58,3%), эвтрофы (18,8%), мезоэвтрофы (12,5%), олигомезотрофы (8,3%),
эвмезотрофы (2,1%).

У мхов хвойных лесов распределение по трофоморфам таково: мезоэвтрофные – 68 видов (35,2%), мезотрофные – 49 (25,4%), эвтрофные – 32 (16,6%), олигомезотрофные – 28 (14,5%), эвмезотрофные и олиготрофные – 8 (4,1%). В сосняках спектр трофоморф у мхов: мезоэвтрофы (34,6%), мезотрофы (26,5%), олигомезотрофы (16,7%), эвтрофы (12,3%), эвмезотрофы и олиготрофы (по 4,9%); в ельниках: мезоэвтрофы (37,3%), мезотрофы (26,1%), эвтрофы (18,3%), олигомезотрофы (13,7%), эвмезотрофы (3,9%), олиготрофы (0,7%).

Соотношение трофоморф свидетельствует о благоприятности условий для формирования сообществ растений со сложной фитоценотической структурой.

По соотношению трофоморф проявляется значительная разница между мхами и печеночниками хвойных лесов: среди первых значительно преобладают мезоэвтрофные и близкие к ним эвтрофные виды, а среди печеночников – мезотрофы, что связано с особенностями субстратной приуроченности.

5.4 Субстратная приуроченность

В структуре лесных сообществ представлен ряд экоциш, пригодных для заселения различными мохообразными. Это напочвенный покров, фрагментарно встречающиеся почвенные обнажения, гниющая древесина, кора живых деревьев и кустарников и их прикомлевая часть, а также различные каменистые субстраты (Рисунок 5.7). Синантропизм бриофитов вытекает в основном из их во многом пionерного образа жизни и из стратегии освоения тех мест произрастания, которые позволяют им уклониться от конкуренции с более сильными и крупными сосудистыми растениями. Благодаря малотребовательной к условиям закрепления на субстрате ризондальной системе (в отличие от корневой системы сосудистых растений) мохообразные способны поселяться в разнообразных антропогенно нарушенных местах (ослабление конкуренции) или на субстратах антропогенного происхождения. Мохообразные эпилитной ориентации, освоившие в ходе эволюции орогенные скально-каменистые субстраты, в равнинных условиях Беларуси находят себе пристанище не только на силикатных валунах (следы четвертичных оледенений), но и на таких камненевидных антропогенных образованиях, как бетонные, цементно-кирпичные и другие сооружения. Благодаря этому многие бриофиты поселяются на урбанизированных территориях, проявляя своего рода синантропность.
Мохообразные формируют своеобразный, экологически и пространственно обособленный компонент фитоценоза, со своей структурой, составом жизненных форм и взаимосвязями между видами. Бриоигруппировки обладают высокой автономностью и характерны не столько для сообществ отдельных ассоциаций, сколько для сходных экотопов, представленных в широком круге растительных ассоциаций и даже формаций. В разных системах классификации растительности сообщества бриофитов часто выделялись в отдельные единицы (Александрова, 1969; Башева, 2007; Корчагин, 1976; Лавренко, 1962; Норин, 1979; Сукачев, 1975; Юрьев, 1998; Braun-Blanquet, 1964; Du Rietz, 1965; Gams, 1932). Основоположник метода экологофлористической классификации растительности Ж. Браун-Бланке (Braun-Blanquet, 1964) считал, что в сложных сообществах, особенно лесных, имеются группы растений, не представляющие собой ярусы, но флористически и экологически ограниченные, произрастающие на специфических субстратах с особыми экологическими условиями (стволы, ветви, пни, выходы камней и др.). Они структурно и ценоэтически очень разнообразны и могут быть либо строго приурочены к одному типу леса, либо встречаться в пределах двух или нескольких (Braun-Blanquet, 1964; Корчагин, 1976). В процессе развития классификации растительности напочвенные, реже эпи- и энтомофитные группировки мохообразных стали рассматриваться как синузии (пространственно, экологически и флористически обособленные части фитоценоза). В настоящее время в Европе в качестве синузии классифицируются маловидовые группировки мохообразных, которые образуют почти сплошной покров в определенных лесных фитоценозах, их объединяют в отдельные союзы. Такие группировки не являются сообществами по Браун-Бланке, а виды напочвенных мхов описываются наравне с

В связи со всем вышесказанным считаем важным проведение полного анализа по субстратам относительно бриокомпонента хвойных лесов в целом, а также сосняков и ельников в отдельности. На основании данной работы в дальнейшем для хвойных лесов Беларуси возможно выделение бриосинузий, которые могут послужить для углубленного изучения бриокомпонента по типам хвойных лесов и их прогнозной характеристики.

5.4.1 Эпигеиды

Судя по палеоботаническим свидетельствам бриофиты первыми из эмбриофитов осваивали сушу, заселяя прибрежные почвогрунты. Следовательно, все первичные бриофиты являлись эпигеидами, а освоение иных субстратов носит вторичный характер, что, вероятно, связано было с конкурентным давлением вышедших вслед за ними на сушу предшественников сосудистых растений.

Максимальному конкурентному давлению со стороны эмбриофитов-диплонтов подверглись исходные формы печеночников, что было связано с тропическими условиями их формирования в дальнейшем. В результате для печеночников почва в основном перестала быть определяющим местом произрастания. Это приостановило повышение уровня их органографии, но обусловило «вспышку» их формообразования в результате адаптивной радиации в обстановке сильного давления K-отбора и оптимального для сосудистых растений климата. Мхи исторически имеют более позднее происхождение, чем печеночники и тем более, чем антоцеровые, поскольку их исходные формы должны были проникнуть в условия относительно менее благоприятного для произрастания умеренного климата, имеющего неустойчивый, более вариабельный характер. Однако это же ограничило конкурентное давление на них сосудистых растений. Вообще при таком климата возникают более широкие экологические ниши, что явилось благоприятным для прогрессивного развития исходных форм мхов, усложнения их органографии в условиях произрастания на поч-
вогрунтах, хотя и на повышенных гипсометрических уровнях. Именно такой экологической обстановке и отвечают основные признаки организации мхов.

Вообще органография мхов (за исключением экстремумов среды – сфагновых и андрусовых) отражает важную роль в формировании их типовых признаков почвенной среды, как наземных, так и подземных органов. Однако в ходе адаптивной радиации они освоили широкий спектр мест произрастания с разнообразными субстратами. Несмотря на максимальное формовое разнообразие центральная группа мхов – бриевые – в наибольшей мере удержала типовые черты организации отдела мхов по структуре гаметофита, обусловившего в наибольшей мере прогрессивную структурранацию спорофита в аспекте обеспечения его элементами питания в условиях невысокого испарительного стресса и тем самым относительно автономное развитие этого поколения в жизненном цикле. Изложенные представления соответствуют монографическому исследованию Г.Ф. Рыковского (2011 б) и приводится здесь как необходимая преамбула для понимания специфики мохообразных в историческом аспекте.

Эпигейные мхи представляют наиболее гетерогенную группу, видовой состав, степень развития и характер размещения которой зависят от увлажнения, традиционности и кислотности почвы, степени освещенности, развития древесного и травяно-кустарничкового ярусов и подстилки.

Хвойные леса на территории Беларуси относятся к древнейшим в голоцене, и именно в них почва является наиболее подходящим местом для произрастания мохообразных из группы бриевых и сфагновых мхов. В таком аспекте взаимоотношение мохового покрова с древостоем сложилось в их взаимной ценотической адаптации, восходя еще к третичному периоду. В настоящее время широко распространенные в хвойных лесах, особенно в сосновых, так называемые «боровые мхи» (Pleurozium schreberi, Dicranum polysetum, Hylocomium splendens, Dicranum scoparium и др.) в третичный период практически отсутствовали на территории Беларуси. Их территориальная экспансия была предопределена перекрытием богатых третичных почв очень бедными органикой минеральными грунтами четвертичных отложений, принесенных покровными ледниками со Скандинавии, как горной страны.

По таксономической структуре в напочвенном покрове хвойных лесов отмечено 196 видов мохообразных из 98 родов, 48 семейств, 16 порядков, 6 классов, 2 отделов. Отдел печеночников (Marchantiophyta) представлен 44 видами из 27 родов, 20 семейств, 6 порядков, 2 классов. В классе юнгерманниевых (Jungermanniopsida) – 40 видов из 23 родов, 17 семейств, 5 порядков, а в классе маршанниевых (Marchantiopsida) – 4 вида из 4 родов, 3 семейств, 1 порядка. В составе отдела мхов (Bryophyta) – 152 вида из 71 рода, 28 семейств, 10 порядков, 2 классов. В классе сфагновых (Sphagnopsida) – 26 видов из 1 рода, в классе бриевых (Bryopsida) – 126 видов из 70 родов, 27 семейств, 9 порядков.

Более представительные роды – Sphagnum (26 видов), Bryum (8), Dicranum и Plagiommium (по 7), Brachythecium (6). По числу видов выделяются семейства – Sphagnaceae (26), Brachytheciaceae (15), Mniaceae (12), Dicranaceae (11), Polytricha—
ceae (10), Pottiaceae и Bryaceae (по 9), Amblystegiaceae (8), Scapaniaceae, Thuidiaceae (по 6), Cephaloziaaceae, Plagiotheciaceae и Pylaiiaceae (по 5).

В сосновых лесах в напочвенном покрове отмечено 169 видов мохообразных из 88 родов, 44 семейств, 15 порядков, 4 классов, 2 отделов. Отдел печеночников представлен 36 видами из 22 родов, 17 семейств, 5 порядков, 2 классов. В классе юнгерманниевых – 32 вида из 18 родов, 14 семейств, 4 порядков, а в классе маршианцевых – 4 вида из 4 родов, 3 семейств, 1 порядка. В составе отдела мхов – 133 вида из 66 родов, 27 семейств, 10 порядков, 4 классов. В классе сфагновых – 26 видов из 1 рода, – 1 вид, в классе бриевых – 105 видов из 65 родов, 26 семейств, 9 порядков.

Более представительные роды – Sphagnum (26), Bryum (7), Brachythecium, Dicranum и Plagionnium (по 6). По числу видов выделяются семейства – Sphagnaceae (26), Brachytheciaceae (14), Mniaceae (11), Dicranaceae и Polytrichaceae (по 9), Pottiaceae и Bryaceae (по 8), Amblystegiaceae, Scapaniaceae и Thuidiaceae (по 6), Plagiotheciaceae (5). В общем, порядок распределения таксонов здесь аналогичен таковому хвойных лесов в целом.

В еловых лесах в напочвенном покрове представлено 155 видов мохообразных из 83 родов, 48 семейств, 14 порядков, 6 классов, 2 отделов. Здесь из отдела печеночников отмечено 37 видов из 23 родов, 21 семейства, 6 порядков, 2 классов. При этом в классе юнгерманниевых – 34 вида из 20 родов, 18 семейств, 5 порядков, а в классе маршианцевых – 3 вида из 3 родов, 3 семейств, 1 порядка. В составе отдела мхов выявлено 118 видов из 60 родов, 27 семейств, 8 порядков, 2 классов. Сфагновых мхов – 17 видов из 1 рода, бриевых – 101 вид из 59 родов, 26 семейств, 7 порядков.

Более представительные роды – Sphagnum (17 видов), Dicranum и Plagionnium (по 6), Brachythecium и Bryum (по 5), а семейства – Sphagnaceae (17), Brachytheciaceae (13), Mniaceae (10), Dicranaceae (9), Pottiaceae (8), Amblystegiaceae (7), Bryaceae и Polytrichaceae (по 6), Cephaloziaaceae, Plagiotheciaceae, Pylaiiaceae, Scapaniaceae и Thuidiaceae (по 5).

Большее количество видов напочвенных бриофитов в сосновых лесах (169 видов) в сравнении с еловыми (155 видов) связано с широким спектром почвенных условий в сосняках (от сухих песчаных до олиготрофных болотных). Спектр родов бриофитов сосновых и еловых лесов сходный. В спектре семейств сосняков по сравнению с ельниками выделяется семейство Polytrichaceae, представители которого приспособлены к разнообразным экстремальным условиям среды, а в ельниках – такие семейства, как Amblystegiaceae, Cephaloziaaceae, Pylaiiaceae, в напочвенном покрове более разнообразны, нежели в сосняках, что связано с более богатыми почвенными условиями.

Капрофильты представлены 1 видом Splachnum ampullaceum, который отмечен в сосновом лесу, хотя возможно его нахождение и в еловых сообществах. Другие виды рода Splachnum встречаются на территориях с более сильным влиянием Атлантики и возможность их нахождения в условиях Беларуси крайне низка.

По жизненным стратегиям в хвойных лесах более половины мохообразных, встречающихся на почве, относятся к бриопатиентам ценотическим (151 вид, или
55,7%), около четверти – бриопатенты экологические (69 видов, или 25,5%). Бриоэксперенты в хвойных формациях представлены 31 видом (11,4%). Бриовиоленты (20 видов) ограничены условиями почвенного субстрата и представляют 7,4% видового состава напочвенных бриофитов хвойных лесов.

Если рассматривать печёночки и мхи по отдельности, то около половины печёночников-эпигеев хвойных лесов относится к бриопатентам ценотическому (48,4%), немного им уступают бриопатенты экотопические (33,9%), менее всего бриоэксперенты (16,1%). Лишь 4 вида в определенных условиях способны вести себя как бриовиоленты (Marchantia polymorpha, Conocephalum conicum, Plagiochila porelloides, Trichocolea tomentella). У мхов-эпигеев хвойных лесов спектр экологических стратегий сходен с таковым печёночников, с той разницей, что у мхов относительная представленность бриопатентов ценотических несколько выше, чем у печёночников (57,9%), а у бриопатентов экотопических – несколько ниже (23,0%). Бриоэксперентами представлено 10% напочвенного видового состава мхов хвойных лесов. Существенным отличием по спектру экологических стратегий мхов от печёночников является несколько большее относительное участие бриовиолентов в составе спектра мхов (9,1%), что отвечает исторической приуроченности печёночников к нескольким другим условиям, преимущественно к эпифитному и эпиксильному образу жизни. Наиболее характерными представителями данной стратегии среди мхов являются виды рода Sphagnum, способные преобразовывать места произрастания коренным образом, но также при определенных условиях в качестве бриовиолентов способны выступать и такие виды бриевых мхов, как Aulacomnium palustre, Bryum argenteum, Calliergonella cuspidata, Ceratodon purpureus, Hamatocaulis vernicosus, Pleurozium schreberi, Hylocomium splendens, Scorpidium scorpioides.

В сосновых лесах соотношение напочвенных мохообразных в целом по жизненным стратегиям следующее: бриопатенты ценотические – 54,7% (129 видов) и экотопические – 25,4% (60), бриоэксперенты – 11,9% (28), бриовиоленты – 8,1% (19). Соотношение напочвенных печёночников в лесах данной формации по жизненным стратегиям следующее: бриопатенты ценотические – 43,1% и экотопические – 37,3, бриоэксперенты – 17,6, бриовиоленты – 2,0. Напочвенные мхи по жизненным стратегиям распределяются следующим образом: бриопатенты ценотические – 57,8% и экотопические – 22,2, бриоэксперенты – 10,3, бриовиоленты – 9,7.

В еловых лесах среди напочвенных мохообразных по доле участия выделяются бриопатенты ценотические – 55,4% (123 вида) и экотопические – 28,4% (63), бриоэксперенты – 9,0 (20), бриовиоленты – 7,2 (16). Спектр экологических стратегий в лесах данной формации у напочвенных печёночников следующий: бриопатенты ценотические – 51,9% и экотопические – 35,2, бриоэксперенты – 11,1, бриовиоленты – 1,9; а у напочвенных мхов: бриопатенты ценотические – 56,6% и экотопические – 26,2, бриовиоленты – 8,9, бриоэксперенты – 8,3.

В сосновых лесах немного меньше степень участия бриопатентов ценотических и экотопических, нежели в еловых, но несколько возрастает роль бриоэксперентов и бриовиолентов, что отражает менее богатые условия произрастания в пер-
вых. Несколько большая доля бриофилов в сосновых лесах, чем в еловых, объясняется наличием в первых ряда видов рода Sphagnum, характерных только для ол olmadных сосновых лесов и встречающихся здесь в значительном обилии.

Спектр жизненных стратегий мхов-эпигендоров в сосновых и еловых лесах отвечает тенденции развития хвойных лесов в целом, лишь с той разницей, что доли бриоэкскерентов и бриофилов в них очень близки, а в ельниках данный спектр нарушается за счет небольшого превалирования доли бриофилов над бриоэкскерентами в связи с большей стабильностью экологических условий.

Биоморфы или формы роста. В хвойных лесах у напочвенных мохообразных имеются все представленные среди видов в составе бриофлоры Беларуси формы роста. По данному признаку мохообразные-эпигенды в составе данных лесов распределяются следующим образом: настоящая дерновина – 75 видов (34,6%), плоский ковёр – 56 (25,8), мутовчато-ветвистая дерновина – 26 (12,0), перисто-ветвистое сплетение – 15 (6,9), подушковидная дерновина – 11 (5,1), развевлено-ветвистое сплетение и талломный ковёр – по 9 (по 4,1), вертикально-ветвистый ковёр – 5 (2,3), дендроидная форма – 4 (1,8), слабоветвистое сплетение – 3 (1,4), гидрофитное сплетение – 2 (0,9), дерновидная подушка и подушка – по 1 (по 0,5).

Напочвенные печёночки хвойных лесов представлены лишь тремя биоморфами: плоский ковёр – 34 вида (73,9%), талломный ковёр – 9, (19,6), настоящая дерновина – 3(6,5). Среди напочвенных мхов в хвойных лесах по видовой представленности выделяется среди форм роста настоящая дерновина – 72 вида (42,1%), которым значительно уступают мутовчато-ветвистая дерновина – 26 (15,2), плоский ковёр – 22 (12,9), перисто-ветвистое сплетение – 15 (8,8), подушковидная дерновина – 11 (6,4), развевлено-ветвистое сплетение – 9 (5,3), вертикально-ветвистый ковёр – 5 (2,9), дендроидная форма – 4 (2,3), слабоветвистое сплетение – 3 (1,8), гидрофитное сплетение – 2 (1,2), дерновидная подушка и подушка – по 1 (по 0,6).

В сосновых лесах по спектру форм роста напочвенные мохообразные сходны с таковыми хвойных лесов в целом, лишь с некоторой разницей в доле участия отдельных форм роста: настоящая дерновина – 32,8% (62 вида), плоский ковёр – 26,5% (50), мутовчато-ветвистая дерновина – 13,8 (26), перисто-ветвистое сплетение – 7,4 (14), подушковидная дерновина – 5,3 (10), развевлено-ветвистое сплетение и талломный ковёр по 3,7 (по 7), вертикально-ветвистый ковёр – 2,6 (5), дендроидная форма – 2,1 (4), слабоветвистое и гидрофитное сплетения, дерновидная подушка и подушка – по 0,5 (по 1).

Среди напочвенных печёнок в сосновых лесах доминирует плоский ковёр – 78,4% представлены и такие формы роста, как талломный ковёр – 18,9%, и настоящая дерновина – 2,7% (1 вид – Plagiochila porelloides). Спектр форм роста мхов-эпигендоров сосновых лесов сходный с таковым в хвойных лесах в целом, хотя и с меньшими отличиями в доле участия отдельных биоморф: настоящей дерновиной характеризуется 40,1% видовой представленности мхов лесов этой формации, мутовчато-ветвистой дерновиной – 17,1%, плоским ковром – 13,8%, перисто-ветвистым сплетением – 9,2%, подушковидной дерновиной – 6,6%, развевлено-ветвистым
сплетением – 4,6%, вертикально-ветвистым ковром – 3,3%, дендроидной формой – 2,6%, слабоветвистым, гидрофитным сплетениями, дерновидной подушкой и подушкой – по 0,7%.

В еловых лесах спектр биоморф несколько отличается от такового в сосновых лесах и включает настоящую дерновину – 57 видов (33,3%), плоский ковёр – 48 (28,1), мутовчато-ветвистую дерновину – 17 (9,9), перисто-ветвистое сплетение – 13 (7,6), таллочный ковёр – 8 (4,7), разветвлено-ветвистое сплетение – 7 (4,1), подушковидную дерновину – 6 (3,5), вертикально-ветвистый ковёр – 5 (2,9), дендроидную форму – 4 (2,3), слабоветвистое и гидрофитное сплетения – по 2 вида (по 1,2%), дерновидную подушку и подушку – по 1 (по 0,6).

Напочвенные печёночки в еловых лесах преимущественно характеризуются такой формой роста, как плоский ковёр (71,8%), тогда как таллальным ковром – 20,5%, а настоящей дерновиной – 7,7%. Спектр биоморф мхов в еловых лесах не- сколько отличается от такового в сосновых и включает настоящую дерновину (40,9%), плоский ковёр (15,2), мутовчато-ветвистую дерновину (12,9), перисто- ветвистое сплетение (9,8), разветвлено-ветвистое сплетение (5,3), подушковидную дерновину (4,5), вертикально-ветвистый ковёр (3,8), дендроидную форму (3,0), слабоветвистое и гидрофитное сплетения (по 1,5), дерновидную подушку и подушку (по 0,8). У напочвенных мхов хвойных лесов в соответствии с их типовой структурой отсутствует такая форма роста, как таллочный ковёр, характерная исключительно для печёночников.

Малое разнообразие форм роста печеночников (3) в сравнении со мхами (12) объясняется особым типом организации, связанным с их адаптацией в иных, нежели мхи в целом, климатических условиях. Относительно форм роста напочвенных мохообразных сосновые и еловые леса проявляют сходный характер, что связано с приуровоченностью печеночников, более представленных в ельниках, преимущественно к гниющей древесине.

Из отмеченных в напочвенном покрове хвойных лесов мхов заслуживают особого внимания бриевые, в связи с их наиболее широким распространением и, чаще всего, преобладанием в напочвенном моховом покрове этих лесных сообществ. Еловые леса проявляют сходный характер относительно данных биоморф с сосными. Бриевые мхов, встречающихся на почве – 126 видов (82,9% от числа мхов), причем верхоплодных – 72 (57,1%), а бокоплодных несколько меньше – 54 (42,9%). Из бриевых мхов только на этом субстрате выявлено 48 видов (38,1%), среди которых значительно преобладают верхоплодные – 38 видов (79,2%), а бокоплодных лишь – 10 (20,8%). Совместно с преимущественно встречающимися на почве это составляет 66 видов (52,4%), из них также существенно больше верхоплодных (65,2%), чем бокоплодных (34,8%). Ограниченно почвой и гниющей древесиной произрастание 52 вида (41,3% от числа бриевых мхов), среди которых значительно преобладание уже бокоплодных (69,2%) над верхоплодными (30,8%). Видов, ограниченных в своем произрастании почвой, гниющей древесиной и корей живых деревьев, – 33 вида (26,2%), из которых еще больше преобладание бокоплодных мхов 75,8% над верхоплодными
На всех субстратах отмечено 26 видов (20,6% от всех мхов). Здесь также соизмеримо велико преобладание бокоплодных мхов (73,1%) над верхоплодными (26,9%). Что касается бриевых мхов, встречающихся только на почве и камнях, то их 46 видов (36,5%) и среди них, как и среди эпигендов и в основном эпигендов верхоплодных мхов больше (58,7%), чем бокоплодных (41,3%).

Следовательно, по соотношению видов верхоплодных и бокоплодных мхов выделяются две их группы: первая включает только эпигенды, в основном эпигенды и группу видов, ограниченных в своем произрастании почвой и камнями (преобладают верхоплодные), а вторая включает 3 группы: 1) виды, ограниченные в своем произрастании почвой и гниющей древесиной, 2) почвой, гниющей древесиной и корой живых деревьев и 3) наиболее пластичная – виды, заселяющие все субстраты (преобладают бокоплодные). Мохообразные, встречающиеся на почве, составляют 77,8% от общего числа видов бриофитов, выявленных в хвойных лесах на территории Беларуси.

В целом в составе биоморф эпигенданой фракции меньшинство видов ограничены в своем произрастании только этим субстратом, и представленность их главным образом акрокарпными видами исторически обусловлена связью эволюции мхов с напочвенным покровом лесов в условиях умеренного климата. Однако преобладающая часть видов отличается меньшей долей верхоплодных мхов, поскольку они обладают более широкой экологической амплитудой, что позволяет им заселять различные субстраты.

Экоморфы. Большое значение для эпигендов имеет, прежде всего, степень влажности, а также трофности почв.

Гидроморфы. В хвойных лесах относительно такого важного для мохообразных экологического показателя как степень увлажнения среды произрастания наиболее представлены мезофиты – 30,4% (66 видов), им уступают гигрофиты – 22,6 (49), гигромезофиты – 14,7 (32), ксеромезофиты – 11,1 (24), наименее представлены гигрогидрофиты – 9,2 (20), мезогидрофиты – 8,3 (18) и гидрофиты – 3,7 (8). Отсутствуют только мезоксерофиты.

Если группировать бриофиты по близким гидроморфам, то ксеромезофитов здесь 11,1% (мезоксерофиты отсутствуют), совместно мезофитов и гигромезофитов – 45,1%, гигрофитов и мезогидрофитов – 30,9%, гигрогидрофитов и гидрофитов – 12,9%. В составе бриокомпонента около 2/3 видов, относящихся к менее требовательным к степени влажности среды гидроморфам (мезоксерофиты, ксеромезофиты, мезофиты, гигромезофиты – 56,2%) и около 1/3 более требовательных к этому фактору (мезогидрофиты, гигрофиты, гигрогидрофиты и гидрофиты – 43,8%).

Представляет интерес также сопоставление распределения по гидроморфам отдельно печеночников и мхов. Среди печеночников хвойных лесов по численности видов выделяются мезофиты – 28,6% и гигромезофиты – 26,5%, в меньшей степени представлены мезогидрофиты – 18,4%, гигрофиты – 14,3%, ксеромезофиты, гигрогидрофиты и гидрофиты – по 4,1%. Среди мхов хвойных лесов по численности видов выделяются мезофиты (31,0%) и гигрофиты (25,0%), в меньшей степени представле-
неде структуры (13,1%), гигромезофиты (11,3%), гигрогидрофиты (10,7%), мезо-гидрофиты (5,4%), гидрофиты (3,7%).

Из выше рассмотренного следует, что в отношении сосновых и еловых лесов распределение напочвенных видов по гидроморфам сходно, за исключением ксероморфных видов, несколько выделяющихся по доле участия в сосновых лесах. Важно рассмотрение печёночников и мхов в отдельности. В сосновых лесах у печёночников наиболее представительны группы мезофитов и близких к ним гигромезофитов (55%), невелика доля ксеромезофитов (5%), тогда как у мхов преобладают мезофиты и гигрофиты (56,4%) при значительном участии ксеромезофитов (13,4%), что свидетельствует о большей широте экологической амплитуды относительно влажности мхов, в отличие от печёночников. Среди мхов ельников и сосняков наблюдается сходное распределение по гидроморфам, но у печёночников в ельниках в отличие от сосняков на первый план выходят гигромезофиты, что свидетельствует о том, что еловые леса более отвечают повышенной требовательности печёночников к условиям влажности среды.

Трофоморфы. В хвойных лесах по отношению к трофности субстрата у напочвенных мохообразных представлены все известные в составе бриофлоры Беларуси экоморфы. Из них по доле участия выделяются мезотрофы – 29,9% (59 видов) и мезозветрофы – 27,9 (55), в меньшей степени представлены эвтрофы – 18,8 (37), олиго-мезотрофы – 15,2 (30), эвмезотрофы – 4,6 (9), олиготрофы – 3,6 (7).

Если сгруппировать сходные трофоморфы, то к эвтрофам и мезозветрофам со-местно относится около половины рассматриваемого бриоразнообразия (46,7% видов), эвмезотрофам и мезотрофам – 34,5%, олигомезотрофам и олиготрофам – 18,8% видов.
При рассмотрении печёночников и мхов в отдельности они в спектре трофоморф распределяются следующим образом: у печёночников мезоэфтрофы – 47,7% (21 вид), эвтрофы – 20,5 (9), мезоэвтрофы – 18,2 (8), олигомезоэфтрофы – 11,4 (5), эвмезоэфтрофы – 2,3 (1), олиготрофы отсутствуют; у мхов мезоэфтрофы – 30,7% (47 видов), мезоэвтрофы – 24,8 (38), эвтрофы – 18,3 (28), олигомезоэфтрофы – 16,3 (25), эвмезоэфтрофы – 5,2 (8), олиготрофы – 4,6 (7).

В основных лесах в спектре по трофности мохообразные-эпигеиды распределяются следующим образом: мезоэфтрофы – 54 вида (31,6%), мезоэвтрофы – 50 (29,2%), олигомезоэфтрофы – 29 (17,0%), эвтрофы – 22 (12,9%), эвмезоэфтрофы – 9 (5,3%), олиготрофы – 7 (4,1%).

По сходным трофоморфам в сосняках к эвтрофам и мезоэфтрофам совместно относится менее половины рассматриваемого бриоразнообразия (42,1% видов), эвмезоэфтрофам и мезоэфтрофам – 36,8%, олигомезоэфтрофам и олиготрофам – 21,1%.

При рассмотрении в отдельности печёночников и мхов в спектре трофоморфности печёночники распределяются следующим образом: мезоэфтрофы – 52,8%, мезоэвтрофы – 19,4, эвтрофы – 13,9, олигомезоэфтрофы – 11,1, эвмезоэфтрофы – 2,8, олиготрофы отсутствуют; спектр мхов носит следующий характер: мезоэфтрофы – 31,9%, мезоэвтрофы – 25,9%, олигомезоэфтрофы – 18,5%, эвтрофы – 12,6%, эвмезоэфтрофы – 5,9%, олиготрофы – 5,2%.

В еловых лесах по трофоморфам у напочвенных мохообразных преобладают мезоэфтрофы – 47 видов (30,1%) и мезоэвтрофы – 44 (28,2), в меньшей степени представлены эвтрофы – 34 (21,8), олигомезоэфтрофы – 23 (14,7), эвмезоэфтрофы – 7 (4,5), олиготрофы – 1 (0,6).

По сходным трофоморфам в ельниках к эвтрофам и мезоэфтрофам совместно относится половина рассматриваемого бриоразнообразия, к эмезоэфтрофам и мезоэфтрофам – 34,6% видов, олигомезоэфтрофам и олиготрофам – 15,4%.

При рассмотрении в отдельности печёночников и мхов о спектре трофоморфности печёночники распределяются следующим образом: мезоэфтрофы – 48,6%, эвтрофы – 24,3%, мезоэвтрофы – 16,2%, олигомезоэфтрофы – 8,1%, эвмезоэфтрофы – 2,7%, но олиготрофы отсутствуют; в спектре трофоморфности мхов: мезоэфтрофы – 31,9%, мезоэвтрофы – 24,4%, эвтрофы – 21,0%, олигомезоэфтрофы – 16,8%, эвмезоэфтрофы – 5,0%, олиготрофы – 0,8%.

Следовательно, напочвенные печёночники представлены в основном мезоэфтрофами, а мхи – мезоэвтрофами в связи низкой конкурентной способностью и степенью первых по сравнению со вторыми и, соответственно, распространением их преимущественно на гниющей древесине, характеризующейся повышенной гигроскопичностью.

Относительно сосновых и еловых лесов среди мхов не наблюдается большого различия в спектре трофоморф, но среди печёночников в ельниках в два раза увеличивается доля эвтрофов и на треть уменьшается доля олигомезоэфтрофов, что свидетельствует о большем соответствии условий по трофности для печёночников в ельниках.
Географическая структура. Поскольку территория Беларуси неоднородна в зональном отношении, то представляет интерес и анализ географической структуры бриокомпонента хвойных лесов, из которых сосновая формация – интразональная, а еловая – зональная. Здесь целесообразно и рассмотрение мохообразных-эпигейдов в отдельности.

В хвойных лесах почти две трети мохообразных-эпигейдов бореальные – 107 видов (51,9%), также выделяются неморальные – 31 (15,0%) и близкие к ним бореально-неморальные – 17 (8,3%) геоэлементы. Остальные геоэлементы менее представительны и среди них, с одной стороны, субарктические – 5 видов (2,4%) и субаркто-бореальные – 2 (1,0%), а с другой – аридные – 7 (3,4%), средиземноморско-неморальные и субсредиземноморско-неморальные – 5 (2,4%). К бриофитам горного генезиса относится – 23 вида (11,2%): это бореально-монтанные – 8 (3,9), неморально-монтанные – 7 (3,4), бореально-неморально-монтажные – 1 (0,5), субаркто-монтажные – 4 (1,9), субаркто-бореально-монтажные – 2 (1,0), аркто-альпийские – 1 (0,5); космополитов – 9 видов (4,4%).

В связи с большой филогенетической удаленностью важно рассмотрение географической структуры отдельно печеночников и мхов. К бореальным печеночникам-эпигейдам хвойных лесов относится 18 видов (40,9%), к неморальным – 6 (13,6%) и близким к ним бореально-неморальным – 7 (15,9), субсредиземноморско-неморальным – 1 вид (2,3%). Видов горного генезиса – 9 (20,5), космополитов – 3 (6,8). Не представлены здесь такие геоэлементы бриофлоры Беларуси как субарктический, субаркто-бореальный, аридный, средиземноморско-неморальный, субаркто-бореально-монтажный, аркто-альпийский. Среди мхов-эпигейдов хвойных лесов выделяются бореальные виды – 89 (54,9%), в меньшей мере неморальные – 25 (15,4%) и близкие к ним бореально-неморальные – 10 (6,2%). Присутствуют субарктические – 5 (3,1%) и субаркто-бореальные виды – 2 (1,2%), аридные – 7 (4,3%), средиземноморско-неморальные – 4 (2,5%), виды горного генезиса – 14 (8,6%), космополиты – 6 (3,7%). Всего видов неморальной ориентации – 39 (24,1%). Не представлены такие геоэлементы, как субсредиземноморско-неморальный, бореально-неморально-montанный.

В сосновых лесах основные геоэлементы мохообразных-эпигейдов представлены бореальными – 93 вида (60,8%), неморальными – 26 (17,0%) и близкими к ним бореально-неморальными видами – 17 (11,1%). Субарктических и субаркто-бореальных видов – по 6 (3,9%), средиземноморско-неморальных и субсредиземноморско-неморальных – 5 (3,3%); видов горного генезиса – 18 (11,8%). Доля космополитов – 9 видов (5,9%).

Печеночники-эпигейды в сосновых представлены в большей степени бореальными видами (44,4%), несколько выделяются также неморальные (11,1%) и близкие к ним бореально-неморальные (19,4%) виды. Отмечен 1 субсредиземноморско-неморальный печеночник (2,8%), виды горного генезиса (13,9%), космополиты (8,3%). Всего видов неморальной ориентации – 33,3%. В общем, среди мхов-эпигейдов сосновых лесов более представительны бореальные виды (63,6%), выде-
ляются также неморальные (18,2%) и близкие к ним бореально-неморальные (8,3%). Присутствуют субарктические и субаркто-бореальные (по 5,0%), аридные (5,0%) и средиземноморско-неморальные (3,3%) виды, а также виды горного генезиса (10,7%) и космополиты (5,0%). Всего мхов неморальной ориентации 29,8%.

В еловых лесах сравнительно с сосновыми отсутствует аркто-альпийский геоэлемент. Основные геоэлементы мохообразных-эпигенов представлены бореальными – 82 (57,7%), неморальными – 26 (18,3%) и близкими к ним бореально-неморальными – 14 (9,9%) видами. Меньшее участие в эпигене компоненте субарктических и субаркто-бореальных видов – 5 (3,5%), а также аридных – 6 (4,2%), средиземноморско-неморальных и субсредиземноморско-неморальных – 5 (3,5%).

Видов неморальной ориентации – 45 (31,7%), горного генезиса – 21 (14,8%). Космополитов – 5 видов (3,5%).

Печёночники-эпигены в ельниках представлены бореальными видами (40,5%), также, хотя и значительно менее по доле участия выделяются неморальные и бореально-неморальные (по 13,5%) виды. Присутствуют субсредиземноморско-неморальный вид (2,7%), ряд видов горного генезиса (24,3) и космополиты (5,4).

Среди мхов-эпигенов еловых лесов преобладают бореальные виды (61,5%). Выделяются также виды неморальной ориентации (31,3%): неморальные – 19,3% и близкие к ним бореально-неморальные – 8,3% и средиземноморско-неморальные – 3,7%. Присутствуют субарктические и субаркто-бореальные (по 4,6%), а также аридные (5,5%) виды. Видов горного генезиса – 11,0%, космополитов – 2,8%.

В сосновых и еловых лесах у напочвенных бриофитов основная географическая структура сходная и соответствует положению данных сообществ в умеренном поясе Голарктики, с некоторой разницей в доле участия видов горного генезиса в пользу ельников, что в какой-то мере отражает большее соответствие горным условиям еловых лесов в сравнении с сосными.

Сравнительный анализ по таксономической структуре, жизненным стратегиям, формам роста, экоморфам и геоэлементам показал значительную степень сходства напочвенных мохообразных сосновых и еловых лесов Беларуси. Особенности напочвенных бриофитов данных формаций связаны главным образом с более широкой экологической амплитудой сосновых лесов и соответственно более широким экологическим спектром их напочвенных мохообразных, чем и объясняется несколько большая видовая численность бриофитов в сосняках. Несмотря на то, что еловые леса сильно уступают сосновым по общей занимаемой площади и экологической амплитуде типов леса, довольно высокое видовое разнообразие мохообразных в ельниках объясняется большим богатством занимаемых ими эдафотопов и более четкой дифференциацией экониш.

5.4.2 Эпиксили

Вследствие специфики организации и вытекающих из нее основных жизнен-
ных стратегий – уклонения от конкуренции и связанное с этим повышение выносливости – мохообразные способны осваивать широкий спектр субстратов, где они не испытывают конкуренции со стороны более мощных представителей флоры – сосудистых, или трахеофитов – высших растений с господством в жизненном цикле спорофита. В лесных сообществах мохообразные посягаются на различных субстратах – почве, гниющей древесине и коре вегетирующих древесных растений.

Исторически мохообразные, прежде всего, произрасти в лесных условиях на почве, но затем в зависимости от прессинга трахеофитов вынуждены были осваивать менее благоприятный древесный субстрат – кору живых деревьев и гниющую древесину. При гниении древесины вследствие её частичной деструкции и связанной с этим повышением гигроскопичности и влагоёмкости данный субстрат более отвечает экологической специфике мохообразных, нежели кора живых деревьев и кустарников. Однако гниющая древесина как субстрат сохраняется значительно меньший период времени, чем кора вегетирующих древесных растений или почва в лесных условиях. Такая особенность разлагающейся древесины требует от мохообразных соответствующих определенных биологических свойств. Обыкновенно мохообразные-эпиксили характеризуются обильным спороношением, к которому нередко добавляется специализированное вегетативное размножение.

Наиболее ярким примером в этом отношении во флоре Беларуси является бриевый мох *Tetraphis pellucida*, обладающий рядом специальных приспособлений для обеспечения возможности как ускоренно осваивать подходящий для него субстрат, так и достигать в ограниченный срок возобновления. Этот вид – один из древнейших представителей флоры бриевых мхов, характеризующийся набором приспособлений для обеспечения непрерывной своей жизнедеятельности на таком специфическом фрагментарно представленном субстрате хотя бы в пределах одного и того же лесного сообщества, но всё же путем переноса спор воздушными потоками *T. pellucida* может проникать и в более удаленные места. Действительно, данный вид отличается очень высокой споровой продуктивностью, несмотря на примитивность структуры его спорогона. Перистым *T. pellucida* предназначен для ограниченной сферы расселения спор. Тем не менее, наряду со спорами этот мох обильно образует специализированные органы вегетативного размножения и характеризуется наличием укороченных циклов развития. В последнее время тетрафисовые даже выделяют в отдельный класс отдела мхов – *Tetraphidopsida* (Ignatov et al, 2006). Возникновение этой группы относят к периоду палеозоя с сильно засушливым климатом, когда ряд видов мхов подвергся элиминации (Рыковский, 2011 б; Miller, 1982). В такой связи высокая степень специализации гаметофора у них сочетается с его мелкими размерами и относительной примитивностью структуры спорогона, в частности по механизму расселения спор.

В условиях умеренного климата Беларуси, как и средней полосы Восточной Европы в целом, значительное число видов мохообразных отмечается на гниющей древесине и коре с различной степенью разложения – от слабо до сильно разложивших.
Таксономическая структура. Всего на гниющем древесном субстрате в хвойных лесах Беларуси отмечено 118 видов мохообразных из 77 родов, 44 семейств, 11 порядков, 4 классов, в том числе 40 видов — печёночники (из 27 родов, 19 семейств, 5 порядков, 1 класса) и 78 — мхи (из 50 родов, 25 семейств, 6 порядков, 3 классов). Среди эпиколов у печёночников представлен лишь класс Jungermanniopsida. Эта группа, в общем, более лабильна в отношении типов субстрата, чем представители Marchantiopsida.

Отсутствие на данном субстрате представителей последнего класса объясняется спецификой их адаптации к условиям климата средиземноморского типа, с чем связано их морфофизиологическое усложнение и специализация их гаметофита как реакция на прямое воздействие факторов абиотической среды (известна ее экстремальность), причем первоначально на почве, а впоследствии некоторые их представители освоили водную среду, что явилось реакцией на усиление аридизации, и редко каменистый субстрат. У мхов на этом субстрате представлен только класс Bryopsida (78 видов из 50 родов, 25 семейств, 6 порядков).

По числу видов из родов выделяются: Brachythecium, Cephalozia, Dicranum, Plagiothecium (по 5), Chiloscyphus (4), Bryum, Calypogeia, Lophozia, Plagiomnium, Riccardia, Sciuro-hypnum, Thuidium (по 3). Более представительны семейства: Brachytheciaceae (17), Amblystegiaceae (16), Pylaisiaceae (8), Cephalozia (7), Plagiotheciaceae, Scapaniaceae (по 6), Dicranaceae, Mniaceae (по 5), Aneuraceae, Lophocoleaceae (по 4), Bryaceae, Calypogeaceae, Thuidiaceae (по 3).

В сосновых лесах на гниющей древесине отмечено 95 видов мохообразных из 65 родов, 38 семейств, 10 порядков, 4 классов, 2 отделов. Отдел печёночников представлен 29 видами из 19 родов, 15 семейств, 4 порядков, 1 класса. В составе отдела мхов — 66 видов из 46 родов, 23 семейств, 6 порядков, 1 класса.

Более представительные роды — Brachythecium, Cephalozia, Dicranum, Plagiothecium (по 5), Chiloscyphus (4), Plagiomnium, Riccardia, Sciuro-hypnum, Thuidium (po 3). По числу видов выделяются семейства — Brachytheciaceae (17), Amblystegiaceae (14), Pylaisiaceae (7), Cephalozia, Plagiotheciaceae (по 6), Dicranaceae, Mniaceae (по 5), Aneuraceae, Lophocoleaceae (po 4), Scapaniaceae, Thuidiaceae (po 3).

В еловых лесах на гниющей древесине представлено 108 видов мохообразных из 65 родов, 38 семейств, 10 порядков, 4 классов, 2 отделов. Отдел печёночников включает здесь 37 видов из 24 родов, 16 семейств, 5 порядков, 1 класса. В составе отдела мхов — 71 вид из 47 родов, 23 семейств, 5 порядков, 1 класса.

По числу видов из родов выделяются: Brachythecium, Cephalozia, Dicranum, Plagiothecium (по 5), Chiloscyphus (4), Calypogeia, Lophozia, Riccardia, Sciuro-hypnum, Thuidium (po 3). Наиболее представительны семейства: Brachytheciaceae (17), Amblystegiaceae (14), Pylaisiaceae (8), Cephalozia, Plagiotheciaceae, Scapaniaceae (po 6), Dicranaceae, (po 5), Aneuraceae, Lophocoleaceae, Mniaceae (po 4), Calypogeaceae, Thuidiaceae (po 3).

Относительно эпикской фракции бриокомпонента сосновые леса уступают
по числу видов еловым, что связано с большим их соответствием экологическим условиям ельников нежели сосняков (выше степень увлажнения и более устойчивый микроклимат).

Экморфы. По экологическим особенностям мохообразные, произрастающие на гниющих древесине и коре, образуют сборную группу. В ее составе бриофиты по широте экологической амплитуды значительно различаются – от видов с узкой экологической амплитудой (стенотопные) до широкой (политопные), т.е. экологически пластичные, способные заселять различные субстраты.

Бриофиты, исключительно или в основном произрастающие на гниющей древесине, или собственно эпиксили среди отмеченных на данном субстрате немногочисленны (7,7%), из них только 1 бривый мох – *Tetraphis pellucida*, к тому же не являющийся облигатным эпиксилом, хотя мхи составляют 2/3 эпиксилов, а печёночники – 1/3. Все собственно эпиксилы – довольно мелкие организмы. При этом наиболее узкой экологической амплитудой здесь характеризуются именно печёночники. Исторический аспект в освоении гниющей древесины находится отражение и в составе бриофитов такого небольшого региона как Беларусь. Печёночники в связи со спецификой своей организации значительно раньше, чем бривые мхи, освоили гниющую древесину, причем, возможно, в условиях древних дождевых тропических лесов. Бривые же мхи как дериваты умеренного климата развивались без такого жесткого конкурентного давления сосудистых растений, как печёночники, и поэтому виды их характеризуются, в общем более широкими экологическими нишами, чем печёночники, во временном аспекте в отношении, в частности гниющей древесины.

Такая специфическая группа как настоящие эпифиты в хвойных лесах Беларуси представлена в известной мере на разлагающейся после отмирания древесных растений коре, иногда ещё и на гниющей древесине, составляя лишь 4,5% видовой представленности эпиксиолов хвойных лесов (*Lejeunea cavifolia*, *Radula complanata*, *Anomodon longifolius*, *Anomodon viticulosus*, *Homalia trichomanoides*, *Leucodon sciuroides* и др.). Данные виды, как и некоторые другие эпифиты, оказываются в роли эпиксиолов, удерживался некоторое время на стволах отмерших деревьев и на коре их пней.

Однако наиболее распространенные на гниющей древесине мохообразные представлены видами с широкой амплитудой в отношении субстратов. Из печёночников это *Chiloscypus profundus* и *Ptilidium pulcherrimum*, способные произрастать и на других субстратах, в том числе на почве. Из мхов к таким видам относятся, прежде всего, *Hypnum cupressiforme*, *Brachythecium salebrosum*, *Dicranum montanum*, *Dicranum scoparium*, *Herzogiella seligeri*, *Plagiomnium cuspidatum*, *Plagiothecium laetum*, *Pohlia nutans*, *Pylaisia polyantha*, *Sciuro-hypnum oedipodium*, *Sanionia uncinata* и некоторые другие.

Распределение печёночников и мхов на гниющей древесине в зависимости от степени ее разложения носит неоднаковый характер. У мхов это численное распределение не имеет значительных различий по стадиям: начало деструкции (1 стадия) – отмечено 32 вида, интенсивная деструкция (2 стадия) – 49, полная деструкция (3 ста-
дия) – 54 и окончание гумификации (4 стадия) – 46. Отмечено 14 видов исключительно бриевых мхов, произрастающих на всех стадиях разложения древесины. 0 стадия – свежепупавший ствол – характеризуется сохранением на некоторое время эпифитного бриокомпонента, а 5 – стадия земляного вала – распространением эпигенов.

В связи с редкой встречаемостью в лесах трухлявой древесины, важно отметить виды, предпочитающие исключительно древесный субстрат на 4-ой стадии разложения, их – 9, среди них представлены только бриевые мхи. У печёночников на 1-ой стадии разложения древесины выявлено 4 вида, на 2-ой – 28, на 3-ей – 33 и на 4-ой – 10, т.е. наименее благоприятны для поселения печёночников слабо разложившаяся древесина и стадия окончания гумификации (Таблица 5.3).

Таблица 5.3. – Распределение мохообразных в зависимости от степени разложения гниющей древесины в хвойных лесах Беларуси

<table>
<thead>
<tr>
<th>Вид</th>
<th>Стадии разложения древесины (Спирин, 2002)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1.</td>
<td>Aneura pinguis</td>
</tr>
<tr>
<td>2.</td>
<td>Bazzania trilobata</td>
</tr>
<tr>
<td>3.</td>
<td>Blepharostoma trichophyllum</td>
</tr>
<tr>
<td>4.</td>
<td>Calypogea integristipula</td>
</tr>
<tr>
<td>5.</td>
<td>Calypogea muelleriana</td>
</tr>
<tr>
<td>6.</td>
<td>Calypogea neesiana</td>
</tr>
<tr>
<td>7.</td>
<td>Cephalozia bicuspidata</td>
</tr>
<tr>
<td>8.</td>
<td>Cephalozia catenulata</td>
</tr>
<tr>
<td>9.</td>
<td>Cephalozia connivens</td>
</tr>
<tr>
<td>10.</td>
<td>Cephalozia lumulifolia</td>
</tr>
<tr>
<td>11.</td>
<td>Cephalozia pleniceps</td>
</tr>
<tr>
<td>12.</td>
<td>Cephaloziella rubella</td>
</tr>
<tr>
<td>13.</td>
<td>Chiloscyphus minor</td>
</tr>
<tr>
<td>14.</td>
<td>Chiloscyphus pallescens</td>
</tr>
<tr>
<td>15.</td>
<td>Chiloscyphus polyanthos</td>
</tr>
<tr>
<td>16.</td>
<td>Chiloscyphus profundus</td>
</tr>
<tr>
<td>17.</td>
<td>Crossocalyx hellerianus</td>
</tr>
<tr>
<td>18.</td>
<td>Frullania dilatata</td>
</tr>
<tr>
<td>19.</td>
<td>Geocalyx graveolens</td>
</tr>
<tr>
<td>20.</td>
<td>Jamesoniella autumnalis</td>
</tr>
<tr>
<td>21.</td>
<td>Lejeunea cavifolia</td>
</tr>
<tr>
<td>22.</td>
<td>Lepidozia reptans</td>
</tr>
<tr>
<td>23.</td>
<td>Liochlaena lanceolata</td>
</tr>
<tr>
<td>24.</td>
<td>Lophozia ascendens</td>
</tr>
<tr>
<td>25.</td>
<td>Lophozia longiflora</td>
</tr>
<tr>
<td>26.</td>
<td>Lophozia ventricosa</td>
</tr>
<tr>
<td>27.</td>
<td>Moerckia flotoviana</td>
</tr>
<tr>
<td>28.</td>
<td>Mylia anomala</td>
</tr>
<tr>
<td>29.</td>
<td>Nowellia curvifolia</td>
</tr>
<tr>
<td>30.</td>
<td>Odontoschisma denudatum</td>
</tr>
<tr>
<td>Вид</td>
<td>Стадии разложения древесины (Спирин, 2002)</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>31. Plagiochila asplenioides</td>
<td></td>
</tr>
<tr>
<td>32. Plagiochila porelloides</td>
<td></td>
</tr>
<tr>
<td>33. Pilidium pulcherrimum</td>
<td></td>
</tr>
<tr>
<td>34. Radula complanata</td>
<td></td>
</tr>
<tr>
<td>35. Riccardia latifrons</td>
<td></td>
</tr>
<tr>
<td>36. Riccardia multifida</td>
<td></td>
</tr>
<tr>
<td>37. Riccardia palmata</td>
<td></td>
</tr>
<tr>
<td>38. Scapania irrigua</td>
<td></td>
</tr>
<tr>
<td>39. Schistochilopsis incisa</td>
<td></td>
</tr>
<tr>
<td>40. Solenostoma gracillimum</td>
<td></td>
</tr>
<tr>
<td>41. Amblystegium juratzkanum</td>
<td></td>
</tr>
<tr>
<td>42. Amblystegium serpens</td>
<td></td>
</tr>
<tr>
<td>43. Anomodon longifolius</td>
<td></td>
</tr>
<tr>
<td>44. Anomodon viticulosus</td>
<td></td>
</tr>
<tr>
<td>45. Atrichum angustatum</td>
<td></td>
</tr>
<tr>
<td>46. Aulacomnium androgynum</td>
<td></td>
</tr>
<tr>
<td>47. Brachytheciastrum velutinum</td>
<td></td>
</tr>
<tr>
<td>48. Brachythecium campestre</td>
<td></td>
</tr>
<tr>
<td>49. Brachythecium mildeanum</td>
<td></td>
</tr>
<tr>
<td>50. Brachythecium rivulare</td>
<td></td>
</tr>
<tr>
<td>51. Brachythecium rutabulum</td>
<td></td>
</tr>
<tr>
<td>52. Brachythecium salebrosum</td>
<td></td>
</tr>
<tr>
<td>53. Bryum bimum</td>
<td></td>
</tr>
<tr>
<td>54. Bryum capillare</td>
<td></td>
</tr>
<tr>
<td>55. Bryum moravicum</td>
<td></td>
</tr>
<tr>
<td>56. Callicladium haldanianum</td>
<td></td>
</tr>
<tr>
<td>57. Calliergonella caspidata</td>
<td></td>
</tr>
<tr>
<td>58. Calliergonella lindbergii</td>
<td></td>
</tr>
<tr>
<td>59. Campyliadelphus chrysophyllus</td>
<td></td>
</tr>
<tr>
<td>60. Campylidium sommerfeltii</td>
<td></td>
</tr>
<tr>
<td>61. Campylium protensum</td>
<td></td>
</tr>
<tr>
<td>62. Campylium stellatum</td>
<td></td>
</tr>
<tr>
<td>63. Campylopus flexuosus</td>
<td></td>
</tr>
<tr>
<td>64. Ceratodon purpureus</td>
<td></td>
</tr>
<tr>
<td>65. Cirriphyllum piliferum</td>
<td></td>
</tr>
<tr>
<td>66. Cratoneuron filicinum</td>
<td></td>
</tr>
<tr>
<td>67.Dicranum flagellare</td>
<td></td>
</tr>
<tr>
<td>68. Dicranum montanum</td>
<td></td>
</tr>
<tr>
<td>69. Dicranum polysetum</td>
<td></td>
</tr>
<tr>
<td>70. Dicranum scoparium</td>
<td></td>
</tr>
<tr>
<td>71. Dicranum viride</td>
<td></td>
</tr>
<tr>
<td>72. Drepanocladus aduncus</td>
<td></td>
</tr>
<tr>
<td>73. Drepanocladus polygamus</td>
<td></td>
</tr>
<tr>
<td>74. Eurynchiastrum pulchellum</td>
<td></td>
</tr>
<tr>
<td>75. Eurynchium angustirete</td>
<td></td>
</tr>
<tr>
<td>Вид</td>
<td>Стадии разложения древесины (Спирин, 2002)</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>76.</td>
<td>Fissidens adianthoides</td>
</tr>
<tr>
<td>77.</td>
<td>Fissidens osmundoides</td>
</tr>
<tr>
<td>78.</td>
<td>Herzogiella seligeri</td>
</tr>
<tr>
<td>79.</td>
<td>Homalia trichomanoides</td>
</tr>
<tr>
<td>80.</td>
<td>Homomallium incurvatum</td>
</tr>
<tr>
<td>81.</td>
<td>Hygroamblystegium humile</td>
</tr>
<tr>
<td>82.</td>
<td>Hygroamblystegium varium</td>
</tr>
<tr>
<td>83.</td>
<td>Hylacomium splendens</td>
</tr>
<tr>
<td>84.</td>
<td>Hypnum curpessiforme</td>
</tr>
<tr>
<td>85.</td>
<td>Isothecium alopecuroides</td>
</tr>
<tr>
<td>86.</td>
<td>Kindbergia praelonga</td>
</tr>
<tr>
<td>87.</td>
<td>Leptobryum pyriforme</td>
</tr>
<tr>
<td>88.</td>
<td>Leptodictyum riparium</td>
</tr>
<tr>
<td>89.</td>
<td>Leucodon sciuroides</td>
</tr>
<tr>
<td>90.</td>
<td>Mnium stellare</td>
</tr>
<tr>
<td>91.</td>
<td>Oxyrrhynchium hians</td>
</tr>
<tr>
<td>92.</td>
<td>Plagiomnium affine</td>
</tr>
<tr>
<td>93.</td>
<td>Plagiomnium cuspidatum</td>
</tr>
<tr>
<td>94.</td>
<td>Plagiomnium rostratum</td>
</tr>
<tr>
<td>95.</td>
<td>Plagiothecium cavifolium</td>
</tr>
<tr>
<td>96.</td>
<td>Plagiothecium denticulatum</td>
</tr>
<tr>
<td>97.</td>
<td>Plagiothecium laetum</td>
</tr>
<tr>
<td>98.</td>
<td>Plagiothecium latebricola</td>
</tr>
<tr>
<td>99.</td>
<td>Plagiothecium nemorale</td>
</tr>
<tr>
<td>100.</td>
<td>Platygyrium repens</td>
</tr>
<tr>
<td>101.</td>
<td>Pleurozium schreberi</td>
</tr>
<tr>
<td>102.</td>
<td>Pohlia nutans</td>
</tr>
<tr>
<td>103.</td>
<td>Polytrichastrum formosum</td>
</tr>
<tr>
<td>104.</td>
<td>Pseudoleskeella nervosa</td>
</tr>
<tr>
<td>105.</td>
<td>Ptilium crispa-castrensis</td>
</tr>
<tr>
<td>106.</td>
<td>Pylaisia polyantha</td>
</tr>
<tr>
<td>107.</td>
<td>Rhizomnium punctatum</td>
</tr>
<tr>
<td>108.</td>
<td>Sanionia uncinata</td>
</tr>
<tr>
<td>109.</td>
<td>Sciuro-hypnum oedipodium</td>
</tr>
<tr>
<td>110.</td>
<td>Sciuro-hypnum reflexum</td>
</tr>
<tr>
<td>111.</td>
<td>Sciuro-hypnum starkei</td>
</tr>
<tr>
<td>112.</td>
<td>Serpoleskea subtilis</td>
</tr>
<tr>
<td>113.</td>
<td>Stereodon fertilis</td>
</tr>
<tr>
<td>114.</td>
<td>Stereodon pallescens</td>
</tr>
<tr>
<td>115.</td>
<td>Tetraphis pellucida</td>
</tr>
<tr>
<td>116.</td>
<td>Thuidium assimile</td>
</tr>
<tr>
<td>117.</td>
<td>Thuidium delicatulum</td>
</tr>
<tr>
<td>118.</td>
<td>Thuidium tamariscinum</td>
</tr>
</tbody>
</table>
Гидроморфы. В хвойных лесах по влажности среды среди мохообразных-эпиксиолов выделяются мезофиты – 63 вида (48,5%), в меньшей степени представлены гигромезофиты – 22 (16,9%), гирофиты – 15 (11,5%), ксеромезофиты – 13 (10,0%), мезогигрофиты – 10 (7,7%), гигрогидрофиты – 4 (3,1%), мезоксерофиты – 3 (2,3%). Вообще отсутствуют среди мохообразных-эпиксиолов гидрофитные формы. Среди печёночников преобладают гигромезофиты – 16 видов (35,6%), за ними следуют мезофиты – 13 (28,9%), мезогигрофиты – 6 (13,3%), ксеромезофиты и гирофиты – по 4 (по 8,9%), мезоксерофиты – 2 (4,4%), гигрогидрофиты не представлены. Среди мхов преобла дают мезофиты – 50 (58,8%), им значительно уступают гирофиты – 11 (12,9%), ксеромезофиты – 9 (10,6%), гигроме зофиты – 6 (7,1%), гигрогидрофиты и мезогигрофиты – по 4 (по 4,7%), а тем более мезоксерофиты – 1 (1,2%).

По группам относительно влажности совокупно преобладают менее требовательные к этому фактору виды – ксеромезофиты, мезофиты и гигромезофиты, составляющие 77,7%. Мезогигрофитов, гирофитов и гигрогидрофитов совместно лишь 22,3%, что связано с невысокой или умеренной влагообеспеченностью субстрата.

В сосновых лесах среди мохообразных-эпиксиолов спектр гидроморф сходен с таковым в хвойных лесах в целом: половина видового состава – мезофиты – 52 вида (50,0%), в меньшей степени представлены гигромезофиты – 17 (16,3%), гирофиты – 12 (11,5%), ксеромезофиты – 9 (8,7%), мезогигрофиты – 8 (7,7%), гигрогидрофиты – 4 (3,8%), мезоксерофиты – 2 (1,9%). Среди печёночников преобладают гигромезофиты (35,5%), за ними следуют мезофиты (29,0%), мезогигрофиты (16,1%), гирофиты (9,7%), ксеромезофиты (6,5%), мезоксерофиты (3,2%). Среди мхов преобладают мезофиты (58,9%), им значительно уступают гигроме зофиты (16,3%), гирофиты (11,5%), ксеромезофиты (8,7%), мезогигрофиты (7,7%), гигрогидрофиты (3,8%), мезоксерофиты (1,9%).

По группам гидроморф менее требовательные к влажности виды (ксеромезофиты, мезофиты и гигромезофиты) преобладают – 76,9%, тогда как мезогигрофитов, гирофитов и гигрогидрофитов совместно – 23,1%.

В еловых лесах среди мохообразных-эпиксиолов спектр гидроморф таков: несколько более половины видового состава – мезофиты – 59 видов (49,2%), в меньшей степени представлены гигромезофиты – 19 (15,8%), гирофиты и ксеромезофиты – по 13 (по 10,8%), мезогигрофиты – 9 (7,5%), гигрогидрофиты – 4 (3,3%), мезоксерофиты – 3 (2,5%). Среди печёночников преобладают гигромезофиты (35,7%) и мезофиты (26,2%), за ними следуют мезогигрофиты (14,3%), гирофиты и ксеромезофиты (9,5%), мезоксерофиты (4,8%). Среди мхов спектр гидроморф несколько отличается от спектра сосняков и в целом хвойных лесов, преобладают мезофиты (61,5%), за ними следуют ксеромезофиты и гирофиты (по 11,5%), гигромезофиты и гигрогидрофиты (по 5,1%), мезогигрофиты (3,8%), мезоксерофиты (1,3%).

По группам менее требовательные к влажности ксеромезофиты, мезофиты и гигромезофиты составляют 78,3%, тогда как мезогигрофитов, гирофитов и гигрогидрофитов совместно – 21,7%.
При сравнении сосновых и еловых лесов по эпиксильной фракции бриокомпонента относительно гидроморф проявляется сходство в их спектрах при определенных различиях их таксономического состава.

Трофоморфы. В хвойных лесах по отношению к трофности из мохообразных-эпиксиллов доминируют мезотрофы – 53 (46,1%) и мезоэвтрофы – 38 (33,0%), в меньшей степени представлены эвтрофы – 14 (12,2%), олигомезотрофы – 8 (7,0%), эвмезотрофы – 2 (1,7%). Олиготрофы отсутствуют. Отдельно печёночники на 2/3 – мезотрофы – 25 видов (67,6%), также имеются мезоэвтрофы – 5 (13,5%), олигомезотрофы и эвтрофы – по 3 (по 8,1%), эвмезотрофы – 1 (1,3%). Среди мхов мезотрофов – 33 вида (42,3%) и мезоэвтрофы – 28 (35,9%), в меньшей степени представлены эвтрофы – 11 (14,1%), олигомезотрофы – 5 (6,4%), эвмезотрофов – лишь 1 (1,3%).

Мезотрофы и эвмезотрофы (47,8%), а также мезоэвтрофы и эвтрофы (45,2%) по группам составляют каждая около половину видов бриофитов. Группа олигомезотрофов и олиготрофов представлена наименее (7,0%). Среди мохообразных-эпиксиллов хвойных лесов отсутствуют олиготрофы – мохообразные бедных элементами питания субстратов, так как гниющая древесина является более благоприятным субстратом в отношении содержания элементов питания и влажности.

В сосновых лесах среди трофоморф мохообразных-эпиксиллов выделяются мезотрофы – 45 (47,9%) и мезоэвтрофы – 31 (33,0%), в меньшей степени представлены эвтрофы – 9 (9,6%), олигомезотрофы – 7 (7,4%), эвмезотрофы – 2 (2,1%). Отдельно среди печёночников значительно превалируют мезотрофы (71,4%), намного им уступают мезоэвтрофы (14,3%), олигомезотрофы (7,1%), эвтрофы и эвмезотрофы (по 3,6%). Среди мхов преобладают мезоэвтрофы (40,9%) и мезотрофы (37,9%), в меньшей степени представлены эвтрофы (12,1%), олигомезотрофы (7,6%), эвмезотрофы (1,5%).

Группа мезотрофов и эвмезотрофов составляет половину бриоразнообразия эпиксилов сосновых лесов, а также немного менее половины видов составляет группа мезоэвтрофов и эвтрофов (42,6%), а олигомезотрофов 7,4%.

В еловых лесах среди трофоморф мохообразных-эпиксиллов выделяются мезотрофы – 49 (46,7%) и мезоэвтрофы – 35 (33,3%), значительно меньше эвтрофов – 12 (11,4%), олигомезотрофов – 7 (6,7%), эвмезотрофов – 2 (1,9%). Отдельно среди печёночников 2/3 видов – мезотрофы (67,6%), им значительно уступают мезоэвтрофы (14,7%), эвтрофы (8,8%), олигомезотрофы (5,9%), эвмезотрофы (2,9%). Среди мхов преобладают мезоэвтрофы (42,3%) и мезотрофы (36,6%), меньше эвтрофов (12,7%), олигомезотрофов (7,0%), эвмезотрофов (1,4%).

Группы мезотрофов и эвмезотрофов (46,8%), а также мезоэвтрофов и эвтрофов (44,8%) составляют каждая почти половину видов бриофитов. Наименее представлена группа олигомезотрофов и олиготрофов (6,7%), что объясняется повышенным уровнем трофности субстрата.

При сравнении сосновых и еловых лесов по эпиксильному бриокомпоненту относительно трофоморф проявляется сходство в их спектрах при определенных различиях их таксономического состава.
Географическая структура. Географический анализ мохообразных-эпиксилов хвойных сообществ показал, что в геоструктуре преобладают виды групп бореальных (43,0%) и неморальных (34,4%) геоэлементов. Это – бореальные – 54 вида (42,2%) и субаркто-бореальный – 1 (0,8%); неморальные – 26 (20,3%), бореально-неморальные – 16 (12,5%), средиземноморско-неморальные – 2 (1,6%). Достаточно широко представлена группа бриофитов горного генезиса – 23 вида (18,0%). Это неморально-многокультурные – 12 видов (9,4%), бореально-многокультурные – 7 (5,5%), бореально-неморально-многокультурные – 2 (1,6%), субаркто-боро-неморально- монокультурный – по 1 (по 0,8%). Во флоре мохообразных-эпиксилов хвойных лесов отмечены также субарктические – 2 вида (1,6%) и аридный – 1 (0,8%), а также группа космополитов – 3 (2,3%).

В сосняковых лесах географическая структура мохообразных-эпиксилов такова: преобладают виды групп бореальных – в целом 46 (43,8%) и неморальных – 38 (36,2%) геоэлементов, что сходно с показателями хвойных лесов в целом. В группе бриофитов горного генезиса – здесь 15 видов (14,3%). Отмечены кроме того субарктические – 2 вида (1,9%) и аридный – 1 (1,0%), а также группа космополитов – 3 (2,9%).

В еловых лесах географическая структура мохообразных-эпиксилов такова: преобладают виды групп бореальных – 51 (43,2%) и неморальных – 40 (33,9%) геоэлементов, что сходно с показателями сосновых лесов. Достаточно широко представлена группа бриофитов горного генезиса – 23 вида (19,5%), заметно превосходя таковую сосняков. Единичны виды субарктического и аридного геоэлементов (п 0,8%), и группа космополитов – 2 (1,7%).

Эпиксильные мохообразные – неотъемлемый компонент биоразнообразия хвойных лесов, их исторически сложившихся группировок, входящих в систему ландшафтов природного комплекса Беларуси. Из состава хвойных лесов мохообразные предпочитительно поселяются на гниющем колоднике в еловых сообществах в связи с тем, что ель избиратель места с более влажным режимом, и отличаются от сосновых большей тенистостью, что в известной мере благоприятно в связи с довольно стабильным режимом относительной влажности воздуха для ряда мхов и тем более печёночников, способных произрастать на данном субстрате. В составе мохообразных-эпиксилов хвойных лесов к обильным относятся только мелкие печёночники. Экологическая роль мохообразных, прирученных к гниющему колоднику, заключается в том, что они, зачастую покрывая его почти сплошным ковром, препятствуют испарению влаги из этого субстрата и тем самым способствуют активной жизнедеятельности микроорганизмов, разлагающих древесину. Бриофиты, обрастающая гниющи колодник, создают благоприятные условия для прохождения циклов развития различных мелких представителей фаунастического комплекса.
5.4.3 Эпифиты

При рассмотрении формирования эпифитного компонента бриофлор следует уделить особое внимание такому узловому экотопу (Бардунов, 1961), как комель ствола деревьев. Именно в условиях этого экотопа сосредоточено наибольшее число видов мохообразных, встречающихся на коре деревьев. Здесь обычно кора более нарушена, трещиновата, с гумусом в трещинах, где также более задерживается влага и лесной опад. Полагаем, что данный тип экотопов исторически являлся той зоной, которая способствовала переходу эпигеидных бриофитов к эпифитному образу жизни путем адаптации к произрастанию на коре деревьев. Определяющую роль в формировании эпифитного компонента могло сыграть конкурентное давление напочвенных сосудистых растений и обильный листовой опад. Из лесных сообществ для возникновения эпифитного компонента по экологическим условиям наименьше подходят хвойные леса. Этому не способствовали по своим свойствам их опад и физико-химические характеристики коры хвойных деревьев, затрудняющие поселение на ней эпигеидных мохообразных. По этим причинам в хвойных лесах мохообразные в основном не могли подняться выше комля ствола, но и здесь их видовой состав небогат.

Круг возможных претендентов на эпифитный образ жизни ограничивало и значительное подкисление хвойными деревьями и их опадом почвенной среды. Для перехода к эпифитизму недостаточным было и конкурентное давление сосудистых растений на почве до тех пор, пока не произошла широкая экспансия в хвойные леса покрытосеменных растений.

Таксономическая структура. В хвойных лесах на стволах и ветвях, а также комлях стволов деревьев и выступающих из почвы корнях отмечено 99 видов мохообразных из 66 родов, 40 семейств, 9 порядков, 3 классов, 2 отделов. В их числе 20 видов из 16 родов, 14 семейств, 4 порядков класса Jungermanniopsida отдела Marchantiophyta и 79 видов из 50 родов, 26 семейств, 5 порядков, 1 класса Bryopsida отдела Bryophyta.

По морфотипу гаметофора почти все эти печеночники – листостебельные и только один вид слоевищный (Metzgeria furcata). Среди мхов, как известно, слоевищные формы отсутствуют.

Из родов по числу видов можно выделить Brachythecium, Plagiothecium (по 5 видов), Bryum, Dicranum, Orthotrichum (по 4), Chiloscyphus (3 вида); из семейств – Brachytheciaceae (16 видов), Plagiotheciaceae, Thuidiaceae (по 6), Amblystegiaceae, Bryaceae, Orthotrichiaceae, Pylaisiaceae (по 5), Dicranaceae (4), Anomodontaceae, Mniaceae, а также Lophocoleaceae и Cephalozia (по 3).

В сосняках представлено 77 видов эпифитной экологии из 52 родов, 35 семейств, 8 порядков, 2 классов, 2 отделов, из них печеночников – 14 видов из 11 родов, 11 семейств, 3 порядков, мхов – 63 вида из 41 рода, 24 семейств, 5 порядков. Из родов по числу видов выделяются почти те же роды, что и в составе хвойных лесов в

Анализ жизненных стратегий бриоэпифитов и связанных с ними биоморф в хвойных лесах выявил преобладание бриоэпифитов экотопических – 76 видов (60,3%), среди которых наиболее представительны бриофиты с формой роста плоский ковёр (около 61% от бриоэпифитов экотопических), встречаются также – подушка, подушковидная и настоящая дерновина, вертикально-ветвистый и талломный ковры, разветвленно-ветвистое и настоящее сплетения и др. В меньшей степени среди мохообразных-эпифитов распространены бриоэпифиты ценотические – 46 видов (36,5%), относящихся к таким формам роста, как настоящая дерновина, перистоветвистое и разветвленно-ветвистое сплетения, плоский ковёр, дендроидная форма, в меньшей степени вертикально-ветвистый ковёр, подушковидная дерновина и подушка. Менее всего бриоэксклерентов и бриовиолентов – по 2 вида (по 1,6%), представленных такими формами роста, как разветвленно-ветвистое сплетение, плоский ковёр и настоящая дерновина. Вовсе не представлены среди эпифитов бриоэпифиты гидрофитные.

Что касается жизненных стратегий печеночников и мхов по отдельности, то у них наиболее представлены бриоэпифиты экотопические (у печеночников – 57,7%, у мхов – 61,0%), значительно превосходящие числом бриоэпифиты ценотические (у печеночников – 38,5%, у мхов – 36,0%) наименее представлены бриоэксклеренты (у печеночников – 3,8%, у мхов – 1,0%) и бриовиоленты (у печеночников не представлены, у мхов – 2,0%).

В сосных лесах по жизненным стратегиям среди бриоэпифитов также превалируют бриоэпифиты экотопические (58,0%), им уступают бриоэпифиты ценотические (38,0%), наименее представлены бриоэксклеренты и бриовиоленты (по 2,0%). Отдельно у печеночников и мхов эта тенденция повторяется: бриоэпифитов экотопических у печеночников – 61,1%, у мхов – 57,3%, ценотических у печеночников – 33,3%, у мхов – 39,0%, бриоэксклерентов у печеночников – 5,6%, у мхов – 1,2%, бриовиолентов у мхов – 2,4%.

В еловых лесах по жизненным стратегиям среди бриоэпифитов доля бриоэпифитов экотопических несколько выше, чем в сосняках (61,3%), а у бриоэпифитов це-
нотических – такая же (38,0%), наименьше представлены бризовиоленты (по 1,7%), а бриозэксперанты отсутствуют. Отдельно у печеночников и мхов тенденция повторяется: бриопатенты экотопические – у печеночников – 60,0%, у мхов – 61,7%, бриопатенты ценотические – у печеночников – 40,0%, у мхов – 36,2% и бриозвиоленты – у мхов – 2,1%.

Биоморфы, или формы роста. В хвойных лесах анализ бриозэпаритов по биоморфам выявил преобладание такой жизненной формы, как плоский ковёр – 56 видов (50,0%), значительно менее представительна настоящая дерновина – 20 видов (17,9%). У меньшего числа видов имеются подушковидная дерновина – 9 (8%), перисто-ветвистое сплетение – 7 (7,6%), вертикально-ветвистый ковёр – 6 (5,4%), подушка – 5 (4,5%), разветвленно-ветвистое сплетение – 4 (3,6%), дендроидная форма – 3 (2,7%). Талломный ковёр представлен у печеночника Metzgeria furcata. Среди бриозэпаритов отсутствуют такие формы роста, как дерновидная подушка, мутовчато-ветвистая дерновина, слабоветвистое и гидрофитное сплетение.

У эпифитных печеночников и мхов проявляется свой специфика, связанная с их организацией и физиологией. У печеночников – только 3 формы роста: плоский ковёр – 17 видов (77,3%), настоящая дерновина – 3 (13,6%) и талломный ковёр – 2 (9,1%). У мхов же представлены эти (кроме талломного ковра) и все остальные формы роста. Распределение форм роста эпифитных мхов приблизительно совпадает с таковым у бриозэпаритов в целом: плоский ковёр – 39 (43,3%), настоящая дерновина – 17 (18,9%), подушковидная дерновина – 9 (10,0%), перисто-ветвистое сплетение – 7 видов (7,8%), вертикально-ветвистый ковёр – 6 (6,7%), подушка – 5 (5,6%), разветвленно-ветвистое сплетение – 4 (4,4%), дендроидная форма – 3 (3,3%).

В сосных лесах по видовой представленности заметно выделяется плоский ковёр – 44 вида (50,6%), которому значительно уступает настоящая дерновина – 14 (16,1%) и в ещё большей степени – остальные биоморфы: подушковидная дерновина – 7 видов (8,0%), перисто-ветвистое сплетение и вертикально-ветвистый ковёр – по 6 (6,9%), подушка 4 (4,6%), разветвленно-ветвистое сплетение и дендроидная форма – 3 (3,4%). Талломный ковёр отсутствует. Отдельно печеночники представлены плоским ковром – 14 видов (93,3%), настоящей дерновиной – 1 (6,7%), а мхи – плоским ковром (41,7%), настоящей (18,1%) и подушковидной дерновинами (9,7%), перисто-ветвистым сплетением и вертикально-ветвистым ковром (по 8,3%), подушкой (5,6%), разветвленно-ветвистым сплетением и дендроидной формой (по 4,2%).

В еловых лесах спектр биоморф таков: плоский ковёр – 55 видов (51,9%), настоящая дерновина – 18 (17,0%), подушковидная дерновина – 8 (7,5%), перисто-ветвистое сплетение – 7 (6,6%), вертикально-ветвистый ковёр – 6 (5,7%), разветвленно-ветвистое сплетение – 4 (3,8), подушка и дендроидная форма – 3 (2,8%), талломный ковёр – 1 (0,9%). Отдельно печеночники представлены плоским ковром (76,2%), настоящей дерновиной (14,3%), талломным ковром (9,5%), а мхи имеют следующий спектр биоморф: плоский ковёр (45,9%), настоящая дерновина (17,6%), подушковидная дерновина (9,4%), перисто-ветвистое сплетение (8,2%), вертикально-ветвистый ковёр (7,1%), разветвленно-ветвистое сплетение (4,7%), подушка и дендроидная
форма (по 3,5%). Спектры биоморф эпифитов (как мхов, так и печеночников) в сосняках и ельниках сходны, что связано с преимущественной приуроченностью бриофитов лесов обеих формаций к лиственным породам как к более благоприятному субстрату.

Эктоморфы. Что касается распределения бриофитов в качестве эпифитов относительно морфоструктур древесных растений, то на стволах отмечено 26 видов (14,9%), а при основании стволов – почти все бриофиты, произрастающие на коре, тогда как на корнях – более 40 видов.

Определяющее значение для поселения на коре моховых имеют физико-химические свойства субстрата, изменяющиеся с возрастом древесных растений, и характер микроклимата, а также характер крон, взаимное расположение деревьев и кустарников с соответствующими свойствами коры как субстрата для поселения моховых. Свойства коры хвойных деревьев, как уже выше отмечено, неблагоприятны для эпифитных моховых, причем сосны еще более, чем ели. Лиственные деревья существенно различны в качестве субстрата для бриофитов. Наименее для них подходит кора ольхи черной (Alnus glutinosa) и березы (Betula spp.). Легче осваиваются бриофитами кора осины (Populus tremula), ольхи серой (Alnus incana) и др.

Кора широколиственных деревьев более или менее благоприятна для освоения бриофитами, хотя, по крайней мере, физические свойства коры у разных видов широколиственных деревьев существенно различны. Кора дуба (Querqus robur) и граба (Carpinus betulus) из-за своей плотности и твердости слабо влагоемкая, и поэтому на ней до определенного возраста данных пород деревьев поселяется ограниченное число видов моховых с пластичной экология. Только на коре высоко-возрастных деревьев дуба, граба и при влажном микроклимате в лесу моховых-эпифиты обретают лучшие условия произрастания (Рыковский, 1980). Более отвечают требованиям эпифитных бриофитов кора ясения (Fraxinus excelsior), клена (Acer platanoides), липы (Tilia cordata) и вязов (Ulmus spp.). Их кора достаточно влагопроницаемая, на ней легче закрепляются многие моховые, в том числе и крупные формы. Данные виды деревьев в наибольшей мере населяют эпифитный компонент поздней третичной бриофлоры, хотя и носящий резвакуационный в умеренных широтах Голарктики характер. Именно на этих деревьях чаще всего встречаются собственно эпифитные (настоящие) бриофиты, т.е. в основном или почти исключительно ведущие эпифитный образ жизни. К ним следует отнести 22 вида, из которых 4 – печеночники и 18 – бриевые мхи. Это представители родов Orthotrichum, Ulota, Anomodon, Neckera, Frullania и др. Однако на коре древесных растений наиболее распространены бриофиты с широкой экологической амплитудой – Hypnum cupressiforme, Pylaisia polyath, Dicraniyum montanum, Plagiomnium cuspidatum и др.

Собственно эпифиты среди моховых наиболее пышно развиваются в лесных сообществах Беловежской пущи, находящейся на крайнем западе Беларуси, в связи с широкой представленностью здесь высоковозрастных широколиственных деревьев и наиболее благоприятными климатическими условиями на территории Беларуси (по уровню влажности и тепловому режиму). Вместе с тем этот лесной мас-
сив примерно расчленяется государственной границей с Польшей на западную неморальную и восточную бореальную части, что существенно отражается на видовом составе неморального элемента бриофлоры.

Гидроморфы. Для бриофитов важнейшую роль, как уже отмечалось ранее, играет степень влажнообеспеченности мест произрастания, что связано с особенностями их структурно-функциональной организации. Ведь эпифитный образ жизни, бриофиты в умеренных широтах зачастую испытывают недостаток во влажнообеспеченности. Это отражается на спектре их гидроморф.

В хвойных лесах виды с высокой требовательностью к степени увлажнения составляют 0,9%, а с повышенной требовательностью к влаге – 9,0%, тогда как доля обеих этих групп экоморф в составе всей эпифитной бриофлоры Беларуси достигает 5,3%. Видов с более или менее ксероморфной организацией в составе эпифитов хвойных лесов несколько меньше (20,4%) по сравнению со структурой эпифитной бриофлоры Беларуси в целом (23,3%). Невелико различие в долях видов мезофитной ориентации среди бриофитной фракции хвойных лесов (69,4%) и всей эпифитной бриофлоры республики (71,4%). Спектр гидроморф бриофитов хвойных лесов Беларуси таков: мезофиты – 60 видов (55,6%), ксеромезофиты – 19 (17,6%), гигромезофиты – 15 (13,9%), мезогидрофиты и гигрофиты – по 5 (49%), мезоксерофиты – 3 (2,8%), гигрогидрофиты – 1 (09%), гидрофиты отсутствуют. Доля гидроморф отдельно у экоморфных печеночников и мхов соответственно: мезоксерофиты – 8,3% и 1,2%, ксеромезофиты – 16,7% и 17,9%, мезофиты – 37,5% и 60,7%, гигромезофиты – 25,0% и 10,7%, мезогидрофиты – 12,5% и 2,4%, гидрофиты – 0% и 6,0%, гигрогидрофиты – 0% и 1,2%.

В сососновых лесах виды бриофитов, поселяющихся на коре древесных растений, с высокой требовательностью к степени увлажнения составляют 1,2%, а с повышенной требовательностью к влаге – 10,8%, с более или менее ксероморфной организацией – 17,9%, мезофитной ориентации – 70,2%. Спектр гидроморф таков: мезофиты – 48 видов (57,1%), ксеромезофиты – 13 (15,5%), гигромезофиты – 11 (13,1%), мезогидрофиты – 5 (6,0%), гигрофиты – 4 (4,8%), мезоксерофиты – 2 (2,4%), гигрогидрофиты – 1 (1,2%). Доли гидроморф отдельно у печеночников и мхов соответственно: мезоксерофиты – 6,3% и 1,5%, ксеромезофиты – 12,5% и 16,2%, мезофиты – 43,8% и 60,3%, гигромезофиты – 18,8% и 11,8%, мезогидрофиты – 18,8% и 2,9%, гидрофиты – 0% и 5,9%, гигрогидрофиты – 0% и 1,5%.

В еловых лесах виды с высокой требовательностью к степени увлажнения составляют 1,0%, а с повышенной требовательностью к влаге – 8,8%, с более или менее ксероморфной организацией – 21,6%, мезофитной ориентации – 68,6%. Спектр гидроморф: мезофиты – 56 видов (54,9%), ксеромезофиты – 19 (18,6%), гигромезофиты – 14 (13,7%), мезогидрофиты – 5 (4,9%), гигрофиты – 4 (3,9%), мезоксерофиты – 3 (2,9%), гигрогидрофиты – 1 (1,0%). Доли гидроморф отдельно у печеночников и мхов соответственно: мезоксерофиты – 8,7% и 1,3%, ксеромезофиты – 17,4% и 19,0%, мезофиты – 34,8% и 60,8%, гигромезофиты – 26,1% и 10,1%, мезогидрофиты – 13,0% и 2,5%, гидрофиты – 0% и 5,1%, гигрогидрофиты – 0% и 1,3%.

80
Трофоморфы. В хвойных лесах меньший контраст проявляется относительно трофоморф эпифитов, чем гидроморф. Слабее всего среди эпифитов представлена группа олигомезотрофных видов (8,4%), олиготрофы отсутствуют, тогда как в составе эпифитной бриофлоры страны их доля 6,4%. Малое или незначительное различие в доле среди эпифитов хвойных лесов и Беларуси в целом группы эвтрофные плюс мезоэвтрофные виды (соответственно 50,5% и 52,0%), а также группы мезотрофные плюс эвмезотрофные виды (соответственно 41,0% и 40,8%). При этом порядок расположения этих трех групп трофоморф одинаков по доле их участия в составе эпифитной фракции хвойных лесов и бриофлоры республики в целом. Спектр трофоморф бриоэпифитов хвойных лесов: мезоэвтрофы – 42 вида (44,2%), мезотрофы – 37 (38,9), олигомезотрофы – 8 (8,4), эвтрофы – 6 (6,3), эвмезотрофы – 2 (2,1). Доли трофоморф отдельно у печёночников и мхов соответственно: эвтрофы – 5,9% и 6,4%, мезоэвтрофы – 11,8% и 51,3%, эвмезотрофы – 0% и 2,6%, мезотрофы – 76,5% и 30,8%, олигомезотрофы – 5,9% и 9,0%. Наиболее значительные различия здесь по мезоэвтрофам (в пользу мхов) и по мезотрофам (в пользу печеночников).

В сосновых лесах среди эпифитов совместно эвтрофные и мезоэвтрофные виды составляют 48,7%, мезотрофные и олигомезотрофные – 43,4%, олигомезотрофные – 7,9%. Спектр трофоморф: мезоэвтрофы – 34 вида (44,7%), мезотрофы – 31 (40,8), олигомезотрофы – 6 (7,9), эвтрофы – 3 (3,9), эвмезотрофы – 2 (2,6). Доли трофоморф отдельно у печёночников и мхов соответственно: эвтрофы – 0% и 4,8%, мезоэвтрофы – 15,4% и 50,8%, эвмезотрофы – 0% и 3,2%, мезотрофы – 84,6% и 31,7%, олигомезотрофы – 0% и 9,5%. Различия здесь сходны с таковыми хвойных лесов в целом.

В еловых лесах среди эпифитов совместно эвтрофные и мезоэвтрофные виды составляют 50,6%, мезотрофные и эвмезотрофные – 40,4%, олигомезотрофные – 9,0%. Различие с сосновыми лесами в этом аспекте невелико. Спектр трофоморф: мезоэвтрофы – 39 видов (43,8%), мезотрофы – 34 (38,2), олигомезотрофы – 8 (9,0), эвтрофы – 6 (6,7), эвмезотрофы – 2 (2,2). Доли трофоморф отдельно у печёночников и мхов соответственно: эвтрофы – 6,3% и 6,8%, мезоэвтрофы – 12,5% и 50,7%, эвмезотрофы – 0% и 2,7%, мезотрофы – 75,0% и 30,1%, олигомезотрофы – 0% и 9,6%, что сходно с таковыми сосновых лесов.

Среди печеночников значительные преобладают мезотрофы, среди мхов – мезоэвтрофы, что связано с большей конкурентной способностью последних в сравнении с первыми в условиях произрастания на коре древесных растений.

Важным фактором для произрастания бриофитов на коре древесных растений являются ее физико-химические свойства на фоне определенного режима влажности. Трофность при этом не имеет определяющего значения.

Географическая структура. Географический анализ с уклоном во флорогенез по широтным элементам отражает некоторую особенность бриофитного компонента относительно данной региональной бриофлоры. Это проявляется в разнице долевого участия геоэлементов и их отдельных групп. В хвойных лесах среди эпифитов немного менее представительна группа элементов неморальной ориентации (47,5%) по сравнению со всей эпифитной бриофлорой Беларуси (51,7%). Доля представителей
бореального элемента несколько выше среди эпифитов хвойных лесов (38,4%) по сравнению с эпифитной бриофлорой Республики (31,6%). Долевое участие группы элементов горного генезиса среди эпифитов в хвойных лесах несколько ниже (13,1%), нежели в эпифитном компоненте Беларуси в целом (15,9%). Космополиты представлены 1 видом. Спектр геоэлементов: бореальный – 38 видов (38,4%), неморальный – 32 (32,3%), бореально-неморальный – 13 (13,1%), неморально-монтанный – 7 (7,1%), бореально-монтанный – 4 (4,0%), средиземноморско-неморальный – 2 (2,0%), субаркто-монтанный, субаркто-бореально-монтанный и космополиты – по 1 виду (по 1,0%). Отсутствуют субарктический, субаркто-бореальный, аридный, субсредиземноморско-неморальный, бореально-неморально-монтанный, аркто-альпийский геоэлементы. Комплекс видов неморальной ориентации заметно превосходит бореальный геоэлемент.

В сосных лесах среди эпифитов в равной мере представлены группа элементов неморальной и бореальной ориентации (по 44,2%), присутствуют также группа элементов горного генезиса (10,4%) и космополиты (1,3%). Спектр геоэлементов: бореальный – 34 вида, неморальный – 20 (26,0%) бореально-неморальный – 13 (16,9%), неморально-монтанный – 4 (5,2%), бореально-монтанный – 2 (2,6%), средиземноморско-неморальный, субаркто-монтанный, субаркто-бореально-монтанный и космополиты – по 1 (по 1,3%).

В еловых лесах среди эпифитов представлены группа элементов неморальной ориентации (47,3%), виды бореального элемента (37,6%), группа элементов горного генезиса (14,0%) и космополиты (1,1%). Спектр геоэлементов: бореальный – 35 видов (37,6%), неморальный – 29 (31,2%) бореально-неморальный – 13 (14,0%), неморально-монтанный – 7 (7,5%), бореально-монтанный – 4 (4,3%), средиземноморско-неморальный – 2 (2,2%), субаркто-монтанный, субаркто-бореально-монтанный и космополиты – по 1 (по 1,1%). Группа элементов неморальной ориентации превосходит бореальную. Это связано с тем, что эпифитная фракция бриокомпонента отражает более выраженную связь с третичной (миоценовой) бриофлорой.

5.4.4 Эпилиты

Каменистый материал, который довольно обычен в хвойных лесах Беларуси на повышенных элементах рельефа (за исключением Полесья) не является их «генетическим» абиотическим компонентом. Однако, небольшие валуны, невысоко выступающие из почвы или с увеличенной поверхностью, со временем покрываются за счет лесного опада гумусом и тогда становятся обычными фрагментами в составе лесного экотопа, заселяясь типичными лесными бриофитами, как эпигеидами с широкой экологической амплитудой, так и мохообразными (чаще всего бриевыми мхами), обычно произрастающими на коре деревьев и гниющем валежнике. Чаще всего таким поселенцем из числа последних является экологически пластичный и поли-
морфный *Hypnum cupressiforme* – производный неморальной флоры.

Жизненные стратегии. В хвойных лесах около половины мохообразных, способных произрастать на камнях и бетонных сооружениях, относятся к бриопатиям экотопическим (48,5%, в том числе и оба представителя отдела печёночников — *Chiloscyphus profundus, Ptilidium pulcherrimum*), немногим меньше — бриопатиям ценотических (44,4%, причем печёночник *Chiloscyphus profundus* может выступать и в роли бриопатии цветочного). Бриоэкспертины (*Didymodon rigidulus, Funaria hygrometrica, Leptobryum pyriforme*) и бриовиоленты (*Bryum argenteum, Ceratodon purpureus, Hylocomium splendens, Pleurozium schreberi*) составляют соответственно 3% и 4% видового состава обитателей каменистого субстрата хвойных лесов.

Спектр эпилитных мохообразных сосняков относительно жизненных стратегий следующий: бриопатии ценотические — 41 вид (46,6%) и экотопические — 40 (45,5%), бриоэкспертины — 4 (4,5%) и бриовиоленты — 3 (3,4%); ельников — бриопатии экотопические — 43 вида (50,6%) и ценотические — 37 (43,5%), бриовиоленты — 3 вида (3,5%), бриоэкспертины — 2 вида (2,4%).

По спектру жизненных стратегий бриофиты-эпилиты *сосовых и еловых лесов*
схождны с таковыми мхов-эпиллитов хвойных лесов в целом с небольшой разницей в долях участия, что объясняется длительной стабильностью каменистого субстрата во времени и при определенной зависимости его от условий окружающего лесного сообщества. Таковым – степень затенения и образования гумуса на поверхности камней.

Формы роста. В хвойных лесах у мохообразных, произрастающих на камнях не представлены такие формы роста, как муточато-ветвистая дерновина, таллногий ковёр и слабоветвистое сплетение, известное у мохообразных других экотопов. Мохообразные-эпиллиты хвойных лесов распределяются по формам роста следующим образом: настоящая дерновина – 28 видов (33,2%), плоский ковёр – 23 (27,4%), подушковидная дерновина – 10 (11,9%), перисто-ветвистое сплетение – 7 (8,3%), разветвленно-ветвистое сплетение, вертикально-ветвистый ковёр и дерновидная подушка – 5 (по 5,0%), дендроидная форма – 3 (3,6%), подушка – 2 (2,4%), гидрофитное сплетение – 1 (1,2%), что связано с тем, что камни в хвойных лесах заселяют, наряду с собственно эпиллитами, виды с широкой экологической амплитудой, чаще произрастающие на иных субстратах.

В сосновых лесах спектр форм роста эпилитных мохообразных сходный с таковым хвойных лесов в целом (с некоторой разницей в долях участия отдельных форм роста): настоящая дерновина – 23 вида (29,8%), плоский ковёр – 20 (26,0%), подушковидная дерновина – 8 (10,4%), перисто-ветвистое сплетение – 7 (9,1%), вертикально-ветвистый ковёр и дерновидная подушка – 5 (6,5%), разветвленно-ветвистое сплетение и дендроидная форма – 3 (по 3,9%), подушка – 2 (2,6%), гидрофитное сплетение – 1 (1,3%).

Еловые леса по спектру биоморф эпилитных бриофитов несколько отличаются от сосновых и хвойных лесов в целом: плоский ковёр – 21 вид (29,2%), настоящая дерновина – 19 (26,4%), перисто-ветвистое сплетение и подушковидная дерновина – 7 (по 9,7%), разветвленно-ветвистое сплетение и вертикально-ветвистый ковёр – 5 (по 6,9%), дерновидная подушка и дендроидная форма – 3 (по 4,2%), подушка и гидрофитное сплетение – 1 (по 1,4%).

Эколого. На естественном каменистом субстрате в хвойных лесах отмечено 48 видов мохообразных, из которых 2 – печёночки и 46 – мхи. В отличие от открытых экотопов в хвойных лесах складывается определенный более или менее устойчивый микроклимат с несколько повышенным уровнем влажности, а периодически опадающая хвоя не создает плотного покрытия и не препятствует поселению мохообразных, в том числе и на каменистом субстрате. В южной части Беларуси (подзона широколиственных-основных лесов) каменистый материал естественного происхождения практически отсутствует, в том числе и в лесах, поскольку исторически осадочный чехол в Полесье сложен флювиогляциональными отложениями, лишенными в поверхностном слое каменистого материала. Лесные условия создают возможность поселения на камнях мохообразных различной экологии, способствуя занесению их почвой и впоследствии зарастанию. Из обитателей (по крайней мере, в Беларуси) эпилитов в этих лесах на силикатных валунах (поскольку выходящий на поверхность каменистый материал на территории Беларуси, принесенный четвер-

Бриевые мхи на естественным каменистом субстрате в хвойных лесах представлены преимущественно плеврокарпными видами, но это преимущество над акрокарпными невелико (56,2%). На бетонных сооружениях I и II мировых войн в хвойных лесах отмечены Brachythecium albicans, B. mildeanum, B. rivulare, B. rutabulum, B. salebrosum, Bryoerythrophyllum recurvirostrum и др. Только на искусственным скаливионом бетонном субстрате произрастают, в частности, Encalypta streptocarpa, Brachythecium mildeanum, Bryum amblyodon, B. bimum, B. moravicum, B. pallens, B. dichotomum, Didymodon rigidulus, Mnium stellare и др. Это в основном верхоподные мхи. Однако данный субстрат в связи со своей карбонатностью не характерен для хвойных лесов в Беларуси, и поэтому отмеченные на нем мхи нами не анализируются.

Гидроморфы. В хвойных лесах относительно такого важного для мохообразных экологического показателя как степень увлажнения среды произрастания (каменистых местообитаний) представлены все гидроморфы: в наибольшей степени мезофиты – 31 вид (39,7%), в том числе печёночник Chiloscyphus profundus) и ксеромезофиты – 22 (28,2%), в их числе печёночник Pitidium pulcherrimum), в наименьшей гигромезофиты – 8 (10,3%), мезоксерофиты – 6 (7,7%), гигрофиты – 5 (6,4%), гигро-гидрофиты – 3 (3,8%), мезогигрофиты – 2 (2,6%) и гидрофиты – 1 (1,3%). Совместно ксеромезофитов и мезоксерофитов – 35,9%, мезофитов и гигромезофитов – 50,0%, гигрофитов и мезогигрофитов – 9,0%, гигрогидрофитов и гидрофитов – 5,1%. В со-
стave бриофитов, произрастающих на каменистом субстрате, около 5/6 менее требовательных к степени влажности среди гидроморф (мезоксерофиты, ксеромезофиты, мезофиты, гигромезофиты – 85,9%) и около 1/6 более требовательных к этому фактору (мезогигрофиты, гигрофиты, гигрогидрофиты и гидрофиты – 14,1%).

В сосновых лесах спектр гидроморф эпилитных мохообразных сходный с таковым хвойных лесов в целом: мезофиты – 26 видов (38,3%) и ксеромезофиты – 20 (29,4%), гигромезофиты – 7 (10,3%), мезоксерофиты – 6 (8,8%), гигрофиты – 4 (5,9%), гигрогидрофиты – 3 (4,4%), мезогигрофиты – 2 (2,9%). Гидрофиты не представлены. По сходным гидроморфам распределение таково: ксеромезофитов и мезоксерофитов – 38,2%, мезофитов и гигромезофитов – 48,5%, гигрофитов и мезогигрофитов – 8,8%, гигрогидрофитов и гидрофитов – 4,4%.

В еловых лесах спектр гидроморф мохообразных-эпилитов несколько отличается от такового в сосновых и в целом хвойных лесах: мезофиты – 28 видов (43,1%), ксеромезофиты – 16 (24,6%), гигромезофиты – 7 (10,8%), гигрофиты – 5 (7,7%), мезоксерофиты и гигрогидрофиты – по 3 (4,6%), мезогигрофиты – 2 (3,1%), гидрофиты – 1 (1,5%). Совместно ксеромезофитов и мезоксерофитов – 29,2%, мезофитов и гигромезофитов – 53,9%, гигрофитов и мезогигрофитов – 10,8%, гигрогидрофитов и гидрофитов – 6,1%.

В сосновых лесах по сравнению с еловыми у бриофитов в спектре трофоморф наблюдается уменьшение доли видов с более влажным микроклиматом сосняков.

Трофоморфы. В хвойных лесах по отношению к трофности субстрата у мохообразных, способных произрастать на камнях и бетонных сооружениях, представлены все известные в составе бриофлоры Беларуси трофоморфы. Из них выделяются мезотрофы – 22 вида (32,8%) и мезозетрофы – 20 (29,9%), в меньшей степени представлены олигомезотрофы – 12 (17,9%), эвтрофы – 9 (13,4%), эвмезотрофы и олиготрофы – по 2 (3,0%). Если сгруппировать сходные трофоморфы, то к эвтрофам и мезозетрофам совместно относится почти половина рассматриваемого бриофитообряда (43,3%), к эвмезотрофам и мезотрофам – 35,8%, олигомезотрофам и олиготрофам – 20,9%.

В сосновых лесах в спектр трофоморф мохообразных-эпигеидов распределяется следующим образом: мезотрофы – 19 (33,3%), мезозетрофы – 15 (26,3%), олигомезотрофы – 11 (19,3%), эвтрофы – 8 (14,0%), эвмезотрофы и олиготрофы – по 2 (3,5%). По сходным трофоморфам в сосняках к эвтрофам и мезозетрофам совместно относится несколько менее половины рассматриваемого бриофитообряда (40,3% видов), эвмезотрофам и мезотрофам – 36,8%, олигомезотрофам и олиготрофам – 22,8% видов.

В еловых лесах по трофоморфам у эпилитных мохообразных преобладают мезотрофы и мезозетрофы – по 19 видов (по 33,9%), в меньшей степени представлены эвтрофы и олигомезотрофы – по 8 (по 14,3%), эвмезотрофы – 2 (3,6%). Олиготрофы отсутствуют. По сходным трофоморфам в ельниках, к эвтрофам и мезозетрофам совместно относится почти половина рассматриваемого бриофитообряда (48,2% ви-
дов), эвмезотрофам и мезотрофам – 37,5%, олигомезотрофам и олиготрофам – 14,3% видов.

В сосновых лесах на каменистом субстрате несколько больше представлены бриофиты, приуроченные к бедным почвенным условиям, в отличие от ельников, где доля олигомезотрофов ниже, а олиготрофы не представлены вовсе, что коррелирует с более широкой амплитудой почвенных условий сосякков и связано с тем, что эпилиты в хвойных лесах в основном представлены эвритопными бриофитами, являющимися, в том числе, и эпигеидами.

Географическая структура. В хвойных лесах почти половина мохообразных, способных произрастать на камнестых субстратах, представлены видами бореальной ориентации – 33 (44,6%), несколько выделяются неморальные – 12 (16,2%) и близкие к ним бореально-неморальные – 6 (8,1%) геоэлементы. Остальные геоэлементы менее представительны и среди них имеются, с одной стороны, единственный субарктосубальпийский вид (1,4%), а с другой – также единственный аридный (1,4%). К бриофитам горного генезиса здесь относится 15 видов (20,3%): бореально-мировые – 7 (9,5%), субарктобореально-мировые – 3 (4,1%), субарктобореально-мировые и арктоальпийские – по 2 (по 2,7%), неморально-мировые – 1 (1,4%). Космополитов – 6 видов (8,1%). Не представлены на данных субстратах такие геоэлементы, как субарктосубальпийский, средиземноморско-неморальный, субсредиземноморско-неморальный, бореально-неморально-мировой.

В сосновых лесах основные геоэлементы мохообразных-эпилитов – бореальный – 29 (45,3%), неморальный – 8 (12,5%) и близкие к ним бореально-неморальный – 6 (9,4%). К субарктобореальному и аридному геоэлементам относится – по 1 виду (по 1,6%). Видов горного генезиса – 13 (20,3%), космополитов – 6 (9,4%).

В еловых лесах к основным геоэлементам мохообразных-эпилитов относятся бореальный – 29 видов (47,5%), неморальный – 11 (18,0%) и близкие к ним бореально-неморальный – 6 (9,8%) геоэлементы. Представлен также один субарктобореальный вид (1,6%). Видов горного генезиса – 11 (18,0%), космополитов – 3 (4,9%). В отличие от сосновых лесов в ельниках на данных субстратах отсутствуют представители аридного геоэлемента. Исходя из географической структуры эпилитного компонента сосновые леса – более открытые экосистемы для видов с широким экологическим диапазоном в сравнении с еловыми, о чем свидетельствует повышенное количество космополитов и наличие аридного геоэлемента.

Территория Беларуси в ее северной и средней частях, как известно, характеризуется обильной россыпью силикатного валунного материала ледникового происхождения, выступающего на дневную поверхность. Это особенно присуще лесным ценозам, распространенным на песчаной, а также на кислой почве различного гранулометрического состава. Данный субстрат в лесных ценозах в отношении зарастания бриофитами не следует абсолютно игнорировать, поскольку он имеет свои экологические особенности, в том числе микроклиматические, включающие преобладание среди эпилитов видов, выносящих затенение, в отличие от эпилитов открытых мест
обитания. Соответственно данная группа бриофитов указывает на границы нормы реакции данных стеноотопных видов. Это должно быть учтено при экосистемном подходе. Иначе специфика мохообразных хвойных лесов Беларуси и их субстратное распределение будут учтены не в полной мере. Антропогенные сооружения в лесных сообществах также должны приниматься во внимание как места произрастания бриофитов, поскольку здесь проявляется действие микроклимата, обусловленного данным лесным сообществом.

Анализ субстратной приуроченности бриофитов хвойных лесов показал наибольшее соответствие экологическим условиям данных лесов групп эпигеев и эпиксилов. Виды мохообразных, являющиеся облигатными эпифитами и эпилитами слабо отражают специфику экологических условий хвойных лесов.

5.5 Лесотипологические особенности бриокомпонента

Мохообразные в связи с особенностями своей организации больше, чем сосудистые растения, чувствительны к воздействию факторов экзогенной среды. Поэтому более отмеченные виды из мохообразных на данные воздействия могут служить комплексными индикаторами экологических условий и их изменения. С помощью оценки состояния популяций данной группы эмбриофитов возможен долговременный мониторинг экологических систем в ходе сукцессионного процесса, превосходящий эффективность мониторинга на основе индикационных свойств сосудистых растений. Это связано со способностью мохообразных произрастать на различных субстратах, и к тому же у многих их представителей ярко выражены пионерные свойства. Мохообразные характеризуются такой спецификой реакции во взаимодействии с внешней средой, которой не обладают лишайники, также используемые как индикаторы факторов экзогенной среды.

Исследования, проведенные в Северной Америке, Центральной Европе и Скандинавии показали, что существует положительная взаимосвязь между высоким разнообразием бриофитов и крупными участками не нарушенных старовозрастных лесов, поскольку отдельные виды мохообразных имеют длительный цикл развития или зависят от специфических местообитаний и микроклимата, представленных только в таких лесах (Crites, Dale, 1995; Edwards, 1986; Vellak, Paal, 1999). Значительное количество редких видов мохообразных обнаруживается именно в старовозрастных лесных сообществах. Признанными индикаторами старовозрастных лесов считаются печеночники и особенно редкие эпиксили, распространение которых связано с наличием гнилой древесины различных степеней разложения и с размером участка леса. Сукцессии эпиксильной фракции бриокомпонента должны проходить непрерывно. Нарушение этого процесса, вероятно, и является основной причиной обедненности бриокомпонента современного лесного фонда Беларуси.

Одним из факторов, влияющих на разнообразие бриофитов, являются такие
нарушения лесных экосистем, как рубки (особенно сплошные), пожары и др. Это отражается на структуре растительности и ее видовом составе, снижая возраст древостоя, изменяя его состав и количество пригодных для бриофитов эконища. Нарушенные участки характеризуются наличием в основном эвритопных видов, именующих широкое распространение на территории Беларуси, прежде всего пionерной экологии. Редкие виды в связи с их стенотопностью здесь отсутствуют. Сплошные вырубки древостоя и связанные с этим последующие микроклиматические изменения положительно влияют на развитие мохового покрова в формирующихся моно домinantных сообществах (в сосняках – *Pleurozium schreberi, Dicranum polysetum, Ptilium crista-castrensis*, в ельниках – *Pleurozium schreberi, Hylocomium splendens*). Однако наряду с формированием моно- или олигодомinantных бриофитов на почве общее бриокспознативное сокращается с исчезновением ряда прежних эконищ (Абрамова, 1995; Гордеева и др., 1990).

Мохообразные играют ведущую роль на начальных стадиях колонизации сильно нарушенных экосистем, что связано с обильным их спороношением. Скорость, с которой происходит заселение нарушенных участков бриофитами, зависит от типа нарушенной растительности, интенсивности деструктивного фактора и от условий восстановления. На нарушенных рубками участках отмечается утрата многих ценотически связанных видов бриофитов, а широкое распространение получают виды со стратегиями бриоэксплерентов и бриовиолентов. Здесь быстрее восстанавливаются группировки типичных лесных мхов в отличие от гарей, которые длительное время колонизируются лишь пionерными видами.

На нарушенных участках представлены как типичные лесные напочвенные виды (*Pleurozium schreberi, Hylocomium splendens, Dicranum polysetum, Ptilium crista-castrensis, Rhytidiadelphus triquetrus*), так и видами иной экологии (*Ceratodon purpureus*, виды родов *Atrichum, Polytrichum, Pogonatum, Fissidens, Bryum, Dicranella* и др.). По мере увеличения увлажнения мхи начинают доминировать в напочвенном покрове вплоть до образования сплошного его мощного покрытия в основном за счет высокого обилия *Pleurozium schreberi, Hylocomium splendens, Ptilium crista-castrensis*. В малонарушенных лесных сообществах на дренированных территориях преобладают представители таких семейств, как *Amblystegiaceae, Dicranaceae,*
Brachytheciaceae, Bryaceae, Mniaceae, Hypnaceae, Polytrichaceae, а на заболоченных – виды семейства Sphagnaceae (Шестакова, 2004). Возобновление мохового покрова быстрее всего проходит в условиях с высоким разнообразием микрорельефа, микроклимата и степени увлажнения.

Фактор нарушений в данном исследовании более подробно нами не рассматривается, т.к. главной задачей является характеристика наиболее типичных и сохранившихся хвойных сообществ, что необходимо для уточнения лесной типологии на территории Беларуси, тогда как нарушения в структуре сообществ не дают возможности четко выделить характерный бриокомпонент данных лесов.

Большинство бриофитов имеют широкую экологическую амплитуду, что выражается в их способности осваивать разные субстраты, и кроме того, в различных частях ареала один и тот же вид может встречаться в разных условиях среды. При индикационных исследованиях бриокомпонентов по типам хвойных сообществ особенно важно уделять внимание не столько отдельным видам, сколько их сочетаниям, являющимся результатом длительного совместного произрастания на определенном субстрате, что позволит исключить элемент случайности и повысит ценность индикаторных групп.

5.5.1 Характеристика бриокомпонентов серий типов леса

По экологическим особенностям сосняки подразделяются на суходольные (86,5%) – боры (на бедных подзолистых и дерново-подзолистых песчаных почвах), субори с елью или дубом (на более богатых и увлажненных дерново-подзолистых песчаных и супесчаных почвах) и болотные (на верховых и переходных болотах). Соответственно в этих экологических группах созидикаторами фитоценозов выступают береза повислая, ель европейская, береза пушистая, осина, ольха черная, дуб. На юге Беларуси к сосне нередко примешивается дуб черешчатый. В.С. Гельтман (1982) разделил формацию сосных лесов на четыре эдафические со- приженные субформации: собственно боры, елово-сосновые леса и их зональный аналог – дубово-сосновые, а также болотные. Суходольные сосняки представлены лишайниковым, вересковым, брусличным, мхиствым, орляковым, кисличным, чер-
ничным и долгомошным типами. В состав группы болотных сосняков входят ба-гульниковый, осоковый, осоково-сфагновый и сфагновый типы. В эту группу не включен сосняк приручечно-травяной, так как он разнороден (Юркович, Лович, 1984). Выделяют основных 13 типов соснового леса и более чем 60 ассоциаций (Юркович и др., 1979). Типы сосновых лесов этой формации располагаются в порядке возрастания влагообеспеченности почв (Таблица 5.4).

Таблица 5.4. – Видовая насыщенность лесов сосновой и еловой формаций по типам леса
Аббревиатуры: Coniferous forests: Cl cladinosum; Ca callunosum; Va vacciniosum; Pl pleuroziosum; Pt pteridiosum; Ox oxalidosum; Ae aegopodiosum; Ur utricosum; F filicosum; My myrtillosum; FH fontinale-herbosum; Po polytrichosum; Le ledosum; C caricosum; CS caricoso-sphagnosum; S sphagnosum.

<table>
<thead>
<tr>
<th>Количество видов по сериям типов леса, шт.</th>
<th>Cl</th>
<th>Ca</th>
<th>Va</th>
<th>Pl</th>
<th>Pt</th>
<th>Ox</th>
<th>Ac</th>
<th>Ur</th>
<th>F</th>
<th>My</th>
<th>FH</th>
<th>Po</th>
<th>Le</th>
<th>C</th>
<th>CS</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marchantiophylla</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A5</td>
<td>A6</td>
<td>A7</td>
<td>A8</td>
<td>A9</td>
<td>A10</td>
<td>A11</td>
<td>A12</td>
<td>A13</td>
<td>A14</td>
<td>A15</td>
<td>A16</td>
</tr>
<tr>
<td>Bryophyta</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>14</td>
<td>6</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>19</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>Bryobionta</td>
<td>22</td>
<td>36</td>
<td>33</td>
<td>90</td>
<td>67</td>
<td>65</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>119</td>
<td>76</td>
<td>64</td>
<td>58</td>
<td>74</td>
<td>92</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Эдафотопы</th>
<th>PINETUM</th>
<th>PICEETUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marchantiophylla</td>
<td>A1</td>
<td>B2</td>
</tr>
<tr>
<td>Bryophyta</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>BRYOBIONTA</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Доля общих видов (%)</th>
<th>32,4</th>
<th>37,5</th>
<th>45,3</th>
<th>40,3</th>
<th>55,2</th>
<th>50,0</th>
<th>54,4</th>
<th>42,4</th>
<th>49,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Коэффициент сходства видового состава по ЛИ. Маслова (k)</td>
<td>-</td>
<td>-</td>
<td>-04</td>
<td>-03</td>
<td>-01</td>
<td>-02</td>
<td>-</td>
<td>-</td>
<td>01</td>
</tr>
</tbody>
</table>

Еловые леса подразделяются на две эдафически замещающие субформации – монодоминантные еловые леса подзоны дубово-темнохвойных лесов и широколистенно-еловые характерные для подзоны широколистенно-сосновых лесов. Они же имеются и в подзоне ельно-гробовых дубрав с той разницей, что площадь субформации монодоминантных ельников южнотаежного типа сокращается, а широколистенно-еловых лесов с примесью дуба черешчатого возрастает, причем в нижних яру- сах фитоценозов примешивается граб обыкновенный. Для подзоны широкоразлично-сосновых лесов (с ельниками в островных местообитаниях) и прилегающей к ней полосы подзоны ельно-гробовых дубрав характерна сложная субформация кондоми- нантных широколистенно-черноольхово-еловых (полесских) лесов. К окраинам низинных и переходных болот приурочены своеобразные травяно-осоковые и осоково- сфинкновые еловые леса, выполняющие очень важную водооборотуляцию функцию, содействуя устойчивому переводу поверхностных вод в подземные. В подлеске и на-почвенном покрове этих лесов преобладают растения-гигрофиты. Формация еловых
лесов представлена 12 типами леса (Юркевич и др., 1971) (Таблица 5.4).

Наименьшее число видов бриофитов отмечено в крайних сериях типов леса (ксероморфные – лишайниковый, вересковый, брусничный и олиготрофный – сфагновый) и минимально в ельнике брусничном (12 видов) и сосняке лишайниковом (22). Мхи, и орляковая, осоковая и осоково-сфагновая серии типов леса характеризуются повышенным биоразнообразием в лесах сосновой (67-92 вида) формации, что связано с большими экологическими условиями этих серий типов леса с преобладанием количественных показателей в более характерных из хвойных сообществ для этих экологических условий лесах еловой (134-143 видов) относительно сосновой (65-119) (Рисунок 5.8-5.9).

Типичным представителем южнотаежных лесов и самым распространенным типом на территории Беларуси является сосняк лишайниковый, составляющий 46,3% лесов данной формации, тогда как ельник лишайниковый распространен незначительно (8,2%), а наиболее широко распространенным среди лесов еловой (51,9%) является коренной тип ельников – кисличный, являющийся малораспространенным (4,2%) типом среди лесов сосновой формации (Шабота, Рыковский, 2015 г.). В лишайниковый тип леса по занимаемой площади сосняк несопоставимы по своему превосходству с ельниками, но несмотря на первенство в этом аспекте среди всех типов леса в Беларуси биоразнообразие мохообразных в данной серии не столь велико – по видовой представленности бриокомпонент сосняков превосходит таковой...
ельников на 30%, а в кисличной серии, наоборот, уступает последнему более чем вдвое, наследуя его от предшествующих коренных еловых или дубовых лесов. Среди хвойных сообществ кисличный тип наиболее характерен для ельников и преобладает по занимаемой площади среди еловых лесов в условиях Беларуси, тогда как сосняк кисличный произведен (антропогенного происхождения) от еловых или дубовых лесов, что отражается в структуре его бриокомпонента. Существенно различен в рассматриваемых сериях типов леса состав экологических групп бриофитов в отношении трофности: в сосняке мишестом преобладают олигомезотрофы и в меньшей мере мезотрофы, а в ельнике мишестом главным образом представлены довольно требовательные к трофности виды. В отношении влажности в сосняке мишестом более, чем в ельнике, представлена ксерофитная группа бриофитов. Сосна как более слабый эдификатор, чем ель, менее влияет на микроклимат, формирующийся в данном типе растительного сообщества, и на его эдафотоп, но вместе с тем менее требовательна к экологическим условиям, что и отражает бриокомпонент данных сообществ.

![Diagram](image)

Рисунок 5.9. – Коэффициент сходства видового состава бриофитов по сериям типов хвойных лесов по Л.И. Малышеву (k)

Крапивный, папоротниковый и приручейно-травяной типы леса еловой формации на территории Беларуси представляют собой ряд низинного заболевивания, часто встречаются вблизи низинных болот и имеют ряд отличительных особенностей в структуре бриокомпонента, который является неотъемлемой частью данных растительных сообществ и в связи со своей низкой изученностью заслуживает особого внимания (Шабета, 2015 б). Здесь наибольшим видовым разнообразием характеризуется ельник приручейно-травяной – 143 вида (Рисунок 5.8), в меньшей степени ельник папоротниковый – 119, а наименьшим – ельник крапивный – 67, имеющий плотный травяной покров, вытесняющий бриофитов-эпигендов.
Лицайниковая серия

Не представлена среди ельников. **Соснов лицевайниковый** (беломошник) (*Pinetum cladinosum*) – редко встречающийся тип (0,8% площади сосновой формации), занимает повышенные участки рельефа, вершины вхождений и дюны, а в Полесье – алювиальные наносные почвы вдоль р. Припять, приурочен к дреново-подзолистым, слаборазвитым, бедным песчаным и сухим кислым почвам. Формируется в условиях наиболее слабого влагообеспечения эдафотопа. В напочвенном покрове в связи с сухостью условий местопроизрастания очень распространены растения-ксерофиты. Соответственно здесь фрагментарный и бедный по видовому составу моховой покров (Юркевич, Ловчий, 1984) – *Dicranum polysetum, Pleurozium schreberi, Pohlia nutans, Polytrichum juniperinum, P. piliferum, Ptylium pulcherrimum*.

Нами для данного типа леса отмечено 22 вида (10,6% бриоразнообразия сосняков), в том числе 20 – мхи и 2 – печеночники, причем исключительно на почве. Это в основном олигомезотрофные и олиготрофные виды – *Pleurozium schreberi, Dicranum polysetum* (отмечены на всех пробных площадях с данным типом леса), во вторую очередь – *Polytrichum juniperinum, P. piliferum*, еще менее *Ceratodon purpureus, Abietinella abietina, Syntrichia ruralis* и др. Если первые два вида обладают широкой экологической амплитудой, то остальные – ксероморфные, из которых последние два – аридной ориентации. Здесь представлены биоморфы – настоящая и подушковидная дерновины, разветвленно- и перисто-ветвистые сплетения. *Brachythecium albicans, Bryum argenteum, Buxbaumia aphylla, Dicranum spurium, Polytrichum piliferum, Syntrichia ruralis* из хвойных сообществ встречаются только в нарушенных сосняках (лицевайниковый, вересковый, брусничный, мхиющий, орляковый) и являются индикаторами сухих песчаных почв. *Atrichum undulatum* растет на почвенных обнажениях от умеренно до средне кислых, а *Dicranella heteromalla* предпочитает обнаженные, довольно сухие, песчаные или глинистые почвы от кислых до умеренно кислых, индивидуирует благоприятные условия для произрастания сосны и других менее требовательных пород. *Polytrichum piliferum* наиболее обилен на сухих кислых почвах или затененных почвенных обнажениях, где образует местами доминирующие колонии с другими видами бриофитов, в более влажных условиях растет и на камнях, покрытых гумусом.

Вересковая серия

Не представлена среди ельников. **Соснов вересковый** (*Pinetum callunosum*) – распространенный незначительно (7,2%), формируется в несколько менее экстремальных условиях по режиму влажности и трофности и располагается по рельефу ниже лицевайникового (повышенные плато, верхние части пологих склонов, имеющие выраженное вхождение). Почвы кислые дерновоподзолистые, бедные, песчаные, несколько суховатые. Коренной сосняк вересковый как по рельефу и почвоенно-грунтовым условиям, так и по особенностям напочвенного покрова располагается между лицевайниковым и брусничным типами. В напочвенном покрове достаточно много ксерофитных видов, что обусловлено некоторой сухостью почвенно-
грнтовых условий. В геоботанических работах (Юркевич, Ловчий, 1984) для данного типа приводятся 16 видов бриофитов – Pleurozium schreberi, Dicranum polysetum, Hylocomium splendens, Sciuro-hypnum oedipodium, Polytrichum juniperinum, Ptílum crista-castrensis и др. В мишасто-вересковой ассоциации на почве преобладают Pleurozium schreberi (напочвенное покрытие – 91%; обилие – 6 баллов), Dicranum polysetum (70; 4), Polytrichum juniperinum (5; 1), Ptílum crista-castrensis (2; 1), в бруснично-вересковой – Dicranum polysetum, Hylocomium splendens, Pleurozium schreberi, Sciuro-hypnum oedipodium, Polytrichum juniperinum, Ptílum crista-castrensis, и в вейниково-вересковой также широко представлены мхи.

Нами для этого типа отмечено 36 видов бриофитов (17,4%), из них мхов – 33 и печеночников – 3. Экологический состав их более разнообразный и сам моховой покров развит в большей степени. В 80% рассмотренных пробных площадей с данным типом леса и более представлены не только виды, характерные для сосняка лишайникового (Pleurozium schreberi, Dicranum polysetum, Polytrichum juniperinum, Abietinella abietina, Syntrichia ruralis, Ceratodon purpureus), но и проявляющие ксероморфность Brachythecium albicans, Dicranum scoparium, а также реже отмеченный нами Bryoerythrophyllum recurvirostrum, а остальные – мезофильные. В напочвенном покрове повсеместно представлены мезотрофы Hylocomium splendens, Eurhynchastrum pulchellum и Ptílum crista-castrensis, а также мезэктотроф Plagiomnium affine (по микропонижениям), на гниющей древесине и пнях – мезофильные и ксеромезофильные преимущенно мезотрофы – Hypnum curpessiforme, Brachythecium salebrosum, B. rutabulum, Brachytheciastrum velutinum, Sciuro-hypnum oedipodium, Pohlia nutans, Pylaisia polyantha, Homomallium incurvatum, единственный печеночник – Ptílidium pulcherrimum. На валах на ряде пробных площадей отмечены Schistidium apocarpum, Grimmia pulvinata, Orthotrichum speciosum, Hypnum curpessiforme. Кроме прочих форм роста среди бриофитов заметно представлены плоский ковер и перисто-ветвистое сплетение. Pleurozium schreberi вместе с Hylocomium splendens отмечены на всех пробных площадях с данным типом леса и, будучи в большом количестве, указывают на кислую почву. Leucobryum glaucum выявлен на 30% обследованных пробных площадей с данным типом леса и может считаться надежным индикатором кислых почвенных условий в местообитаниях, где произрастает в изобилии. Как индикаторный вид предполагается только для менее требовательных к почвенным условиям типов леса.

Брусничная серия

Сосняк брусничный (Pínetum vacciniosum) – редко встречающийся тип (0,7%), т.к. при разрезании полога этот тип деградирует и переходит в произвольный сосняк вересковый, расположен несколько ниже коренного сосняка верескового на небольших повышениях и пологих склонах со слабоволнистым рельефом на кислых дерново-подзолистых, свежих, рыхлопесчаных почвах. Влажность его эдафотопа немного больше, чем в сосняке вересковом, но все-таки дефицит влаги отражается на моховом покрове, который несколько разрезен и недостаточно развит. В геобота-
нических работах (Юркевич, Ловчий, 1984) для данного типа леса в пределах Беларуси приводятся 9 видов — Dicranum scoparium, D. polysetum, Hylocomium splendens, Pleurozium schreberi, Sciuro-hypnum oedipodium, Pohlia nutans, Polytrichum juniperinum, Ptílum crísta-castrensí, Rhytidiadelphus triquetrus. Во всех ассоциациях из изобили представлены Pleurozium schreberi (82-99; 5-6) и Dicranum polysetum (63-96; 4-5), в связи с чем В.Н. Сукачев относил сосняк брусничный к группе сосняков-зеленомошников (Каропа, 2010).

Нами здесь отмечено 33 вида мохообразных (15,9%), из которых 2 — печеночники, 30 — бриевые мхи, 1 — сфагнум. Это преимущественно (отмечены на 85% пробных площадей и более) встречающиеся и в сосняке вересковом Pleurozium schreberi, Dicranum polysetum, D. scoparium, Hylocomium splendens, Sciuro-hypnum oedipodium, Ceratodon purpureus, Pohlia nutans, Brachythecium sacleboro, Hynmum curpessiforme, Euryhynchastrum pulchellum, но здесь появляются уже Dicranum montanum, а по западинам — более требовательный к увлажнению мезогигрофит Polytrichum commune. Из упомянутых видов на гниющем колоднике произрастают Hynmum curpessiforme, Dicranum montanum, D. scoparium, Brachythecium sacleboro, Sciuro-hypnum oedipodium. В покрове преобладают олигомезотрофные мезофиты, а в отношении биоморф выделяются сплетения и дерновины, в числе которых подушкоидные дерновины (у Dicranum montanum, D. scoparium, Ceratodon purpureus). Parallelubryum longifolium из хвойных сообществ встречается только в сосняках брусничного и мхистых типов и является индикатором обедненных условий, произрастают на валунах.

Ельник брусничный (Piceetum vacciniosum) — редко встречающийся тип (0,4%), приуровчен к повышенным местам с ровным или слабоволнистым рельефом. Характеризует самые бедные условия сухолодов, в которых ель может создавать фитоценозы со своим господством. Почвы дерново-подзолистые, супесчаные, иногда песчаные с прослойками супеси, подстилаемые легким суглинком, свежие. В геоботанических работах (Юркевич и др., 1971) для вейниково-брусничной ассоциации приводятся Pleurozium schreberi, Dicranum polysetum, в чернично-брусничной добавляется Ptílum crísta-castrensí, а в можжевельниково-брусничной — Climacium dendoídes и Rhytidiadelphus triquetrus.

Нами выявлено 12 видов исключительно бриевых мхов (5,3% бриоразнообра-зия ельников). Род Dicranum представлен 3 видами, а остальные 9 родов — одновидовые. Здесь преобладают Pleurozium schreberi и в меньшей мере Dicranum polysetum, в микропочвах — Hylocomium splendens, Ptílum crísta-castrensí, на гниющем валежнике — D. montanum, D. scoparium. Из ксероморфных видов встречается Abietinella abietina, признаки ксероморфизма имеют Ceratodon purpureus, D. montanum, D. scoparium, по западинам встречается гигромезофит Climacium dendroides. Преимущественно представлены олигомезотрофные ксеромезофиты и мезофиты с участием мезотрофных мезофитов. Биоморфы — различные сплетения, подушкоидные дерновины, дендродионная форма. Pleurozium schreberi выступает как слабый бриовиолент, а остальные виды — ценотические и экотипические бриопатенты.
Мшистая серия

Сосняк мшистый (Pinetum pleuroziosum) является типичным представителем южнотаежных лесов и самым распространенным типом сосняков на территории Беларуси (46,3%). Приурочен к ровным или слегка волнистым, хорошо дренированным участкам рельефа с автоморфными дерново-подзолистыми песчаными почвами (более гумусированными, чем в предыдущих типах леса), иногда с легкоусаживаемыми, свежими. Благоприятнее для произрастания мохообразных местоположения с относительно более обеспеченным режимом влажности эдафопа способствуют образованию сплошного мохового покрова, получающего нередко сильное развитие. При этом создаются оптимальные условия для тех мохообразных, которые можно назвать спутниками сосны в ее сообществе на незаболоченных, но не сухих минеральных почвах (Юркевич, Лович, 1984) – Pleurozium schreberi, Dicranum polysetum, D. scoparium, Hylocomium splendens, Sciuro-hypnum oedipodium, Ceratodon purpureus, Polytrichum commune, P. juniperinum, Pitilium crista-castrensis и др. Во всех ассоциациях преобладают Pleurozium schreberi (96-99; 6) и Dicranum polysetum (60-87, 4-5), встречается Pitilium crista-castrensis (26; 2).

Сосняк мшистый индцирует бореальные, мезофитные, в основном олигомезотрофные бриевые мхи, образующие основной фон напочвенного покрова. Нами здесь отмечено 90 видов мохообразных (43,5%), в том числе 14 – печеночники, 76 – мхи (кроме бриевых здесь отмечено и 2 вида сфагновых). Более представительны роды Dicranum (6 видов), Brachythecium, Polytrichum (по 3 вида) и затем – Bryum, Plagiomnium (по 2 вида), а в остальных 35 родах – по одному виду. Из печеночников встречаются Chiloscyphus profundus, Lophozia longiflora, Nowellia curvifolia, Pitilium pulcherrimum, Radula complanata и др., произрастающие на гниющем валежнике и пнях. В напочвенном моховом покрове на всех пробных площадях представлены, в первую очередь, Pleurozium schreberi, Dicranum polysetum, затем Hylocomium splendens, Pitilium crista-castrensis, местами встречаются Plagiomnium affine, P. cuspidatum, Polytrichastrum formosum, Eyrhynchium angustirete, Bryum caespiticium, B. turbinatum, Atrichum undulatum, Thuidium assimile, а по микропонижениям более влаголюбивые Calliergonella cuspidata, Climacium dendroides, Aulacomnium palustre, Polytrichum commune, Rhytidiadelphus squarroso, Sphagnun capillifolium, по относительно открытым склонам ксероморфные Abietinella abietina, Brachythecium albicans, Bryoerythrophyllum recurvirostrum, Niphotrichum canescens, Polytrichum juniperinum, Syntrichia ruralis. На гниющих валежнике и пнях отмечены Hypnum curpessiforme, Stereodon pallescens, Dicranum montanum, D. scoparium, Amhlystegium serpens, Brachythereicum rutabulum, B. salebrosum, Herzogiella seligeri, Hygroamblystegium varium, Leskea polycarpa, Oxysthynchium hians, Plagiomnium cuspidatum, Plagiothecium laetum, Pohlia nutans, Pylaisa polyantha, Sanionia uncinata, Sciuro-hypnum oedipodium. Из биоморф преобладают настоящая дерновина, плоский ковер, перисто-ветвистое сплетение, но представлены и другие биоморфы. Из гидроморф здесь отсутствуют мезоксерофиты, гигрогидрофиты и гидрофиты. Преобладают олигомезотрофные и
мезотрофные виды, хотя имеются и мезоэвтрофные мезофи́ты. В целом в напочвенном моховом покрове представлены олигомезотрофные, в меньшей мере мезотрофные и еще менее мезоэвтрофные виды, в совокупности отвечающие степени трофности эдафотопа. *Rhytidiadelphus squarrosus* растет при широкой амплитуде условий местообитаний, встречается в разреженных лесах, переносит широкий спектр почвенной кислотности, хотя не типичен для чрезмерно кислых почв, индицирует места произрастания хвойных и других менее требовательных пород. *Pseudoscleropodium purum* — индикатор подходящих условий для произрастания более требовательных видов деревьев. *Campylopus flexuosus* обычен на почвах от кислых до среднекислых, на местах, где растет в изобилии, индицирует благоприятные условия для произрастания ели.

Ельник мни́стый (*Piceetum pleuroziosum*) в эдафическом ряду расположен несколько ниже брусничного, распространен незначительно (8,2%). Рельеф ровный или слабовалистый, почвы дерново-подзолистые супесчаные, часто подстилаемые суглинком легким, свежие, несколько больше увлажненные, чем в брусничнике. В геоботанических работах (Юркевич и др., 1971) здесь приводятся *Pleurozium schreberi*, *Ptilium crisma-castrensis*, *Dicranum polysetum*, образующие сплошной покров, в сосново-мнистой ассоциации отмечены также *Polytrichum juniperinum*, *Climacium dendroides*, *Plagiomnium cuspidatum*, в бруснично-мнистой — *Hylocomium splendens*, *Rhodobryum roseum*, *Plagiomnium affine*, *P. undulatum*, в чернично-мнистой — *Polytrichum piliferum*, *Rhytidiadelphus triquetrus*, *Calliergonella cuspidata*, *Bazzania trilobata*.

произрастают Amblystegium serpens, Brachytheciastrum velutinum, Brachythecium rutabulum, B. salebrosum, Calypogeia integrifistula, Chiloscyphus profundus, Hypnum curpessiforme, Lepidozia reptans, Mnium hornum, Orthotrichium speciosum, Plagiomnium cuspidatum, Plagiothecium laetum, Pilidium pulcherrimum, Pylaisia polyantha, Sanionia uncinata, Tetraphis pellucida. В составе биоморф представлены плоские ковры, на-
стоящие и подушковидные дерновины, разветвленно- и перисто-ветвистые сплетения,
мутовчато-ветвистые дерновины, иногда подушки. Жизненные стратегии – ценоти-
ческие и экотопические пациенты и некоторые эксклеренты (Atrichum undulatum,
Funaria hygrometrica). Cirriphyllum piliferum произрастает на богатых глинистых
влажных почвах, часто встречаются на тяжелых и известковых почвах и отсутсве-
твует на кислых, встречается и на почвенных обнаружениях в тенистых лесах, как индикатор
указывает на богатство почвы.

Орляковая серия

Сосняк орляковый (Pinetum pteridiosum) – довольно распространенный тип
(13,1%), занимает плоские повышеиа и верхние части склонов. Почвы слабокислье
дерново-подзолистые, свежие, супесчаные или песчаные, иногда подстилаемые су-
песью рыхлой и даже легким суглинком. Наиболее сложный состав древостоя имеют
дубняково-орляковая и елово-орляковая ассоциации, значительно проще – в чернич-
но-орляковой, монодоминантные мшisto-орляковая и частично чернично-орляковая.
Напочвенный покров значительно богаче, чем в вересковом и брусничном типах. Во
многом сходен с сосняком миштным, однако моховой покров здесь развит слабее,
чем в последнем, хотя и почти сплошной. Его развитию препятствует обычно пре-
ставленный орляк. В геоботанических работах (Юркевич, Ловчий, 1984) для данного
типа приводятся 8 видов – Pleurozium schreberi, Dicranum polysetum, Hylocomium
splendens, Ptilium crista-castrensis, Sciuro-hypnum oedipodium, Climacium dendroides,
Polytrichum commune, P. juniperinum. В мишсто-орляковой ассоциации более распро-
странены Pleurozium schreberi (обилие 4 балла) и Sciuro-hypnum oedipodium (оби-
лие 2 балла), а в чернично-орляковой – Pleurozium schreberi u Dicranum polysetum.

В составе сосняка орлякового нами отмечено 67 видов мохообразных, из кото-
рых 61 – мхи (из них 58 – бриевые и 3 – сфагны) и 6 – печеночники. Из родов по
свой видовой представленности несколько выделяются Brachythecium (4 вида),
Plagiomnium и Polytrichium (по 2 вида), а в остальных родах – по одному виду. В от-
личие от сосняка миштного здесь повсеместно отмечены такие виды, как
Brachythecium rivulare, Callicladium haldanianum, Plagiomnium elatum, Jamesoniella
autumnalis. В целом широко представлены, с одной стороны, ксероморфные виды
(Abietinella abietina, Brachythecium albicans, Polytrichum juniperinum, Syntrichia
ruralis), а с другой – гигроморфные (Brachythecium rivulare, Climacium dendroides,
Plagiomnium elatum), но большинство видов – мезофиты. По трофоморфам виды ох-
хватывают весь их диапазон – от эвтрофной до олигоотрофной с преобладанием олиго-
мезотрофов и мезотрофов, а по жизненным стратегиям – главным образом пациенты.
В составе биоморф – настоящая дерновина, плоский ковер, перисто-ветвистое и раз-
ветвленно-ветвистое сплетения, дендроидная форма и др.

Ельник орляковый (*Piceetum pteridiosum*) – распространен слабо (10,4%), располагается на повышеннях и верхних частях склонов (небольшими участками) на дерново-подзолистых супесчаных почвах, подстилаемых суглинком, иногда глиной, более сухих, чем в мшистом типе. В древостое значительная примесь сосны и дуба, присутствует граб (кроме северной подзоны). Здесь, как и в брусличнике, ель обладает пониженной фитоценотической устойчивостью. Этот тип во многом сходен с мшистым, но здесь обилен орляк. Значительным сходством характеризуются эти типы елового леса и по составу бриофитного компонента. В геоботанических работах (Юркевич и др., 1971) приводятся *Pleurozium schreberi* и *Dicranum polysetum*, в зеленомошно-орляковой ассоциации еще и *Ptilium crista-castrensis*, а в сосново-орляковой – *Rhytidiadelphus triquetrus*.

Нами отмечено 42 вида бриофитов (20,2%), из которых печеночников – 5, бриевых мхов – 35 и сфагновых – 2. Однако при этом в ельнике орляковом не отмечены *Amblystegium serpens*, *Brachythecium milleanum*, *Fissidens adiantoides*, *Lepidozia reptans*, *Mnium hornum*, *Polytrichastrum longisetum*, характерные для мшистого типа. Вместе с тем здесь в отличие от последнего на большинстве пробных площадей отмечены *Dicranella heteromalla*, *D. crispa*, *Plagiomnium elatum*. Различие данных типов ельников по специфическим (дифференциальным) видам, биоморф которых в основном настоящая дерновина, не принципиально. Бриофиты здесь индицируют сходный уровень трофности эдафотопа с таковым ельника мшистого.

Кисличная серия

Сосняк кисличный (*Pinetum oxalidosum*) малораспространенный тип (4,2%), располагается на плато, нижних частях склонов и у пологих подножий. Почвы более обеспеченны влагой и элементами питания хорошо дренированные, свежие, слабокислые дерново-подзолистые и бурные супесчаные и песчаные. В кисличной серии типов леса занимает крайнюю узкую полосу с менее плодородными почвами. Здесь сосна фитоценотически неустойчива, в северной и центральной подзоны смещается чаще всего елью, а в южной – дубом, а также быстро замещается березой и осиной. Состав древостоя весьма сложный. В геоботанических работах (Юркевич, Ловичий, 1984) для данного типа приводятся 16 наиболее распространенными напочвенных видов – *Scleranthus nemorensis*, *Brachythecium salebrosum*, *Calliergon cordifolium*, *Dicranum scoparium*, *D. polysetum*, *Hylocomium splendens*, *Plagiomnium affine*, *Pleurozium schreberi*, *Polytrichum commune*, *Ptilium crista-castrensis*, *Sphagnum magellanicum*, *Sph. palustre*, *Sph. squarrosum* и др.

Бриоэлемент проявляет признаки наследования от предшествующих елового или реже от широколиственного леса. Здесь отмечено 65 видов мохообразных, из которых 11 – печеночники и 54 – мхи. Более представительны роды *Brachythecium*, *Dicranum*, *Plagiomnium* (по 3 вида), в остальных родах – по одному виду. Появляются неизвестные для предшествующих типов сосняков виды – гигрогидрофит *Calliergon giganteum*, гигрофит *Plagiomnium ellipticum*, а также *Kindbergia praelonga*, *Lepidozia*.
reptans, Cephalozia lunulifolia, Chiloscyphus pallescens, Geocalyx graveolens, Campylium stellatum, Rhodobryum roseum, Sciuro-hypnum reflexum. В напочвенном фрагментарном моховом покрове на большинстве пробных площадей ксероморфные виды не отмечены, преобладают мезофиты, из более влаголюбивых видов присутствуют Brachythecium rivulare, Leptodictyum riparium Plagiomnium elatum, P. ellipticum, Climacium dendroides и др. На гниющих древесине и пнях встречаются Brachythecium rutabulum, B. salebrosum, Campylium sommerfeltii, Chiloscyphus profundus, Dicranum montanum, D. scoparium, Eurhynchium angustirete, Herzogiella seligeri, Plagiomnium cuspidatum, Plagiothecium laetum, Pohlia nutans, Ptilidium pulcherrimum, Radula complanata, Stereodon pallescens, Tetraphis pellucida и некоторые другие. В экологическом ряду типов сосновых лесов в сторону увлажнения по значительной представленности печеночников выделяются данный и последующие типы. В предыдущих более сухих типах сосновой формации отсутствуют представленные в сосновом орляковом Campylium sommerfeltii, Rhodobryum roseum. Диапазон по трофности простирается от эвтрофов до олигомезотрофов. Среди эпигендов представлен ряд мезоэвтрофных и эвтрофных видов – показателей повышенной относительно предыдущих типов трофности субстрата. Преобладает биоморфа – плоский ковер и пациенты экотопические над ценотическими.

Начиная с этого типа, в составе бриокомпонента всего гидроморфного ряда отмечена Lepidozia reptans, а такие виды как Cephalozia lunulifolia, Chiloscyphus polyanthos, Geocalyx graveolens, Plagiochila porelloides – кроме крайне бедного сосновка сфагнового. Помимо того здесь появляется Kindbergia praelonga, которая ассоциирована с влажными и тяжелыми почвами, хотя обнаруживается в широком спектре почвенных условий относительно кислотности.

Ельник кисличный (Piceetum oxalidosum) – коренной тип ельников, наиболее широко распространен (51,9%). Располагается на плато, нижних частях склонов и их пологих подножиях и характеризует оптимальные условия произрастания ели. Почвы отличаются большим богатством, дерново-подзолистые супесчаные или пылевато-сульфистые, нередко подстилаемые глиной, гумусированные, свежие. Состав древостоев сложный, часто с примесью широколиственных и мелколиственных пород. В геоботанических работах (Юркевич и др., 1971) здесь приводятся Pleurozium schreberi, Hlyocodium splendens, Dicranum polysetum, Plagiomnium cuspidatum, для зеленомощно-кисличной ассоциации еще и Climacium dendroides, дубняково-кисличной – D. scoparium, Polytrichum commune, лещиново-кисличной – Calliergon cordifolium, Calliergonella lindbergii.

По нашим данным этот тип занимает первое место по числу видов бриофитов. Его бриокомпонент наиболее богат по бриоразнообразию и включает 137 видов (66,2%), в том числе печеночников – 24, бриевых мхов – 105, сфагновых – 8. По числу видов выделяются роды Sphagnum (8 видов), Brachythecium (6), Plagiomnium, Plagiothecium (по 5), Chiloscyphus, Bryum, Dicranum, Thuidium (по 4 вида), Fissidens (3 вида), в остальных родах по 1-2 вида. Здесь появляется ряд видов не известных в предыдущих типах. Это мхи Barbula unguiculata, Brachythecium rivulare, Bryoerythro-
phyllum recurvirostrum, Bryum moravicum, Callicladium haldanianum, Calliergonella cuspidata, Campylium stellatum, Cratoneuron filicinum, Dicranodontium denudatum, Dicranum viride, Drepanocladus aduncus, Eurhynchium pulchellum, Fissidens bryoïdes, F. taxifolius, Fontinalis antipyretica, Herzogiella seligeri, Hygroamblystegium tenax, H. varium, Leptobryum pyriforme, Leptodictyum riparium, Mnium stellare, Neckera complanata, N. pennata, Oxyrrhynchium hians, O. speciosum, Pelikium minutulum, Plagiothecium cavifolium, P. denticulatum, P. latebricola, P. nemorale, Pleurozium schreberi, Polytrichastrum formosum, P. longisetum, Ptilium crista-castrensis, Rhizomnium punctatum Rhodobryum roseum, Rhytidiadelphus squarrosus, R. triquetrus, а также печеночники – Bazzania trilobata, Blepharostoma trichophylla, Cephalozia lunulifolia, Chiloscyphus laticolius, Ch. polyanthos, Frullania dilatata, Jamesoniella autumnalis, Lejeunea cavifolia, Lophozia ventricosa, Metzgeria furcata. Данные брюофиты индицируют повышенный уровень трофности эдафотопа. Биоморфы этих видов следующие: настоящая дерновина, плоский ковер, перисто- и разветвлено-ветвистые сплетения, дендроидная форма. По жизненным стратегиям среди данных видов превалируют брюипатенты экотопические и ценностные, присутствуют брюэксперенты. Вообще в ельнике кисличном напочвенный моховой покров фрагментарный, в его составе мезофиты – Atrichum undulatum, Cirriphyllum piliferum, Dicranum polysetum, Eurhynchium angustirete, Fissidens taxifolius, Funaria hygrometrica, Hylocomium splendens, Kindberga praelonga, Oxyrrhynchium hians, Plagiochila porelloides Plagiomnium affine, P. cuspidatum, P. undulatum, Pleurozium schreberi, Polytrichastrum formosum, P. longisetum, Ptilium crista-castrensis, Rhizomnium punctatum Rhodobryum roseum, Rhytidiadelphus squarrosus, Rh. triquetrus, а также более влаголюбивые брюофиты – гигрофиты и гигромезофиты – Calliergonella cuspidata, Campylium stellatum, Chiloscyphus polyanthos, Climaciurn dendroides, Cratoneuron filicinum, Drepanocladus aduncus, Fissidens adianthoides, Marchantia polymorpha, Plagiomnium elatum, Sphagnum girgensohnii, Sph. palustre, Sph. squarrosum и гидрофиты Leptodictybum riparium и fontinalis antipyretica. Остальные брюофиты произрастают в основном на гниющих валежине и пнях, причем наиболее распространен на данном субстрате Hypnum cupressiforme. На коре лиственных деревьев в данном типе встречаются ряд эпифитов (Homalia trichomanoides, Neckera pennata, Radula complanata и др.). Fissidens taxifolius индицирует тяжелые и богатые глинистые почвы; обычно в тенистых и влажных лесах на богатых хорошо увлажненных почвах от нейтральных до щелочных, на почвенных обнажениях.

Сытневая серия

Не представлена среди сосняков. Ельник сытневый (Piceetum aegopodiosum) малораспространенный тип (2,9%), формируется в богатых и более влажных, чем кисличный тип условиях, где обычно развивается напочвенный покров из травянистых и других сосудистых растений, на понижениях и подножиях склонов на дерново-подзолистых, оглеенных, гумусированных, суллинских или глинистых, более увлажненных, чем в кисличнике почвах. Древостоя с большой примесь широколи-
стенных пород, ольхи черной и березы. В Полесье этот тип замещается дубравой снятьевой. В геоботанических работах (Юркевич и др., 1971) здесь приводятся *Hylocomium splendens, Climacium dendroides, Dicranum polysetum, Marchantia polymorpha*, в лещиново-снятьевой ассоциации еще и *Plagiomnium cuspidatum, Pleurozium schreberi, Polytrichum commune, Sphagnum angustifolium*.

Бриофиты здесь представлены фрагментарно, нами в их составе выделено 94 видов (45,4%), в том числе 20 – печеночники и 74 – бриевые мхи. За немногим исключением отмеченные здесь в надпочвенном покрове виды мохообразных индизируют богатые по уровню трофности почвы. К ним относятся в основном мезотрофные и эвтрофные мезоигрофиты и гигромезофи́ты *Conocephalum conicum, Geocalyx graveolens, Liochlaena lanceolata, Pellia epiphylla, Erythrynum angustirete, Cirriphyllum piliferum, Plagiochila pellloidies, Plagiozium affine, Polytrichum commune, Sphagnum capillifolium.*

Цельник крапивный (Piceetum urticosum) – редко встречающийся тип (0,4%), располагается ниже цельника кисличного и часто прыгает к черноольшаникам (западины, долины речек и ручьев, пологие понижения или незначительные склоны). Почвы очень богатые, перегнойно-глеевые, перегнойно-карбонатные, супесчаные, подстилаемые суглинком, сырье, но хорошо дренированные и с проточным увлажнением. Примесь ясеня и ольхи черной здесь почти постоянна. В подзоне еловых и дубрав широколиственно-сосовых лесов эти почвы обычно заняты дубово-ясеневыми лесами. В геоботанических работах (Юркевич и др., 1971) для данного типа приводятся *Ptilium crista-castrensis, Dicranum polysetum, Plagiomnium cuspidatum, Polytrichum commune, в разнотравно-крапивном еще и Pleurozium schreberi, Climacium dendroides, Sphagnum capillifolium.*

Моховой покров развит незначительно. Нами отмечено 67 видов (32,9%), из которых печеночников – 17, бриевых мхов – 46 и сфагновых – 4. Преобладают роды *Plagiomnium* (5 видов), *Plagiothecium* (4), *Sphagnum*, *Cephalozia*, *Chiloscyphus*, *Dicranum* (по 3) в остальных родах по 1-2 вида. Повсеместно отмечены мезофи́ты *Atrichum undulatum, Brachytheciastrum velutinum, Dicranum polysetum, Pleurozium schreberi,*
Hylocomium splendens, Plagiochila porelloides, Plagiomnium affine, P. cuspidatum, Eurhynchium angustirete, гигрофиты – Cephalozia pleniceps, Conocephalum conicum, Brachythecium rivulare, Bryum pseudotriquetrum, Calliergonella cuspidata, Calliergon cordifolium, Climacium dendroides, Drepanocladius aduncus, Leptodictyum riparium, Plagiomnium ellipticum, P. elatum, Polytrichum commune, Rhizomnium punctatum, Sphagnum palustre, Sph. squarrosum. Грибковый компонент представлен в основном мезофитными и эвтрофными видами, а также биоморфами – настоящая дерновина, разветвленно- и перисто-ветвистые сплетения, плоский ковер, талломный ковер, мутовчато-ветвистая дерновина и дendirидная форма. Жизненные стратегии – в основном бриофиты ценотические. В совокупности грибки здесь соответствуют значительной степени трофности эдафотопа и повышенной влажности.

Папоротниковая серия

Не представлена среди сосняков. Ельник папоротниковый (Piceetum filicosum) – малораспространенный тип (3,1%). Занимает пониженные местоположения и окраины низинных болот. Почвы менее плодородные и более увлажненные, чем в предыдущем типе, перегнойно-глеевые, подстилаемые супесью или суглинком,сырые, со средней проточностью грунтовых вод. Здесь увеличивается примесь мелколиственных пород, уменьшается доля дуба и ясения. Напочвенный моховой покров фрагментарный, бриофиты обильно развиваются на гниющем валежнике. В геоботанических работах [0] для данного типа приводятся Climacium dendroides, Pleurozium schreberi, Dicranum polysetum, Ptilium cristata-castrensis, в зелено-мошно-папоротниковую ассоциацию еще и Rhytidiadelphus triquetrus, в разнотравно-папоротниковой – Polytrichum commune, в дубняково-папоротниковой – Plagiomnium undulatum.

Нами здесь отмечено 119 видов мохообразных (57,5%), из которых печеночников – 37, бриевых мхов – 75 и сфагновых – 7. По числу видов выделяются следующие роды: Sphagnum (7), Plagiomnium (6), Dicranum (5), Cephalozia, Chiloscyphus (по 4), Calypogeia, Brachythecium, Bryum, Thuidium (по 3), а в остальных родах по 1-2 вида. На микроповышениях и почве корневых воротов елей посягаются экологически разнообразные бриофиты – бриофиты ценотические различной экологии. Bazzania trilobata – характерный спутник ели, имеющий южнобайкальскую дизъюнкцию. Предпочитает ельники с достаточным режимом увлажнения (кистичный, снеговый, папоротниковый и остальные типы с повышенно влагообеспеченным режимом). Из печеночников в данном типе много показателей повышенной трофности субстрата, а также разнообразен состав эпиколов, эпигенков и эпифитов. Наиболее часто отмечены Annea pinguis, представители родов Calypogeia, Cephalozia u Chiloscyphus, Conocephalum conicum, Geocalyx graveolens, Lophozia longiflora, Pellia endiviifolia, P. epiphylla, Trichocolea tomentella. Разнообразны виды мхов эвтрофной ориентации – Brachythecium rivulare, Calliergon cordifolium, Calliergonella cuspidata, Cirripyllum piliferum, Plagiomnium elatum, P. undulatum и некоторые другие. Впервые для ельников в этом типе появляется Dicranum bonjeanii. Из охраняемых видов
представлены Cephalozia catenulata, Lophozia ascendens и Pseudobryum cinclidioides. Из сфагновых мхов здесь представлены относительно более требовательные к трофности субстрата виды. В основном или только на гниющей древесине растут бриопатиенты экотопические. Биоморфы – настоящая дерновина, плоский и таллальный ковры, разветвленно- и перисто-ветвистые сплетения и дерновидная подушка. Бриофиты разнообразны по отношению к трофности эдафотопа, что связано с выраженностью микрорельефа.

Черничная серия

Сосняк черничный (Pinetum myrtillosum) довольно распространенный тип (15,3%), занимает пониженные ровные местоположения, нижние части склонов и небольшие проточные западины, с хорошо выраженным нанорельефом и большой степенью увлажнения, чем предыдущие типы. Чаще всего прыкает к сосняку долго-мощному. Преобладают влажные дерново-подзолистые, оглеенные, реже торфянисто-подзолисто-глеевые песчаные, еще реже супесчаные почвы. Монодомinantные встречаются редко, в елю-черничной ассоциации, отражающей особенности южнотаежных сосновых лесов; обязательным компонентом второго яруса является ель. В геоботанических работах (Юркевич, Ловчий, 1984) для данного типа приводятся 16 видов бриевых мхов – Pleurozium schreberi, Dicranum polysetum, D. scoparium, Hylcomonium splendens, Plagiomnium affine, Polytrichum commune, Ptilium cristastrensis, Aulacomnium palustre, Sciurom-hypnum oedipodium, и др.), и 8 – сфагнумы (Sphagnum capillifolium, Sph. angustifolium, Sph. girgensohnii, Sph. magellanicum, Sph. fallax и др.). Во все ассоциации этого типа преобладает Pleurozium schreberi (78-96; 5-6), в вейниково-черничной по понижениям отмечен Sphagnum magellanicum, а долгомощно-черничная в отношении напочвенного покрова проявляет сходство с сосняком долгомощным, здесь распространены Polytrichum commune (встречаемость 73%), в понижениях – Sph. magellanicum, Sph. girgensohnii, Sph. fallax.

Нами отмечено здесь максимальное для изученных типов сосняков число видов – 119 (57,5%), из которых 24 – печеночники (Calypogeia integristipula, Chiloscyphus profundus, Ptilidium pulcherrimum и др.) и 95 – мхи, в том числе 84 – бриевые и 11 – сфагновые. Бриофиты в основном покрывают почву, валежник и пни. По числу видов выделяются роды Sphagnum (11), Chiloscyphus и Dicranum (по 5), Brachythecium, Dicranella, Orthotrichum, Plagiomnium, Plagiothecium и Thuidium (по 4), а в остальных родах – по 1-3 вида. В связи с выраженною микрорельефа по западинам часто отмечены гигрофитные мхи – Calliergonella cuspidata, Polytrichum commune, а также Sph. fallax, Sph. girgensohnii, Sph. palustre, Sph. russowii, Sph. squarrosum, Sph. centrale, Sph. fimbriatum, Sph. subsecundum, представляющие трофоморфы от олигомезотрофных до мезоэвтрофных. Кроме этих видов здесь появляются Cephaloziella elachista, Chiloscyphus minor, Odontoschisma denudatum, Pellia endivifolia, Stereodon fertilis, Straminergon stramineum, в западинах Warnstorftia fluitans. Характерны сочетания лесных мезофитов (в основном бриевые мхи) с гигрофитами (сфагновые и бриевые мхи). Эпигеиды – олигомезотрофы, мезотрофы, эв-
трофы, на гниюющих валежнике и пнях – преимущественно мезотрофы. Биоморфы – настояющая дерновина, плоский ковер, развевлено-ветвистое и перисто-ветвистое сплетения, мутовчато-ветвистая дерновина. По жизненным стратегиям сочетаются бриофилонеты с патиентами ценотическими и экотопическими. Совокупность бриофитов индицирует умеренную трофность и некоторую степень заболеваний здафотопа. В экологическом ряду типов леса, начиная с черничного, в сторону увеличения увлажнения наблюдается значительное и далее возрастающее участие сфагновых мхов в напочвенном моховом покрове.

Ельник черничный (Piceetum myrtillosum) – довольно распространенный тип (19,8%), занимающий ровные пониженные местоположения с кочковатым нанорельефом на дерново-подзолистых (сильно оподзоленных), супесчаных или суглиннистых, оглеенных, подстилаемых суглинком, влажных, иногда с признаками избыточного увлажнения почвах. Приурочен к несколько пониженным элементам рельефа и более увлажнен относительно также широко распространенного кисличного типа. Представляет более низкую ступень плодородия почв, несколько избыточно увлажненных. При увеличении сухости почв и снижении их богатства черничник сменяется миштам типом, а затем брусничным, многие ассоциации которых являются производными от суборей. В геоботанических работах (Юркевич и др., 1971) здесь приводятся Pleurozium schreberi, Polytrichum commune, Ptilium crista-castrensis, Dicranum polysetum, в понижениях Sphagnum girgensohnii, в бруснично-черничной ассоциации – Rhytidiadelphus triquetrus, Climacium dendroides, в березово-черничной – Sph. capillifolium. В Полесье отмечены также Hylcomium splendens, D. scoparium, Sph. palustre.

В связи с широким распространением данного типа биоразнообразие мохообразных в нем незначительно уступает таковому наиболее богатого по биоразнообразию ельника кисличного (64,7%). Всего здесь насчитывается 134 вида мохообразных, в том числе 39 – печеночники, 95 – мхи, в т.ч. 82 – бриевые мхи и 13 – сфагновые. Такое число видов печеночников – наибольшее в лесах слойной формации. По видовой представленности здесь выделяются роды Sphagnum (13), Cephalozia, Dicranum, Plagiomnium (по 5), Chiloscyphus, Lophozia, Brachythecium, Bryum, Thuidium (по 4), Plagiothecium (3), в остальных родах по 1-2 вида. В этом, а также приуроченности травяным типам отмечен такой редкий вид, как Crossocalyx hellerianus. Только в данном виде отмечены Cephalozia divaricata, C. rubella, Lophozia exciza, L. ventricosa, Orthoaulis attenuatus, Bryum turbinatum, Campylium stellatum, Drepaincladus polygamus. В напочвенном моховом покрове численно преобладают отмеченные на большинстве пробных площадей с данным типом леса мезоэфирные и эфирные мезофиты Eurhynchium angustirete, Plagiomnium affine, Plagiothecium nemorale, Rhytidiadelphus triquetrus, Thuidium delicatulum, Th. tamariscinum, Atrichum undulatum, Bryum turbinatum, а также более влаголюбивые – гигрофиты и гигромезофиты – Brachythecium rivulare, Calliergon cordifolium, Calliergonella cuspidata, Climacium dendroides, Marchantia polymorpha, Pellia epiphylla, Plagiomnium ellipticum, P. undulatum, Polytrichastrum longisetum, Rhizomnium punctatum, Trichocolea tomentella.
Кроме того, широко представлены олигомезотрофные и мезотрофные мезофи́ты — *Pleurozium schreberi*, *Dicranum polysetum*, *Hylocomium splendens*, *Polytrichastrum formosum*, а также гигромезофи́ты — *Aulacomnium palustre*, *Polytrichum commune*. Сфагновые мхи представляют трофоморфы от олигомезотрофных до мезоэвтрофных. Из биоморф более представительны дерновины настоящая и мутовчато-ветвистая, плоский и талломный ковры, значительно менее — перисто- и разветвленно-ветвистые сплетения, вертикально-ветвистый ковер. Здесь присутствуют все 3 вида дендронидной биоморфы. По жизненным стратегиям преобладают цено́тические брио пациен́ты, которым заметно численно уступают экотопические, единично представлены бриофлеренты. Бриониволентность проявляют сфагновые мхи. Бриофиты индицируют повышенную трофность эдафотопа.

Приручейно-травяная серия

Сосняк приручейно-тра́вяной (*Pinetum fontinale-herbosum*) редко встречающи́йся ти́п (0,3%) в основном вблизи водотоков и характеризу́ется избыточным увла́жнением с выраженным микрорелььефом, увеличивающим набор этноз. В связи с мелиорацией происходит сокращение его площадей. Почвы перегнойно-глеевые, торфянисто-глеевые, подстилаемые породами разного механического состава (песок, супесь), очень сырые, проточные.

Ельник приручейно-травяной *(Piceetum fontinale-herbosum)* – редко встречающийся тип (0,6%), возле ручьев и речек, а также вблизи низинных болот с проточным режимом увлажнения. Почвы перегнойно-глеевые, подстилаемые песком или супесью, мокрые, обводнение среднепроточное. Здесь фитоценотически устойчива ольха черная, постоянно входящая в состав древостоя, примешиваются сосна, береза пушистая, а в менее заболоченных местах – дуб и ясень. В геоботанических работах (Юркович и др., 1971) для данного типа приводятся *Climacium dendroides, Pleurozium schreberi, Dicranum polysetum, Polytrichum commune, Plagiommium cuspidatum, P. undulatum*, а в понижениях *Sphagnum*, в ольхово-приручейно-травяной ассоциации – *Ptilium crista-castrensis, Polytrichastrum formosum, Sph. magellanicum*, в па- поротниково-приручейно-травяной – *Calliergonella lindbergii, Sph. angustifolium, Sph. centrale*, в таволгово-приручейно-травяной – *Sph. palustre*.

Долгомощная серия

Сосняк долгомощный *(Pinetum polytrichosum)* имеет небольшое распространение (4,6%) узкими полосами на понижениях возле болот (ниже сосняков черничных) с выраженным нанорельефом при некоторой застойностью увлажнения почв или узкими полосами окаймляет сосняки багульниковые на верховых болотах, а также в западинах с олиготрофным заболеванием, на сильнокислых, сырых, среднепроточных, от дерново-подзолисто-глеевых до торфянисто-подзолисто-глеевых, песчаных, иногда супесчаных почвах. В напочвенном покрове наряду с мезофитами

Ельник долгомощный (*Piceetum polytrichosum*) – распространен незначительно но небольшими участками (полосами) ниже ельника черничного, возле болот, с выраженным нанорельефом (1,9%). Характерны дерново-торфянисто-подзолисто-глеевые супесчаные, иногда суглинистые почвы, подстиляемые в основном супесью, со среднепроточным увлажнением, сырье. По фитоценотической структуре близок к сосняку долгомощному. Приурочен к еще более пониженным элементам рельефа с некоторой застойностью увлажнения почвы, чем черничный тип. В геоботанических работах (Юркевич и др., 1971) для данного типа приводятся *Polytrichastrum longisetum*, *Polytrichum commune*, *P. juniperinum*, *P. piliferum*, *Climacium dendroides*, *Dicranum polysetum*, *Pleurozium schreberi*, *Ptilium crista-castrensis* *Sphagnum capillifolium*, *Sph. squarrosum*, *Sph. palustre*, *Sph. angustifolium*, в чернично-долгомощной ассоциации еще и *Rhytidiodaphlus triquetrus*.

Нами здесь выявлено 75 видов бриофитов (36,2%), из которых печеночников – 22, сфагновых мхов – 11 и бриевых – 42. Из родов по числу видов выделяются *Sphagnum* (11), а также *Chiloscyphus*, *Dicranum* (по 4), *Cephalozia*, *Thuidium* (по 3). В напочвенном моховом покрове наиболее обилиен олигомезотрофный гигромеозофит *Polytrichum commune*. Из более влаголюбивых видов повсеместно отмечены также
Climacium dendroides, Fissidens adiantoides, Sphagnum capillifolium, Sph. squarrosum и охраняемый Pseudobryum cinclidioides. На гниющей древесине представлены, прежде всего, Hymnium curvissime, затем Brachythecium salebrosum, Brachytheciastrum velutinum, Dicranum montanum, D. scoparium, Plagiomnium cuspidatum, Plagiothecium laetum и ряд мелких печеночников из родов Calypogea, Cephalozia, Chiloscyphus, Lepidozia и др. Некоторые из эпиксилов заходят на корневые лапы и комель ели. Сфагновые мхи характеризуются различным требованием к трофности субстрата. Биоморфы таковы: настоящая и подушковидная дерновины, плоские ковры, менее представлены сплетения, мутовчато-ветвистая дерновина и дендронидная форма. Бриовиолентом здесь является Polytrichum commune, а остальные — бриопатенты.

Багульниковая серия

Не представлена среди ельников. Сосняк багульниковый (Pinetum ledosum), малораспространенный тип (2,6%). Размещается на орнанах олиготрофных сфагновых болот и в отдельных впадинах среди долгомошников с мало- и среднемощными торфяными почвами, очень кислыми (pH 2,6-3,0). В геоботанических работах (Юркевич, Лович, 1984) для данного типа приводится Sphagnum angustifolium, Sph. magellanicum, реже Sph. fallax. Только в глобично-багульниковой и сфагново-багульниковой ассоциациях отмечены Dicranum polysetum, Pleurozi um schreberi.

По нашем данным, бриокомпонент этого типа леса включает 58 видов (27,5%), из которых 00рных печеночников — 16, бриевых мхов — 23, сфагновых — 19. В моховом по- крове на всех пробных площадях с данным типом леса преобладают сфагновые мхи, преимущественно олигомезотрофные гигрофиты Sphagnum fallax, Sph. magellanicum, Sph. angustifolium, в меньшей мере отдельные дерновины образуют более требовательные к трофности гигрофиты Sph. girgensohnii, Sph. palustre, Sph. squarrosum. По кочкам встречаются мезофиты Pleurozi um schreberi, Dicranum polysetum, Hylocomium splendens и гигрофит Polytrichum strictum, на гниющей древесине — Dicranum scoparium, Plagiothecium laetum, Ptilidium pulcherrimum, Pylaisia polyantha, Sanionia uncinata, Tetraphis pellucida. Доминируют олигомезотрофные мхи, индицирующие значительную обедненность эдафотопа. Из биоморфа преобладает мутовчато-ветвистая дерновина. Сфагновые мхи как бриовиоленты сочетаются с бриевыми, выступающими в качестве бриопатентов.

Осоковая серия

Сосняк осоковый (Pinetum caricosum) малораспространенный тип (1,4%), приурочен к наиболее бедным низинным болотам. Почвы кислые (pH 3,1-3,4), торфяно-глеевые и торфяные маломощные слабопроточные с хорошо выраженным кочковатым нанорельефом. В геоботанических работах (Юркевич, Лович, 1984) для данного типа приводится 13 видов — Polytrichum commune, Sphagnum centrale, Sph. teres, Sph. fallax, Sph. magellanicum и др.

Нами здесь отмечено 74 вида мохообразных (36,2%), в т.ч. печеночников — 17,
бривых мхов – 40 и сфагновых – 17. Бриофиты в основном приурочены к повышениям микрорельефа (кочки) и гниющей древесине, характеризующейся повышенным видовым разнообразием при невысоком проективном покрытии. Фрагментарный по-
почвенный моховой покров образуют преимущественно Calliergon cordifolium, Calliergonella cuspidata, Dicranum polysetum, Polytrichum strictum и сфагновые мхи – Sphagnum fimbriatum, Sph. palustre и другие, характеризующиеся мезэвтрофной и в меньшей мере олигомезотрофной ориентацией. В целом в покрове сочетаются в основном гидрофитные виды, относящиеся к мезэвтрофам, эвмезотрофам и олигоме-
зотрофам. На гниющей древесине и пнях отмечены Brachythecium salebrosum, Calypogeia integristipula, Dicranum montanum, D. scoparium, Herzogiella seligeri, Hygroamblystegium humile, Lepidozia reptans, Leptodictyum riparium, Plagiothecium lae-
tum, Sciuro-hypnum oedipodium, Stereodon pallescens и многие другие. Среди них значи-
тельным биоразнообразием характеризуются печеночники, имеющие преимуществен-
но мезотрофную мезогидрофитную и гидрофитную ориентацию. Сфагновые мхи
от олиготрофов до мезэвтрофов, но преимущественно мезотрофы. Биоморфы мохо-
образных – дёрновины настоящие и мутовчато-ветвистые, плоские ковры, различные
сплетения, относящиеся к бриовиолетам или бриопатиям. Бриофиты индициру-
ют значительную степень трофности эдафотопа.

Ельник осоковый (Piceetum caricosum) – редко встречающийся тип (0,3%)
преимущественно на низинных болотах со слабопроточным режимом увлажнения.
Занимает торфяно-глеевые и перегнойно-торфянисто-глеевые почвы. Состав древо-
стоя насыщен сосной и березой пушистой больше, чем в предыдущем типе. Фитоце-
нотически близок к соснякам и березнякам осоковым. В геоботанических работах
(Юркевич и др., 1971) для данного типа приводятся Sphagnum magellanicum, Sph.
squarrosum, Sph. centrale, Polytrichum commune, Polytrichastrum formosum, Rhytidia-
delphus triquetrus.

Нами отмечено 67 видов (32,4%), в том числе печеночников – 24, бриевых
мхов – 39 и сфагновых – 4. По числу видов несколько выделяются роды Sphagnum,
Chiloscyphus, Dicranum (по 4), Cephalozia, Plagiomnium, Thuidium (по 3). Моховой
покров слабо развит. В его составе почти повсеместно отмечены влаголюбивые мхи
– мезэвтрофные и эвтрофные гидрофиты и гигромезофиты Calliergonella cuspidata,
Calliergon cordifolium, Campylium stellatum, Climacium dendroides, Drepanoclados
aduncus, Leptodictyum riparium, Plagiomnium ellipticum, а также мезотрофные гигро-
mезофиты – Aulacomnium palustre, Dicranum bonjeanii. Эпиксильный компонент богат
видами печеночников, в основном имеющих мезотрофную и мезэвтрофную ориен-
тацию. Мохообразные представлены следующими биоморфами: настоящая и мутов-
чато-ветвистая дерновины, плоский и талломный ковры, развивленно- и перисто-
ветвистые сплетения, а также дендроидная форма. Большинство видов – бриопатиен-
ты ценотические, индицирующие достаточно высокую трофность эдафотопа, а также
экотопические.
Осоково-сфагновая серия

Нами здесь выявлено 92 вида бриофитов (44%), в т.ч. печеночников – 20, бриевых мхов – 49, сфагновых – 23. По числу видов выделяется род Sphagnum (23) и значительно ему уступающие Dicranum (5), Cephalozia и Chiloscyphus (по 4), Brachythecium, Plagiomnium (3), а в остальных родах по 1-2 вида. Данный тип выделяется максимальным биоразнообразием сфагнумов, преобладающих в моховом покрове, и, прежде всего, олигомезотрофы Sphagnum magellanicum, Sph. angustifolium, Sph. fallax, Sph. capillifolium, при значительном участии мезотрофов и мезозэфотрофов. Из бриевых мхов в напочвенном покрове представлены как гигрофитные (Aulacomnium palustre, Brachythecium rivulare, Calliergon giganteum, Calliergonella cuspidata, Climacium dendroides, Dicranum bonjeanii, Plagiomnium elatum, P. ellipticum, Polytrichum strictum, Straminergon stramineum), так и мезофитные (Dicranum polysetum, Hylocomium splendens, Plagiomnium affine, Pleurozium schreberi, Rhytidiadelphus triquetrus) бриофиты.

Гигрофиты здесь доминируют как по числу видов, так и по степени участия в моховом покрове на всех пробных площадях с данным типом леса. Биоморфы эпигейов в основном – дерновины – настоящие или мутовчато-ветвистые. На гниющей древесине отмечены Brachythecium salebrosum, Chiloscyphus profundus, Plagiothecium laetum, Pylaisia polyantha, Sanionia uncinata, Sciuro-hypnum eedipodium, Stereodon pallescens и др. В качестве бриовиолентов здесь выступают сфагновые мхи, преимущественно индирующие невысокую трофность эдафотопа.

Ельник осоково-сфагновый (Piceetum caricoso-sphagnosum) – редко встречающийся тип (0,1%). Распространен на переходных болотах со слабопроточным увлажнением. Почвы торфяно-болотные, сильнообводненные. В составе древостоя в примеси много сосны и березы пушстой. Экологически очень близок к соснякам и березнякам осоково-сфагновым, а по сравнению с осоковым характеризуется некоторой застойностью увлажнения. В геоботанических работах (Юркевич и др., 1971) для данного типа приводятся Sphagnum centrale, Sph. magellanicum, Sph. palustre, Sph. compactum, Sph. capillifolium, Sph. squarrosum. По микроповышениям – Polytrichastrum longisetum, Hylocomium splendens, Ptilium crista-castrensis, Polytrichum juniperinum, Pleurozium schreberi.

Моховой напочвенный покров развит значительно и состоит в основном из сфагновых мхов. Нами выявлено 69 видов бриофитов (33,3%), из которых печеночников – 21, бриевые мхи – 34, сфагновые – 14. По числу видов выделяются роды Sphagnum (14), Dicranum (5), Cephalozia, Chiloscyphus (по 4). Мхи в основном приурочены к кочкам (Polytrichum commune, Aulacomnium palustre, Hylocomium

Сфагновая серия

5.5.2 Анализ по экологически сходным группам типов леса

Сравнительный анализ специфичных (дифференциальных) мохообразных со- сновок и ельников по отношению к увлажнению среды показал в сосняках достаточно равномерное распределение бриофитов, а в ельниках преобладание количества видов-мезофитов и гигромезофитов, малое количество ксеромезофитов и отсутствие мезоксерофитов.
Относительно трофических групп дифференциальные виды сосняков распределены более менее однородно, тогда как в ельниках выделяются виды-показатели богатых питательными веществами субстратов, реже встречаются мезотрофные виды и отсутствуют виды-индикаторы обедненных питательными веществами и бедных почв. Такие показатели отвечают степени богатства занимаемых этими лесами эдафопов.

Дифференциальные виды бриокомпонента еловых лесов – индикаторы достаточно благоприятных лесорастительных условий для произрастания доминирующих компонентов хвойных лесных сообществ относительно влажности среды и трофности субстрата по сравнению с сосновыми лесами, где дифференциальные виды индицируют более широкую экологическую амплитуду сосновых лесов, как по влажности, так и по трофности, включая экстремумы этих факторов.

Географический состав дифференциальных видов бриокомпонентов сосновых и еловых сообществ также достаточно показателен. Среди них бореальные видов в 3 раза больше, чем неморальных, в числе видов горного генезиса отсутствуют неморально-монтажные. Дифференциальные виды мохообразных еловых лесов в географическом отношении характеризуются преобладанием видов неморальной ориентации над бореальными, а около половины видов горного генезиса здесь представлены неморально-монтажным геоэлементом.

Наиболее соответствуют экологическим условиям данных лесов группы эпигейидов и эпиксилов, тогда как облигатные эпифиты и эпилиты слабо отражают специфику экологических условий хвойных лесов. Монодоминантные эпиксильные сообщества мохообразных отмечаются в старых малонарушенных хвойных и смешанных лесах и, прежде всего, отражают ненарушенные высоковозрастные лесные сообщества.

Ель обыкновенная требовательна к влажности среды и трофности субстрата, и растет на свежих супесчаных и суглинистых почвах, но хорошо переносит условия избыточного проточного увлажнения, осушенных торфяно-гляевых и торфяных почв с хорошей аэрацией и др., и вместе с тем не переносит сухость воздуха, застой влаги в почве и резкое изменение режима ее влажности (Погребняк, 1955, Ярошенко, 1969, Юркевич и соавт., 1971, 1979, Сукачев, 1972, Тихомиров, 2005). Такие экологические условия благоприятны для произрастания многих видов мохообразных, в том числе стенотопных.
При всем этом большинство бриофитов в составе хвойных лесов встречается как в сосновых, так и в еловых сообществах.

Специфичные (дифференциальные) для сосновых и еловых лесов виды бриофитов (включая виды редкие для территории Беларуси) отражают для хвойных лесов в пределах Беларуси экологические условия и историю растительности.

Для хвойных лесов интегральными (объединяющими, верными) видами I-го порядка (встречаются во всех типах лесов сосновой и еловой формаций) являются эпигеиды Dicranum polysetum, Hylocomium splendens, Polytrichum juniperinum, Pleurozium schreberi, Dicranum montanum, эпиксид Tetraphis pellucida и виды с широкой экологией Ptilidium pulcherrimum, Dicranum scoparium, Pohlia nutans.

Интегральные виды II-го порядка (встречаются во всех типах за исключением самих бедных: piceetum vacciniosum и pinetum cladinosum и sphagnosum) — виды широкой экологии Brachythecium salebrosum, Hypnum curpressiforme, Plagiommium cuspidatum, Pylaista polyantha, Sanionia uncinata, Sciuro-hypnum oedipodium, эпигеиды Ptilium crista-castrensis, Rhytidiadelphus triquetrus, эпифит Orthotrichum species.

Интегральные виды III-го порядка (встречаются во всех типах за исключением наиболее сухих: piceetum vacciniosum, pinetum cladinosum and callunosum) — эпигеиды Leucobryum glaucum, Marchantia polymorpha, Climacium dendroides, Polytrichastrum formosum, эпиксиды Chiloscyphus profundus, Dicranum flagellare, Herzogiella seligeri, Plagiothecium laetum, Stereodon pallescens, и эпифит Radula complanata.

Интегральными для отдельных экологических групп (встречаются в более сухих типах леса: cladinosum, callunosum, vacciniosum, pleuroziosum, pteridiosum) являются виды — Abietinella abietina, Bryum argenteum, Buxbaumia aphylla, Polytrichum piliferum, Syntrichia ruralis.

Среди бриофитов хвойных лесов представлены также экологически менее пластичные виды, которые интегрируют только определенные группы типов леса.

Сосновые леса. Для центральной части экологического ряда типов леса сосновок (т. е. pinetum vacciniosum, pleuroziosum, pteridiosum, oxalidosum) характерно присутствие мезотрофных мезофитов Callicladium haldanianum, Leptobryum pyriforme, Plagiothecium denticulatum, Polytrichastrum longisetum; энтрофных мезогифофитов Thuidium assimile, Th. recognitum; энтрофных и мезотрофных гифофитов Aulacomnium palustre, Brachythecium rivulare, Calliergonella cuspidata, Chiloscyphus polyanthos, Leptodictyum riparium.

Интегральными (общими) видами для типов леса с сухими или суховатыми, неустойчиво увлажненными почвами (в экологическом ряду от pinetum cladinosum, до pinetum pteridiosum) являются ксеромезофиты Abietinella abietina, Brachythecium albicans, Bryoerythrophyllum recurvirostrum, Bryum argenteum, Niphotrichum canescens (обитатели сухих лугов и светлых лесов) и др.

Экологический спектр сравнительно влажных лесов (от pinetum oxalidosum до pinetum polytrichosum), производных от темнохвойных лесов, характеризуется мезотрофными и эвзмезотрофными гифофитами, такими как, Cephalozia lunulifolia, Chiloscyphus pallescens, Geocalyx graveolens, Plagiothecium ellipticum.
Типы леса с большим увлажнением, чем pinetum myrtillosum, характеризуются присутствием гигрофитов, в том числе олигомезотрофов Odontoschisma denudatum, Sphagnum fallax, S. russowii, мезотрофов Chiloscyphus minor, Sphagnum centrale, S. fimbriatum, S. girgensohnii и мезоэвтрофов Pellia endiviifolia, Drepanoclados aduncus, Fissidens adianthoides, Sphagnum squarrosum.

В экологическом ряду типов леса сосняков, начиная с pinetum fontinale-herbosum, вместе с увеличением влажности и трофности, возрастает количество гигрофитов. Они включают общие мезоэвтрофные и эвтрофные виды влажных лесов и болот – мезогигрофиты и гигромезоэфи́ты Cephalozia pleniceps, Scapania irrigua, Riccardia latifrons, R. palmata, Dicranum bonjeanii, Mnium hornum, гифофиты Rhizomnium punctatum, Pseudobryum cinclidioides, гигроцифтоты Cratoneuron filicinum, Sphagnum riparium) и гидрофиты Philonotis fontana, Riccia fluitans.

В наиболее увлажненных типах леса сосняков (в экологическом ряду от pinetum caricosum), появляются типичные обитатели болота: гигрофиты и гигроцифты Riccardia multifida, Hamatocaulis vernicosus, Sph. contortum, Sph. obtusum, Sph. platyphyllum, а от pinetum polytrichosum и в более влажных местообитаниях, увеличивается разнообразие эпиксильных видов, включая многие печеночники.

Только в осоковом и осоково-сфагновом типах леса (pinetum caricosum и caricoso-sphagnosum) отмечены обитатели эвтрофных болот гигрофиты Anura pinguis, Hamatocaulis vernicosus, Helodium blandowii, Sphagnum contortum, Sph. obtusum, Sph. platyphyllum, Tomentypnum nitens и др.

Показателями типов леса с заболоченными и бедными почвами (pinetum ledosum и sphagnosum) являются обитатели олиготрофных болот гигрофиты Cephalozia connivens, Mylia anomala, Sphagnum balticum, Sph. flexuosum, Sph. fuscum, Sph. rubellum и др.

Видовой состав бриофитов олиготрофных типов леса сосняков (с экстремальными экологическими условиями в отношении бриофитов – ксероморфные pinetum cladinosum и callunosum, а также гидрохитный pinetum sphagnosum) среди хвойных лесов характерен только для данных типов леса.

Если в сосняках представлено 11 видов бриевых мхов, встречающихся лишь в диапазоне от лишайникового до орлякового типов, т.е. более или менее ксероморфных, то в ельниках виды, ограниченные таким диапазоном типов леса, вообще отсутствуют. Это отличительный признак типов леса левой формации, по крайней мере, на территории Беларуси.

Еловые леса. Виды, распространенные в еловых лесах по всему спектру типов леса (исключая только ксероморфный тип piceetum vacciniosum): эпигейды Plagiochila porelloides, Calliergon cordifolium, Eurhynchium angustirete, Plagiommium ellipticum, Polytrichastrum longisetum, Polytrichum commune, Rhizomnium punctatum, Sph. girgensohnii, Sph. palustre и эпиксильы Chiloscyphus pallescens, Lepidozia reptans, Nowellia curvifolia.

В экологическом ряду типов елового леса вдоль градиента увеличения влажности до pinetum myrtillosum (и реже – polytrichosum) встречаются эвтрофные и мезо-

Начинная с кисличного типа (oxalidosum), в ельниках отмечаются следующие гигрофиты: печеночники *Blepharostoma trichophyllum*, *Cephalozia lunulifolia*, *Chiloscyphus polyanthus*, *Geocalyx graveolens*, *Plagiochila asplenioides* и мхи *Bryum capillare*, *B. moravicum*, *Calliergonella cuspidata*, *Sph. squarrosum*, *Thuidium assimile*.

Серий типов леса aegopodiosum, *urticosum* и *filicosum* характеризуют преимущественно эвтрофные и в меньшей степени мезотрофные гигрофиты *Calypogeia muelleriana*, *C. neesiana*, *Cephalozia pleniceps*, *Geocalyx graveolens*, *Liochlaena lanceolata*, *Pellia epiphylla* и др.

Гидрофиты и гигрогидрофиты отмеченные только в типе леса fontinale-herbosum – *Riccia fluitans*, *Bryum pallens*, *Campylium protensum*, *Cratoneuron filicinum*, *Philonotis fontana*, *Pohlia wahlenbergii*, *Sph. warnstorfi*.

Гидрофиты и гигрофиты (обитатели эвтрофных болот) *Breidleria pratensis*, *Sphagnum cuspidatum*, *Tomentypnum nitens* были отмечены только в caricosum и caricoso-sphagnosum типах леса.

Приведенные интегральные (объединяющие, верные) для каждой определенной группы типов сосновых или еловых лесов вместе с тем являются дифференциальными (специфичными) для остальных групп или отдельных типов леса в пределах сосновой или еловой формации.

С учетом эколого-биоморфологических и географических особенностей из числа интегральных видов выделены характерные для отдельных типов сосновых и еловых лесов или их групп (Таблица 5.5).
Таблица 5.5. – Мохообразные, характерные для типов леса сосновой и еловой формаций в Беларуси.

Аббревиатуры: PINETUM: Cl cladinosum; Ca callunosum; Va vacciniosum; Pl pleuroziosum; Pt pteridiosum; Ox oxalidosum; My myrtillosum; FH fontinale-herbosum; Po polytrichosum; Le ledosum; C caricosum; CS caricoso-sphagnosum; S sphagnosum; PICEETUM: Va vacciniosum; Pl pleuroziosum; Pt pteridiosum; Ox oxalidosum; Ae aegopodiosum; Ur utriculosum; F filicosum; My myrtillosum; FH fontinale-herbosum; Po polytrichosum; C caricosum; CS caricoso-sphagnosum; + – вид характерен для данного типа леса; # – вид отмечен для данного типа леса в 1-3 описаниях; [] диапазон, в котором присутствует либо может быть найден вид.

<table>
<thead>
<tr>
<th>Виды</th>
<th>PINETUM</th>
<th>PINETUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polytrichum piliferum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Abietinella abietina</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Brachythecium albicans</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Dicranum scoparium</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Buxbaumia aphylia</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Dicranum spuriun</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Polytrichum juniperinum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Syntrichia ruralis</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Dicranum polysetum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Pleurozium schreberi</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Niphophrichum canescens</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Campylopus flexuosus</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Ptilidium ciliare</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Trichocolea tomentella</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Brachythecium salebrosum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Eurhynchium austistirete</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Amblystegium serpens</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Atrichum undulatum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Brachythecium rutabulum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Sciuro-hypnum oedipodium</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Polytrichastraum formosum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Plagiommium cuspidatum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Cirrhophyllum piliferum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Fissidens adianthoides</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Виды</td>
<td>PINETUM</td>
<td>PICEETUM</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Brachythecium velutinum</td>
<td>[+] [+] [+]</td>
<td>[+] [+] [+] [+]</td>
</tr>
<tr>
<td>Nowellia curvifolia</td>
<td>[+] [+]</td>
<td>[+] [+] [+]</td>
</tr>
<tr>
<td>Chiloscyphus profundus</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Herzogia seligeri</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Plagiothecium laetum</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Hylacomium splendens</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Stereodon pallescens</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Sphagnum capillifolium</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Nowellia curvifolia</td>
<td>[+] [+]</td>
<td>[+] [+] [+]</td>
</tr>
<tr>
<td>Chiloscyphus profundus</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Herzogia seligeri</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Plagiothecium laetum</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Hylacomium splendens</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Stereodon pallescens</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Sphagnum capillifolium</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Nowellia curvifolia</td>
<td>[+] [+]</td>
<td>[+] [+] [+]</td>
</tr>
<tr>
<td>Chiloscyphus profundus</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Herzogia seligeri</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Plagiothecium laetum</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Hylacomium splendens</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Stereodon pallescens</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Sphagnum capillifolium</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Nowellia curvifolia</td>
<td>[+] [+]</td>
<td>[+] [+] [+]</td>
</tr>
<tr>
<td>Chiloscyphus profundus</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Herzogia seligeri</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Plagiothecium laetum</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Hylacomium splendens</td>
<td>[+] [+] [+] [+] [+] [+]</td>
<td>[+] [+] [+] [+] [+] [+]</td>
</tr>
<tr>
<td>Виды</td>
<td>PINETUM</td>
<td>PICEETUM</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Chiloscyphus polyanthos</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Thuidium assimile</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Cladonia dendroides</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Plagiochila porelloides</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Cephalozia graveolens</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Chiloscyphus pallescens</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Thuidium recognitum</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Thuidium tamariscinum</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Geocalyx graveolens</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Lepidozia reptans</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Calliergon giganteum</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Sciuro-hypnum starkei</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Bryum turbinatum</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Dicranella varia</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Stereodon fertilis</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Drepanocladus aduncus</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Cephalozia bicuspida</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Jamesoniella autumnalis</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Pellia epiphylla</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Calypogeia neesiana</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Lepidozia longiflora</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Calypogeia integristipula</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Odontoschisma</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Sphagnum centrale</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Dicranella cerviculata</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Sphagnum fimbriatum</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Sphagnum girgensohnii</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Calliergon cordifolium</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Sphagnum palustre</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Sphagnum russowii</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Polytrichum commune</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Sphagnum magellanicum</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Sphagnum squarrosum</td>
<td>#</td>
<td>+</td>
</tr>
<tr>
<td>Виды</td>
<td>PINETUM</td>
<td>PICEETUM</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Polytrichastrum longisetum</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Chiloscyphus minor</td>
<td>[+</td>
<td>[+</td>
</tr>
<tr>
<td>Sphagnum fallax</td>
<td>[+</td>
<td>[+</td>
</tr>
<tr>
<td>Cephalozia rubella</td>
<td>+</td>
<td>4+</td>
</tr>
<tr>
<td>Aulacomnium palustre</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Warnstorfia fluitans</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sphagnum angustifolium</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Bryum pallens</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Plagiomnium undulatum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Rhizomnium punctatum</td>
<td>[+</td>
<td>[+]</td>
</tr>
<tr>
<td>Scapania irrigua</td>
<td>+</td>
<td>4+</td>
</tr>
<tr>
<td>Cephalozia pleniceps</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Calypogea muelleriana</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Liochlaena lanceolata</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Riccardia palmata</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Riccardia latifrons</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Pseudobryum cinclidioides</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Cephalozia catenulata</td>
<td>[+</td>
<td>[+]</td>
</tr>
<tr>
<td>Plagiomnium medium</td>
<td>[+</td>
<td>[+]</td>
</tr>
<tr>
<td>Dicranum bonjeani</td>
<td>[+</td>
<td>[+]</td>
</tr>
<tr>
<td>Sphagnum riparium</td>
<td>[+</td>
<td>[+]</td>
</tr>
<tr>
<td>Sphagnum warnstorffii</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Campylium protensum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Sphagnum cuspidatum</td>
<td>[+</td>
<td>[+]</td>
</tr>
<tr>
<td>Sphagnum papillosum</td>
<td>[+</td>
<td>[+]</td>
</tr>
<tr>
<td>Polytrichum strictum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Sphagnum compactum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Cephalozia connivens</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Sphagnum flexuosum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Drepanocladus polygamus</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Sphagnum fuscum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Sphagnum balticum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
</tbody>
</table>

122
<table>
<thead>
<tr>
<th>Виды</th>
<th>PINETUM</th>
<th>PICEETUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sphagnum rubellum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Mylia anomalа</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Bryum pseudotriquetum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Fissidens bryoides</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Fissidens taxifolius</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Brachythecium campestre</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Oxyrrhynchium hians</td>
<td>#</td>
<td>#</td>
</tr>
<tr>
<td>Conocephalum conicum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Lophozia ventricosa</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Dicranodontium</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>denudatum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Calliergonella lindbergii</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Bazzania trilobata</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Oxyrrhynchium speciosum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Bryum capillare</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Bryum moravicum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Blepharostoma</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>trichophyllum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Breidleria pratensis</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Hamatocaulis vernicosus</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Tomentypnum nitens</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Sphagnum contortum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Sphagnum obtusum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Sphagnum platyphyllum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Sphagnum quinquefarium</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Helodium blandowii</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Straminergon stramineum</td>
<td>[+]</td>
<td>[+]</td>
</tr>
<tr>
<td>Fissidens osmundoides</td>
<td>[+]</td>
<td>[+]</td>
</tr>
</tbody>
</table>

| MARCHANTIOPHYTA | 2 3 2 14 6 11 23 19 15 15 17 20 6 | 1 10 5 24 20 17 37 39 36 32 22 23 21 |
| BRYOPHYTA | 20 33 30 76 61 54 96 57 49 42 58 71 30 | 11 53 37 113 68 51 82 95 98 53 43 48 |
Глава 6
ГЕОГРАФИЧЕСКИЙ АНАЛИЗ

6.1 Географическая структура

Географический анализ бриофитов хвойных лесов позволил выявить 14 широтных геоэлементов и группу космополитов. Из них в хвойных лесах преобладают бореальные (118 видов – 44,4%), во вторую очередь неморальные (52 вида – 19,5%) и близкие к ним бореально-неморальные (23 вида – 8,6%) виды. Остальные элементы менее представительны. Среди них имеются, с одной стороны, субарктические (5 видов, 1,9%) и субаркто-бореальные (2 вида – 0,8%), а с другой, аридные (7 видов – 2,6%), средиземноморско-неморальные и субсредиземноморско-неморальные (6 видов – 2,3%). Ряд видов – 43 (16,2%) – горного генезиса (бореально-монтанные – 15, неморально-монтанные – 14, бореально-неморально-многотанные – 2; субаркто-многотанные – 6, субаркто-бореально-многотанные – 3, арко-альпийские – 3). К космополитам относится 10 видов (3,8%). Исходя из вышесказанного, изучаемую бриофлору можно охарактеризовать как неморально-бореальную с участием группы видов горного генезиса (Таблица 6.1). В сосновых и еловых лесах по отдельности спектр геоэлементов следующий: виды бореальной ориентации – 105 (48,2%) и 96 (44,0%) соответственно; неморальной ориентации – 64 (29,4%) и 71 (32,6%), виды с горной ориентацией – 29 (13,3%) и 36 (16,5%), аридные виды – 6 (2,8%) и 6 (2,8%), субарктические – 4 (1,8%) и 3 (1,4%), космополиты – 10 (4,6%) и 6 (2,8%).

Анализ мхов и печеночников хвойных лесов по отдельности показал, что к видам бореальной ориентации относится из печеночников – 19 видов (33,3%) и мхов – 101 (48,3%), неморальной ориентации печеночников – 18 (31,6%) и мхов – 63 (30,1%). К аридному элементу относится 7 видов мхов (3,3%), к субарктическому – 5 (2,4%). Горные связи проявляют у печеночников 17 видов (29,8%), у мхов – 26 (12,4%). Такие геоэлементы, как средиземноморско-неморальный, субаркто-бореально-многотанный, арко-альпийский, субарктический, аридный и субаркто-бореальный в данном списке бриофитов печеночниками не представлены. В группе космополитов – 3 вида печеночников (5,3% видов печеночников хвойных лесов) и 7 – мхов (3,3% видов мхов хвойных лесов), хотя можно выделить еще несколько гемикосмополитов, но они отнесены нами к определенным географическим элементам, учитывая их возможное зональное происхождение.

Печеночники в сосновых и еловых лесах соответственно распределяются следующим образом: виды бореальной ориентации – 17 (41,5%) и 17 (33,3%); неморальной ориентации – 15 (36,6%) и 15 (29,4%), виды с горной ориентацией – 6 (14,6%) и 17 (33,3%), космополиты – 3 (7,3%) и 2 (3,9%), т.е. здесь проявляется большая степень сходства. Спектр геоэлементов мхов в сосновых и еловых лесах соответственно таков: виды бореальной ориентации – 88 (49,7%) и 79 (47,3%); неморальной – 49
<table>
<thead>
<tr>
<th>Геолокация</th>
<th>118</th>
<th>44,9</th>
<th>103</th>
<th>47,5</th>
<th>93</th>
<th>43,3</th>
<th>19</th>
<th>33,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Бореальный</td>
<td>51</td>
<td>19,4</td>
<td>36</td>
<td>16,6</td>
<td>44</td>
<td>20,5</td>
<td>7</td>
<td>12,3</td>
</tr>
<tr>
<td>Неморальный</td>
<td>23</td>
<td>8,7</td>
<td>23</td>
<td>10,6</td>
<td>9,3</td>
<td>8,3</td>
<td>10</td>
<td>17,5</td>
</tr>
<tr>
<td>Суббorealно-неморальный</td>
<td>5</td>
<td>1,9</td>
<td>4</td>
<td>1,8</td>
<td>5</td>
<td>2,3</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>Средиземноморско-неморальный</td>
<td>0,4</td>
<td>0,5</td>
<td>1</td>
<td>0,5</td>
<td>1</td>
<td>1,8</td>
<td>1</td>
<td>2,4</td>
</tr>
<tr>
<td>Бореально-маккранский</td>
<td>15</td>
<td>5,7</td>
<td>10</td>
<td>4,6</td>
<td>12</td>
<td>5,6</td>
<td>4</td>
<td>7,0</td>
</tr>
<tr>
<td>Неморально-маккранский</td>
<td>14</td>
<td>5,3</td>
<td>7</td>
<td>3,2</td>
<td>14</td>
<td>6,5</td>
<td>9</td>
<td>15,8</td>
</tr>
<tr>
<td>Суббorealно-кайнозойский</td>
<td>2</td>
<td>0,8</td>
<td>2</td>
<td>0,9</td>
<td>2</td>
<td>0,9</td>
<td>2</td>
<td>3,5</td>
</tr>
<tr>
<td>Суббorealно-маккранский</td>
<td>5</td>
<td>1,9</td>
<td>4</td>
<td>1,8</td>
<td>5</td>
<td>2,3</td>
<td>2</td>
<td>3,5</td>
</tr>
<tr>
<td>Неморально-кайнозойский</td>
<td>3</td>
<td>1,1</td>
<td>3</td>
<td>1,4</td>
<td>2</td>
<td>0,9</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>Субарктико-бореальный</td>
<td>2</td>
<td>0,8</td>
<td>2</td>
<td>0,9</td>
<td>2</td>
<td>0,9</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>Субарктико-кайнозойский</td>
<td>2</td>
<td>0,8</td>
<td>2</td>
<td>0,9</td>
<td>2</td>
<td>0,9</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>Арианский</td>
<td>5</td>
<td>1,9</td>
<td>4</td>
<td>1,8</td>
<td>3</td>
<td>1,4</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>Космоидный</td>
<td>7</td>
<td>2,7</td>
<td>6</td>
<td>2,8</td>
<td>0</td>
<td>0,0</td>
<td>0</td>
<td>0,0</td>
</tr>
<tr>
<td>Табліца 6.1. – Распределение видов моховых хвойных лесов по геолокациям</td>
<td>125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(27,7%) и 56 (33,5%), виды с горной ориентацией – 23 (13,0%) и 19 (11,4%), аридные – 6 (3,4%) и 6 (3,6%), субарктические – 4 (2,3%) и 3 (1,8%), космополиты – 7 (4,0%) и 4 (2,4%), т.е. здесь проявляется несколько большее различие по отдельным группам геозлементов, чем это касается печеночников.

Относительно географической структуры бриофитов сосновых и еловых лесов проявляется значительное сходство с некоторым превосходством в сосняках видов бореальной ориентации и космополитов. Интразональность сосняков по сравнению с елянами отражает меньшая доля неморальных видов и видов горного генезиса, как имеющих узкую экологическую специализацию и, соответственно, менее распространенных в сосновых лесах Беларуси. Печеночники сосняков значительно уступают таковым ельникам по доле участия видов горной ориентации (в 2,5 раза), что связано с меньшим соответствием экологических условий в первых.

6.2 Хорологический анализ в зональном аспекте

Наличие территории Беларуси в месте соприкосновения двух геоботанических зон – евразиейской хвойной и европейской широколиственной – определяет особенности сложения естественного растительного покрова и распределение слагающих его популяций видов. Мохообразные, как неотъемлемая часть сообществ растительного покрова, подчиняются закономерностям этого распределения, хотя ареалы у бриофитов, в общем, более обширные, чем у сосудистых растений. Согласно геоботаническому районированию, на территории Беларуси выделяется 3 подзона: дубово-темнохвойных лесов, елово-грабовых дубрав и широкоствольно-сосновых лесов. Из них подзона дубово-темнохвойных лесов в наибольшей мере отражает природные условия евразийской хвойной зоны в пределах Беларуси, которая включает в себя 2 подзоны – дубово-темнохвойных лесов и переходную – елово-грабовых дубрав. Подзона широкоствольно-сосновых лесов входит в состав европейской широколиственной геоботанической зоны. Количественные показатели, особенно пропорции бриокомпонента (среднее число видов в семействе, среднее число видов в роде, среднее число родов в семействе), позволяют оценить его флористическое богатство и систематическое разнообразие, а также зонально-региональные особенности (Юргев, 1968). Известно, что более обширные и богатые флоры отличаются повышенными значениями данных показателей (Бардунов, Черданцева, 1982; Дулин, 2002; Толмачев, 1974; Уланова, 1995; Шмидт, 1980, 1984). В нашем случае это указывает на сравнительно высокое таксономическое разнообразие бриокомпонента хвойных лесов Беларуси и высокое сходство по данному признаку относительно геоботанических подзон.

Таксономическая структура. В хвойных лесах Беларуси нами отмечено 255 видов (сосняки – 207, ельники – 208) (Таблица 6.2). Бриокомпонент сосновых лесов подзона елово-грабовых дубрав отличается сравнительно высоким (93,3% бриофи-

Одной из наиболее важных характеристик бриокомпонента является его таксономическая структура, поскольку на нее в меньшей степени, чем на другие флористические показатели, оказывает влияние разница в площадях, бриофлористическом богатстве и неполноте инвентаризации (Ребристая, Шмидт, 1972; Заки, Шмидт, 1972). Здесь первые десять семейств бриокомпонента хвойных лесов в целом, и сосновых и еловых лесов, в частности, в каждой из трех рассматриваемых подзон в границах Беларуси включают более половины видов. Такая тенденция в целом характерна для большинства бриофлор севера Голарктики (Дулин, 2002; Железнова, 1981, 1985; Константинова, 1989; Константинова и др., 2009; Толмачев, 1974).

Из мохообразных в хвойных лесах Беларуси отмечено у печеночников – 2 класса и у мхов – 3. Из них в европейской хвойной зоне (в пределах Беларуси) представлены все классы, известные в бриофлоре подзоны широколиственно-сосновых лесов, тогда как в составе бриофлоры последней не известен мох Andreaea rupestris – единственный представитель класса Andreaeaeopsida во флоре Беларуси, приводимый только для соснового леса. Относительно порядков бриофитов хвойных лесов, у печеночников (из 7 для хвойных лесов в целом) в европейской хвойной зоне (в пределах Беларуси) отсутствует порядок Pallaviciniales, представленный в пределах Беларуси только в еловых лесах европейской широколиственно-сосновой зоны. У мхов (из 14 порядков для хвойных лесов в целом) в подзоне елово-гребня дубрав европейской хвойной зоны не представлен порядок Encalyptales, а в подзоне широколиственно-сосновых лесов европейской широколиственно-сосновой зоны – Andreaeales, Encalyptales, Hedwigiales. Это может быть связано с климатическими условиями (Andreaeales), с отсутствием соответствующих субстратов (Encalyptales, Hedwigiales) из которых порядок Andreaeales в пределах Беларуси ограничен только сосновыми лесами европейской хвойной зоны.

Из 65 семейств бриофитов, представленных в хвойных лесах, в европейской хвойной зоне в пределах Беларуси отсутствуют представители одного семейства (Moerckiaceae), известного только для еловых лесов европейской широколиственно-сосновой зоны на территории Республики.
Таблица 6.2. – Показатели систематического разнообразия орнитокомпонентов хвойных лесов по геоботаническим подзонам

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Подзона дубово-темнохвойных лесов</th>
<th>Подзона ельово-гребовых дубрав</th>
<th>Подзона широколиственно-сосновых лесов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Хвойные леса</td>
<td>Сосны</td>
<td>Ель</td>
</tr>
<tr>
<td></td>
<td>Величина показателя</td>
<td>%</td>
<td>Величина показателя</td>
</tr>
<tr>
<td>Число видов</td>
<td>247 -</td>
<td>200 -</td>
<td>203 -</td>
</tr>
<tr>
<td>Число родов</td>
<td>132 -</td>
<td>112 -</td>
<td>116 -</td>
</tr>
<tr>
<td>Число семейств</td>
<td>64 -</td>
<td>58 -</td>
<td>61 -</td>
</tr>
<tr>
<td>Число видов в 3 ведущих семействах</td>
<td>59 23,9</td>
<td>53 26,5</td>
<td>47 23,2</td>
</tr>
<tr>
<td>Число видов в 10 ведущих семействах</td>
<td>132 53,4</td>
<td>112 56,0</td>
<td>107 52,7</td>
</tr>
<tr>
<td>Число видов в ведущих семействах (с числом видов выше среднего)</td>
<td>183 74,1</td>
<td>156 78,0</td>
<td>149 73,4</td>
</tr>
<tr>
<td>Число видов в ведущих родах (с числом видов выше среднего)</td>
<td>126 51,0</td>
<td>95 47,5</td>
<td>89 43,8</td>
</tr>
<tr>
<td>Среднее число видов в семействе</td>
<td>3,9 -</td>
<td>3,4 -</td>
<td>3,3 -</td>
</tr>
<tr>
<td>Среднее число видов в роде</td>
<td>1,9 -</td>
<td>1,8 -</td>
<td>1,8 -</td>
</tr>
<tr>
<td>Среднее число родов в семействе</td>
<td>2,1 -</td>
<td>1,9 -</td>
<td>1,9 -</td>
</tr>
<tr>
<td>Число семейств с 1 видом</td>
<td>32 50,0</td>
<td>29 50,0</td>
<td>30 49,2</td>
</tr>
<tr>
<td>Число семейств с 2 видами</td>
<td>4 6,3</td>
<td>6 10,3</td>
<td>2 3,3</td>
</tr>
<tr>
<td>Число родов с 1 видом</td>
<td>94 71,2</td>
<td>80 71,4</td>
<td>76 65,5</td>
</tr>
<tr>
<td>Число родов с 2 видами</td>
<td>13 9,8</td>
<td>12 10,7</td>
<td>18 15,5</td>
</tr>
<tr>
<td>Число семейств с 1 родом</td>
<td>38 59,4</td>
<td>27 46,6</td>
<td>31 50,8</td>
</tr>
</tbody>
</table>

128
Вместе с тем в составе бриокомпонента хвойных лесов европейской широколиственной зоны на территории республики не известны представители 7 семейств (печеночников – Jungermanniaceae, Lejeuneaceae, мхов – Andreaeaceae, Encalyptaceae, Hedwigiaesae, Lembophyllaceae, Splachnaceae), из которых Jungermanniaceae, Lejeuneaceae, Lembophyllaceae представлены только в азональных (островных) ельниках, Andreaeaceae, Splachnaceae – только в сосняках евросибирской хвойной зоны, а Encalyptaceae – только в подзоне дубово-темнохвойных лесов в пределах Беларуси.

Ведущие семейства в составе бриокомпонента хвойных сообществ подзоны дубово-темнохвойных лесов объединяют 183 вида, или 74,1% от бриоразнообразия подзоны (в сосняках – 78,0%, в ельниках – 73,4%), в подзоне елово-гробовых дубрав – 173 вида, или 72,7% (в сосняках – 75,8%, в ельниках – 66,5%), в подзоне широко-лиственно-сосных лесов – 159 видов, или 72,3% (в сосняках – 76,3%, в ельниках – 68,0%). Общей тенденцией, наблюдающейся при движении с севера на юг, является уменьшение доли участия ведущих семейств бриофитов в составе хвойных лесов, и по отдельности в лесах сосной и еловой формаций.

Из 134 родов бриокомпонента хвойных лесов в целом в евросибирской хвойной зоне не представлен только род Moerckia, приводимый лишь для еловых лесов подзоны широко-лиственно-сосных лесов.

Если рассматривать подзоны по отдельности, то в подзоне дубово-темнохвойных лесов не представлены роды Moerckia и Weissia. В подзоне елово-гробовых дубрав не обнаружены представители 6 родов (Crossocalyx, Pelekium – только для ельников, Orthocaluis, Campylium, Encalyptae, Tortella), приводимых для подзоны дубово-темнохвойных лесов, а также род Moerckia.

Ведущие роды в составе бриокомпонента хвойных лесов подзоны дубово-темнохвойных лесов объединяют 126 видов, или 51,0% от бриоразнообразия подзоны (в сосняках – 47,5%, в ельниках – 43,8%), в подзоне елово-гробовых дубрав – 116 видов, или 48,7% (в сосняках – 42,9%, в ельниках – 42,8%), в подзоне широко-лиственно-сосных лесов – 116 видов, или 52,7% (в сосняках – 46,2%, в ельниках – 45,3%).

Общей тенденцией, наблюдающейся в направлении север – юг, является некоторое возрастание доли участия ведущих родов бриофитов за счет увеличения данного показателя в сосных лесах. Относительно бриокомпонента лесов еловой формации здесь наблюдается тенденция уменьшения бриоразнообразия, что связано с
находжением еловых лесов в южных частях Беларуси за пределами границы сплошного их распространения, в островных местах произрастания, где сушен их типологический спектр.

Высокие показатели числа семейств с одним родом, а также семейств и родов с одним видом свидетельствуют о молодости и миграционном характере бриофлоры (Толмачев, 1974; Бардунов, Черданцева, 1982). Число и доля маловидовых семейств мохообразных в составе родов хвойных лесов во всех трех подゾонах сходны, хотя проявляется тенденция к незначительному уменьшению данных показателей в направлении север – юг. Относительно хвойных формаций в сосняках во всех подзонах эти показатели несколько выше по отношению к ельникам.

Только в составе бриокомпонента подзоны дубово-темнохвойных лесов выявлено 11 видов: печеночников – 4 (Crossocalyx hellerianus, Lophozia ascendens – лишь для ельников; Lophozia longiflora, Orthocaulis attenuatus – общие как для сосняков, так и для ельников) и мхов – 7 (Campylium protensum, Dicranum majus, Pelekium minutulum, Tortella tortuosa – только для ельников; Mnium lycopodioides, Sphagnum quinquefarium – только для сосняков; Campylium stellatum, Encalypta streptocarpa, Sciuro-hypnum reflexum – общие как для сосняков, так и для ельников).

Исклучительно в подзоне широкохвойно-сосовых лесов представлено 4 вида: печеночников – 2 (Cephaloziella hampeana – только в сосняках, Moerckia flotoviana – только в ельниках), мхов – 2 (Sphagnum compactum, Tortula lanceola).

Важно отметить, что Campyliadelphus chrysophyllus, Fissidens bryoïdes, Homalothecium sericeum, Isothecium alopecuroïdes, Niphotrichum canescens, пока не отмеченные для хвойных лесов европейской широкохвойно-сосовой зоны в пределах Беларуси в целом, присутствуют на данной территории, но редки здесь.

Сравнение количественных показателей систематического разнообразия (пропорции бриокомпонента) хвойных лесов в целом, а также сосовых и еловых лесов, в частности, относительно геоботанических подзон свидетельствует об их большом сходстве (Таблица 6.3). Наибольшее значение данного показателя у бриофитов сосовых лесов подзон дубово-темнохвойных лесов и ельово-грабовых дубрав (0,9), у
брунфитов елюовых лесов этих подзон коэффициент общности флор не отличается от такового хвойных лесов в целом (0,86). При сравнении бриоразнообразия подзон елюо-дубовых лесов и широколиственно-сосновых лесов высокое сходство наблюдается относительно сосняков (0,79), ельников (0,77) и хвойных лесов в целом (0,76). В общем бриокомпонент подзоны елюо-дубовых лесов проявляет несколько большее сходство с бриокомпонентом подзоны дубово-темнохвойных лесов, чем с таковым подзону широколиственно-сосновых лесов (0,66). У сосняков сходство данных бриокомпонентов выражено в большей степени (0,73), нежели у ельников (0,67).

Таблица 6.3. – Степень сходства бриокомпонентов хвойных лесов по геоботаническим подзонам

<table>
<thead>
<tr>
<th>Подзоны</th>
<th>Хвойные леса</th>
<th>Сосняки</th>
<th>Ельники</th>
</tr>
</thead>
<tbody>
<tr>
<td>дубово-темнохвойных лесов и елюо-дубовых лесов</td>
<td>0,86</td>
<td>0,90</td>
<td>0,86</td>
</tr>
<tr>
<td>елюо-дубовых лесов и широколиственно-сосновых лесов</td>
<td>0,76</td>
<td>0,79</td>
<td>0,77</td>
</tr>
<tr>
<td>дубово-темнохвойных лесов и широколиственно-сосновых лесов</td>
<td>0,66</td>
<td>0,73</td>
<td>0,67</td>
</tr>
</tbody>
</table>

В связи с тем, что подзона елюо-дубовых лесов является переходной и образована взаимным налажением бореальной и неморальной флор, не вполне целесообразно проводить сравнительный анализ данной подзоны с другими. Более определенно рассматривать различия бриокомпонентов хвойных лесов, а также лесов сосновы и елюой формаций подзон дубово-темнохвойных и широколиственно-сосновых лесов, имеющих в пределах Беларуси наибольшие отличия в видовом составе (около 10% их бриоразнообразия).

Эктоморфы по отношению к влажности и трофности субстрата (среды). В составе бриокомпонентов хвойных лесов сравнимых подзона представлен весь набор эктоморф, как по влажности, так и по трофности, представленных в составе бриофлоры Беларуси.

Относительно **гидроморф** эти два сравнимых бриокомпонента различаются незначительно, в основном за счет долей участия крайних групп (Таблица 6.4).

Бриокомпонент хвойных лесов подзона широколиственно-сосновых лесов содержит несколько большую долю таких гидроморф, как мезофиты и гигрофиты, приблизительно равны по доле участия гигромезофиты и мезогигрофиты, а остальные гидроморфы несколько уступают таковым подзона дубово-темнохвойных лесов. В лесах сосновой формации среди бриокомпонента южной подзоны только доли мезофитов незначительно превышает таковую видов северной подзоны, а гигрофиты несколько уступают им по доле своего участия. Относительно лесов елюой формации у видов южной подзоны в сравнении с северной несколько возрастает роль не только мезофитов, но и гигрофитов, гигромезофитов и мезогигрофитов. Всё это от-
Размещает общее сходство системы хвойных лесов Беларуси.

Таблица 6.4. – Распределение гидроморф мохообразных хвойных лесов по контрастным геоботаническим подзонам

<table>
<thead>
<tr>
<th>Гидроморфы</th>
<th>Подзона дубово-темнохвойных лесов</th>
<th>Подзона широколиственно-сосновых лесов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Хвойные леса</td>
<td>%</td>
</tr>
<tr>
<td>Мезоксерофиты</td>
<td>9</td>
<td>3,3</td>
</tr>
<tr>
<td>Ксеромезофиты</td>
<td>38</td>
<td>13,9</td>
</tr>
<tr>
<td>Мезофиты</td>
<td>93</td>
<td>34,1</td>
</tr>
<tr>
<td>Гигромезофиты</td>
<td>40</td>
<td>14,7</td>
</tr>
<tr>
<td>Мезогигрофиты</td>
<td>18</td>
<td>6,6</td>
</tr>
<tr>
<td>Гигрофиты</td>
<td>46</td>
<td>16,8</td>
</tr>
<tr>
<td>Гигрогигрофиты</td>
<td>20</td>
<td>7,3</td>
</tr>
<tr>
<td>Гидрофиты</td>
<td>9</td>
<td>3,3</td>
</tr>
</tbody>
</table>

Сравнение бриокомпонентов хвойных лесов Беларуси данных подзон по трофоморфам (Таблица 6.5) выявило, что в рассматриваемых подзонах доминирующими группами являются мезотрофы и мезоэвтрофы со сходными долями участия.

Таблица 6.5. – Распределение трофоморф мохообразных хвойных лесов по контрастным геоботаническим подзонам

<table>
<thead>
<tr>
<th>Трофоморфы</th>
<th>Подзона дубово-темнохвойных лесов</th>
<th>Подзона широколиственно-сосновых лесов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Хвойные леса</td>
<td>%</td>
</tr>
<tr>
<td>Эвтрофы</td>
<td>40</td>
<td>16,7</td>
</tr>
<tr>
<td>Мезоэвтрофы</td>
<td>73</td>
<td>30,5</td>
</tr>
<tr>
<td>Эвмезофиты</td>
<td>9</td>
<td>3,8</td>
</tr>
<tr>
<td>Мезофиты</td>
<td>78</td>
<td>32,6</td>
</tr>
<tr>
<td>Олигомезофиты</td>
<td>31</td>
<td>13,0</td>
</tr>
<tr>
<td>Олигоэвтрофы</td>
<td>8</td>
<td>3,3</td>
</tr>
</tbody>
</table>

В подзоне дубово-темнохвойных лесов несколько большую роль играют эвтрофы, а в широколиственно-сосновых – олигомезофиты. Это связано с тем, что в первой подзоне под хвойными лесами представлены несколько более богатые субстраты, а во второй – умеренно обеспеченные элементами питания. Относительно сосновой и еловой формаций данная тенденция повторяется.

Относительно биоморф (Таблица 6.6) в подзоне дубово-темнохвойных лесов несколько большее участие проявляют сплетения и дерновидная подушка, а в широколиственно-сосновых – ковры (особенно плоский и талломный), подушка и дерно-
вины. В сосняках в направлении север – юг в отличие от средних по хвойным лесам в целом показателей отмечается увеличение доли участия слабоветвистых сплетений и уменьшение доли дерновидных подушек, а в ельниках отмечено и вовсе исключение последних из спектра биоморф, что связано с эдафической и климатической спецификой Полесья.

Таблица 6.6. – Распределение биоморф мохообразных по контрастных геоботанических подзонам

<table>
<thead>
<tr>
<th>Биоморфа</th>
<th>Подзона дубово-темнохвойных лесов</th>
<th>Подзона широколиственно-сосновых лесов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Хвойные леса %</td>
<td>Сосняки %</td>
</tr>
<tr>
<td>Настоящая дерновина</td>
<td>77 28,3</td>
<td>60 27,0</td>
</tr>
<tr>
<td>Подушковидная дерновина</td>
<td>14 5,1</td>
<td>12 5,4</td>
</tr>
<tr>
<td>Мутовчато-ветвистая дерновина</td>
<td>25 9,2</td>
<td>25 11,3</td>
</tr>
<tr>
<td>Плоский ковер</td>
<td>86 31,6</td>
<td>68 30,6</td>
</tr>
<tr>
<td>Вертикально-ветвистый ковер</td>
<td>9 3,3</td>
<td>8 3,6</td>
</tr>
<tr>
<td>Талломный ковер</td>
<td>10 3,7</td>
<td>7 3,2</td>
</tr>
<tr>
<td>Дендроидная форма</td>
<td>4 1,5</td>
<td>4 1,8</td>
</tr>
<tr>
<td>Перисто-ветвистое сплетение</td>
<td>16 5,9</td>
<td>14 6,3</td>
</tr>
<tr>
<td>Разветвленно-ветвистое сплетение</td>
<td>12 4,4</td>
<td>9 4,1</td>
</tr>
<tr>
<td>Слабо-ветвистое сплетение</td>
<td>4 1,5</td>
<td>2 0,9</td>
</tr>
<tr>
<td>Гидрофитное сплетение</td>
<td>2 0,7</td>
<td>1 0,5</td>
</tr>
<tr>
<td>Дерновидная подушка</td>
<td>5 1,8</td>
<td>5 2,3</td>
</tr>
<tr>
<td>Подушка</td>
<td>8 2,9</td>
<td>7 3,2</td>
</tr>
</tbody>
</table>

Относительно жизненных стратегий в направлении север – юг заметно уменьшается доля участия бриопатиентов экотопических, особенно в ельниках (Таблица 6.7), что связано с менее расчлененным рельефом в подзоне широколиственно-сосновых лесов, и соответственно нахождение хвойных сообществ в более однотипных экотопах.

Возрастание доли бриоэксплерентов при этом, вероятно, свидетельствует о меньшей стабильности экологических условий хвойных сообществ, что более выражено в сосняках, чем в ельниках, поскольку сосна является более слабым доминантом, чем ель.
Таблица 6.7. – Распределение мохообразных по жизненным стратегиям относительно контрастных геоботанических подзон

<table>
<thead>
<tr>
<th>Жизненные стратегии</th>
<th>Подзона дубово-темнохвойных лесов</th>
<th>Подзона широколиственно-сосновых лесов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ВСЕГО</td>
<td>%</td>
</tr>
<tr>
<td>Бриофиоленты</td>
<td>20</td>
<td>6,3</td>
</tr>
<tr>
<td>Бриофитенты ценофитические</td>
<td>148</td>
<td>46,4</td>
</tr>
<tr>
<td>Бриофитенты экотопические</td>
<td>124</td>
<td>38,9</td>
</tr>
<tr>
<td>Бриоэксперменты</td>
<td>27</td>
<td>8,5</td>
</tr>
</tbody>
</table>

Сравнение географических элементов бриокомпонентов хвойных лесов двух рассматриваемых подзон (Таблица 6.8) показало незначительное уменьшение количества бореальных, а также неморальных видов и их производных за счет сокращения распространения лесов еловой формации (Рисунок 6.1), и в то же время увеличение их долей участия (Рисунок 6.2).

Таблица 6.8. – Геоструктура мохообразных хвойных лесов по контрастным геоботаническим подзонам

<table>
<thead>
<tr>
<th>Геоэлемент</th>
<th>Подзона дубово-темнохвойных лесов</th>
<th>Подзона широколиственно-сосновых лесов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Хвойные леса</td>
<td>%</td>
</tr>
<tr>
<td>Бореальный</td>
<td>114</td>
<td>44,2</td>
</tr>
<tr>
<td>Неморальный</td>
<td>51</td>
<td>19,8</td>
</tr>
<tr>
<td>Бореально-неморальный</td>
<td>23</td>
<td>8,9</td>
</tr>
<tr>
<td>Средниморско-неморальный</td>
<td>5</td>
<td>1,9</td>
</tr>
<tr>
<td>Субсредниморско-неморальный</td>
<td>1</td>
<td>0,4</td>
</tr>
<tr>
<td>Бореально-многий</td>
<td>15</td>
<td>5,8</td>
</tr>
<tr>
<td>Неморально-многий</td>
<td>14</td>
<td>5,4</td>
</tr>
<tr>
<td>Бореально-неморально-многий</td>
<td>2</td>
<td>0,8</td>
</tr>
<tr>
<td>Субаркто-многий</td>
<td>5</td>
<td>1,9</td>
</tr>
<tr>
<td>Субаркто-бореально-многий</td>
<td>3</td>
<td>1,2</td>
</tr>
<tr>
<td>Аркто-альпийский</td>
<td>3</td>
<td>1,2</td>
</tr>
<tr>
<td>Субаркто-бореальный</td>
<td>2</td>
<td>0,8</td>
</tr>
<tr>
<td>Субарктикский</td>
<td>5</td>
<td>1,9</td>
</tr>
<tr>
<td>Аридный</td>
<td>5</td>
<td>1,9</td>
</tr>
<tr>
<td>Космополит</td>
<td>10</td>
<td>3,9</td>
</tr>
</tbody>
</table>

134
Рисунок 6.1. – Геоструктура бриокомпонентов хвойных лесов по подзонам

Рисунок 6.2. – Геоструктура бриокомпонентов хвойных лесов по контрастным геоботаническим подзонам (доли участия)

Это объясняется тем, что виды бореальной ориентации удерживаются в хвойных сообществах в направлении север-юг, создающих в неморальной зоне благоприятные для них условия.
Вместе с тем доля видов горного генезиса снижается в этом же направлении, что связано практически с отсутствием в подзоне широколиственных лесов естественных каменистых субстратов и менее рассеченным рельефом, а доля аридных видов, наоборот, повышается.

В данную подзону субарктические виды проникают вместе с хвойными лесами и в какой-то мере являются их спутниками, что в целом не отвечает характеру зональной принадлежности данной территории.

Бриоокомпонент хвойных сообществ, как и вся бриофлора Беларуси, носит неморально-бореальный характер с заметным участием видов, проявляющих горные связи. Субарктические виды сосредоточены преимущественно в северной части Беларуси. Эколого-географическое распределение видов мохообразных указывает на сложную его зависимость от факторов среды произрастания.

6.3 Полесская хорологическая дигнъюнкция

На территории Полесья региональная хорологическая дигнъюнкция в ареалах многих умеренно теплолюбивых и влаголюбивых видов сосудистых растений изучена и обоснована В.И. Парфеновым (1964, 1980, 1983), который указывает, что в Полесье вследствие климатических и поченно-гидрологических его особенностей динамическое экстремальных условий произрастания на виды, находящиеся здесь на границах географического распространения, проявляется наиболее заметно, что, в первую очередь, связывается с дефицитом влажности.

В числе мохообразных в составе бриоокомпонента хвойных лесов Беларуси наряду с видами широкого распространения, ареал которых простирается далеко к югу за пределы республики, представлены бриофиты, проявляющие полесскую или южнopolесскую дигнъюнкцию (Рыковский, Шабета, 2014). Это Предполесье или северные рубежи Полесья — Вольно-Подольская возвышенность и Восточные Карпаты, северная половина Полесья — Вольно-Подольская возвышенность и Восточные Карпаты. Данные виды сосредоточены большей частью на северо-западе от Полесья. Следует отметить, что группа видов, в первую очередь, печеночных (Barbilophozia lycopodioides, Tritomaria exciformis, T. quinquedentata, Scapania paludicola, Frullania tamarisci) давно не обнаруживаются в Беларуси и, возможно, уже исчезла с территории республики. Однако без них не будет достигнуто полноту рассмотрения бриофитов, проявляющих определенную дигнъюнкцию в Полесье.

К бриофитам хвойных лесов Беларуси, не отмеченным на всей территории Полесья (Белорусско-Украинского), относится 9 видов: Lophozia ascendens, Tritomaria exciformis, T. quinquedentata (печеночки); Andreea rupestris, Encalypta streptocarpa, Dicranum majus, Campylopus flexuosus, Tortella tortuosa, Rhyynchostegium confortum (мхи). Из этих видов 8 обнаруживают общеполесскую дигнъюнкцию, тогда как Campylopus flexuosus отмечен только в Предполесье, а южнее, на территории Украины, вообще неизвестен. Оба вида Tritomaria отмечены на северном рубеже Полесья.
Большинство видов, проявляющих данную дизъюнкцию, южнее Полесье встречаются затем в Восточных Карпатах (Бойко, 1999, Вирченко, 1991). Исключение составляет Rhynchostegium confertum, отмеченный после полесской дизъюнкции только в Ополье. Однако такие виды, как Encalypta streptocarpa и Tortella tortuosa, после общей полесской дизъюнкции обнаруживаются не только в Восточных Карпатах, но также в лесостепи и степи (территория Украины). Эти виды, являющиеся кальцефилами и, вероятно, не находят подходящего субстрата для поселения в области Полесья, хотя для них здесь и отсутствует климатический стресс. Вместе с тем в Беларуси данные виды ограничены ее северо-западной частью. Остальные вышеуказанные бриофиты проявляют климатическую обусловленность. Их отсутствие в Полесье объясняется здесь в основном иссушительным стрессом (своего рода аналогом степного климата с учетом почвенно-гидрологических особенностей региона). Вместе с тем в этом отношении выделяется Andraea rupestris, поскольку для данного эпилита подходящий субстрат в Украинском Полесье представлен в связи со значительным выходом на дневную поверхность древних силикатных кристаллических пород.

Южнополесскую дизъюнкцию (бриофиты не заходящие южнее, за пределы Белорусского Полесья) проявляет 16 видов. Это Pellia neesiana, Moerckia flotoviana, Calypogea integristipula, Bazzania trilobata, Cephaloziella elachista, Orthocaulis attenuatus, Barbilophozia lycopodioides, Solenostoma gracillima, Sphaugnum balticum, Atrichum angustatum, Fissidens osmundoides, Didymodon rigidulus, Bryum dichotomum, B. moravicum, Breidleria pratensis. В их числе – печеночников – 9, мхов – 7, в т.ч. сфагновых – 1, бриевых – 6, т.е. печеночников – несколько повышенное количество, что связано с их большей требовательностью к влажности среды. В субстратном отношении данные виды – в основном эпигеиды, тогда как типичные эпифиты среди них отсутствуют. Вообще все эпифиты, известные в Белорусском Полесье, представлены и в Украинском Полесье, поскольку Полесье в целом является собой неморальную зону, для которой характерны эпифиты.

Соответственно, из бриофитов аборигенных хвойных лесов Беларуси для Украинского Полесья не указывается 25 видов, в том числе 9 – печеночники и 16 – мхи (1 сфагновый, 1 андреевый и 14 бриевых).

Северополесскую дизъюнкцию в области Белорусского Полесья проявляют 7 видов. Среди них такие печеночники, как Schistochilopsis incisa, Lophozia longiflora, а также мхи Grimmia muehlenbeckii, G. pulvinata, Bucklandiella heterosticha, Hedwigia ciliata, Pterigynandrum filiforme. Данные печеночники, судя по их субстратной приуроченности и общему распространению, могут быть обнаружены и здесь, тогда как отсутствие вышеупомянутых эпипитов многих видов связано с тем, что в Белорусском Полесье древние кристаллические породы на дневную поверхность не выходят, нет здесь и силикатных валунов как скандинавских отторжений. Только на крайнем юге Беларуси в окрестностях д. Глушковичи на группе силикатных камней отмечены эпифиты Bucklandiella heterosticha, Hedwigia ciliata, Paralecobryum longifolium (последний встречается еще лишь на северном рубеже Полесья).

Из числа вышеуказанных видов проявляют дизъюнкцию «Беларусь –
Карпаты, Прикарпатье» – 12. Это печеночники *Pellia neesiana, Calypogeia integristipula, Bazzania trilobata, Cephalozia elachista, Orthocaulis attenuatus, Solenostoma gracillima, S. sphaerocarpa, Lophozia ascendens, Tritomaria exectiformis, T. quinquedentata* (10 видов), и мхи *Andreaea rupestris, Dicranum majus* (2 вида). Данная фитохорологическая особенность не случайна, и отражает прерванные пути миграции видов мохообразных, скорее всего, из Восточных Карпат к северу после таяния материкового ледника, в голоцене. Большинство этих видов связано с тенистыми, сырыми (еловыми и др.) лесами, в которых создается более устойчивый и влажный микроклимат, благоприятный для произрастания ряда юнгерманниевых печеночников. Такой же дисъюнктивий характеризуются *Encalypta streptocarpa, Tortella tortuosa, Didymodon rigidulus, Bryum dichotomum*, но они встречаются также, как отмечено выше, в лесостепи и степях.

Наряду с этими видами также имеется группа бриофитов, заходящих с севера в Украинское Полесье (во в основном Западное, более влагообеспеченное). К ним относится 9 видов: печеночники – *Cephalozia catenulata, Odontoschisma denudatum, Lophozia ventricosa, Mylia anomala, Nardia geoscyphus, Scapania paludicola*, сфагновые мхи – *Sphagnum riparium, Sph. wulfianum* и печеночник *Calypogeia muelleriana* (Правобережное Полесье). Здесь представлены исключительно печеночники (7 видов) и сфагновые мхи (2 вида). Все эти виды отличаются повышенной требовательностью к влагообеспеченности условий произрастания, чем и ограничено их распространение в южном направлении. *Scapania paludicola*, судя по ее ареалу, может произрастать и в Белорусском Полесье.

Pogonatum nanum и *Mnium hornum* отмечены в Белорусском и Украинском (Западном) Полесье, а затем в Карпатах (Прикарпатье) и в Крыму, тогда как известные к северу от Полесья *Frullania tamarisci* и *Campylium protensum* представлены в Западном Полесье (Украина) и проявляют здесь дисъюнктивию с Карпатами (Прикарпатье) и Крымом. В отношении местообитаний этих видов в Полесье и севернее прослеживаются их монтанные связи в миграционном аспекте.

Всего общеполесской, южнополесской, а также северополесской дисъюнктивий характеризуется 32 вида (14 – печеночники, 18 – мхи). Вместе с бриофитами, которые с севера заходят на территорию Украинского Полесья, это составляет 41 вид, т.е. в той или иной мере полесскую дисъюнктивию проявляет 15,7% представителей бриофито-комплекта хвойных лесов Беларуси, что имеет климатическую или субстратную обусловленность.
Глава 7
СОЗОЛОГИЧЕСКИЙ АНАЛИЗ

В настоящее время около трети видов в составе бриофлоры Беларуси относится к редким, хотя и в разной степени (Рыковский, Масловский, 2004, 2009), в том числе некоторые из них являются очень редкими, обнаруженными давно и еще пока не подтвержденными. При этом следует учитывать, что многие из них значительно сократили свое распространение, а некоторые вообще могли исчезнуть. Это, возможно, вызвано воздействием комплекса антропогенных факторов и, главным образом, антропогенной трансформацией природной среды, прежде всего, осушением и сельскохозяйственным освоением земель, их промышленным и транспортным загрязнением, а также сплошной рубкой высоковозрастных древостояв природного происхождения на обширной территории.

Профилактической охране по тому же документу подлежат 5 видов (DD – недостаточно изученные – *Buxbaumia aphylla, Geocalyx graveolens, Hamatocaulis vernicosus, Orthocaulis attenuatus, Pseudoscleropodium purum*). Эти виды не равноценны по степени своего распространения в Беларуси. Среди них в хвойных лесах в настоящее время по своей редкости выделяется *Geocalyx graveolens*.

Также вышенепомянутые охраняемые или подлежащие профилактической охране виды, как *Buxbaumia aphylla, Hamatocaulis vernicosus, Neckera pennata*, не являются редкими на территории Беларуси, но подлежат охране, поскольку включены в Красную книгу моховидных Европы или в другие охраняемые документы общеевропейского значения.

Редкими на территории Беларуси видами являются – *Orthocaulis attenuatus, Pseudoscleropodium purum*.

В составе бриокомпонента хвойных сообществ очень редким для Беларуси являются: виды, как *Atrichum angustatum, Mnium hornum, Sciuro-hypnum reflexum*. Данные виды приводятся для территории Беларуси из одного-двух мест произрастания.
Из числа других редких (или слабо изученных хорологически в составе бриофлоры Беларуси) видов в хвойных лесах встречаются *Crossocalyx hellerianus*, *Lophozia longiflora*, *Ptilidium ciliare*, *Riccardia multifida*, *Solenostoma sphaerocarpum*, *Bryum amblyodon*, *B. dichotomum*, *B. palle ns*, *Campyliadelphus chrysophyllus*, *Campylium protensum*, *Dicranella crispa*, *Dicranum spurium*, *Encalypta streptocarpa*, *Hygroamblystegium humile*, *Hygroamblystegium tenax*, *Kindbergia praelonga*, *Mnium lycopodioides*, *Pleuridium subulatum*, *Pogonatum nanum*, *Sphagnum riparium*, *Sphagnum quinquefarium*, *Sphagnum wulfianum*, *Splachnum ampullaceum*, *Stereodon fertilis*, *Weissia controversa*.

Такие виды, как *Crossocalyx hellerianus*, *Lophozia longiflora*, *Orthocaulis attenuatus*, *Campylium protensum*, *Dicranum majus*, *Encalypta streptocarpa*, *Mnium lycopodioides*, *Pelekium minutulum*, *Sciuro-hypnum reflexum*, *Sphagnum quinquefarium* известны в хвойных лесах на территории Беларуси только в Поозерье.

Ряд видов (*Liochlaena lanceolata*, *Andreaea rupestris*, *Bryum bimum*, *Campyliadelphus chrysophyllus*, *Campylopus flexuosus* и др.) не заходят южнее границы сплошного распространения ели, а *Ptilidium ciliare*, *Aulacomnium androgynum*, *Tortula acaulon*, *Weissia controversa* – севернее данной границы.

Такие виды, как *Cephaloziella hampeana*, *Moerckia flotoviana*, *Tortula lanceola*, отмечены в хвойных лесах только для территории Полесья.

Впервые указаны для хвойных сообществ подзоны дубово-темнохвойных лесов *Homalotheicum lutescens*, *Stereodon fertilis*, а для подзоны ельово-гребовских дубрав – *Campylopus flexuosus*, приводимый ранее (Szafägel, 1908) только для Пуховичского района Минской области. С учетом крайней редкости этот вид включен в Красную книгу Беларуси (4-ое издание).

Некоторые редкие бриофиты упоминаются для хвойных сообществ в бриологических публикациях прошлых лет. К таким видам можно отнести *Pogonatum nanum*, который на рубеже 19-го и 20-го веков нередко встречался в западной части Белорусского Полесья (Алексенко, 1898, 1900, 1901).

Согласно А.С. Лазаренко (1951), на территории Беларуси в 30-ые годы прошлого столетия нередко встречались такие виды, как *Phascum cuspidatum*, *Barbula convoluta*, *Tortula subulata*, *Didymodon acutus*, *Weissia controversa* и некоторые другие. Эти виды предположительно могут быть приведены для хвойных лесов, хотя Г.Ф. Рыковский и О.М. Масловский (2009) отмечают, что большинство из них уже давно не обнаруживается.

Часть редких видов бриофитов, которые ранее указывались для флоры Беларуси, могли исчезнуть из-за большой антропогенной нагрузки на природный комплекс республики (осушительная мелиорация и сельскохозяйственное освоение земель, вырубка лесов, широкое использование минеральных удобрений и гербицидов при ведении сельского хозяйства и др.). К таким видам можно отнести *Pogonatum aloides*, *Encalypta ciliata*, *E. vulgaris*, *Aloina ambiguа*, *A. rigida*, *Weissia bra-chycarpa*, *Dicranodontium asperulum*, *Dicranella subulata*, *Pohlia atropurpurea*, *Bryum*...
cyclophyllum, B. longisetum, B. uliginosum, Bartramia pomiformis, Timmia megapolitana, а также виды родов Ulota, Ditrichum, Dicranoweissia и другие.

Вместе с тем с разной степенью вероятности для флоры Беларуси предположительно приводится 14 видов бриевых мхов (Рыковский, Масловский, 2009) с учетом их распространения на соседних территориях, из которых 8 можно отнести к хвойным сообществам: Pogonatum dentatum, Polytrichum pallidisetum, Polytrichastraum alpinum, Buxbaumia viridis, Tortella fragilis, Fissidens dubius, F. rigidulus, Distichium capillaceum.

Среди печеночников хвойных лесов Беларуси к редким и очень редким видам, которые, возможно, уже исчезли, относятся Barbilophozia barbata, B. lycopodioides, Tritomaria exactiformis, T. quinquedentata, Scapania curta, S. paludicola, S. nemorosa, Frullania tamarisci и некоторые другие.

Сохранение отдельных популяций, как и включающих их отдельных сообществ, имеет временное значение, поскольку не учитывает сукцессионных процессов. Вид сохраняется до тех пор, пока сохраняется его эколог или ее аналоги. С исчезновением его исторически сложившейся экозоны никакие искусственные меро-приятия этот вид как этап эволюции не спасут (Рыковский, Парфенов, 2006).

Существующие в настоящее время в умеренных широтах Голарктики виды об-разуют флору, сформировавшиеся в результате ревакуационно-миграционных про-цессов под влиянием четвертичных событий. Эти экстремальные события уже элиминировали многие виды третичного периода, а сохранились более адаптированные к условиям голоцена виды и их комплексы. В такой связи антропогенная элиминация данных видов создает опасный для природного экологического равновесия прецедент в будущем, при дальнейших климатических изменениях.

Сохранение биоразнообразия на популяционно-видовом уровне (как отмечено выше), на который ориентируют Красные книги, не имеет радикального, долговре-менного значения. Для этого должно быть обеспечено беспрепятственное проникновение микрозволюционно-миграционных процессов, создающих возможность для видов адаптироваться к непрерывным динамическим процессам. Обеспечение этого воз-можно только путем создания развитленной, пространственно непрерывной систе-мы охраняемых природных территорий (Рыковский, Парфенов, 2008). Установление современного состояния биоразнообразия и его распределения в территориально-
ценотическом отношении – лишь исходный момент для решения проблемы охраны на долговременной основе.

Следует отметить, что в отличие от флоры сосудистых растений, которая пополняется за счет значительного проникновения на территорию республики адвентивных видов, в составе бриофлоры таких видов пока не обнаружено (Рыковский, Сакович, 2014). Здесь не приходится уповать на кажущуюся легкость переноса спорами. Отсутствие их поступления приводит к одностороннему сокращению биоразнообразия мохообразных, ее неуклонному обеднению. Такую ситуацию следует учитывать в подходе к вопросу охраны растительного мира. При этом необходимо принимать во внимание, что мохообразные относятся к тем автотрофам, которые заполняют бреши в растительном покрове и являются уплотняющим его фактором.

Среди редких видов следует различать редкие по естественным причинам (реликтовые и другие) и редкие вследствие воздействия комплекса антропогенных факторов. Негативные факторы последнего характера легче определяются и лучше поддаются антропогенной регулировке. При этом, ослабляя, в некоторой мере, конкурентные отношения в сообществах и создавая различные ниши, антропогенное воздействие может способствовать сохранению и даже расселению некоторых редких видов.

Исчезновение многих пionерных видов – объективный процесс, который не может быть приостановлен, хотя более реально сохранение редких видов в составе растительных сообществ и их комплексов, в том числе лесных. Вместе с тем исчезновение многих пionерных видов как первичных почвообразователей – негативный фактор.
ЗАКЛЮЧЕНИЕ

Проведенные целенаправленные бриологические исследования позволили установить, прежде всего, с достаточной репрезентативностью видовой состав бриокомпонента преобладающих в лесном фонде Беларуси аборигенных хвойных лесов, в том числе мохообразных аэроных сосновых и зональных еловых лесов. Представленная разносторонняя характеристика бриокомпонента данных лесов – таксonomicкой, биоморфологической, экологической и географической его структуры и в этих аспектах на основе сравнительного анализа отличительные особенности сообществ сосновой и еловой формаций (Шабета, 2014 а, Shabeta, Rykovsky, 2015).

Согласно таксономическому анализу бриокомпонента хвойных лесов на территории Беларуси в целом сравнительно богат. В нем установлено 255 видов (57,3% от состава бриофлоры региона) из 134 родов, 65 семейств, 21 порядка, 7 классов и 2 отделов. Для хвойных лесов Беларуси нами выявлено 59 новых видов (23% от общего числа видов хвойных лесов Беларуси).

Сосновые леса несмотря на значительное превосходство по занимаемым площадям и широте спектров типов леса в сравнении с еловыми, практически не отличаются от последних по числу видов мохообразных (соответственно 207 и 208), а также видовой представленности таксонов всех уровней. Эта особенность обусловлена тем, что сосновые леса значительно уступают еловым по степени устойчивости микроклимата и по трофиности занимаемых ими эдафотопов, что обуславливает в со- сиях большее разнообразие пионерных бриофитов, а также наличие видов, выносящих экстремальные условия среды, а в ельниках – повышенное разнообразие печеночников и некоторых других представителей мохообразных, с большей требовательностью к уровню влажности среды и трофиности субстрата.

Относительно бриофлоры Беларуси в целом бриокомпонент хвойных лесов составляет 84,4% разнообразия семейств, а в ведущей десятке семейств отличается порядком их расположения: здесь тянут свои позиции лидирующие во флоре Беларуси семейства Pottiaceae и Bryaceae, а их места занимают более ценностно связанные Brachytheciaceae, Amblystegiaceae, Dicranaceae, что отражает их биотопическое разнообразие. Более высокая видовая насыщенность семейств мхов в лесах сосновой формации по сравнению с еловой отражает меньшую степень «борьбы» бриокомпонента первых и свидетельствует о большем его соответствии условиям произрастания представителей отдела мхов, нежели печеночников. Бриокомпонент хвойных лесов относительно беден болотными видами бриевых мхов, характеризуясь повышенной долей участия сфагновых различной экологии.. Также особенностью исследуемого бриокомпонента является высокое положение в спектрах родов таких таксонов, как Sphagnum, Bryum, Dicranum, Plagionnium, Brachythecium, Plagiothecium, что характерно для переходных неморально-бореальных бриофлор. Таким образом, бриокомпонент аборигенных хвойных лесов Беларуси характеризуется сравнительно
высоким таксономическим разнообразием, и его систематическая структура имеет ряд черт, общих для большинства бриофлор севера Голарктики.

В связи с важной функцией в жизнедеятельности моховообразных биоморфологических особенностей их изучению относительно мохообазных хвойных лесов уделено должное внимание. В результате выявлено 13 форм роста. Среди них 82,0% видов представлено группами форм роста дерновина и ковер. В процессе адаптации к условиям внешней среды разные жизненные стратегии, в частности могут определять развитие одинаковых жизненных форм. Бриокомпонент хвойных лесов не выходит за рамки основных жизненных стратегий бриофитов как группы растений, которым более отвечают: патиентность и эксплерентность (бриопатиенты – 82,5% и бриэксплеренты – 10,6%). Наиболее крупная группа, включающая около половины бриофитного разнообразия хвойных лесов – бриопатиенты ценотические, представленные в основном эпигенами. Особенность бриокомпонента сосновых лесов является несколько пониженная доля участия бриопатиентов экотопических (35,4%) в сравнении с еловыми (41,0%), что связано с меньшей представленностью экотопической составляющей первых. Несколько большая доля бриэксплерентов в сосновых лесах (10,6%) по сравнению с еловыми (7,7%) связана с менее выраженной эдификаторной ролью сосны в сравнении с елью, что определяет степень устойчивости экологической обстановки. Пионерный образ жизни и стратегии освоения недоступных сосудистым растениям мест произрастания позволяют бриофитам уклоняться от конкуренции с сосудистыми растениями, благодаря чему и проявляют своего рода синаптропность, приуроченность к ценотически нарушённым и антропогенным местам произрастания.

Стратегию мохообразных как наземных гаплонтов определяют конкурентные отношения с сосудистыми растениями как наземными диплонтами, которые более адаптированы к условиям материковой части планеты. В значительно меньшей мере поведение мохообразных зависит от их собственных взаимоотношений и конкуренции с лихенобиотой (экстремальные места произрастания). Отсюда вытекает то, что основными стратегиями мохообразных является уклонение от конкуренции с трахеофитами и в связи с этим повышение выносливости к непосредственному воздействию абиотической среды. Если следовать более дробному подразделению бриофитов по жизненным стратегиям на эксплеренты, патиенты ценотические, патиенты экотопические и виоленты, то предположительно исходной стратегией их явилась ценотическая патиентность. Эта стратегия обязана адаптация мохообразных в составе сообществ трахеофитов среднего палеозоя в напочвенном ярусе. Все остальные жизненные стратегии произведены из данной стратегии как следствие адаптации мохообразных к определенному типу условий экзогенной среды. Следствием избранной видом стратегии является реакция на типовые условия внешней среды, ведущая к выработке соответствующей биоморфы, имеющей у мохообразных особо важное значение в связи со спецификой их организации. Биоморфу этих организмов зачастую отвечает несколько адаптаций, что способствует пространственной и экологической радиации того или иного таксона. В такой связи во времени возможно расши-
ренцис исходной экониши или освоение других экониши, отвечающих иным стратегиям, если это позволяют потенциальные возможности данной биоморфы и, прежде всего, возможность ее закрепления на данном субстрате. Поскольку жизненные стратегии у мохообразных направлены на сохранение вида, то они могут меняться в зависимости от конкретных экотопических условий, включая конкурентные отношения. Здесь играет определенную роль степень замкнутости экониши, т.е. их специфики.

Наиболее отвечает генеральным стратегиям мохообразных эксплуатируемость и патентность экотопическая, поскольку при этом виды наиболее уклоняются от конкуренции с трахеофирами, осваивая свободные или недоступные для последних субстраты. В обстановке лесных сообществ наиболее распространенный способ изменения стратегии ценотическая патентность — переход на такие обычные лесные субстраты, как колодник и кора древесных растений, т.е. привлечение стратегии экотопическая патентность. При этом данные бриофиты могут либо, как и прежде, произрастать и на почве или полностью переходят на кору живых деревьев или на гниющий колодник, утрачивая патентность ценотическую и становясь патентными экотопическими. В таких случаях в ходе последующей эволюции может изменяться видовая сущность и на этой основе возникать таксоны более высокого ранга. Такие лесные субстраты, как почва — гниющий колодник — кора живых деревьев образуют экологический ряд для мохообразных, который имеет и обратную последовательность. Однако кора на стволах ели и тем более сосны неблагоприятна для поселения мохообразных.

Виоленты согласно определению ведущих жизненных стратегий мохообразных для них нехарактерны. Однако особое положение в этом аспекте занимают сфагновые мхи. Сформировавшись в крайне экстремальных экотопических условиях (избыточное увлажнение при очень слабом минеральном питании), сфагновые мхи благодаря приобретенной ими специализации и биоморфе мутовчатая дерновина (а это экологически очень важно) способны изменять среду произрастания таким образом, что становятся основными эдификаторами, т.е. виолентами, определяющими условия произрастания для трахеофор и других растений.

Особенности организации бриофитов предопределяют особую значимость для них такого абиотического фактора, как влажность среды, хотя потребности мохообразных в отношении трофности субстрата далеко не одинаковы. Вместе с тем по отношению к влажности среды и трофности субстрата бриокомпонент хвойных лесов представлен всеми экоморфами, известными в Беларуси. Из гидроморф наиболее выделяются мезофиты (в сосняках – 78 видов, в ельниках – 84), из трофоморф – мезотрофы (66 и 68 соответственно), представляющие каждый около трети видового состава. По соотношению экоморф проявляется значительная разница между мхами и печеночниками: среди первых существенно преобладают мезэвтрофные мезофиты, а среди вторых – мезотрофные мезофиты и гигромезофиты, что связано со спецификой субстратной приуроченности последних в хвойных лесах.

Бриофиты занимают широкий спектр экониш хвойных лесов в соответствии со своими основными стратегиями – уклонением от конкуренции и повышением вы-
носливости. Основные жизненные стратегии мохообразных нами рассматривались на примере конкурентных отношений с наиболее распространенными сосудистыми рас- тениями как победителями в борьбе за существование. Из эгокруп преобладают эпигенды – 196 видов или 76,9% бриоразнообразия хвойных лесов (в сосняках – 169, в ельниках – 155), а также эпиксилы – 118 видов или 46,3% (95 и 108). Эпигенды – наиболее гетерогенная группа, характер размещения представителей которой зависит от абиотических факторов и структуры лесных сообществ. К облигатным эпигендам относятся 74 вида мхов. Несколько меньшая видовая представленность эпиксилов в основных лесах сравнительно с эпигенками связана с пониженным уровнем влажности микроклимата в первых. Облигатных эпиксилов – 9 видов (в основном печеночни- ков). Эпифитная фракция хвойных лесов составляет 99 видов или 38,8%. В сосняках она беднее (77 видов), чем в ельниках (93 вида), что особенно характерно для на- стоящих эпифитов (12 – в сосняках, 22 – в ельниках). Это вызвано меньшей пред- ставленностью широколиственных пород и осины в основных лесах, что связано в том числе и с пониженной трофностью их эдафотопов. Что касается эпилитов (в широком понимании, т.е. видов отмеченных на камнях, а селикатные валуны широко распространены в лесах особенно ко везерья) хвойных лесов, то они представлены в основном бриофитами с более или менее широкой экологической амплитудой – 72 вида или 28,2% (в сосняках – 64 вида, в ельниках – 59). Облигатных эпилитов отме- чено всего 9 видов – в основном в основных в ельниках в связи с теменной степенью зате- ненности в отличие от ельников. Каменистый субстрат не обязателен в лесных со- обществах и слабо отражает специфику бриокомпонента в этих условиях, но игнорировать этот субстанция, столь широко репространенный в лесах, особенно в северной части Беларуси, считаем не целесообразным. Копрофиты представлены единствен- ным видом (Splachnum ampullaceum) таковых во флоре Беларуси, выявленным в за- болоченном сосняке. Анализ субстратной приуроченности бриофитов хвойных лесов показал наибольшее соответствие экологическим условиям данных лесов групп эпи- гендов и эпиксилов. Виды мохообразных, являющиеся облигатными эпилитами и эпилитами слабо отражают специфику экологических условий хвойных лесов, но не принимать во внимание данные субстраты в хвойных лесах при рассмотрении их бриокомпонента считаем не целесообразным.

Впервые приведена разносторонняя характеристика мохообразных типов леса сосновой и еловой формаций на всей территории Беларуси по экологическим рядам с выделением комплексов видов бриофитов, характерных для отдельных типов леса или их относительно сходных групп. В сосновой формации в отличие от еловой представлены некоторые экстремальные по экологическим условиям типы леса с по- ниженной трофностью эдафотопов при недостаточном или избыточном увлажнении, что отражается в составе их бриокомпонента. Мохообразные лесного сообщества, прежде всего, хвойного леса, где их роль наиболее значительна, в связи со специфи- кой своей организации являются чувствительным показателем микроклимата, сло- жившегося в том или ином фитоценозе. При этом микроклимат индивидуирует в слож- ных сообществах не отдельные виды мохообразных, а их комплексы, включая не
только эпигеиды, но также эпиксилы и эпифиты, повышенно реагирующие на уровень влажности среды. Выявлены специфичные (дифференциальные) виды как отличительные показатели экологических условий лесов сосновой (47 видов) и еловой (43 вида) формаций, что характеризует особенности состояния и динамики этих лесов. Интегральных (общих) видов мохообразных хвойных лесов Беларуси – 165. Характерными для отдельных типов сосновых и еловых лесов или их групп и отражающими экологические условия данных сообществ являются 56,9% видов мохообразных хвойных лесов.

Учитывая то, что мохообразным свойственно более обширные географические ареалы, целесообразен хорологический анализ мохообразных хвойных лесов, как преобладающих в лесном фонде Беларуси. В географической структуре их бриокомпонента выделены 14 элементов и группа космополитов. В сосняках среди мохообразных отмечается несколько большая доля участия бореальной группы (48,4%), в сравнении с ельниками (44,2%), вместе с тем доля участия видов неморальной группы в первых несколько ниже (29,5%), чем в последних (32,6%). Группа элементов горного генезиса по доле участия в бриокомпоненте сосняков (12,7%) уступает таковой в ельниках (16,2%), что связано с меньшим соответствием экологических условий сосновых лесов в пределах Беларуси видам горного генезиса в сравнении с еловыми и находит определенное отражение в полесской хорологической дзюнкии. Также здесь представлена небольшая доля как аридных, так и субарктических видов в связи с их историческим предпочтением иных сообществ. Космополитов больше в сосняках (4,6%), чем в ельниках (2,8%), что отвечает менее стабильному экологическому режиму в первых. Бриокомпонент хвойных лесов носит неморально-бореальный характер с участием видов горного генезиса, отражающий резвакуационно-миграционный характер происхождения их бриофитного компонента, как и бриофлоры Беларуси в целом.

Ограничены территорией, расположенной севернее подзоны елово-гребневых дубрав – 32 вида мохообразных (в сосняках – 19 видов, в ельниках – 25), а южнее ее – 8 видов (7 и 6 соответственно). С севера на юг отмечается закономерное сокращение общего количества видов мохообразных в сосняках с 200 до 186, а в ельниках – с 203 до 181. Хорологический анализ представителей бриокомпонента хвойных лесов показал, что в них выделяется группа бриофитов, проявляющих общеполесскую, южнополесскую и северополесскую дзюнкии (31 вид), что совместно с бриофитами, несколько заходящими с севера на территорию Украинского Полесья, составляет 40 видов (15,7% мохообразных хвойных лесов Беларуси) и связано со спецификой природных условий Полесья – климатическими и эдафическими его особенностями.

В составе бриокомпонента хвойных лесов выявлены 12 видов, подлежащих строгой охране, 5 – профилактической, а также 3 очень редких вида и 26 – редких или слабо изученных в отношении распространения. В составе бриофлоры в отличие от флоры сосудистых растений не отмечено адвентивных видов. В связи с этим на территории Беларуси в настоящее время происходит одностороннее сокращение.
бриоразнообразия, что указывает на специфику в вопросе сохранения мохообразных. Для них особенно важно воссоздание природно-миграционных экологических русл на обширной территории (панъевропейская система).

Результаты проведенного комплексного исследования мохообразных вносят определенный вклад в познание состава и структуры аборигенных хвойных лесов в пределах Беларуси и тем самым в значительной мере дополняют данные, имеющиеся по сосудистым растениям этих сообществ, которым уделялось значительно большее внимание, и являются первой достаточно полной сводкой по составу и структуре их бриокомпонента.

Создана гербарная коллекция (около 5000 образцов) мохообразных хвойных лесов Беларуси, пополнивши фонды гербария Института экспериментальной ботаники НАН Беларуси – научного объекта, составляющего национальное достояние Республики Беларусь (Постановление Совета Министров РБ от 11.06.2002 г. № 758).

Для наполнения информационного блока данных по бриофлоре Беларуси создана и адаптирована к специфике организации и экологии бриофитов база данных «Мохообразные», использование которой в дальнейшем упрости обработку гербарного материала и пользование гербарными коллекциями Института экспериментальной ботаники НАН Беларуси.

Работа базируется на разностороннем анализе и обобщении бриофлористического материала, собранного на протяжении более 180 лет.

Материалы исследования имеют важное прикладное значение в плане проведения лесоустроительных работ, поскольку позволяют уточнить характеристику тип-тов хвойного леса. На основании данной работы в дальнейшем для хвойных лесов Беларуси возможно выделение бриосинузий, которые могут послужить для углубленного изучения мохообразных по типам данных лесов и их прогнозной характеристики.

Эти материалы могут быть использованы при подготовке определителей и атласов мохообразных лесов Беларуси, переизданий Красной книги Республики Беларусь, а также при составлении справочников, учебных пособий, при мониторинге.

Сведения, содержащиеся в монографии, использованы при подготовке четвертого издания Красной книги Республики Беларусь, дополнили сведения об экологии и местонахождениях ряда мохообразных, подлежащих охране на национальном уровне, а очень редкий вид Campylopus flexuosus включен впервые в этот природоохранный документ.
BRYOPHYTE DIVERSITY IN THE BELARUS CONIFEROUS FORESTS

Marina Shabeta, Gennady Rykovsky, Victor Parfenov

V.F. Kuprevich Institute of Experimental Botany, The Belarussian National Academy of Sciences, Akademicheskaya Str., 27, Minsk, 220072, Belarus
e-mail: Zentsova2009@gmail.com, Dr.Rykovsky@yandex.by

The territory of Belarus is situated mainly in the broad-leaved-coniferous subzone. Forest covers about 35% of its territory by Yurkevich et al. (Юркевич и др., 1971, 1979, 1984), with the coniferous composing 59.6% of the of forests vegetation to Yurkevich et al. (Юркевич и др., 1971, 1979, 1984). The latter are represented by two main types: azonic Pinus sylvestris and zonal Picea abies forests. Spruce occurs in Belarus near the southern limit of its continuous distribution in this longitudinal sector.

Being widespread in Belarus, these forests provide a good model for the comparison of bryophyte distribution in parallel series of spruce and pine forest types, which has been never conducted before in the country.

It is presented complex characteristics of bryophytes in forest types with accentuation on their typological features in forests of pine and spruce formations in a comparative perspective. For describing the ecological structure of bryocomponent of Belarus coniferous forests, the relation of bryophytes to humidity and trophic characteristics of habitats was analyzed. Rare species and species under conservation were marked. The list of species typical for certain types of forest is shown.

Coniferous communities were studied (769 plots) in the territory of in all provinces of Belarus, in 53 administrative districts. Our own bryophyte collections (>5000 samples); herbarium material kept in MSK, LE, KW, LWKS, GRSU and material from the previous publications Rykovsky et al. (Рыковский и др.,1980, 2010, 2012) were used. The nomenclature follow for mosses to Ignatov, Afonina, Ignatova et al. (2006), liverworts and hornworts names are given according to Potemkin & Sofronova (Потёмкин, Софронова, 2009). Species ecology in respect to humidity and substrate nutrient richness are given according to Rykovsky & Maslovsky (Рыковский, Масловский, 2004, 2009). Geobotanical classification of coniferous forest types of Belarus by Yurkevich et al. (Юркевич и др., 1971, 1979, 1980, 1984) is used, and edaphotopes classification by Pogrebnyak (Погребняк, 1955) is followed.

Of coniferous forest types of Belarus, the dominant species of ground cover are: cladinosum – Cladonia silvatica, C. rangeferina, C. fimbriata, etc.; callunosum – Calluna vulgaris, Thymus serpyllum, Festuca ovina, etc.; vacciniosum – Vaccinium vitis-idaea, Arctostaphylos uva-ursi, Calamagrostis epigeios, etc.; pleuroziosum – Pleurozium schreberi, Dicranum polysetum, Hylocomium splendens, Vaccinium vitis-idaea, Vaccinium myrtillus, etc.; pteridiosum – Pteridium aquilinum, Melampyrum nemorosum, Pyrola

The bryophyte species composition in coniferous forests of Belarus includes 255 species, which is 57.3% of bryoflora of the republic. There are 207 species in pine forests and 208 in spruce forests (Table 2.1).

Dry forest types, e.g. Picea abies forest with Vaccinium vitis-idea and lichen types of Pinus sylvestris forest are poor in bryophytes, including 11 and 22 species respectively, while mesic forest are more diverse. The relatively meso-oligotrophic forest types of pleurozium, pteridium, caricosum and caricoso-sphagnosum were found to have more species in pine forest (67-91 species) than in the same forest types in spruce forest (42-69). At the same type more wet and eutrophic types if oxalidosum, myrtillosum and fontinale-herbosum are more diverse in spruce forest (134-137 species) than in pine forest types of the same condition (65-119).

Conifer forests. The species common for all types of conifer forests in Belarus include: epigeious Dicranum polysetum, Hylocomium splendens, Polytrichum juniperinum, Pleurozium schreberi, epixylic Dicranum montanum, Tetraphis pellucida and the species of wide ecology Ptilidium pulcherrimum, Dicranum scoparium, Pohlia nutans.

Seven species occur in most forest types except only the most poor types of piceetum vacciniosum, pinetum cladinosum and sphagnosum; among them are species of the wide ecology Brachythecium salebrosum, Hypnum curvissiforme, Plagiomnium cuspidatum, Pylaisia polyantha, Sanionia uncinata, Sciuro-hypnum oedipodium, epigeious Ptilium crista-castrensis, Rhytidiadelphus triquetrus, epiphytic Orthotrichum species.

The following widespread species do not occur only in the most dry types of piceetum vacciniosum, pinetum cladinosum and callunosum: epigeious Leucobryum glaucum, Marchantia polymorpha, Climacium dendroides, Polytricha strum formosum, epixylic Chiloscyphus profundus, Dicranum flagellare, Herzogiella seligeri, Plagiothecium laetum, Stereodon pallescens, and epiphytic Radula complanata.

There are species common for the certain ecological groups. More dry forest types,
i.e. cladinosum, callunosum, vacciniosum, pleuroziosum, pteridiosum, the following species are characteristic: *Abietinella abietina*, *Bryum argenteum*, *Buxbaumia aphylla*, *Polytrichum piliferum*, *Syntrichia ruralis*.

Spectra of spruce and pine forest species in relation to humidity and nutrition are shown in Chapter 5.5.2.

Pinetum forest. There are groups of species, characteristic for certain groups of pinetum forest types. The central part of series (i.e. vacciniosum; pleuroziosum; pteridiosum; oxalidosum) is characterized by mesotrophic mesophytes *Callicladium haldanianum, Leptobryum pyriforme, Plagiothecium denticulatum, Polytrichastrum longisetum*; eutrophic mesohygrophytes *Thuidium assimile, Th. recognitum*; eutrophic and mesotrophic hygrophytes *Aulacomnium palustre, Brachythecium rivulare, Calliergonella cuspidata, Chiloscyphus polyanthos, Leptodictyum riparium*.

Common species for forest types with dry, periodically dired soil (from pinetum cladinosum to pteridiosum) include xeromesophytes *Abietinella abietina, Brachythecium albicans, Bryoerythrophyllum recurvirostrum, Bryum argenteum, Niphotrichum canescens, Hedwigia ciliata* (the inhabitants of dry meadows and light woods) and *Paraleucobryum longifolium*.

Ecological range of a relatively humid pinetum forests, from oxalidosum to polytrichosum, a derived type from dark coniferous forests, is characterized with mesotrophic and eumesotrophic hygrophytes, e.g. *Cephalozia lunulifolia, Chiloscyphus pallescens, Geocalyx graveolens, Plagiomnium ellipticum*.

In the forest types more wet than pinetum myrtillosum, there are hygrophyte species, including oligomesotrophic *Odontoschisma denudatum, Sphagnum fallax, S. russowii*, mesotrophic *Chiloscyphus minor, Sphagnum centrale, S. fimbriatum, S. girgensohnii* and mesoeutrophic *Pellia endivifolia, Drepanocladus aduncus, Fissidens adiantoides, Sphagnum squarrosum*.

Then, along with the humidity increase, since pinetum fontinale-herbosum type, more and more hygrophytes occur; they include common mesoeutrophic and eutrophic species wet forests and wetlands hygromesophytes and mesohygrophytes (*Cephalozia pleniceps, Scapania irrigua, Riccardia latifrons, R. palmata, Dicranum bonjeanii, Mnium hornum*), hygrophytes (*Rhizomnium punctatum, Pseudobryum cinclidiooides*), hygrohydrophytes (*Cratoneuron filicinum, Sphagnum riparium*) and hydrophytes (*Philonotis fontana, Riccia fluitans*).

The most wet places starting from the pinetum caricosum type, typical inhabitants of fens occur: hygrophytes and hygrohydrophytes *Riccardia multifida, Hamatocaulis vernicosus, Sphagnum contortum, Sph. obtusum, Sph. platyphyllum*.

From pinetum polytrichosum and in more wet habitats, there are a larger diversity of epixylic species, including many liverworts.

Only in the pinetum caricosum and caricoso-sphagnosum forest type, the hygrophytes of eutrophic swamps occur: *Aneura pinguis, Hamatocaulis vernicosus, Helodium blandowii, Sphagnum contortum, Sph. obtusum, Sph. platyphyllum, Tomentypnum nitens*, etc.
Pinetum forest types in wetlands and on the poor soils (ledosum and sphagnosum) are marked by the inhabitants of oligotrophic bogs, hygrophytes Cephalozia connivens, Mylia anomala, Sphagnum balticum, Sph. flexuosum, Sph. fuscum, Sph. rubellum, etc.

Extreme pine forest types, both drier types, cladinosum and callunosum, and wetter ones, sphagnosum, includes species which do occur only in pine forest these types.

Piceetum forests. There are species occurring in spruce forest throughout the spectrum of forest types, being absent only in piceetum vacciniosum; they include epigeous Plagiochila porelloides, Calliergon cordifolium, Euryrhychnium angustirete, Plagiomnium ellipticum, Polytrichastrum longisetum, Polytrichum commune, Rhizomnium punctatum, Sph. girgensohnii, Sph. palustre and epixylic Chiloscyphus pallescens, Lepidozia reptans, Nowellia curvifolia.

In the ecological range of forest types along increasing of moisture, up to piceetum myrtillosum (and less frequently - polytrichosum) occur eutrophic and mesotrophic species Trichocolea tomentella, Amblystegium serpentis, Anomodon longifolius, Atrichum undulatum, Brachythecium rutabulum, Campylium sommerfeltii, Cirriphyllum piliferum, Fissidens adianthoides, Funaria hygrometrica, Homomallium incurvatum, Plagiomnium affine, P. undulatum, Pylaisia polyantha, Rhodobryum roseum, Sanionia uncinata, Sciuro-hypnum oedipodium. Starting from oxalidosum type, the following hygrophytes appear: liverworts Blepharostoma trichophyllum, Cephalozia lunulifolia, Chiloscyphus polyanthus, Geocalyx graveolens, Plagiochila asplenioides and mosses Bryum capillare, B. moravicum, Calliergonella cuspidata, Sph. squarrosum, Thuidium assimile.

Forest types of aegopodiosum, urticosum and filicosum are characterized mainly by eutrophic and to a lesser extent mesotrophic hygrophytes Calypogeia muelleriana, C. neesiana, Cephalozia pleniceps, Geocalyx graveolens, Liochlaena lanceolata, Pellia epiphylla, etc.

A number of hydrophytes and hygrohydrophytes were found only in the fontinale-herbosum type: Riccia fluitans, Bryum pallens, Campylium protensum, Cratoneuron filicinum, Philonotis fontana, Pohlia wahlenbergii, Sph. warnstorfi. Three species, the inhabitants of eutrophic swamps, hygrophytes Breidleria pratensis, Sphagnum cuspidatum, Tomentypnum nitens, were found only in the caricosum and caricoso-sphagnosum types.

Comparison of bryophyte species of pine and spruce forest. As many as 90 species are differential between pinetum and piceetum forest in Belarus. 47 of them occur only in the pinetum forests (7 liverworts, 40 mosses, including Andreaeopsida 1, Sphagnopsida 9, Bryopsida 30). Pine forest include 43 species which were not recorded in spruce forest, as they include 12 liverworts, 31 mosses, all of them belonging to Bryopsida.

Comparative analysis of differential bryophytes of pinetum and piceetum showed that species in pine forest are distributed fairly evenly in relation to moisture, while in spruce forest a relatively more species are mesophytes or hygromesophytes, xeromesophytes are few and mesoxerophytes are absent (Chapter 5.5.2).

The differential species in pine forest are distributed relatively uniform in telation to trophic groups, whereas those species of piceetum are mostly indicators of the nutrient
rich substrates, mesotrophic species occur less frequently and there are no indicators of depleted and the nutrients poor substrates.

Species of spruce forest have in general a wider range in forest types as compared with the pine forests (Table 5.5).

In the pinetum the number of oligomesotrophic and oligotrophic species is maximum between three groups of trophomorphs (Chapter 5.5.2).

Epigeious and epixylic bryophytes more definitely correlate with the forest type in the Belarus coniferous forests, whereas obligate epiphytic and epilithic species poorly reflect the specificity of environmental conditions in this region.

Differential species of spruce forests indicate more favorable trophic and moisture conditions as compared with pine forests, reflecting a broader ecological range of pinetum in these factors including their extremes.

Picea abies demanding to humidity and fertility of soils, and grows in fresh sandy loam and loamy soils, tolerates conditions of excessive instantaneous hydration, poor sandy soils with high watertables, drained peaty-gley and peat soils with good aeration, does not tolerate dry air, stagnant soil moisture, and sudden changes in moisture regime of the soil (Погребняк, 1955, Yaroshenko, 1969, Yurkevich et al., 1971, 1979, Sukachev, 1972, Tikhomirov, 2005). These conditions are favorable for the growth of many species of bryophytes, including stenotopic. There are few presents xerophytes and oligotrophic species.

Pine forests cover a fairly wide edaphic habitat: from globalistan hills to large peatlands bogs, which are not particular to humidity and stability of the microclimate (Погребноуак, 1955, Ярошкнко, 1969, Юркевич и др., 1979, 1984, Сукачев, 1972, Тихомиров, 2005). It favors the settlement in the pine forests of different bryophytes ecology, a greater diversity of pioneer bryophytes, and the presence of species that tolerate extreme environmental conditions, but restricts the spread stenotopic bryophytes.

Bryocomponent of pine and spruce forests reflects the environmental conditions of these forests.
Литература

Аболинь, А. А. Листостебельные мхи Латвийской ССР / А. А. Аболинь. – Рига, 1968.

Адамов, В. В. Краткий обзор растительности некоторых районов Белорусского Полесья / В. В. Адамов // Матер. по изуч. растит. Белоруссии. – 1926. – Вып. 1.

Адамов, В. В. Обзор растительности Белорусского Полесья / В. В. Адамов, А. Д. Лазук // Матер. по изуч. растит. Белоруссии. – 1928. – Вып. 3.

Александрова, В. Д. Классификация растительности. Обзор принципов классификации и классификационных систем в разных геоботанических школах / В. Д. Александрова. – Л. : Наука, 1969. – 275 с.

Анищенко, Л. Н. Биоразнообразие мохового покрова и перспективы его использования в фитоиндикации экосистем района хвойно–широколиственных лесов европейской части Российской Федерации : автореф. дисс. … д–ра с.–х. наук : 06.03.03 ; 03.00.16 / Л. Н. Анищенко. – Брянск, 2009. – 33 с.

Башнева, Э. З. Разнообразие мохообразных естественных экосистем : подходы к изучению и особенности охраны / Э. З. Башнева // Успехи современной биологии,

Бойко, М. Ф. Монохромные в ценозах степной зоны Европы / М. Ф. Бойко. – Херсон, 1999 б. – 160 с.

Гельтман, В. С. Географический и типологический анализ лесной растительности Белоруссии / В. С. Гельтман. – Минск : Наука и техника, 1982. – 328 с.

Доктуровский, В. С. Ботанические исследования в пойме р. Птичь / В. С. Док-туровский, Н. Н. Жуков // Матер. по исслед. рек и речн. долин Полесья. – Київ, 1916.
Доктуровский, В. С. Орошение болот в Полесье и изменение растительности на них / В. С. Доктуровский // Болотоведение, 1913. – № 1.
Доктуровский, В. С. Ботанические исследования в пойме р. Брагинки / В. С. Доктуровский, Н. Н. Жуков // Матер. по исслед. рек и речн. долин Полесья. – Київ, 1916.
Доктуровский, В. С. Ботанические исследования по среднему течению р. Птичь / В. С. Доктуровский, Н. Н. Жуков // Матер. по исслед. рек и речн. долин Полесья. – Київ, 1916.
Заки, М. А. О систематической структуре флор стран Южного Средиземномо-рья. Ч. 1. Методика и анализ 5 региональных и 11 локальных флор / М. А. Заки, В. М.

Константинова, Н. А. Основные черты флор печеночников севера Голарктики (на примере сравнительного анализа флоры печеночников Мурманской области) : автореф. дис. … канд. биол. наук : 03.00.05 / Н. А. Константинова. – М., 1998. – 35 с.

Константинова, Н. А. Печеночники Кандалакшского заповедника (острова и побережье Кандалакшского залива Белого моря) / Н. А. Константинова. – Апатиты, 1997. – 46 с.

Крейер, Г. К. Осведомительный отчет о ботанических работах в Могилевской губернии в 1915 и 1916 гг. / Г. К. Крейер. – Могилев, 1917.

Малышев, Л. И. Количественный анализ флоры : пространственное разнообра-зие, уровневь видового богатства и репрезентативность участков обследования / Л. И.

Масловский, О. М. Системный анализ бриофлоры и оценка современного состояния биогеографического разнообразия мохообразных Белорусского Поозерья : автореф. дисс. … канд. биол. наук : 03.00.05 / О. М. Масловский. – Минск, 1997. – 18 с.

Михайлівська, В. А. Нарис релігійніці Білоруська зв'язка паліянуцага запаведніка / В. А. Михайлівська // Зборнік прац. Інстытут білології АН БССР, 1933. – Т. 3.

Парфенов, В. И. Исследование еловых лесов и внутривидовой изменчивости ели обыкновенной на юге ареала : автореф. дис. … канд. биол. наук : 03.00.05. / В. И. Парфенов. – Минск, 1964. – 26 с.
Парфенов, В. И. Обусловленность распространения и адаптация видов растений на границах ареалов / В. И. Парфенов. – Минск : Наука и техника, 1980 а. – 208 с.

Пидопличко, А. П. О новых видах и новых местонахождениях наиболее редких сфагновых мхов БССР / А. П. Пидопличко. – Тр. АН БССР, 1939. – Вып. 1–2.

Прахин, М. И. Раслинянная асацийность заходний часткі Мазырскойя акругі / М. И. Прахін // Матер. да вывуч. флеры і фауны Беларусі. – 1930. – Т. 5.

464 с.
Рыковский, Г. Ф. Бриофлора Березинского государственного заповедника : ав- тореф. дис. … канд. биол. наук : 03.00.05. / Г. Ф. Рыковский. – Минск, 1971 а. – 21 с.
Рыковский, Г. Ф. Гляциальные реликты во флоре мхов Белоруссии / Г. Ф.

Рыковский, Г. Ф. К экологии мохообразных Березинского заповедника / Г. Ф. Рыковский // Флора, систематика и филогения растений. – Киев : Наук. думка, 1975. – С. 182–188.

285–286.
Рыковский, Г. Ф. Происхождение и эволюция мохообразных с оценкой современного состояния и генезиса бриофлоры : дисс. … докт. наук : 03.00.05 / Г. Ф. Ры-

Рыкоўскі, Г. Ф. Аб дэгенераты морфаструктур як спосаб адаптацыі ў моха-падобных (Bryophyta) / Г. Ф. Рыкоўскі // Весці АН БССР. Сер. біял. навук. – Мн., 1987 а. – Вып. 4. – С. 9–12.

Савич, Н. М. Результаты геоботанических исследований в бывшем Рогачевском уезде летом 1923 / Н. М. Савич. – Минск, 1926.

Савч, Н. М. Вынікі геобатанічных даследванняў у Магілёўскай акрузе ўлетку 1925 году / Н. М. Савч // Матэрыялы да вывучч. флэры і фауны Беларусі. – 1929. – Т. 3.

Слободян, М. П. Лиственные мхи Советских Карпат : автореф. дисс. … канд. биол. наук : 03.00.05 / М. П. Слободян. – Львов, 1950. – 12 с.
Ткаченко, М. Леса севера / М. Ткаченко // Труды по лесному опытному делу в России.– СПб, 1911. – Выпуск XXV.
Толмачев, А. И. Введение в географию растений / А. И. Толмачев. – Л., 1974. – 156 с.
Толмачев, А. И. Методы сравнительной флористики и проблемы флорогенеза / А. И. Толмачев. – Новосибирск : Наука, 1986. – 196 с.
Тюремнов, С. Н. Болота Белорусской республики / С. Н. Тюремнов // Торфяное дело. – 1931. – № 1.

Шабета, М. С. Сравнительный анализ мохообразных мшаной и кисличной се-

Шабета, М. С. Структура бриокомпонента хвойных лесов Беларуси: таксомия, биоморфология, экология, география, созология : дисс. ... канд. биол. наук : 03.02.01, 03.02.08. / М. С. Шабета. – Минск, 2014 а. – 369 с.

Шабета, М. С. Экологический мониторинг состояния воздушного бассейна микрорайона поселка Сосны с помощью методов бриодиагностики / М. С. Шабета, В. В. Маврицев // Вопросы естествознания : сб. науч. ст. / Бел. гос. пед. ун–т им. М. 170

Шестакова А. А. Эколого-ценотические и флористические особенности организации бриофиты на территории Нижегородской области : автореф. дис. … канд. биол. наук : 03.00.05 / А. А. Шестакова. – Нижний Новгород : Нижегородский гос. ун-т, 2005. – 28 с.

Щербаков, А. В. Инвентаризация флоры и основы гербарного дела : Методиче-

Юркевич, И. Д. География, типология и районирование лесной растительности Белоруссии / И. Д. Юркевич, В. С. Гельтман. – Мн., 1965.

Юркевич, И. Д. Леса Белорусского Полесья (Геоботанические исследования) / И. Д. Юркевич, Н. Ф. Ловичий, В. С. Гельтман. – Минск : Наука и техника, 1977. – 288 с.

Юрцев, Б. А. Основные понятия и термины флористики / Б. А. Юрцев, Р. В.

172

Gilibert, J. E. Flora lithuanica inchoata, seu Enumeratio plantarum quas circa Grodnam et determinavit / J. E. Gilibert. – Grodnae, 1781.

Jundzill, J. Opisanie roślin w Litwie, na Wotyniu, Podotu i Ukrainie dziko rosnących i oswojonych / J. Jundzill. – Wilno, 1830. – 583 s.

